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Grasp Transfer based on Self-Aligning
Implicit Representations of Local Surfaces

Ahmet Tekden1, Marc Peter Deisenroth2, and Yasemin Bekiroglu1,2

Abstract—Objects we interact with and manipulate often share
similar parts, such as handles, that allow us to transfer our
actions flexibly due to their shared functionality. This work
addresses the problem of transferring a grasp experience or a
demonstration to a novel object that shares shape similarities with
objects the robot has previously encountered. Existing approaches
for solving this problem are typically restricted to a specific object
category or a parametric shape. Our approach, however, can
transfer grasps associated with implicit models of local surfaces
shared across object categories. Specifically, we employ a single
expert grasp demonstration to learn an implicit local surface
representation model from a small dataset of object meshes. At
inference time, this model is used to transfer grasps to novel
objects by identifying the most geometrically similar surfaces to
the one on which the expert grasp is demonstrated. Our model is
trained entirely in simulation and is evaluated on simulated and
real-world objects that are not seen during training. Evaluations
indicate that grasp transfer to unseen object categories using
this approach can be successfully performed both in simulation
and real-world experiments. The simulation results also show
that the proposed approach leads to better spatial precision and
grasp accuracy compared to a baseline approach.

Index Terms—Grasping, Deep Learning in Grasping and
Manipulation, Perception for Grasping and Manipulation

I. INTRODUCTION

GRASP synthesis has been studied extensively [1] as
robotic grasping skills have a significant impact on

the success of subsequent manipulation tasks. A common
approach for generating grasps is to train a prediction network,
which either takes top-down scene images [2], [3] or 3D
point clouds [4], [5], [6], [7], [8] for predicting multiple
grasp locations. However, such models are data-hungry, and
have to use non-curated data since data annotation at scale is
often not feasible in robotics. Another approach for generating
grasp poses is based on finding category-level correspon-
dences [9], [10], [11] and using them for grasp prediction.
Compared to grasp prediction networks, correspondence-based
methods are more data-efficient and allow for transferring
grasp demonstrations to other objects, thereby facilitating
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Fig. 1. Example experiments of grasp transfer to various objects. Utilizing
implicit representations of local surfaces, grasps are transferred to novel
objects by identifying local surfaces that are geometrically similar to those
surrounding the expert grasps.

learning from demonstration [12], and imitation learning [13].
However, correspondence-based methods can predict correct
grasp locations only on the trained object categories.

Compared to approaches for synthesizing grasp candidates
from scratch [14], [15] or relying on object-level corre-
spondences [9], [10], [11], making use of previous expe-
riences/demonstrations from similar objects and transferring
grasps onto new object instances can be more data effi-
cient [16] and facilitate task-oriented grasping [17]. In this
study, we address the problem of reusing grasping knowl-
edge when faced with a similar object without planning
from scratch. Specifically, we focus on transferring grasps
across object categories that share geometrically similar sur-
faces/parts, as illustrated in Figure 1. Using our method, we
can match the local surfaces learned from, e.g. the handle or
the rim of a mug object, to identify the corresponding grasp
location on other objects such as bags and bowls that share
similar parts.

In this work, we model local surfaces with implicit repre-
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sentations using neural fields [18] and perform shape inference
by optimizing latent shape codes. Neural fields are position-
based neural networks that take continuous spatial coordinates
as input to parametrize a variety of functions, e.g. implicit
surfaces [19], [20]. For latent shape code optimization, most
neural field methods require all objects to be in canonical
reference frames both at training and inference time [19].
Aligning objects to the exact canonical poses is challenging
as it requires the prediction of object poses [21], [22], which
often introduces a certain degree of error. We propose a novel
approach for aligning object or surface poses to a common
reference frame through pose embedding optimization. We
rely on a small dataset of object models from a single category
and a single grasp demonstration on one object within that
category. By using the demonstrated grasp and the correspond-
ing surface around it as a reference, we extract geometrically
similar surfaces from the object models. These are then used
to train an implicit surface representation. At inference time,
the learned implicit representations are employed to identify
surfaces on novel objects, based on the ones that they are
trained on. This is achieved without exact pose knowledge
and enables us to transfer grasps across different objects. The
main contributions of this work can be summarized as follows:

• We present an end-to-end surface reconstruction approach
that simultaneously learns to reconstruct, scale, and align
shapes in a self-supervised manner. The proposed method
facilitates learning implicit representations without com-
plete surface match and alignment.

