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Antimony sulfide (Sb2S3) is an Earth-abundant and nontoxic material that is under investigation for solar
energy conversion applications. However, it still suffers from poor power conversion efficiency and a large open
circuit voltage loss that have usually been attributed to point or interfacial defects. More recently, there has
been some discussion in the literature about the role of carrier trapping in the optical properties of Sb2S3, with
some reporting self-trapped excitons as the microscopic origin for the performance loss, while others have found
no evidence of carrier trapping with only large polarons existing in Sb2S3. By using first-principles methods,
we demonstrate that Sb2S3 exhibits strong electron-phonon coupling, a prerequisite for carrier self-trapping in
semiconductors, which results in a large renormalization of 200 meV of the absorption edge when temperature
increases from 10 to 300 K. When two electrons or holes are added to the system, corresponding to a carrier
density of 1.6 × 1020 cm−3, we find wave function localization consistent with the presence of bipolarons
accompanying a significant lattice distortion with the formation of Sb and S dimers. The formation energies
of the electron and hole bipolarons are −330 and −280 meV per carrier, respectively. Our results reconcile
some of the controversy in the literature regarding carrier trapping in Sb2S3 and demonstrate the existence of
large electron-phonon coupling and carrier self-trapping that might place a fundamental limit on the open circuit
voltage and, consequently, the maximum efficiency of the photovoltaic cells.

DOI: 10.1103/PhysRevMaterials.7.085401

I. INTRODUCTION

Photovoltaic (PV) solar cells are one of the key tech-
nologies for realizing a decarbonized economy as the Sun is
an inexhaustible and clean energy source. Mainstream solar
panels have been mainly based on crystalline silicon, which
offers high power conversion efficiencies (PCEs) of over 25%,
and their cost has decreased substantially over the years [1].
While other emerging materials such as organic-inorganic
hybrid perovskites and thin film technologies such as copper
indium gallium selenide (CIGS) and CdTe are making rapid
improvements in PCEs, they still face stability, toxicity, and
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material scarcity issues [2]. To further increase the PCE and
lower the cost of PV-generated electricity, tandem solar cells
show great potential as they can break the Shockley-Queisser
limit of single-junction solar cells [3]. The widely used silicon
PV has a band gap of around 1.1 eV and is an ideal material
for the bottom cell to absorb the lower-energy part of the solar
spectrum. The search for top cell materials compatible with
crystalline silicon is an active area of research for the scientific
and engineering communities, with candidates ranging from
III-V semiconductors to perovskites [4].

Among the many novel material candidates, the metal
chalcogenide family has received a lot of attention due to their
Earth-abundant and low-toxicity elements [5–8]. They also
possess desirable band gaps and relatively benign synthesis
conditions. In particular, antimony sulfide (Sb2S3) has a high
absorption coefficient in the visible region and a band gap of
1.7 eV that is ideal for the top subcell in a Si-based tandem
solar cell. Despite these promising traits, the record PCE of
Sb2S3 is only about 7.5% [9], far from the minimum 18%
needed for an efficient top cell [10]. This is due to the fact
that Sb2S3 suffers from high open circuit voltage Voc losses,
even though the internal quantum efficiency is near unity and
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the fill factor is up to 70%. Irrespective of fabrication methods,
the Voc deficit corresponds to a potential energy drop of about
0.7 eV, half of the theoretical maximum allowed by its band
gap. More recently, alloying and band gap tuning Sb2S3 with
Sb2Se2 have increased the PCE of metal chalcogenide solar
cells to a record of 10.7% [11]. This champion device’s Voc

remains largely unchanged, with the PCE increase mainly
coming from improvements in the short-circuit current and fill
factor. The large Voc loss has generally been ascribed to the
presence of localized point defects such as sulfur vacancies
or interfacial defects between Sb2S3 and the carrier trans-
port layers [12–15]. Such trap states in the band gap can act
as nonradiative recombination centers to reduce photocarrier
populations [16]. Defects can also reduce the quasi-Fermi
level splitting range under illumination and lead to lower Voc

