
Approx-RM: Reducing Energy on Heterogeneous Multicore processors
under Accuracy and Timing Constraints

Downloaded from: https://research.chalmers.se, 2024-03-20 11:31 UTC

Citation for the original published paper (version of record):
Azhar, M., Manivannan, M., Stenström, P. (2023). Approx-RM: Reducing Energy on Heterogeneous
Multicore processors under Accuracy and Timing
Constraints. Transactions on Architecture and Code Optimization, 20(3).
http://dx.doi.org/10.1145/3605214

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

44

Approx-RM: Reducing Energy on Heterogeneous Multicore

Processors under Accuracy and Timing Constraints

MUHAMMAD WAQAR AZHAR, MADHAVAN MANIVANNAN, and PER STENSTRÖM,
Chalmers University of Technology, Sweden

Reducing energy consumption while providing performance and quality guarantees is crucial for computing

systems ranging from battery-powered embedded systems to data centers. This article considers approximate

iterative applications executing on heterogeneous multi-core platforms under user-specified performance and

quality targets. We note that allowing a slight yet bounded relaxation in solution quality can considerably re-

duce the required iteration count and thereby can save significant amounts of energy. To this end, this article

proposes Approx-RM, a resource management scheme that reduces energy expenditure while guaranteeing

a specified performance as well as accuracy target. Approx-RM predicts the number of iterations required to

meet the relaxed accuracy target at runtime. The time saved generates execution-time slack, which allows

Approx-RM to allocate fewer resources on a heterogeneous multi-core platform in terms of DVFS, core type,

and core count to save energy while meeting the performance target. Approx-RM contributes with lightweight

methods for predicting the iteration count needed to meet the accuracy target and the resources needed

to meet the performance target. Approx-RM uses the aforementioned predictions to allocate just enough re-

sources to comply with quality of service constraints to save energy. Our evaluation shows energy savings

of 31.6%, on average, compared to Race-to-idle when the accuracy is only relaxed by 1%. Approx-RM incurs

timing and energy overheads of less than 0.1%.

CCS Concepts: • Hardware→Power and energy; Power and energy; • Computer systems organization

→Architectures; Embedded systems; Real-time systems; Multicore architectures; • Computing methodologies

→Machine learning; Artificial intelligence;

Additional Key Words and Phrases: Energy efficiency, approximate iterative applications, resource manage-

ment, quality of service, heterogeneous multicore processors, DVFS

ACM Reference format:

Muhammad Waqar Azhar, Madhavan Manivannan, and Per Stenström. 2023. Approx-RM: Reducing Energy

on Heterogeneous Multicore Processors under Accuracy and Timing Constraints. ACM Trans. Arch. Code

Optim. 20, 3, Article 44 (July 2023), 25 pages.

https://doi.org/10.1145/3605214

This research has been supported by the Swedish Research Council under contract 2019-04929, and by the Swedish Foun-

dation for Strategic Research under contract CHI19-0048. Moreover, the European Union has also partially funded this

research under the PRIDE project (grant agreement No EU-101051997).

Authors’ address: M. W. Azhar, M. Manivannan, and P. Stenström, Department of Computer Science and Engineering,

Chalmers University of Technology, 41296 Göteborg, Sweden; emails: {waqarm, madhavan, per.stenstrom}@chalmers.se.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International
4.0 License.

© 2023 Copyright held by the owner/author(s).

1544-3566/2023/07-ART44 $15.00

https://doi.org/10.1145/3605214

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

https://orcid.org/0000-0003-0477-4540
https://orcid.org/0000-0002-9783-8357
https://orcid.org/0000-0002-7441-8245
https://doi.org/10.1145/3605214
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3605214
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605214&domain=pdf&date_stamp=2023-07-22

44:2 M. W. Azhar et al.

1 INTRODUCTION

Reducing energy consumption is vital in the entire computing ecosystem, from battery-powered
embedded systems to high-performance computer (HPC) systems. In the Race-to-idle (RTI)

strategy, the application is run at full speed, i.e., by using the highest frequency until completion,
and then idles until the deadline. This over-provisions resources and can consume more energy.
Prior works [4–6, 16, 22, 26, 27, 32] have demonstrated the shortcomings in RTI and proposed
techniques to reduce energy consumption employing appropriate resource allocation. However,
these proposals mainly focus on improving energy/power efficiency under QoS constraints with-
out trading off the accuracy of the computation. Specifying performance requirements in terms of
quality of service (QoS) allows a runtime resource manager to allocate a minimum of resources,
e.g., core type, core count, and voltage frequency (V-F), to reduce energy consumption while
also ensuring that QoS targets are satisfied.

Approximate iterative applications (AIAs), e.g., iterative solvers and gradient descent, rep-
resent an important class of applications where the solution error reduces and the solution quality

improves with the execution of each new iteration. Furthermore, such applications terminate when
the solution error reaches a specific target, thus guaranteeing that the solution error is bounded
at the end of the execution.

Some recent proposals have managed to reduce energy in AIAs by exploiting the tradeoff be-
tween computation accuracy and energy reduction and can be broadly grouped into two categories.
The first category comprises methods that enable energy reduction while providing accuracy guar-
antees, but without meeting performance constraints [35, 36] or through trading off accuracy for
improving performance [15, 33]. The second category offers methods that meet performance con-
straints without providing accuracy guarantees [9, 14]. While Kulkarni et al. [21] offer both ac-
curacy and performance guarantees, their technique makes resource allocation (RA) decisions
based on offline characterization of the workload on all possible hardware configurations. In sum-
mary, existing proposals have the following shortcomings. First, they do not target energy reduc-
tion under both accuracy and performance constraints in an application-agnostic manner. Second,
they base resource allocation decisions on offline characterization of application behavior, thus be-
ing unable to exploit the opportunities on offer due to variance in runtime behavior. Third, these
proposals only employ a subset of the configuration space, i.e., V-F states, core types, and core
counts, available in commodity multi-core architectures, for energy reduction, and thus can only
harness limited energy savings.

We propose Approx-RM, an application-agnostic, online framework to reduce energy for
approximate iterative applications on heterogeneous multi-core platforms while meeting both
accuracy and performance targets. Typically, there is a diminishing return on improving the solu-
tion quality as the execution proceeds. Approx-RM leverages this by trading a slight but bounded
relaxation in the target solution error for a significant reduction in the number of iterations
executed. This enables the runtime system to trade a slight accuracy loss for a significant energy
reduction.

Approx-RM first predicts the required number of iterations of the application kernel to meet the
quality target. It uses this information and runtime application behavioral prediction (i.e., cycles

per instruction (CPI), misses per instruction (MPI), energy, etc.) to predict the resource
allocation needed to meet the user-specified deadline (or QoS target). In doing so, all of the
above-mentioned steps represent a challenge that must be addressed for the whole scheme to
work. First, Approx-RM requires an online prediction method to estimate the iteration count
needed to meet the accuracy target. Second, an online performance and energy prediction method
is needed to estimate the resources needed for a specific configuration. Third, we need a search

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

Reducing Energy on Heterogeneous Multicore Processors 44:3

heuristic that employs both predictions to efficiently search the configuration space and allocate
enough resources to meet the performance and accuracy target. A necessary requirement for all
these mechanisms is to have low overheads in order to have sufficient energy savings overall.

Approx-RM addresses the first challenge by using curve fitting to predict the iteration count
needed to meet the accuracy target. To address the second challenge, it uses models that leverage
on hardware performance counters and onboard energy sensors to predict the execution time and
energy consumption of the entire configuration space, including the voltage-frequency range, core
types, and core count. These measures are taken, iteration by iteration, to yield significant energy
savings while meeting the accuracy and performance constraints. Third, Approx-RM presents a
resource allocation policy that searches the entire configuration space, in linear time, and uses the
estimates of iteration count and application runtime behavior to allocate appropriate resources to
harness the full potential of energy savings.