• We introduce a novel approach for learning local surface
models using a sampling sphere placed on a provided
reference frame. This sphere is used for sampling the
training data and by adapting it to the current alignment
pose, the local surface is modeled. This in turn allows for
learning the local implicit surfaces on explicitly provided
locations via demonstrated grasps.

• Our approach successfully transfers grasp demonstrations
from a single object to other objects, including ones
from unseen categories. We utilize learned implicit rep-
resentations to identify and localize local surfaces on test
objects that are geometrically similar to those surrounding
the demonstrated grasps, thereby enabling the transfer of
grasp poses.

• In our results, we show that our method acquires better
spatial precision and grasp accuracy compared to a state
of the art baseline method. In addition, it acquires com-
petitive performance on grasp transfer to novel objects in
both simulation and real-world experiments.

II. RELATED WORK

Early works on grasp prediction that rely on explicit shape
information are usually built on primitive-based correspon-
dences [23], [24], parametrization using smooth differentiable
functions (e.g. Grasp Moduli Spaces [25], [26]), or hard-
coded geometric features [27]. Primitive-based methods, in
general, can struggle to generalize to objects that deviate
significantly from the provided primitives and parametrization
can deteriorate with partial point cloud data. Additionally,

most other geometric feature-based approaches require explicit
design and engineering effort. In contrast, our method learns
local surface representations from surfaces extracted from
an object dataset, enabling it to better generalize to shape
deviations. Furthermore, by optimizing a latent shape code
through shape reconstruction, our method can utilize partial
point clouds of objects.

Various representations have been proposed for building
models related to object parts to be used for grasp plan-
ning [16], [28]. [16] uses prototype parts to transfer grasps
across novel object categories using a similarity measure to
identify parts with similar shapes. However, these methods
do not explicitly model local object parts, which can limit
their ability to capture important shape details. In contrast,
our approach explicitly models local surfaces, allowing it to
capture more information about the underlying shapes.

Another approach for grasp transfer is to use category-level
key points to transfer grasps to objects in the same cate-
gory [9], [10], [11], [29], [30], [31]. However, such keypoint-
based methods are category driven, and by design, they cannot
be utilized to transfer demonstrated grasps to novel object
categories. Instead of modeling object-level correspondences,
our network learns implicit representations of local surfaces.
For representing each different surface type, we train individ-
ual shape reconstruction models. Our method leverages these
models to identify grasp poses corresponding to each model’s
local surface type. When the encountered surface resembles
the local surfaces the model is trained on, it can accurately
reconstruct its shape. However, when presented with a surface
that deviates significantly from what the model is trained
on, the model will fail to reconstruct its shape, leading to
higher errors. Employing these local surface models enables
our method to successfully transfer grasps to novel objects.

We model local surfaces by leveraging coordinate-based
neural networks, which have proven effective in representing
3D shapes and scenes in prior research [19], [20], [32], [33],
[34]. However, these networks do not address the task of
modeling local surfaces. To achieve this, we utilize a single
grasp demonstration to extract geometrically similar local
surfaces from a dataset of an object category. However, due to
geometric variations among the objects, the poses of extracted
local surfaces are not properly aligned to the reference frame
of the original grasp demonstration. The proposed network
architecture addresses this issue by aligning the poses of these
surfaces to the desired reference frame while simultaneously
learning to reconstruct their shapes. Recently it has been
shown that camera poses can be estimated through neural
radiance field (NeRF) training [35], [36]. However, these
methods are limited to images captured from a single scene
that contain patches with matching features that guide the
alignment process. In contrast, our approach aligns poses of
local surfaces coming from different objects by leveraging
their geometric similarities.