and poor device performance.
Some recent reports have attributed the Voc loss in metal

chalcogenides to intrinsic carrier self-trapping [17–19]. In
Sb2S3, the role of extrinsic defects was excluded by the obser-
vation of a few picosecond carrier trapping without saturation
at a high carrier density of 1020 cm−3 and the polarized nature
of trap emission from single crystals [17]. In Sb2Se3, lattice
anharmonicity was observed with a 20 ps barrierless intrinsic
self-trapping with associated polaronic lattice distortion [19].
On the other hand, a first-principles study found moderate
Fröhlich coupling constants in these systems, and polarons
having rather large radii extending over several unit cells
[20]. Furthermore, the electrons and holes exhibit moderate
mobilities in the range of 1–10 cm2 V−1 s−1, showing that
transport might be bandlike or dominated by large polarons
[21–23]. Therefore, the debate on the role of small localized
polaron and carrier trapping in Sb2S3 remains open.

A prerequisite for the formation of polarons is strong cou-
pling between carriers and the lattice. Experimentally, the
importance of electron-phonon coupling in Sb2S3 was studied
by Chong and coworkers, who observed coherent phonon
generation in pump-probe experiments and assigned it to the
B3g longitudinal optical phonon mode at 65 cm−1 [24]. It was
also reported that an Ag optical phonon mode at 194 cm−1

is responsible for the excited state relaxation in Sb2Se3 [19].
The electronic structure and band gaps of Sb2S3 were also
calculated at various levels of theory [25–27], and separately,
the phonon dispersion and anisotropic thermal expansion were
calculated [28,29]. However, a full microscopic characteriza-
tion of electron-phonon coupling is still missing.

In this work, we perform a systematic first-principles study
of electron-phonon coupling and polarons in Sb2S3. We reveal
the presence of strong electron-phonon coupling, leading to
a large absorption edge renormalization of 200 meV when
temperature increases from 10 to 300 K. We find that there are
negligible structural distortions when an electron is added or
removed from the supercell with the charge density remaining
delocalized across the system. In the presence of two excess
electrons or holes per supercell, corresponding to a carrier
density of 1020 cm−3, we observe bipolarons associated with
the formation of antimony and sulfur dimers, respectively.
Our results contribute to the debate regarding the existence
and role of polarons and highlight the complex carrier self-
trapping properties in metal chalcogenide systems mediated
by strong electron-phonon coupling.

II. METHODS

All density functional theory (DFT) calculations are per-
formed using the Vienna Ab initio Simulation Package (VASP,
version 5.4) [30,31]. The core-valence interaction is described
using the projector augmented wave method [32], with five
valence electrons for Sb (5s25p3) and six valence electrons
for S (3s23p4). The electronic wave functions are expanded
in a plane wave basis with an energy cutoff of 400 eV, and
the Brillouin zone is sampled with a 12 × 4 × 12 �-centered
Monkhorst-Pack [33] k-point grid, with commensurate grids
for the supercells. The atoms are relaxed until the Hellman-
Feynman force converges below 10−2 eV Å−1, and the volume
is relaxed until all components of the stress tensor are below
10−2 GPa.

All phonon dispersions are computed using the finite-
displacement method with a 2 × 6 × 2 supercell containing
480 atoms (22.6 × 23.2 × 22.1 Å3) as implemented in the
PHONOPY package [34]. For phonon dispersions, a nonana-
lytical term is added to the dynamical matrix to treat the
long-range interaction arising from the macroscopic electric
field induced by the polarization of collective ionic motions
near � [35].

To include the effects of electron-phonon interactions on
optical absorption at a given temperature T , we evaluate the
imaginary part of the frequency-dependent dielectric function
ε2(ω, T ) within the independent particle approximation using
the Williams-Lax theory:

ε2(ω, T ) = 1

Z
∑

s

〈�s(u)|ε2(ω, T )|�s(u)〉 e−Es/kBT , (1)

where �s is the vibrational wave function in state s with
energy Es, evaluated within the harmonic approximation, and
Z = ∑

s e−Es/kBT is the partition function, where kB is Boltz-
mann’s constant. For these calculations, we recompute the
phonon frequencies and eigenvectors using nondiagonal su-
percells [36] and then use them as a starting point to evaluate
Eq. (1) with Monte Carlo integration accelerated by thermal
lines [37,38].