Approx-RM is evaluated on an ARM big.LITTLE platform (ODROID XU-3 board with Exonys
5422 [8]) comprising four big and four LITTLE cores organized in two clusters. Results show en-
ergy savings of 31.6%, on average, compared to Race-to-Idle (e.g., [2, 18, 20]), while accuracy is
reduced by only 1%. The contributions of this article are as follows.

– A runtime resource manager, Approx-RM, for approximate iterative applications to save
energy under accuracy and performance constraints by adapting core types, core count, and
DVFS

– A lightweight prediction method, based on curve fitting, to predict the number of iterations
to meet the quality target

– A lightweight method to predict the resources needed to meet the performance target using
hardware performance counters

– An evaluation of the energy-saving framework that shows average energy savings up to 34%
compared to race-to-idle, while keeping overheads low (<0.1%)

The rest of the article is organized as follows. In Section 2, we provide background and moti-
vational data. Section 3 presents Approx-RM. The experimental methodology and implementation-
related details are presented in Section 4. Section 5 evaluates Approx-RM. Related work is discussed
in Section 6 before the article is concluded in Section 7.

2 BACKGROUND AND MOTIVATION

2.1 Heterogeneous Multi-core Platform

We consider heterogeneous multi-core platforms (HMPs), e.g., ARM big.LITTLE [23], that
comprise different core types with the same ISA having the capability to control the voltage-

frequency (V-F) level of a set of cores of the same type within a cluster. To strike a tradeoff
between performance and energy consumption, a runtime resource manager chooses among a set
of hardware configurations, each configuration comprising a combination of core type, V-F setting,
and core count. Additional details about the experimental platform are provided in Section 4.1.

2.2 Accuracy-energy Tradeoff in Approximate Iterative Applications

This article targets AIAs. The solution error decreases with each iteration of the computational

kernel, and the application is terminated when the solution error reaches a predefined target.
Figure 1 shows a block diagram of an AIA. To further elaborate on this temporal variation in
solution error, we show the solution error curve of a few AIA applications in Figure 2. The vertical
axis represents the solution error on a logarithmic scale, and the horizontal axis represents the
number of iterations.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

44:4 M. W. Azhar et al.

Fig. 1. Structure of an approxi-
mate iterative application.

Fig. 2. Behavior of solution error with respect to iteration count for
selected workloads.

There are two important observations here. First, the solution error decreases as the applica-
tion progresses, and various workloads have distinct curves. Second, the solution error’s rate of
decrease and the saturation point, where the solution error bottoms out, is application and in-
put dependent. For example, gauss-antoniu, an iterative solver workload, and GD-LR-boston and
GD-LR-diabetes, gradient descent for multi-variate linear regression (MVLR) workloads, show
different behavior even though both workloads from the MVLR class have identical hyperparam-
eters, e.g., the learning rate. The reason is that the change and saturation point rate depend on
the input data distribution. We will build on the important observation that the improvement in
solution quality shows diminishing returns as the application progresses, as highlighted by ar-
rows pointing to the saturation points. It suggests that one can trade a considerable number of
iterations for a small relaxation of the accuracy, which can be translated into substantial energy
savings.

Note that the solution error is a property of the algorithm and is independent of the resource
allocation. Controlled relaxation of the solution quality target by a small margin, e.g., 0.01%, allows
the resource manager to trade a slight amount of accuracy for significant energy savings. A reduc-
tion in solution quality allows for a decrease in the number of executed iterations. The decrease
in the number of iterations allows each iteration to execute more slowly, yielding an opportunity
to reduce resource needs to meet the deadline, hence saving energy.

The reduction in the iteration count when the solution error target is increased by a small mar-
gin is shown in Figure 3. Here, the vertical axis is the percentage reduction in iteration count
required to reach the new solution error target, while the horizontal axis shows the percentage
addition in the solution error target. The reduction in iteration count varies widely across appli-
cations since different workloads have distinct solution-error curves. For example, gauss shows a
slight and almost proportional reduction in iteration count. On the other hand, the behavior of
gradient descent for multi-variate linear regression shows that the solution error saturates, yield-
ing a considerable decrease in iteration count. Moreover, since the saturation point depends on
the input data, different algorithms show distinct behavior. Hence, reducing the required iteration
count allows the resource manager to execute each iteration more slowly, thereby allocating fewer
resources to save energy.

2.3 Approx-RM Usage

We envision Approx-RM as a runtime resource manager that must provide resource allocation as
shown in line 2 (highlighted in color) of Algorithm 1. Users need to specify the performance and
accuracy targets for the scheme.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

Reducing Energy on Heterogeneous Multicore Processors 44:5

Fig. 3. Relation between reduction in the iteration count and the solution error.

ALGORITHM 1: Compiler directive specification of Approx-RM

1: Initialization()

2: #pragma Approx_RM(Deadline,Accuracy)

3: while Error > Solution_Error_Target do

4: Error← Applicatin_Kernel()

5: end while

A source-to-source compiler can transform this specification to insert inline functional calls as
shown in Algorithm 2 and highlighted in color. These calls include functions to read the hardware
performance counters before (line 5) and after (line 7) each invocation of the kernel. The perfor-
mance counter measurements and solution error results are fed into Approx-RM to predict and
apply resource allocation (line 8).

ALGORITHM 2: Compiler transformation to insert inline routines to read PMC and resource
prediction using Approx-RM

1: Initialization()

2: Resource_Allocation ← Baseline_Resource_Allocation

3: Approx_RM_Initilization(Deadline,Error_Target)

4: while Error > Solution_Error_Target do

5: Star t = Approx_RM_ROI_Start(Resorce_Allocation)

6: Error ← Applicatin_Kernel()

7: End = Approx_RM_ROI_End()

8: Resorce_Allocation = Approx-RM_Resource_Allocator(Start,End,Error)

9: end while

3 APPROX-RM

3.1 Overview

Figure 4 shows how Approx-RM interacts with the hardware platform and the application. Approx-
RM assumes that the application outputs a solution error after each iteration and performance
counter readings are available at runtime. Approx-RM uses this information first to predict the
application duration, i.e., the number of iterations needed to meet the accuracy targets set by the
user. Then it establishes the time allocation per iteration to meet the program deadline. Application
duration, execution time, and energy predictions are used to select a configuration, i.e., core type,
core count, and voltage-frequency pair, that minimizes energy.

After the completion of each iteration, the solution error and execution parameters are fed into
Approx-RM for future predictions. Execution parameters comprise instruction count (I), CPI,

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

44:6 M. W. Azhar et al.

Fig. 4. Approx-RM and system framework.

misses per kilo instruction (MPKI), and energy consumption (E). Approx-RM uses the solu-
tion error target to predict the number of iterations needed. Furthermore, the history of execution
parameters is used to predict the execution time and the energy consumption. This process con-
tinues until the completion of the application.

Approx-RM predicts three quantities: (1) the application duration using the history of the solu-
tion error; (2) the computational demand, i.e., the instruction count, for future iterations based on
instruction counts of previous iterations; and (3) timing and energy for specific hardware config-
uration using execution parameters for that configuration. Finally, Approx-RM makes timing and
energy predictions for a set of configurations after each iteration to decide on the best hardware
configuration to use in the next iteration.

3.2 Resource Management Algorithm

Approx-RM is invoked after each iteration to determine a hardware configuration for the next
iteration, and this procedure continues until the QoS target regarding the quality is met. The
pseudo-code depicted in Algorithm 3 establishes the set of hardware configurations that meet
timing requirements and have minimum energy for each combination of core type and core count
and then picks the one with the minimum energy. This configuration is then used to execute the
next iteration. The first step is to predict the duration of the application (line 9). This step predicts
how many iterations are needed to reach the target solution error. It sets the Pred_Accurate flag
to indicate that the prediction of the duration is within a confidence interval (details are provided
in Section 3.3). If the prediction is accurate enough, i.e., Pred_Accurate is true (line 10), one of the
most energy-efficient configurations (lines 11–24) is identified; otherwise, Approx-RM chooses a
baseline configuration.