III. METHOD

The overall architecture of the proposed approach is shown
in Figure 2. The proposed architecture learns a surface model
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Fig. 2. The proposed end-to-end network architecture, with self-aligning implicit representations (1). During Training (2), it simultaneously aligns objects
with each other while learning to reconstruct their shape (2-a). When this is done on local surfaces around the expert grasp demonstration, it aligns grasps
within an object category (2-b). At inference time (3), learned models are used to identify and localize grasp locations on novel objects by finding surfaces
similar to those on which the networks are trained on.

while aligning the trained shapes to a shared common refer-
ence frame, as illustrated in step (2-a) in Figure 2. The shape
alignment is localized to the surface around an expert grasp
and is used to find the corresponding grasp locations on the rest
of the training objects within the same category, as illustrated
in step (2-b) in Figure 2. At inference time, the learned surface
model is employed to transfer grasps to novel objects by
identifying and localizing geometrically similar surfaces to
the ones the model is trained on, as illustrated in step (3)
in Figure 2. In this section, we will discuss the details of our
approach.

A. Preliminaries

In our architecture, we build a signed-distance function
(SDF) [19] based representation of local surfaces for shape
reconstruction. SDF is an implicit function that represents the
distance of its input point to the closest surface. SDF evaluates
to negative values for the input points inside the object to be
modeled, to positive values for the points outside the object
and to 0 for the points on the object surface.

Our method consists of two MLP-based networks: SDF-
Net, which predicts the SDF value for a queried position
on the object, and Hyper-Net [37], which takes a shape
code and predicts a part of the SDF-Net’s weights. In our
method, each reconstructed shape is assigned a shape code,
and these shape codes are optimized together with the network
weights during the training. In addition, we use position
encodings, as they improve network performance on complex
shapes [38]. Position encodings map 3D locations, X , to
higher-dimensional inputs. We employ the positional encoding
map Γ(X) = [X,Γ0(X),Γ1(X), . . . ,ΓL−1(X)] ∈ R3+6L

where Γm(X) = [cos(2mπX), sin(2mπX)] ∈ R6.

B. Pose Alignment of Shapes

The proposed architecture simultaneously finds 3D trans-
formations that align the poses of local surfaces with each
other while reconstructing their shapes. To train the system

end-to-end, 3D transformations are modeled using se(3) Lie
algebra: SE(3) transformation has an associated Lie algebra
se(3). Using the exponential map se(3) → SE(3), we map 6-
dimensional embeddings to transformations that continuously
lie on SE(3) manifolds [39]. Let β = ⟨ω, t⟩ ∈ se(3) be
a six-dimensional vector where ω, t are three-dimensional
vectors corresponding to rotation and translation. Equiva-
lently, alignment transformation is presented by the matrix
Talignment =

[
R3×3 v3×1

]
∈ SE(3) with v = V t. Using

the Rodrigues formula, R and V are written as

R = e[ω] = I3 +
sin θ

θ
[ω] +

1− cos θ

θ2
[ω]2, (1)

V = I3 +
1− cos θ

θ2
[ω] +

1− sin θ

θ3
[ω]2, (2)

where [ω] is the skew-symmetric matrix created from the vec-
tor ω, and θ = ∥ω∥. To estimate the alignment transformation
matrix Talignment from β, we use a Taylor-series expansion
for linearization. This formulation is well defined, surjective,
and allows for gradient-based optimization of β. At β = 0,
Talignment corresponds to the identity transformation.