From the finite-temperature dielectric function, the absorp-
tion coefficient is given by α(ω) = ω

cn(ω)ε2(ω), where c is the
speed of light in vacuum, ε2(ω) is the imaginary part of the
dielectric function, and n(ω) is the real part of the complex
refractive index. n2(ω) = 1

2 (ε1 +
√

ε2
2 + ε2

1 ), where ε1(ω) is
the real part of the dielectric function. ε1(ω) is obtained
from ε2(ω) through the Kramers-Kronig relation. Conver-
gence tests show that a 2 × 6 × 2 supercell and a 2 × 2 × 2
electronic k grid lead to accurate results, with the tetrahedron
smearing method [39] and small complex shift (10−6) in the
Kramers-Kronig transformation.

For the fulfillment of the Koopmans’s condition, the cor-
rections to the unoccupied Kohn-Sham eigenvalues of the
defect-induced single-particle levels are calculated as [40]

εKS
corr = −2

q
Ecorr, (2)

where q is the charge of the defect and Ecorr is the finite-size
electrostatic correction. Ecorr is computed using SXDEFECTAL-
IGN [41] with an anisotropic screening where the diagonal
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FIG. 1. (a) Sb2S3 crystal structure viewed from the [010] axis, with the unit cell enclosed by the black box. Brown and yellow spheres
represent Sb and S atoms, respectively. One [Sb4S6] ribbon is encircled by the green dashed line. The intraribbon bonds are indicated by
the solid brown-yellow lines, and the interribbon van der Waals interactions are indicated by black dashed lines. (b) Sb2S3 crystal structure
viewed from the [001] axis, with the ribbon enclosed in a green dashed box. (c) The projected band structures along high-symmetry lines of
the Brillouin zone calculated at the optB86b level, with the orbital contributions drawn as a series of stacked circles. (d) The phonon dispersion
of Sb2S3 along high-symmetry lines of the Brillouin zone, with the total phonon density of states in the right panel.

terms of the high-frequency dielectric tensor are εxx = 11,
εyy = 8, and εzz = 12 [42].

For polaron and bipolaron calculations, we use a 2 × 6 × 2
supercell to minimize spurious interactions between periodic
images and sample only the � point. After the addition or
removal of an electron from the supercell, structural relax-
ation is performed using spin-polarized calculations in which
the supercell lattice parameters are fixed and the atoms al-
lowed to move, with the same force convergence criterion of
10−2 eV Å−1. The bipolaron is set in the singlet (S0) state,
which is lower in energy than the triplet (T1) state by 1.65 eV.
The binding energy of the electron or hole bipolaron per
electron Ep can be estimated using the following formula for
defect formation energy calculations [43]:

Ep = Eq[bipolaron] − E [pristine] + 2qEedge + Ecorr

2
, (3)

where Eq[bipolaron] is the total energy of the distorted super-
cell of the bipolaronic state; E [pristine] is the total energy of
the perfect crystal using an equivalent supercell, with q denot-
ing the excess of charge of an electron or hole; and Eedge is the
energetic position of the conduction band minimum (CBM)
or valence band maximum (VBM). The diagonal components
of the static dielectric tensor are used with εxx = 94, εyy = 13,
and εzz = 99 [42].

Crystal structures and isosurfaces are visualized using
VESTA [44], and graphs are plotted by SUMO [45] and custom
scripts.