First, the time needed to meet the performance target for the remaining iterations is computed
(line 11). Then, Approx-RM evaluates all combinations of core types and core count in the config-
uration space (lines 13 and 14) and predicts the minimum voltage and frequency for each combi-
nation of core type and core count (line 15) using the Predict_Voltage_Freqency() function.
If the predicted frequency is outside of the allowed frequency range (line 16), it is converted into
the allowed range, i.e., Find_Legal_Voltage_Freqency(). Since the resulting frequency can vi-
olate the timing requirement, the execution time and energy consumption are predicted using the
Predict_Time() (line 18) and Predict_Energy() (line 17) functions, respectively.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

Reducing Energy on Heterogeneous Multicore Processors 44:7

ALGORITHM 3: Resource management algorithm

1: Notations:

2: DItr: Deadline per iteration

3: D: Program deadline relative to start time

4: Time : Current time

5: CoreTypes : Core types in the heterogeneous multi-core platform

6:

7: function Approx-RM_Resource_Allocator(Start,End,Error)

8: Insert_PMC_Data(Start,End)

9: Insert_Error_Data(Error)

10: T ime ← get_System_Time()

11: Predicted_Configuration← Approx-RM(Error,Time)

12: return Predicted_Configuration

13: end function

14:

15: function Approx-RM(Error,Time)

16: Predicted_Configuration = ConfigurationBaseline

17: [IterationPred, Pred_Accurate]← Predict_Duration(Error)
18: if Pred_Accurate = TRUE then

19: DItr =
D−Time

ItrPred−ItrExecuted
20: EnergyMin ← ∞
21: for all Core ∈ CoreTypes do

22: for all Core_Count ∈ CoreCombinations do

23: Voltagetemp, Freqtemp ← Predict_Voltage_Freqency(Core, Core_Count, DItr)

24: VoltageLegal, FreqLegal ← Get_Legal_Voltage_Freqency(Freqtemp, Proc)

25: EnergyPred ← Predict_Energy(Core, Core_Count, VoltageLegal, FreqLegal)

26: TimePred ← Predict_Time(Core, Core_Count, FreqLegal)

27: if (TimePred ≤ DItr & EnergyPred < EnergyMin) then

28: Predicted_Configuration = [Core, Core_Count, VoltageLegal, FreqLegal]

29: EnergyMin ← EnergyPred

30: end if

31: end for

32: end for

33: end if

34: return Predicted_Configuration

35: end function

Next, the execution time is compared with the deadline per iteration, establishing whether the
energy is minimum (line 19). If so, this configuration is marked as being the one that consumes
the least energy.

3.2.1 Time Complexity of Approx-RM. The Approx-RM algorithm only exhaustively traverses
the core count combinations of a specific core type. For instance, in the eight-core platform (com-
prising four A15 and four A7 cores) used in the evaluation, the total number of evaluated con-
figurations is eight, i.e., 4-big, 3-big, 2-big, 1-big, 4-LITTLE, 3-LITTLE, 2-LITTLE, and 1-LITTLE.
Thus, its time complexity is linear, i.e., O(n), where n represents the total number of cores in a
system that is a product of core types, i.e., CoreTypes, and the number of cores of a specific type,
i.e., Core_CountCombinations, assuming a symmetric system.

3.3 Application Duration Prediction

Application duration is predicted by storing the old samples of the solution error and then em-
ploying model fitting to predict the future behavior of the curve and, consequently, the application
duration. The duration prediction is based on two components: (1) curve fitting and (2) using the
curve-fitting model to predict the duration.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

44:8 M. W. Azhar et al.

Fig. 5. A generic decaying exponential curve and its linear transformation using a logarithmic function.

The first step in the duration prediction is to assume an appropriate curve fitting to the input
data, i.e., solution error. Here, the decaying exponential curve that best matches the behavior of
the solution error is assumed, and a pictorial representation is shown in Figure 5(a). Equation (1)
provides the mathematical model, where a and b represent the intercept and slope, respectively.
The model output, i.e., y, represents the solution error, and x represents the iteration number. Thus,
replacing y with ErrorTarget and re-arranging the equation leads to Equation (2), which predicts the
iteration count based on the solution target, i.e., ErrorTarget set by QoS. The Error history buffer only
stores the last K samples of the solution error. Thus, Equation (2) predicts the duration from the
current instant until the application finishes. Consequently, we add the completed iteration count,
i.e., Iterationscomplete, to finally derive Equation (3), which predicts the application duration. We add
a margin, say 10%, to the number of predicted iterations to safeguard against under-prediction.

A solution error history buffer of size K is implemented using First-In-First-Out (FIFO). The
reason is that storing all samples of the solution error can lead to considerable overheads. The
duration prediction is performed when the buffer contains all the new K samples of error history
after K iterations. This helps to keep the overheads sufficiently low. In summary, Equation (3)
predicts the application duration. However, a fundamental problem remains: the determina-
tion of the intercept and the slope of the decaying exponential model. This is discussed next.

y = a ∗ eb∗x (1) x =
ln (ErrorTarget) − ln (a)

b
(2)

Duration = Iterationscomplete +
ln (ErrorTarget) − ln (a)

b
(3)

3.3.1 Model Fitting. The purpose of employing curve fitting in Approx-RM is to find the inter-
cept a and the slope b of the curve that plots solution error over time. To use linear regression,
the curve must be linearized. This can be done by applying the natural logarithm as shown in
Equations (4) to (6). Rearrangement of the equation yields Equation (6), which is in a linear form.
(y = mx+ c) suitable for applying linear regression. Here, y and a represent the natural logarithm
of y and a, respectively. Figure 5(a) shows the decaying exponential curve, and Figure 5(b) shows
the logarithm of the same data. As can be seen, the logarithmic transformation converts the data
representing the decaying exponential behavior to linear form, thus enabling the use of methods
such as the least-square method to find line parameters. The intercept and slope can be inserted
into Equation (3) to predict the application duration.

ln(y) = ln(a ∗ eb ∗ x) (4) ln(y) = ln(a) + b ∗ x (5) y = a + b ∗ x (6)

To find line parameters, we employ a low-overhead averaging method. The slope is determined
by using the first and last sample in the solution error history (see Equation (7)), and the intercept

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

Reducing Energy on Heterogeneous Multicore Processors 44:9

Fig. 6. Prediction error for future and executed iterations using the decaying exponential model.

is equal to the first sample in the error history buffer (see Equation (8)).

slope = a =
Error[0] − Error[k]

k
(7) Intercept = b = Error[0] (8)

3.3.2 Confidence Interval (Model Fitting). The prediction accuracy of application duration im-
proves as the execution progresses. If resource allocation is applied at intervals where duration pre-
diction is under-predicted, it can cause a violation of the deadline. Thus, a mechanism is needed
that can determine the accuracy of the prediction (i.e., confidence interval) as depicted by the
PredAccurate flag on lines 9 and 10 in Algorithm 3.

To elaborate on the problem, we have plotted the prediction error (y-axis) as a function of
application progress (x-axis) in Figure 6(a). As explained earlier, the prediction error decreases
as the workload execution proceeds. Furthermore, the duration is under-predicted at the start due
to under-fitting and over-predicted at later stages in execution due to over-fitting. This is due to
the fact that we employ a very simple model to predict the duration so that the overheads can be
controlled. In this context, it is crucial to apply the resource allocation optimizations at an instant
where the prediction accuracy is high. Otherwise, it could result in an allocation of fewer resources
than required and could lead to missing the timing deadline.

In this regard, we propose a solution that uses the slope and intercept computed by the dura-
tion prediction mechanism to predict the count of already executed iterations. Since we know the
number of completed iterations, the prediction error can be computed and referred to as the error-

history prediction. This can be used to establish the efficacy of the curve-fitting parameters and
hence the accuracy of predicted duration. To elaborate on the proposed solution, we have plotted
the prediction error (y-axis) of executed iterations as a function of the execution progress (x-axis)
in Figure 6(b) for several workloads. As can be seen, the error history prediction decreases as the
execution proceeds. Moreover, a common threshold for clusters of workloads can be empirically
found. Thus, we divide applications into three clusters and perform offline analysis, where the
error-history prediction for the instant where prediction error for future iterations reaches below
30% is recorded. The measured value of the error-history prediction for all workloads in a cluster
is averaged to find a common value for the cluster.