For scaling the objects we learn a scaling embedding
C ∈ R3 that is then transformed to a 4 × 4 transforma-
tion matrix Tscaling = diag([C, 1]). Multiplying this matrix
with Talignment, we acquire an affine transformation matrix
H = TalignmentTscaling that is used for pose and scale alignment.
H is used to transform a given X location into X ′ via
X ′ = (H

[
X 1

]T
)T . β and C together are referred to as

the pose refinement code. Optimizing the pose refinement code
together with the shape code results in reconstructed surfaces
that are well-aligned with each other. This is achieved without
requiring any additional loss function that aids in the alignment
of the poses of objects.

Coarse-to-fine-Approximation: Position embeddings im-
prove the performance of coordinate-based neural networks
by allowing them to represent higher frequency signals (i.e.,
more complicated shapes). However, their usage may lead to
suboptimal performance on alignment as lower-frequency ap-
proximations of signals are better for alignment when there are
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larger pose differences. For this reason, by first approximating
a shape using low-frequency bands of positional encoding and
then progressively including higher-frequency bands, a coarse-
to-fine approximation of the shape is performed. This process
is achieved by applying a smoothing mask on the position
encodings. More details can be found in [36].

C. Local Surface Modeling

We employ local surface representation obtained from one
object category to identify geometrically similar surfaces on
novel objects. For training these local surface representa-
tions, we utilize object models from a single category, along
with a reference frame provided on a representative instance
within that category. This reference frame is positioned on
the target local surface area. The remaining instances within
this category will naturally possess local surfaces that are
geometrically similar to the targeted one around this reference
frame. These surfaces are then utilized to train the implicit
surface model.

We sample points exclusively within a sphere of radius r
centered on the reference frame, which restricts the alignment
to the designated area within the sphere, excluding any other
surface areas. It also has the additional benefit of limiting the
network’s capacity spent on surfaces outside of the targeted
one. Since the alignment transformation is optimized at the
same time with the network parameters, the sampling sphere
is dynamically adapted to the current transformation matrix H .
This ensures that only the targeted surface is learned during
training.

D. Grasp Transfer 1

We associate demonstrated grasps with local surface mod-
els, and use these models to identify geometrically similar
surfaces on novel objects for grasp transfer. To achieve this,
the reference frames for training these models are provided
through grasp demonstrations.

We first record an expert grasp demonstration on an object,
which we assign as the anchor object (a). Using this expert
grasp demonstration, we find a transformation between the
world frame (W) and the demonstration frame (D) which will
be equal to the transformation between the world frame and the
grasp frame (G) for the anchor object TWD = aTWG. Using
TWD, we transform all object frames to the demonstration
frame, which will put their grasp frames close to the vicinity
of their current identity pose.

Our method then learns to reconstruct each local surface
while simultaneously finding the transformations that align
the shapes (i denotes the index of the shape) from the
demonstration frame to a common reference frame denoted
as the alignment frame (A) iH = iTDA. When local sur-
faces are well-aligned, we assume that the transformation
between the alignment frame and the grasp frame will be
independent of the object, and can be denoted as TAG. The
transformation between the alignment and the grasp frame is

1We use the transformation notation oTSD , where S is the source frame,
D is the destination frame, and o is the corresponding object.

found using the alignment transformation of the anchor object
TWD

aTDATAG = aTWG = TWD =⇒ TAG = aTAD.
For the remaining objects, we estimate the transformation
between the world frame and the grasp frame as iTWG =
TWD

iTDATAG.
After the learning step, for transferring the grasp to new

objects, we use the learned implicit representations. During
the inference step, the weights of SDF-net and Hypernet are
fixed. We pick several candidate frames, with transformations
iTWCj

(Cj corresponds to the candidate frame with index j),
at locations close to the target surface for the object i with
a local surface that is geometrically similar to the originally
trained one. We employ these candidate frames on copies
of the object to put them in the vicinity of possible grasp
locations. We then optimize a shape code along with a pose
refinement code for each object copy to identify surfaces
similar to the underlying surface type. After the optimization,
if the reconstruction error is lower than a given threshold,
the pose refinement code corresponding to the candidate j of
the object i is used to estimate the transformation matrix i,jH
which denotes the transformation between the candidate frame
and the alignment frame i,jH = iTCjA. The transformation
between the candidate frame and the alignment frame is
employed together with the transformation between the world
frame and the candidate frame to identify grasp poses on new
objects iTWG = iTWCj

iTCjATAG.