III. RESULTS AND DISCUSSION

A. Equilibrium properties

The orthorhombic phase of Sb2S3 belongs to the space
group Pbnm with 20 atoms per unit cell. Its crystal structure
is highly anisotropic with covalently bonded one-dimensional
(1D) ribbons of [Sb4S6] along the [010] or b direction
[Figs. 1(a) and 1(b)]. These ribbons are, in turn, weakly
bonded in a zigzag fashion in the (010) plane by van der Waals
(vdW) interactions. Due to the presence of vdW interactions,
we test the nonlocal vdW density functional (vdW-DF),
optimized vdW functional with Becke 86 exchange
(optB86b) and strongly constrained and appropriately normed
(SCAN) with revised-Vydrov and Van Voorhis dispersions
(SCAN + rVV10) [47,48], against some commonly
used semilocal, meta-generalized gradient approximation
(metaGGA) and hybrid functionals [49–52] (details are
given in the Sec. II). While most functionals are able
to reproduce the b lattice parameter accurately, the vdW
functional performs the best at simultaneously reproducing
a and c accurately (see Table I). There are little differences
in the calculated lattice parameter between the optB86b and
SCAN + rVV10 functionals.
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TABLE I. The lattice parameters and band gaps of Sb2S3 cal-
culated using different DFT exchange-correlation functionals and
compared with experimental values [46].

Lattice parameter (Å)

a b c E direct
g E indirect

g

optB86b 11.324 3.865 11.053 1.241 1.228
SCAN + rVV10 11.315 3.843 11.085 1.362 1.362
SCAN 11.672 3.847 11.254 1.382 1.382
PBE 12.170 3.870 11.228 1.259 1.241
PBEsol 11.267 3.829 10.908 1.307 1.287
HSE06 12.081 3.802 11.389 1.745 1.740
Experiment 11.311 3.836 11.229 1.7

We then compute the orbital-projected band structure,
which is plotted in Fig. 1(c). The VBM consists of mainly
S 3p orbitals, and the CBM is dominated by Sb-S bonds made
up of Sb 5p and S 3s orbitals. The positions of the VBM
and CBM are located slightly away from � at (0,0,0.103) and
(0,0,0.282), respectively. This means that Sb2S3 is an indirect
band gap semiconductor, which was reported by previous
theoretical studies [27] and experimentally observed in low-
temperature optical measurements by Fujita and coworkers
[53].

The vdW functional suffers from the same self-interaction
error as other semilocal and metaGGA functionals and un-
derestimates the band gap to be around 1.24 eV (Table I).
Using the hybrid functional of Heyd, Scuseria, and Ernz-
erhof (HSE06) leads to a direct band gap of 1.75 eV that
is close to the experimental value. Our results are in gen-
eral agreement with previously calculated band gaps in the
range of 1.2–1.7 eV at different levels of theory [25–27].
Due to the small difference between direct and indirect band
gaps, �(Edirect

g − E indirect
g ) < 20 meV, Sb2S3 is often treated

as an effective direct band gap semiconductor. While hy-
brid functionals can more accurately reproduce the band gap,
the computational cost is significantly larger than that of
metaGGA functionals like SCAN + rVV10, which in turn has
higher computational cost than optB86b. We therefore use the
optB86b functional for the electron-phonon calculations in
this study and apply a HSE06-derived scissor shift to the band
gaps when necessary. The computed phonon dispersion and
density of states (DOS) is shown in Fig. 1(d), which exhibits
no imaginary modes, indicating dynamical stability.

For polaron calculations, hybrid functionals are necessary
to describe the charge localization [54–56]. To determine
the fraction of Fock exchange needed to cancel the self-
interaction error, we verify the fulfillment of the Koopmans’s
condition of the screened hybrid functional. This is done
by calculating the occupied and unoccupied single-particle
energy levels related to the +/0 transition of an unrelaxed
sulfur vacancy, which lies within the semiconductor gap of
Sb2S3 [57]. We vary the amount of exact Fock exchange while
keeping the screening parameter constant at 0.2. Figure S1 in
the Supplemental Material shows the computed band edges
and the energy levels for the sulfur vacancy transitions [58].
We note that the single-particle energy levels shown in Fig. S1
include finite-size corrections [41,59,60]. The crossing be-
tween the levels calculated in the 0 and +1 charges of the

supercell corresponds to the value of exact exchange for which
the Koopmans’s condition is satisfied. As this crossing value
of 0.24 is very close to the default value of 0.25 in HSE06, we
use the default 0.25 Fock exchange for the subsequent polaron
calculations.