Since the model fitting method predicts the iteration count from the start of execution until the
current iteration, the solution error for the first iteration is stored, and the solution error for the
last sample in the error history buffer is used as the error target.

Please note that the graphs shown above are only for demonstration purposes. In reality, the
runtime system has no prior knowledge. The prediction error of all executed iterations is computed
at runtime at each instant whenever the future duration is predicted. Once it reaches a target, the
PredAccurate flag is set. Before this flag is set, the resource manager uses the baseline configuration,

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

44:10 M. W. Azhar et al.

and once the flag is set, the resource manager activates resource allocation. The earlier resource
allocation is activated, the more energy can be saved, although it can result in a greater violation
of the timing deadline and vice versa.

3.3.3 Duration Predictor Applicability. The duration prediction mechanism employed in this
work assumes a monotonic behavior of solution error. Consequently, the duration prediction mech-
anism employed is also very simple and will only be able to predict error curves with such behavior
accurately. However, our resource allocation scheme is modular and can incorporate any other so-
phisticated prediction mechanism to predict the non-monotonic behavior of solution error and
save energy in those cases as well. However, it must be noted that advanced prediction techniques
would incur higher overheads.

3.4 Execution Time and Energy Prediction

3.4.1 Workload Prediction. The timing and energy consumption of any application depend on
workload size. As in the case of iterative applications, the same kernel is executed in each iteration.
In this context, we assume instruction count (I) as a proxy for workload size. However, it has been
shown in the prior art that input data can cause variation [17] in instruction count for successive
executions of a kernel because of various control flows within the code. Nevertheless, these vari-
ations are often subtle from one iteration to the other [6], contributing to significant variations
over a multitude of iterations. Therefore, monitoring the instruction count at the granularity of
iterations can capture the trend. This can be used to predict the instruction count for future kernel
executions and has shown to be a reliable method of predicting execution time [4–6] in the prior art.
Such a method could suffer from under- or over-prediction in case of very high variation. In this
context, there are two critical insights. First, since the RM repeatedly checks against the mispre-
dictions by comparing the remaining time and deadline, the effect will be automatically curtailed.
Second, it has been shown in the prior art that variations from iteration to iteration, even in the
case of different control flows within the program, are generally small [6] and predictable. Thus,
we record the instruction count for the “h” loop iteration in a FIFO buffer and employ averaging
to predict the instruction count in future loop iterations.

3.4.2 Timing Prediction Model. The timing and energy prediction for a given workload, i.e., in-
struction count, depend on the chosen configuration. This article employs a simple execution-time
model depicted in Equation (9), where TItr, I, F, CPI0, MPILLC, and MPLLC represent the execution
time per iteration, instruction count, frequency, cycle per instruction base, misses per instruction
for the last-level cache (LLC), and miss penalty for the LLC, respectively. Equation (9) represents
the execution time as a combination of compute and memory components and is generically ap-
plicable to any computing system. We chose this simple model as it gives enough accuracy while
keeping the runtime overheads of Approx-RM in check. We argue that since the configuration
space is quantized, the added accuracy might not always translate into additional energy savings
but certainly add to the overheads. In the context of Approx-RM, Equation (9) is used to predict
the execution time per iteration.

TItr = DItr =
I × CPI0

F
+ I ×MPILLC ×MPLLC (9) F =

CPI0 × I

DItr − I ×MPILLC ×MPLLC
(10)

Furthermore, to prune the configuration space, we need a model to predict the minimum fre-
quency at which an iteration can execute while meeting the soft deadline per iteration. Thus,
we re-arrange it to derive a frequency prediction model. Since an iteration must finish execution
before its allocated time, the execution time Titr can be equated with a deadline per iteration DItr.
Furthermore, solving the equation for frequency F leads to Equation (10). The Predict_Freqency

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

Reducing Energy on Heterogeneous Multicore Processors 44:11

Fig. 7. Overview of the prediction mechanism for CPI0, Ceff, MPILLC, and I and consequently timing and
energy for future iterations.

function implements Equation (10), where the input values of I, CPI0, and MPILLC are predicted
using the equation/model detailed in Section 3.4.4.

3.4.3 Energy Prediction Model. The energy prediction used in function Predict_Energy() is
given by Equation (11), where α , C, V, F, and Tpred represent the activity factor, the capacitance,
the voltage, the frequency, and the predicted execution time, respectively.

E = α × C × V2 × F × Tpred (11) E = Ceff × V2 × F × Tpred (12)

This equation can be further simplified by replacing the product of the activity factor α and
the capacitance C with the effective capacitance Ceff [19], resulting in Equation (12). The capacitance
is a property of the circuit, and the activity factor primarily depends on the interaction of the
application program with the micro-architecture. We use the effective capacitance values measured
from completed iterations to predict the value for future iterations in the same application. Thus,
Ceff is predicted for every application at runtime, where details are given in Section 3.4.4. In this
context, it is important to note that energy consumption depends on the predicted execution time.
Execution time, in turn, depends on the chosen V-F pair calculated in the last step.

3.4.4 Timing and Energy Predictor Architecture. The timing and energy prediction model relies
on the prediction of I, MPILLC, Ceff, and CPI0. Therefore, the predictor design is based on storing
the history of these parameters that are averaged to predict future values. A block diagram of the
predictor is shown in Figure 7.

The predictor performs two essential tasks. First, it inserts the old sample into the history buffers,
and second, it predicts the execution behavior of iterations. As for the first task, the measured val-
ues of I, CPI0, MPILLC, and Ceff are stored in the history tables using the FIFO principle after the
completion of each iteration. The values of CPI0, MPILLC, and Ceff can be different for each combi-
nation of core type and core count. Thus, the history of these parameters is stored in separate rows
in the history tables for every combination of core type and core count. As all core types have the
same ISA, the instruction count is the same. CPI0 and Ceff are derivative values, so they are com-
puted on the fly using Equations (13) and (14), respectively, where MPLLC(cycles) and Texe represent
the miss penalty for LLC misses in cycles and the execution times of the iterations, respectively.

CPI0 = CPI −MPILLC ×MPLLC(cycles) (13) Ceff =
E

V2 × F × Texe

(14)

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

44:12 M. W. Azhar et al.

Fig. 8. Hardware platform. Fig. 9. Voltage/frequency data for Exynos-5422 chipset.

Second, it predicts the next iteration’s execution time and energy consumption. First, the as-
signed core count and core type from the Approx-RM controller are used to select appropriate
rows from the history tables employing multiplexers. Next, an averaging unit computes the mean
from all the valid samples in the row. This mean value is used to predict timing and energy us-
ing Equation (9) and Equation (12). The resource management controller repeatedly invokes the
timing and energy predictions for various configurations (see Algorithm 3) to find a suitable con-
figuration. Finally, the instruction count and the execution parameters, measured while executing
on the predicted configuration, are fed back to the prediction history buffer.

4 EXPERIMENTAL METHODOLOGY

4.1 Hardware Platform and Configuration Space

We use as a hardware platform a heterogeneous multicore system with the capability to exper-
iment with different hardware configurations with an interesting range of tradeoffs concerning
performance and energy efficiency. To this end, we use ODROID-XU3, based on Exonys 5422 [8]
System-on-Chip (SoC) employing the ARM big.LITTLE [23] architecture. Figure 8 shows the
platform, where four big and four LITTLE processors are arranged in two homogeneous clusters.
Processors within a cluster share an LLC, and a cache coherent interconnect (CCI) connects
the LLCs of both clusters to allow for fast data transfer between the clusters. The SoC features
four big (i.e., CORTEX A15 performance-oriented out-of-order) and four LITTLE processors (i.e.,
A7 energy-efficient, in-order). Each processor has a 32-KB private L1 cache. The big cluster has
a 2-MB shared LLC, while the LITTLE cluster has a 512-KB shared LLC. The available V-F states
are shown in Figure 9. Furthermore, lmbench [25] is used to measure the miss penalty (i.e., 48
nono-seconds) for LLC misses.