E. Local Surface Prediction on Point clouds

At inference time, we work with point cloud observations
and build their corresponding SDF representation as the first
step in the local surface prediction stage. Point clouds have
SDF values of 0, as the observed points are on the surface
of the objects. While these points can be used directly for
optimizing shape and pose refinement codes, it often gives
sub-optimal results. Instead, we sample points uniformly in
the workspace and find their unsigned distance value directly
by checking the distance between them and the originally
observed point cloud. Using these sampled points in addition
to the observed point cloud in optimization yields better shape
reconstruction and grasp pose estimation.

IV. EXPERIMENTS

We evaluate our method based on three simulation experi-
ments: shape alignment, grasp alignment and grasp transfer.
Furthermore, we validate our method using a real robot,
showing that it can transfer grasps to novel real objects, such
as the watering pot and the bowl shown in Figure 6, where
we use the same models trained with synthetic objects, e.g.,
mugs.

We use the ShapeNet-Core V2 dataset [40] which has all
the shapes in their canonical poses. We employ the same data
generation process as DeepSDF [19]; however, as we deal with
smaller surface areas, we perturb surface points with a higher
variance accordingly (0.0025×15). In all experiments, we use
a 5-layer ReLU MLP for SDF-Net and multiple 2-layer ReLU
MLPs for Hypernet. All MLPs have a hidden layer size of 256.
We use Adam optimizer [41] with a learning rate of 10−3.
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Fig. 3. Example shape alignment results. The meshes on their canonical poses
are shaded. Reconstructed meshes are on the right, given perturbed meshes
are on the left. Post-training, shapes are aligned very closely to their canonical
poses.

The loss function we used for training is LT = w1LSDF +
w2Lshape+w3Ltr in which LSDF is the L1-distance between
the predicted and the ground truth SDF values; Lshape and
Ltr are the L2 norm of the shape code, α, and translation
vector, t, respectively. At inference time, an additional loss
term for scaling code, L2 norm of C − 1, with weight w4

is added to constrain it 2. Experiments are performed using a
system equipped with an Intel i9-11950H processor (2.6 GHz,
8 cores), an Nvidia RTX A3000 GPU and 32 GB of RAM. The
training of a single shape model typically takes approximately
25 minutes.

For grasp pose estimation, we train three implicit surface
models that represent local surface types that are frequently
encountered during two-finger grasping. Each model is trained
with local surfaces extracted from 64 object meshes. We
employ a single grasp pose demonstration as a reference for
the rim and the handle of the anchor mug (orange mug shown
in Figure 2) to train the rim and the handle grasp models. We
train a cylinder grasp model based on primitive cylinders and
cuboids with varying sizes 3. For these objects, the reference
grasp pose is given on the sides of cuboids and cylinders, and
grasp poses are pre-aligned. To allow the model to represent
cuboids and cylinders of different sizes, the pose refinement
codes are fixed during the training of this model.

We perform the simulation experiments using a Panda robot.
In real-world experiments, our experimental setup consists of
a UR10 robotic arm equipped with an RG-2FT gripper. In
both cases, we use a Real-Sense D435 camera to acquire the
point cloud of the scene. The camera is fixed on the wrist of
the robotic arm. In the experiments, all objects are placed in
stable standing poses on a table top.

A. Shape Alignment

In this experiment, we show that our network can align
the poses of objects from a specific category throughout
the training. We use 64 shapes from four different object
categories, which are mugs, chairs, planes, and cars, to create
four datasets. For each shape in the datasets, the poses of the
objects are varied by applying random perturbations. We train
our network with one object in its canonical pose as the anchor,

2In this work, w1 = 3× 103, w2 = 104, w3 = 102, w4 = 2.5× 102
3Cylinders with diameters ∅ = [10, 80] cm and heights h = [25, 100] cm,

cuboids with side lengths x = [10, 80] cm and heights h = [25, 100] cm.