B. Temperature-dependent structural and optical properties

The first effect we consider for the description of the finite-
temperature optoelectronic properties of Sb2S3 is the role of
thermal expansion. Using the quasiharmonic approximation
(QHA) [61], we consider primitive cell volumes ranging from
483.5 to about 502 Å3 in 15 equidistant steps. As the unit cell
of Sb2S3 is orthorhombic, the lattice parameters and atomic
positions at each volumetric step are relaxed while keeping
the volume constant. Then the Helmholtz free energies of
the relaxed structures are calculated within the harmonic ap-
proximation of the lattice dynamics. Figure 2(a) depicts the
Helmholtz free energy relative to the static lattice energy as
a function of lattice volume for temperatures ranging from
0 to 400 K. The minimum of each fitted free-energy curve
gives the quasiharmonic volume at the corresponding temper-
ature. The zero-point quantum motion contributes a volume
increase of about 2 Å3, and thermal expansion increases the
volume by an additional 7.5 Å3 in the studied temperature
range.

Figure 2(b) shows a comparison between the experimen-
tal temperature-dependent volume [62] and the QHA results.
The raw DFT calculations overestimate the volume by a con-
stant 2.5 Å3 from 128 to 293 K, where experimental data are
available, which is mainly due to the accuracy limits of the
optB86b functional. There is remarkable agreement between
theory and experiment if this systematic error is corrected,
revealing that thermal expansion is correctly captured by our
model.

Both Edirect
g and E indirect

g change by about 9 meV when we
consider the influence of thermal expansion from 0 to 400 K.
This change is negligible compared to the absorption edge
renormalization induced by electron-phonon coupling, which
will be discussed next. Therefore, we will ignore the effects
of thermal expansion in the rest of this work.

Figure 2(c) shows the absorption spectrum of Sb2S3 in
logarithmic scale calculated with the optB86b functional and
a HSE06-derived scissor correction. The absorption onset at
10 K is about 100 meV below that of the static level, indicating
the importance of zero-point motion. Increasing temperature
leads to a further redshift of the absorption onset, a result that
is consistent with recent experimental measurements of Bi2S3

in the chalcogenide family [64]. The calculated absorption
onset changes by around 200 meV from 10 to 300 K, some-
what larger than the value of 159 meV reported for Bi2S3, but
the difference likely arises from the mass difference between
Bi and Sb [63]. Absorption onset redshifts of about 100 meV
have been observed in other conventional III-V and van der
Waals semiconductors (see Table II).

The large redshift in the temperature-dependent absorption
onset shows that Sb2S3 exhibits large electron-phonon cou-
pling. Such strong coupling between electrons and phonons
provides the necessary conditions for the possible generation
of small localized polarons, which we discuss next.
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(a) (c)(b)

FIG. 2. (a) Relative Helmholtz free energy as a function of the unit cell volume for temperatures between 0 and 400 K. The black dashed
vertical line indicates the volume at the static DFT level, and the black squares indicate the minima of fitted free-energy curves at each given
temperature with the Rose-Vinet equation of state. (b) The unit cell volume as a function of temperature as calculated by the QHA. The QHA
data are also shifted by −2.5 Å3 to guide the comparison with experimental volumes [62]. (c) Absorption coefficient at temperatures from 10
to 400 K including phonon-assisted processes. A scissor operator of 0.5 eV is applied to all the spectra to align the static DFT band gap to the
HSE06 level.