4.2 Simulation Methodology

A hybrid simulation methodology is employed to evaluate the Approx-RM scheme. As a first step,
we record an execution data-trace, at the granularity of an iteration, for each application by execut-
ing on the real hardware at a fixed configuration. We repeated this experiment on all combinations
of V-F, processor type, and processor count to generate the execution traces for each configura-
tion in the system. The traces are used to replay the real execution at a certain configuration. The
measured values include the instruction count, cycles, LLC misses, and energy consumption.

In the second step, we simulated the dynamic behavior where configurations can change during
execution. The execution data traces feed into a simulator that employs all schemes (one at a time)
as a decision maker in the resource manager to pick data from one of the execution data traces. This
method simulates the dynamic behavior without the need to execute the workload repeatedly on
hardware. The objective is to emulate application execution on real hardware using three resource
managers: Approx-RM, Oracle, and Race-to-Idle.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

Reducing Energy on Heterogeneous Multicore Processors 44:13

Fig. 10. Simulation methodology.

Fig. 11. Experimental setup (adapted from [5]).

An example is shown in Figure 10. Here, Iteration-1 executes on configuration-1 (big proces-
sor, four threads, 2 GHz), and execution data for Iteration-1 at said configuration is selected from
the execution data-trace. The overhead associated with V-F switching, processor migration, and
Approx-RM is added before recording data in the dynamic execution log and fed back to Approx-
RM for prediction purposes as shown in Figure 4. Finally, Approx-RM uses this data to predict the
resource allocations for future iterations. As shown in Figure 10, Approx-RM predicts to execute
Iteration-3 using the following setup: the LITTLE processor, four threads, 1.4 GHz. Hence, the data
for Iteration-3 at the predicted configuration is selected from the execution data-trace. This data
is recorded in the dynamic execution log and fed into Approx-RM. This process repeats until the
completion of the application. For each iteration, the data for a predicted configuration is read from
the execution data trace and recorded in the dynamic execution log. At the end of the application,
the dynamic execution log is aggregated to compute the result for the whole execution.

4.3 Experimental Setup

The simulation framework is shown in Figure 11. The source code is instrumented to mea-
sure the execution statistics at the iteration granularity by inserting routines to read out data
from the hardware performance counters before and after each iteration. The first step is to exe-
cute the modified applications on the ODROID-XU3 board on all the configurations. There are 13
V-F settings for the big cluster and 10 for the LITTLE cluster, and two, three, and four are assumed
as thread count settings. This results in 13∗3 = 39 configurations for the big cluster and 10∗3 = 30
configurations for the LITTLE cluster, amounting to 69 configurations. This execution data trace

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

44:14 M. W. Azhar et al.

Table 1. Workloads and QoS Specification

Workload Name Iteration Deadline Solution Average Time Description Problem
Count (sec) Error Target per Iteration (msec) Type

W1 gauss-test 1,473 32.6 529.3 22.13 Gauss–Seidel Iterative
W2 gauss-testgrind2 1,469 29.9 531.51 20.3 method Solvers
W3 gauss-testgrind2-regions 1,493 676.7 0.05 453 (IS)
W4 gauss-anotniu 1,304 1.52 0.003 1.16
W5 redblack-test 1,493 50.52 0.01 33.8 Blocked Red-Black
W6 redblack-test2 1,500 9.72 250.23 6.48
W7 jacobi-test 1,802 252.71 542.3 141.3 Jacobi method
W8 jacobi-testgrind 1,845 1,095.41 0.026 593.71

W9 GD-LR-boston 550 0.88 21.89 1.6 Multi-variate Gradient
W10 GD-LR-diabetes 550 0.53 2870.1 0.96 Linear Regression Decent
W11 GD-LR-California 550 31.89 0.52 57.9 (MVLR) (GD)
W12 GD-LgR-Cancer 550 1.12 0.17 2.03 Logistic Regression (LgR)

is then used for runtime simulation. The solution error target and the timing deadline are assumed
to be provided by the user.

The simulation uses the execution data-trace to compute the dynamic schedule. First, Approx-
RM predicts the configuration for the next iteration. Next, the Task Execution Simulation block
records the execution of the task from the real execution data-trace in the Dynamic execution log.
Here, the overheads associated with Approx-RM, processor switching, and DVFS are also added to
the execution time and energy consumption of the iteration. Resource allocation for each iteration
is established until all iterations have been completed. Once the application is completed, the Dy-
namic execution log is aggregated by the Execution Statistics Generator to compute the evaluation
statistics.

4.4 Benchmarks

Our proposed resource management scheme applies to workloads exposing two properties: (1)
an iterative execution model and (2) an approximate nature of the algorithm. Since no benchmark
suite entirely comprises such applications, we must pick benchmarks from various suites. We have
chosen workloads from two sources. First, we use iterative solvers for heat diffusion from the BSC

Application Repository (BAR) [7]. While they are written in OmpSs, we have modified them to
comply with OpenMP 4.0, including syntax transformation, adding OMP parallel constructs, and
replacing task dependency clauses with barriers. The resulting code is published on the web [3].
Second, we use a microkernel for gradient descent for multi-variate linear regression, implemented
in C++ and parallelized using OpenMP. We use publicly available datasets from sklearn API [29].
The workloads used are listed in Table 1.

In the context of chosen workloads, we can observe a diverse set of properties. For example,
there are workloads with big iteration times, i.e., W3, and some with very short execution times,
i.e., W4, W9, and so forth. Similarly, workloads have diverse iteration counts as well.

4.5 QoS Specifications

We use the Upper Bound Execution Time (UBET) to determine the QoS specifications for the
workloads. UBET is the measurement-based estimation of worst-case execution time [1] and is a
reasonable method in soft real-time systems. In this context, the workload’s main loop encapsu-
lating kernel is instrumented and executed using a baseline configuration (i.e., big, four threads
at 2 GHz) for several runs. The measured execution time per iteration is analyzed to establish the
highest observed execution time (HOET) across iterations and used as UBET. The deadline is
set using Equation (15).

Deadline = D = UBETiteration × Iteration Count (15)

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

Reducing Energy on Heterogeneous Multicore Processors 44:15

Table 2. Overheads of Key Components in Approx-RM

Mechanism Configuration Prediction Duration Prediction

Timing Overhead 2k cycles 1k cycles

Energy Overhead 1,472 nJ 716 nJ

Finally, the solution error target is the solution error of the last iteration. The application dura-
tion is set to reduce the solution error by a factor of 100,000. However, for the multi-variate linear
regression class of workloads, the solution error will not reduce that much due to variance in input
training data. Hence, we let these workloads execute 500 iterations. Table 1 provides the details of
the iteration count, deadline, and solution error target for all workloads.

4.6 Evaluated Techniques

Approx-RM is quantitatively compared to the following schemes.

4.6.1 Race-to-Idle (RTI). The Race-to-Idle scheme executes the workload at the fastest config-
uration and then powers down until the deadline. It executes on a big core with four threads at
2 GHz. It serves as a reference for other schemes.

4.6.2 Oracle. Oracle is used to compare the potential of energy savings and efficacy of the
proposed Approx-RM. Oracle has perfect knowledge of the duration of the application, execution,
time, and energy consumption. Therefore, it exhaustively searches the configuration space for
every iteration to find the optimal configuration from an energy efficiency perspective that meets
the QoS specifications.

4.6.3 Oracle-Base. The Oracle-Base scheme employs RTI for the reduced number of iterations.
This scheme has perfect knowledge of the iteration count required to meet the relaxed SET. In this
scheme, the energy reduction is entirely due to a reduction in iteration count.