TABLE I
SHAPE ALIGNMENT RESULTS

Object Name Reconstructed Mesh Pose Perturbed Mesh
Mugs 1.5± 0.5 17.5± 1.0
Chairs 5.8± 3.9 20.7± 1.0
Planes 7.8± 3.7 25.2± 3.9
Cars 0.8± 0.3 20.1± 2.4

∗ The error values in the table are divided by 10−3. ± denotes the standard
deviation.

and the rest of the objects with randomly perturbed positions
and orientations. In this experiment, scaling embeddings are
fixed as they cannot be used in the evaluation.

Visualizations of example reconstructions are shown in
Figure 3. Our method aligns objects very close to their
canonical poses. We have evaluated our method’s alignment
performance by comparing two different Chamfer distances
for all the object categories. The first Chamfer distance is
between the perturbed mesh and the ground-truth mesh, and
the second is between the reconstructed mesh and the ground-
truth mesh. For this, we sample 10,000 points from all meshes
(except for the anchor one) and estimate the two-way Chamfer
distance. We repeat this experiment five times. The results are
shown in Table I. This table shows that the Chamfer distances
for reconstructed meshes are significantly lower than the
Chamfer distances for perturbed poses. Another observation
is that our method exhibits a higher reconstruction loss and
standard deviation for chairs and planes. This disparity is due
to significant variations in terms of geometry within these
categories, e.g. the chair category not only includes chairs but
also sofas. Regardless, even for these categories, our method
acquires lower Chamfer distances. Overall, these results show
that our approach can align object meshes while learning their
implicit representations.

B. Spatial Precision of Grasp Alignments

To evaluate the grasp alignment performance of our
method, we compare it to a recent baseline, neural descriptor
fields (NDF) [11], based on two metrics. The first metric
is spatial precision of pre-grasp positions, i.e., the distance
between grasps generated by our method and the demon-
strated grasp. This metric is calculated based on the Euclidean
distances between the predicted and the expert annotated
grasp poses. The second metric is grasp success accuracy in
simulation via lifting tests by checking whether the object slips
or it is dropped. This experiment is conducted on the handle
region of the mug objects as this part is unique for mugs 4.

We annotate expert grasp locations on 16 mug objects to
compare the proposed network with NDF. NDF transfers the
grasp to objects of the same category with energy minimization
on the latent space of queried positions. We utilize the pose

4We also tested NDF with the multi-category model. However, the model
did not exhibit consistent success in predicting grasp locations correctly.
Hence, we limited our baseline comparison to mug objects. Furthermore, we
perform this comparison solely on points sampled from the CAD model of
an object as the NDF did not work very well with the point cloud acquired
from the simulation. This is most likely due to the fact that such point cloud
is partial, i.e., some parts of the mug are not visible to the camera.
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TABLE II
SPATIAL PRECISION AND GRASP ACCURACY (%)

ϵ Ours NDF [11] Naive-Transfer
0◦ 0.16± 0.1 100 0.29± 0.2 100 0.18± 0.1 100
10◦ 0.15± 0.1 100 0.42± 0.2 88 0.30± 0.1 100
20◦ 0.16± 0.1 100 0.30± 0.1 100 0.52± 0.1 100
30◦ 0.16± 0.1 100 0.53± 0.8 88 0.76± 0.1 0
40◦ 0.47± 0.7 81 0.43± 0.2 94 1.00± 0.1 0

∗ ± denotes standard deviation.