C. Carrier trapping

The evidence of carrier self-trapping was supported by
transient absorption measurements on Sb2S3 which showed
that the populations of the trapped carriers do not exhibit any
saturation at a high carrier density of 1020 cm−3, implying
that trapping is not due to defects because their concentrations
were measured to be small in the same studies [17,19].
More evidence is provided by the polarized PL emission. It
was argued that it can arise only from the preferred dipole
alignment of the self-trapped carriers, ruling out the role of
defects, which are typically randomly distributed. However,
other studies reported significantly larger defect densities
[68,69] and that defect-trapped charges can also induce a
preferred dipole alignment in some ferroelectrics [70]. The
experimental results supporting self-trapping can therefore
also be explained by the presence of defects. Furthermore, a
first-principles study found that polarons in Sb2S3 and Sb2Se3

have large radii extending over several unit cells with mod-
erate Fröhlich coupling constants [20]. Small polarons and
therefore carrier self-trapping are unlikely to occur.

To resolve some of these controversies, we perform a sys-
tematic investigation of the polarons and bipolarons using a
large 2 × 6 × 2 supercell with 480 atoms. To find the po-
laronic geometry, we apply the bond distortion method to
various bonds to break the symmetry of the crystal struc-
ture [71], which was shown to lead to faster convergence by
mimicking the experimentally observed polaronic distortions.
One excess electron is then added or removed from the su-

TABLE II. The change in band gap for selected semiconductors
in the temperature range from 10 to 300 K.

Material �Eg (meV) Reference

Sb2S3 200 This study
Bi2S3 159 [64]
GaAs 96 [65]
GaSb 85 [65]
MoS2 95 [66]
WSe2 66 [67]

percell, and the atomic positions are relaxed (see details in
Sec. II). We find that there is little resultant structural distor-
tion, with few changes in the wave functions of the CBM and
VBM states, as shown in Fig. S2 [58]. The excess electron
is delocalized over the Sb atoms located on the edges of a
[Sb4S6] ribbon, while the excess hole is delocalized over the
entire supercell. Due to the delocalized nature of the band
edge wave function, the formation energy of the excess carrier
is calculated as the difference between the total energy of the
supercell before and after structural relaxation. The formation
energy of 4 meV is within the error of the DFT method
and well below the energy of thermal fluctuations at room
temperature, meaning that the formation of a small polaron is
unlikely. These results are in agreement with the conclusions
reached in the work of Wang et al. [20].

(c)

(e)

(b)

(f)

(d)

4.45Å

2.08ÅÅÅÅÅÅÅÅÅ

33333..88888880000000ÅÅÅÅÅÅÅÅÅ

3.84Å 2222.52Å

222222.8888888888999999ÅÅÅÅÅÅÅÅÅÅ

4.05ÅÅÅÅÅÅÅ

3.28Å

3.84ÅÅÅÅÅ
222222.555555222222ÅÅÅÅÅÅÅÅ

2.08ÅÅÅ

3.28Å3 28Å

ground state

hole bipolaron

electron bipolaron

(a)

FIG. 3. Bond distortions arising from excess electrons and holes.
(a) and (b) The crystal structure and selected bond lengths of ground
state Sb2S3, with characteristic interchain S-S (blue) and intrachain
Sb-Sb (purple) and Sb-S (red) distances. (c) and (d) Distorted struc-
tures in the presence of an electron bipolaron, with Sb-Sb antimony
dimer bond lengths at 2.89 Å. (e) and (f) Distorted structures in the
presence of a hole bipolaron, with S-S sulfur dimer bond lengths at
2.08 Å.
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(e)

(c)

(f)

(a) (b)

(d)

FIG. 4. Electronic structures of the polaronic states. (a) and (d) Projected density of states (PDOS) of the relaxed bipolaronic structures
with two excess electrons and holes, respectively. The energetic locations of the electron bipolaron and hole bipolaron states are circled. (b) and
(c) Wave function isosurface of the electron bipolaron as viewed from the b and c axes. (e) and (f) The difference between the total charge
density of the hole bipolaron and the pristine Sb2S3 as viewed from the b and c axes. Blue and red represent positive and negative values.