4.7 Implementation and Deployment

We envision the Approx-RM to be a runtime resource manager. Depending on utilization, it can
be implemented in hardware or software. In the context of this article, we assume that it is a soft-
ware component that is invoked after the completion of each iteration to make resource allocation
decisions. Note that different components of Approx-RM are computed depending on the state as
depicted in Algorithm 3. For example, the duration prediction in Approx-RM is invoked whenever
the error history buffer is filled with new samples.

Approx-RM, along with all its sub-components, is implemented in C++ and tested on the target
hardware platform. This allows us to establish the execution time and energy overheads of the
scheme as shown in Table 2.

In order to establish the runtime overheads, an important observation is that the various compo-
nents of Approx-RM do not execute at every iteration. Thus, we need to record the overhead of a
particular component whenever it is invoked within the Approx-RM scheme. The energy consump-
tion and execution time of Approx-RM, including all sub-components, are added to the energy
consumption and execution time, respectively, of the workload’s execution with the Approx-RM
scheme. Thus, savings presented in the evaluation incorporate these overheads, and overheads are
presented separately.

4.8 Overhead Estimation

Other overheads, such as DVFS switching, performance-counter reading, and cluster switching,
are also incorporated into the results. DVFS overhead is estimated using values presented in [28].

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

44:16 M. W. Azhar et al.

Table 3. Target Values for Prediction Error
History to Ascertain the Confidence Interval

Workloads Cluster Error History Prediction

W1-W8 1 0.4

W9-11 2 0.9

W12 3 3

Table 4. Configurations Used in Online Training at the
Start of Execution

Iteration 1 2 3 4 5 6

Core big big big LITTLE LITTLE LITTLE

Thread 4 3 2 4 3 2

Frequency 2 G-Hz 2 G-Hz 2G-Hz 1.4G-Hz 1.4 G-Hz 1.4 G-Hz

In this context, we considered a simplified worst-case scenario, where maximum up-scaling (i.e.,
V-F increase) overhead is shown to be 18 μsec and delay for down-scaling (i.e., V-F decrease) is
fixed to 10 μsec (i.e., phased lock loop (PLL) delay). However, we expect that this overhead
is much lower in newer process nodes and on-chip DC-DC converter designs. Furthermore, the
value of DVFS overhead selection is not a limiting factor for our approach. The overhead of reading
performance counters is measured to be 100 cycles per counter. The cluster switching overhead is
dominated by the time required to move the working set from the LLC of one cluster to the other
LLC of the other cluster. Here, we make the pessimistic assumption that all data in the LLC of the
big cluster is required to transfer to the LLC of the LITTLE cluster or vice versa. Since at most
512 KB is moved (i.e., the size of LITTLE cluster LLC), we assume 35K cycles for a cluster switch
(70K cycles to migrate 1,024 KB according to Markovic [24] on similar CMP). Finally, the approx-
RM scheme does not introduce any hardware overhead, as performance counters and DVFS are
already available in commodity processors.

4.9 User-provided Inputs and Design Parameters

4.9.1 Design Parameters. The solution-error history buffer has 20 entries. The history buffer
size “h” for timing and energy prediction is set to five as this provides acceptable accuracy and
responsiveness with low overheads.

The clusters for the confidence interval in duration prediction and target for error history pre-
diction are shown in Table 3.

There are six unique processor-thread combinations in the given hardware platform: the pro-
cessor types (two) times the thread count options (three; two to four threads). Thus, the number
of rows in the history tables for predicting execution parameters is six. Moreover, Approx-RM
executes the first six iterations on pre-defined configurations to facilitate energy and timing pre-
diction, as shown in Table 4.

4.10 Evaluation Metrics

The evaluation is conducted concerning energy savings, slack, the prediction accuracy of the tim-
ing, and energy prediction. Equation (16), Equation (17), and Equation (18) are used to compute
these, respectively.

Energy Savings(%) = 100 ×
EnergyRTI − Energyscheme

EnergyRTI

(16)

Slack(%) = 100 × Deadline − Timescheme

Deadline
(17)

Accuracy(%) = 100 ×
(
1 − abs

(
ValueActual − ValuePredicted

ValueActual

))
(18)

5 EVALUATION

We evaluate Approx-RM in this section. First, average energy savings across workloads for various
settings of a solution error target (SET) are presented in Section 5.1. Then, we dig deep into

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

Reducing Energy on Heterogeneous Multicore Processors 44:17

Fig. 12. Average energy savings across all workloads (a) and the average reduction in iteration count (b).

per-workload energy savings for a particular SET in Section 5.3. Then, we analyze the computa-
tional deadlines and slack usage in Section 5.4. Next, a discussion of the accuracy of timing and
energy predictions is presented in Section 5.5. Finally, Section 5.6 analyzes the impact of overheads.

5.1 Average Energy Savings

First, we evaluate the average energy savings and the average percentage reduction in iteration
count, for all the workloads, as a function of the percentage relaxation of the SET in Figure 12(a) and
Figure 12(b), respectively. The vertical axis in Figure 12(a) represents the energy savings compared
to the energy consumed by Race-to-Idle, using Equation (16). The vertical axis in Figure 12(b)
shows the percentage reduction in iteration count compared to the total number of iterations. The
horizontal axis in both charts represents the percentage reductions in SET.

Figure 12(a) depicts energy savings for Oracle-Base, Oracle, and Approx-RM. The average energy
savings for Oracle-Base, Oracle, and Approx-RM are 0%, 31.7%, and 14.7%, respectively, with no
addition in SET. The energy savings for Oracle-Base are zero because there is no reduction in iter-
ation count. On the other hand, for a 1% addition in SET, the energy savings increase to 18.8%, 47%,
and 31.6% for Oracle-Base, Oracle, and Approx-RM, respectively. This increase in energy savings
is because of an 18.8% reduction in iteration count. The iteration count reduction has two effects
that contribute to energy savings. First, fewer iterations are executed as depicted by Oracle-Base.
Second, execution time slack is generated because of the higher allocation of available time till the
deadline for each iteration. As SET increases, the number of iterations required to reach the new

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

44:18 M. W. Azhar et al.

Fig. 13. Box plot of normalized execution time for
0% addition in SET.

Fig. 14. Box plot of normalized execution time for
1% addition in SET.

target is reduced while the execution deadline remains unchanged. This allows the resource man-
ager to stretch the reduced number of iterations over a more extended period. Hence, the reduced
iteration count, while keeping the program’s deadline the same, allows the time for individual it-
erations to increase in proportion to the generated slack. This makes it possible for the resource
manager to reduce the resource allocation to save energy.

5.2 Explanations for Energy Savings

The amount of energy saved depends on the statistical distribution of the execution time per it-
eration. To elaborate on this, we use box plots to visualize the normal distribution of execution
time per iteration compared to the deadline per iteration. Figure 13 and Figure 14 show the exe-
cution times per iteration normalized to the deadline per iteration for SET addition of 0% and 1%,
respectively. The “box” in a box plot represents the middle 50% of samples ranging from the 25th
to the 75th percentile, also referred to as the interquartile range (IRQ). The orange line in the
middle of the box represents the median, and the lower and upper whiskers signify the minimum
and maximum values, respectively.

There are a few important things to observe here. First, analyzing Figure 13, we can see that
there is a small amount of inherent slack. The distribution of normalized execution time for all the
workloads is close to 1, or in other words, it is close to the deadline. Second, as the SET is relaxed,
more slack is generated by observing Figure 14. This is manifested in an increase in energy savings
from 14.7% to 31.6% for the SET increase from 0% to 1% for the Approx-RM scheme. In short, we
can conclude that the relaxation in SET generates slack that, in turn, is exploited by Approx-RM
to reduce resource allocation to save energy.