Fig. 4. Comparison of resulting grasp poses. The anchor mug with expert
grasp pose is shown with the gray mesh on the left. Grasp poses, represented
as fingertip frames, predicted by NDF and our method are shown on the pink
and the brown meshes.

of the same expert grasp demonstration on the anchor object
used in training our method as a query to condition the
NDF model. For both models, initial grasp candidate locations
are generated around the expert grasp pose. We repeat this
experiment with four different levels of perturbations applied
to object yaw angle: 10◦, 20◦, 30◦, 40◦ in which we rotate the
test objects by the corresponding degree before optimizing the
grasp locations. As an additional baseline, we include the naive
transfer results where the originally demonstrated grasp on the
anchor object is directly transferred without any adjustments.
Results of these experiments can be found in Table II. Results
are normalized to have a maximum error of 1. Illustrations
of two example grasps predicted by our method and NDF
can be found in Figure 4. Table II and Figure 4 show that
our method predicts grasps more similar to the expert ones
until 40◦, and acquires better spatial precision than NDF. At
40◦, it still predicts good grasps for most of the objects but
fails for some of them potentially due to getting stuck in a
local minima. Compared to our method, NDF has a smaller
error at 40◦ as it does not need as good initialization as our
method does for grasp candidate sampling, however, it overall
performs worse than our method. Furthermore, our method
leads to an average optimization time of 4.62 seconds for 8
grasp pose candidates while NDF requires 62.2 seconds for the
same number of poses. Grasp pose timings for our network
grow linearly with the number of grasp candidates.

C. Grasp Transfer

In this experiment, we show that the learned implicit
representations can be used in identifying grasps on unseen
mugs and novel objects from different categories: bags, bowls,
earphones, bottles, and cans. For this, each object is placed in
a stable pose on a table in PyBullet [42] simulation. A camera
mounted on the wrist captures point cloud observations of the
object from multiple predetermined viewpoints. These point
clouds are then merged and filtered to retain only the points
of the object of interest.

For baseline comparison, we use the normalized object
coordinate system (NOCS) [21] for grasp pose transfer. In
NOCS, all points in the point cloud are normalized uniformly

Fig. 5. Results of transferring grasps to different objects. Reconstructed
surfaces are shown with green meshes.

such that each of their x, y, z values are between 0 and 1
with minimum and maximum being 0 and 1. For the baselines,
depending on the object type, the grasp pose from the handle,
rim, and cylinder categories are defined in NOCS coordinates.
For this, expert grasp poses on a single representative instance
from each object type are used. NOCS-based grasp pose
estimation requires accurate object pose detection. Therefore,
we devise five baselines where we assume NOCS methods
have access to canonical object poses with yaw angle errors of
0◦, 20◦, 40◦, 60◦, and 80◦. Our method also has access to the
provided grasp pose for each object type for grasp candidate
sampling, along with the corresponding surface type, however,
it does not have access to the object poses. Specifically,
utilizing only the provided object-level grasp pose locations,
we sample 12 candidate grasp poses with 30◦ intervals around
the object and optimize their parameters.

We run our method and the NOCS baseline on the point
clouds of each object for grasp transfer. Visualizations of
some of the grasp poses can be seen in Figure 5. The grasp
transfer approach is assessed using two criteria. The first
criterion is based on post grasp motion, i.e., the Euclidean
distance between the object’s position before and after the
robot executes its grasping action, prior to lifting the object.
The second criterion is based on whether or not the object can
be successfully lifted up after the grasp execution.

The grasp accuracy and the post-grasp motion can be
found in Table III. In Table III, we observe that our method
leads to successful grasp transfer results on all experiment
objects with similar success rates to NOCS-0◦. When the
amount of angle error for the NOCS baseline increases, our
network outperforms the NOCS baseline, especially on non-
symmetric objects. One interesting observation here is that our
method always performs better than the NOCS baseline on
bottle objects even though they are mostly symmetric. After
analyzing grasps on bottle category, we observe that bottle
objects in their canonical pose do not consistently have the
geometrically shorter side in front. This leads to failure for
NOCS-based baselines as they rely on consistency in geometry
for objects in their canonical pose. As a result, the NOCS-
based methods sometimes grasp bottles from their longer
side. Our method however adapts to shape variations and
consistently predicts grasps from the shorter side of the bottle.
In addition, as our method generates grasp poses based on
local surface knowledge, it acquires lower post-grasp motion
than the NOCS baselines, even on objects in which pose
perturbations do not hinder the grasp success.
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TABLE III
GRASP SUCCESS RATE (%) / POST GRASP MOTION (CM)