We next investigate the addition or removal of two ex-
cess electrons, or bipolarons, which have been investigated
in conjugated polymers and oxides for their role in mag-
netoresistance and transport properties [72–74]. Like in the
search for polaronic structure, two excess electrons are added
or removed from the supercell, and the atomic positions are
relaxed after applying the bond distortion method. We note
that the resultant excited carrier density of 1.6 × 1020 cm−3 is
of the same order of magnitude as the carrier densities used in
the transient absorption spectroscopy measurements of Sb2S3

[17]. Compared with the ground state geometry [Figs. 3(a)
and 3(b)], there is a significant structural distortion with the
elongation of the typical Sb-S bond from 2.52 to 3.28 Å with
two excess electrons [Fig. 3(c)]. Within the [Sb4S6] chain,
antimony dimers form, with the nearest Sb-Sb distance de-
creasing from 3.80 to 2.89 Å, while the S-S distance increases
from 3.80 to 4.05 Å [Fig. 3(d)]. Dimer formation in the
presence of bipolarons has been observed in oxides such as
TiO2, LiNbO3, and BiVO4 [75–77]. The dimer formation can
be understood from energetics: if the energy gained from the
formation of the bonding orbitals between the antimony atoms
is larger than the Coulomb repulsion between the two excess
electrons, the two electron polarons can bind with each other
and induce dimerization [76]. The electron bipolaron state
appears at the top of the valence bands [Fig. 4(a)], with its
wave function localized between two [Sb4S6] chains near the
antimony dimers [Figs. 4(b) and 4(c)].

Analogously, the introduction of two excess holes results
in the formation of a sulfur dimer between two neighboring
[Sb4S6] chains, with the S-S distance decreasing from 3.84 to
2.08 Å [Figs. 3(e) and 3(f)]. The formation of the sulfur dimer
pushes the state associated with its two holes far into the con-
duction band [Fig. 4(d)], where hybridization with conduction
states occurs [76,77]. For this reason, it is impossible to isolate
these two holes for visualization. For illustrative purposes,
we plot the difference between the total charge density of
the hole bipolaron and pristine Sb2S3 in Figs. 4(e) and 4(f),
showing that the bonding orbitals exist between the two sulfur
atoms in the dimer. By modifying the defect formation energy
expression, we compute the formation energies per carrier
for electron and hole bipolarons as −330 and −280 meV,
respectively [Eq. (3)]. The presence of the localized bipo-
larons can result in a small redshifted shoulder peak in the
absorption spectrum (Fig. S3 [58]) that can serve as a possible
experimental signature.

IV. CONCLUSION

We found that the absorption edge of the quasi-1D semi-
conductor Sb2S3 redshifts by about 200 meV from 10 to
300 K, a higher value than the corresponding shift observed
in most conventional and van der Waals semiconductors. This
shows that there is significant electron-phonon coupling in the
system, which can result in strong temperature dependence
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of the Urbach tail [78]. At higher operating temperature in
the field, photovoltaic solar cells based on Sb2S3 might ex-
hibit larger Voc losses, as the radiative recombination rate is
reduced by the increased amount of electronic disorder [79].

We further investigated the possibility of polarons and
bipolarons in a system mediated by strong electron-phonon
coupling. In the presence of one excess carrier, we found
that no small polarons are formed, in agreement with pre-
vious studies. With two excess carriers per supercell and
corresponding carrier densities of 1.6 × 1020 cm−3, electron
and hole bipolarons can cause the formation of sulfur and
antimony dimers with localized wave functions. Our results
reconcile some of the conflicting reports on carrier trapping in
Sb2S3 and show that intrinsic self-trapping can occur with-
out the presence of defect states. The absence of trapping
in the polaron and the presence of trapping in the bipolaron
might yield strong concentration dependence of the trapping
rate in transient excitation measurements, which should be
investigated in future studies. The limit to the device Voc and,
consequently, the maximum achievable PCE might need to
be carefully investigated as a function of solar irradiance. In
conclusion, while strategies focusing on improving material
synthesis and processing conditions to reduce defects and
interfacial losses can still increase the PCE, the maximum
efficiency might never reach the 18% needed for the top cell
in a tandem structure with silicon PV.

The VASP input and structure files for the ground state and
bipolarons are available from Zenodo [80].
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