Finally, Approx-RM effectively harnesses the energy-saving potential as it closely tracks Oracle.
For example, for the case of a 2% addition in SET, Approx-RM shows energy savings of 34.3%
as compared to 48.9% for Oracle. It is important to note that Approx-RM only starts resource
allocation after the duration prediction is within the confidence interval. As a result, Approx-RM
lags behind Oracle, which starts resource allocation from the first iteration. This is because it has
perfect knowledge of the application duration.

5.3 Energy Savings per Workload

Next, we show the energy savings and the reduction in the number of iterations for a 1% increase
in the SET in Figure 15. Here, Figure 15(a) shows the energy savings, and Figure 15(b) shows the
iteration count reduction. The horizontal axis in both Figure 15(a) and Figure 15(b) represents the

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

Reducing Energy on Heterogeneous Multicore Processors 44:19

Fig. 15. Energy savings (a) and reduction in the number of iterations (b) for a 1% addition in solution error
for various workloads.

workloads, while the vertical axis of Figure 15(a) represents the energy savings compared to RTI
and that of Figure 15(b) shows percentage iteration reduction compared to the original iterations.

Energy savings for various workloads depend on available slack. The distribution can explain the
energy savings for various workloads shown in the box plot in Figure 14. For example, gauss-test

has most of the samples, i.e., upper to lower whisker, concentrated close to 1 or the deadline. Thus,
it shows energy savings of 5.6% and 4.8% for Oracle and Approx-RM, respectively (see Figure 15).
On the other hand, GD-LR-California has all the samples between 0.5 and 0.55 and thus shows
energy savings of 51.8 %, 61%, and 79.9% for Oracle-Base, Approx-RM, and Oracle, respectively.

Looking at Figure 15(b), we can make the following observations. First, different workloads have
different amounts of reduction in iteration count owing to their error curves. The solution error
of some applications saturates more than others. For example, gauss-testgrind2 and redblack-test

only show 0.6% of reduction in iteration count. In contrast, GD-LR-diabetes and GD-LR-California

show a large reduction, i.e., 74.7% and 51.8%, respectively.
Second, the iteration count reduction generates additional slack that can be observed by com-

paring the two box plots in Figure 14 and Figure 13 and scanning the position of the box that

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

44:20 M. W. Azhar et al.

Fig. 16. Execution time slack at the completion of execution represented as a percentage with respect to the
deadline.

corresponds to the IRQ or median 50% of samples. The IRQ for GD-LR-California approximately
ranges from 0.96 to 0.97 (top of the box to bottom of the box) with a 0% reduction and ranges from
0.51 to 0.52 for a 1% reduction in SET. This significant change results from the 51% reduction in
iteration count (see the bottom chart in Figure 15). Similarly, the IRQ for GD-LogReg-BreastCancer

changes from 0.95–0.96 to 0.92–0.94 owing to a 30% reduction in iteration count. Here, it is impor-
tant to note that the percentage reduction in iteration count is analogous to the slack generation.
The execution time per iteration and deadline is different for both workloads.

For gauss-test or redblack-test, the reduction in iteration count is very small, i.e., 0.6%, resulting
in a small addition of slack. Again, the increase in slack is analogous to the percentage reduction
in iteration count; consequently, the energy savings are different. Both gauss-test and redblack-test

show a 0.6% reduction in iteration count but exhibit 4.8% and 14.6% energy savings for Approx-RM,
respectively. This is due to different distributions of execution time per iteration and inherently
available slack, as evident from the box plots.

5.4 Deadline Adherence and Slack Usage

In this section, we evaluate if Approx-RM can meet deadlines and how well the available slack
is used for saving energy. Since slack is the difference between deadline and execution, we only
show percentage slack in Figure 16, where the vertical axis represents the slack, and the horizontal
axis represents the percentage relaxation of SET. Oracle, on average, meets the deadline for all SET
settings as the percentage slack is positive. Conversely, Approx-RM meets the deadline for SET
additions of 0.4% to 2% and misses the deadlines at a 0% to 0.2% addition. The reason for this
is twofold. First, the prediction mechanism (i.e., duration and performance prediction) has some
inaccuracy leading to the allocation of fewer resources than required. Second, the Approx-RM has
some overheads resulting in an increase in total execution time. At lower settings of SET, there is
not enough slack available due to little or no reduction in the iteration count to cover for these
inaccuracies and overheads.

Moreover, Oracle can use most of the slack as it can perfectly predict application duration and
execution behavior. In the case of Approx-RM, it uses a considerable amount of the available slack
for energy savings. This is due to prediction errors in both workload duration and application
behavior. Moreover, as mentioned earlier, the Approx-RM only starts resource allocation when
duration prediction is mature, contributing to most of the accumulated slack. For example, for a
1% relaxation of SET, Oracle has only 4% of slack, but Approx-RM has 10%.

Two critical reasons limit the full usage of slack. The first reason is the quantization of the
configuration space owing to discrete voltage-frequency pairs and core types. As a result, even
with perfect prediction, Oracle may not fully exploit the slack as the following low-performance

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

Reducing Energy on Heterogeneous Multicore Processors 44:21

Fig. 17. Average accuracy across workloads for the
execution time and energy predictions for various
values of SET.

Fig. 18. Average overheads incurred across work-
loads by Approx-RM (in percent) for various values
of SET.

configuration might violate the deadline. The second reason that only applies to Approx-RM is the
delay in starting resource allocation and the prediction error in both workloads’ duration and the
the application’s timing behavior. Approx-RM only starts resource allocation once duration pre-
diction is within the confidence interval. The over-prediction of execution time forces Approx-RM

to use a relatively high-performance configuration resulting in higher slack at the end of exe-
cution. While the duration prediction is not within the confidence interval, Approx-RM chooses
the highest-performing configuration, i.e., big processor, 2 GHz, and four threads. Moreover, even
after the start of resource allocation, the prediction errors in the application’s duration, perfor-
mance, and energy limit the full exploitation of slack. An analysis of the output schedules reveals
that Approx-RM starts resource allocation after around 55% of the iterations compared to the to-
tal number of iterations. The difference in energy savings for Oracle and Approx-RM is reiterated
in their ability to use slack. Regardless, Approx-RM saves considerable energy while providing a
statistical guarantee to meet the deadline.

5.5 Execution Time and Energy Prediction Accuracy

In this section, we present the accuracy of the execution time and energy prediction mechanism
as explained earlier in Section 3.4. Figure 17 depicts the prediction accuracy with various relax-
ations of SET. Here, the vertical axis represents the prediction accuracy (in percent), whereas the
horizontal axis represents the relaxation of SET (in percent). The timing and energy prediction
accuracy are both computed using Equation (18). Both predictions show very high accuracy, thus
enabling Approx-RM to save energy. Both predictions exhibit at least 98% accuracy. Interestingly,
the accuracy changes with the relaxation of SET. The reason is that the switching pattern changes
with a specific SET target, inducing a different set of samples recorded in the history buffer. This,
in turn, affects the prediction accuracy as the count and variety of samples from configurations
contribute to the prediction accuracy. Another important insight is that the prediction inaccuracy
inhibits slack from being used. A small error in prediction hinders Approx-RM from fully utilizing
the slack compared to Oracle, which has a perfect estimation. Since slack usage affects energy sav-
ings, it is fair to say that the small prediction error in the timing and energy prediction mechanism
contributes to the difference in energy savings between the Approx-RM and Oracle.

5.6 Overheads

Figure 18 shows timing and energy overheads. The vertical axis shows the overheads, whereas the
horizontal axis shows the relaxation of SET. Timing and energy overheads are computed compared
to the Race-to-Idle execution time and energy, respectively. These overheads include DVFS, core
switch, Approx-RM, and duration prediction overheads.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

44:22 M. W. Azhar et al.

In general, the timing and energy overheads are negligible, with maximum timing and energy
overheads being 0.04% and 0.06%, respectively, for a 2% relaxation of SET. The reason is that even
though Approx-RM is invoked after each iteration, not every component of it is used. For example,
duration prediction is only invoked after “K” iterations (i.e., when the error history buffer contains
completely new data). Resource Allocation is invoked for every iteration provided the duration
prediction is mature. However, the overhead of the resource allocator is very low compared to
the execution time of one iteration (i.e., Table 2 and Table 1). Furthermore, configuration changes
do not happen in each iteration since after a configuration change, the system remains steady for
many successive iterations.