Object - Part Name (# of objects) Ours NOCS-0◦ NOCS-20◦ NOCS-40◦ NOCS-60◦ NOCS-80◦

Mugs - Handle (16) 100 0.2 100 0.58 100 0.7 12 1.66 0 NA 0 NA
Mugs - Rim (16) 100 0.41 100 0.57 100 0.66 100 1.32 100 1.94 100 2.3
Bags - Handle (23) 87 0.2 100 0.73 91 1.02 83 1.57 30 2.67 4 0.25
Bowls - Rim (65) 98 0.66 100 1.06 98 1.09 98 1.14 100 1.14 97 1.07
Earphones - Rim (22) 91 0.69 100 0.62 100 1.63 95 2.84 68 3.53 45 3.48
Bottles - Cylinder (35) 94 0.59 80 0.67 77 0.76 71 0.65 80 0.99 80 0.62

Fig. 6. Grasp pose alignments on real-world point clouds. Our method leverages a single rough initial demonstration for each object and finds the correct
grasp pose by searching for a grasp-surface fit.

D. Real Robot Experiments

In these experiments, we analyze our method’s performance
using a real robot composed of a UR10 arm and an On-
Robot RG2-FT gripper, and six objects as seen in Figure 6.
We demonstrate that our approach can successfully transfer
grasp poses using point cloud observations from real objects
belonging to unseen categories. This is achieved by utilizing
the same models trained with synthetic data. For each object,
we initialize our method by providing a single demonstration,
which is around the surface area to be grasped for grasp
candidate sampling, and the surface type. The robot scans
the scene from six predefined camera views and merges the
acquired point clouds. The camera views are chosen indepen-
dently of the object’s poses. Then the initial demonstration
is utilized in grasp candidate sampling to find the correct
surface-grasp alignment on the merged point cloud. Using
this alignment, a grasp is executed. Following these steps, we
perform grasp transfer experiments for each object five times
using varying object poses to test robustness to pose changes.
We use the same initial demonstration for all trials involving
each corresponding object. For each grasp execution, scene
capture takes 1 minute and grasp pose estimation takes, on
average, around 10.5 seconds.

Our method’s grasp predictions on the objects are shown
in Figure 6. The success rates for watering pot, watering cup,
Cheez-it box, Pringles tube, bowl, and cup are as follows:
5/5, 4/5, 5/5, 5/5, 5/5, 5/5, respectively. Overall, the method
demonstrates high success rates in transferring grasps to real

novel objects including cases where the objects are partially
visible, with only one observed failure. In the failure case,
the final transferred grasp pose leads to successful lifting of
the object, but it is counted as failure. The actual reason for
failure is that the best handle surface fit is found at the rim
of the object, not at the handle, which might be due to the
combination of the stochasticity in the initial grasp candidate
sampling and the point cloud being noisy.

V. CONCLUSION

This paper presents an implicit representation architecture
that aligns local surfaces around an expert grasp demonstration
while learning to reconstruct their shapes. This representation
is used to transfer grasps to local surfaces that are similar
in shape to the surface the expert grasp is demonstrated on.
Through both simulation and real-world experiments, we show
that we can transfer grasps to new objects with similar local
geometry and acquire better spatial precision than a baseline
approach.

In future work, we plan to investigate the effects of em-
ploying equivariant shape representations [43], [44], keypoint
detection methods, and zero-shot category level pose estima-
tors [45] in terms of improving the generation and evaluation
of local surface candidates. In addition, we aim to perform
faster grasp pose generation and scale our method to multi-
object scenarios [46]. We also plan to use multi-fingered hands
for a direct mapping between fingertip locations and the local
surfaces.
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