Moreover, the timing and energy overheads of Approx-RM change slightly with the relaxation of
SET. This is because more slack is available with an increase in SET, incurring a specific switching
pattern between configurations for Approx-RM. In short, the overall timing and energy overheads
of Approx-RM are approximately less than or equal to 0.1% in all cases.

6 RELATED WORK

Improving energy efficiency under a QoS constraint has been the subject of considerable atten-
tion because of higher energy and performance requirements. As a result, the literature abounds
with resource management schemes to improve energy efficiency for single-threaded applications
such as DVFS [13, 17, 32], thread placement [11, 30], and DVFS and thread placement [6]. For
multithreaded or parallel applications, proposals such as [4, 10, 12] use various combinations of
DVFS, processor count, and thread placement to save energy. However, these works do not ad-
dress approximate applications. Sharif et al. [31] provide a framework for exploiting the approxi-
mate nature of ML inference by employing optimizations at development, installation, and runtime.
However, they do not address approximate iterative applications.

Energy efficiency for AIA has gained considerable attention owing to the possible tradeoffs
between accuracy, performance, and energy efficiency. To this end, Vassiliadis et al. [33] propose
a framework where the user provides accurate and approximate implementations of the tasks and
their significance to the accuracy of the result. Then, an offline profiling tool uses this information
to train an application-specific model used at runtime to control the thread count, frequency,
and ratio of accurate/approximate tasks to keep the energy below a target specified by the user.
Similarly, Hoffmann [15] propose a runtime technique for providing energy guarantees while
maximizing accuracy and relying on application-specific accuracy control mechanisms. First, an
energy-efficient configuration satisfying the energy budget is found, and the accuracy is changed
to meet the throughput target.

Zhang et al. [35, 36] propose two techniques for iterative applications [36] and artificial neu-

ral networks (ANNs) [35] that provide quality guarantees while minimizing energy. First, both
methods build a model using offline characterization to determine the criticality and energy-saving
potential of the available approximation means. This model is then used at runtime to reduce en-
ergy while ensuring the quality of the final solution. Second, [36] targets approximate iterative
applications, as we do in this work, and uses approximate adders. In contrast, the second solu-
tion [35] targets artificial neural networks employing memory skipping, precision scaling, and
approximate multipliers to reduce energy.

Farrell and Hoffmann [14] propose a method that ensures timing guarantees and energy ef-
ficiency. The technique leverages application-specific accuracy affecting parameters to accom-
plish the approximation. It is based on allocating resources for average-case latency requirements
to save energy while meeting the timing requirement by identifying the worst-case application
regions and approximating them to reduce the computational requirements.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

Reducing Energy on Heterogeneous Multicore Processors 44:23

Dayapule et al. [9] employ offline analysis to obtain a profile of maximum performance (i.e., job
arrival rate) versus power efficiency (i.e., jobs per second per watt) for accurate and approximate
versions of jobs (or tasks) while satisfying the QoS constraint on tail latency. This offline profile
is then used to select a configuration of core types and accurate or approximate job selection to
fulfill the tail latency. The quality guarantees are implicitly provided by limiting the number of
approximate jobs used in succession.

Kulkarni et al. [21] provide quality and throughput guarantees by employing offline characteri-
zation of the design space to identify energy-saving opportunities. Their technique uses dynamic
recompilation to configure application-specific approximation modes, core count, and memory
allocations to save energy.

You et al. [34] propose a framework targeting GPUs for improving energy efficiency or latency
under the quality constraint by varying power and batch sizes. They rely on a regression model
to identify the tradeoff between the power and execution time.

The techniques mentioned above provide either timing or energy guarantees but not both. In
contrast, Approx-RM is the first work that provides a runtime management scheme for energy
reduction under QoS constraints while providing statistical guarantees for performance and accu-
racy for approximate iterative applications.

7 CONCLUSION

This article investigates the prospect of saving energy by exploiting the quality-energy tradeoff in
approximate iterative applications. Approximate iterative applications are run on heterogeneous
multi-processor platforms under QoS constraints on the timing and solution quality. A key insight
that our proposed scheme Approx-RM builds upon is the diminishing improvement in the solu-
tion quality of approximate iterative applications in the later stages of the execution. A small yet
controlled reduction of solution quality requirements can significantly reduce the number of it-
erations, thus producing execution time slack that can be translated into energy savings. In this
article, we have shown that solution quality, along with traditional means to control resource us-
age such as DVFS, processor type, and processor count, can be used to allocate sufficient resources
to gain higher energy efficiency. Approx-RM achieves this by first predicting the application du-
ration by recording and applying curve-fitting on the solution error function and then allocating
an appropriate amount of resources. Approx-RM employs an execution time and energy prediction
mechanism with high accuracy (≈98%) to predict the behavior of the HMP configuration space and
then allocate an appropriate amount of resources. Approx-RM achieves 31.6% energy reduction, on
average, compared to Race-to-Idle at only a 1% reduction in solution quality. Moreover, Approx-RM

meets the timing deadline and only incurs an overhead of at most 0.1%.

REFERENCES

[1] J. Abella, C. Hernandez, E. Quiñones, F. J. Cazorla, P. R. Conmy, M. Azkarate-askasua, J. Perez, E. Mezzetti, and T.

Vardanega. 2015. WCET analysis methods: Pitfalls and challenges on their trustworthiness. In 10th IEEE International

Symposium on Industrial Embedded Systems (SIES’15). 1–10. https://doi.org/10.1109/SIES.2015.7185039

[2] Susanne Albers and Antonios Antoniadis. 2014. Race to idle: New algorithms for speed scaling with a sleep state. ACM

Trans. Algorithms 10, 2, Article 9 (Feb. 2014), 31 pages. https://doi.org/10.1145/2556953

[3] M. Waqar Azhar. 2021. Workloads for Approx-RM. https://github.com/waqarazhar/Approx-RM-Workloads.

[4] M. Waqar Azhar, Miquel Pericàs, and Per Stenström. 2019. SaC: Exploiting execution-time slack to save energy in

heterogeneous multicore systems. In Proceedings of the 48th International Conference on Parallel Processing (ICPP’19).

ACM, Article 26, 12 pages. https://doi.org/10.1145/3337821.3337865

[5] M. Waqar Azhar, Miquel Pericàs, and Per Stenström. 2022. Task-RM: A resource manager for energy reduction in

task-parallel applications under quality of service constraints. ACM Trans. Archit. Code Optim. 19, 1, Article 11 (Jan.

2022), 26 pages. https://doi.org/10.1145/3494537

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

https://doi.org/10.1109/SIES.2015.7185039
https://doi.org/10.1145/2556953
https://github.com/waqarazhar/Approx-RM-Workloads
https://doi.org/10.1145/3337821.3337865
https://doi.org/10.1145/3494537

44:24 M. W. Azhar et al.

[6] M. Waqar Azhar, Per Stenström, and Vassilis Papaefstathiou. 2017. SLOOP: QoS-supervised loop execution to reduce

energy on heterogeneous architectures. ACM Transactions on Architecture and Code Optimization (TACO) 14, 4 (2017),

1–25.

[7] Barcelona Super Computing Center. 2021. BSC application repository. Retrieved from https://pm.bsc.es/projects/bar

[8] Hongsuk Chung. 2013. Heterogeneous Multi-Processing Solution of Exynos 5 Octa with ARM big.LITTLETM Tech-

nology. https://www.semanticscholar.org/paper/Heterogeneous-MultiProcessing-Solution-of-Exynos-5-Chung/0

[9] Sai Santosh Dayapule, Fan Yao, and Guru Venkataramani. 2019. PowerStar: Improving power efficiency in heteroge-

nous processors for bursty workloads with approximate computing. In 2019 IEEE International Conference on Cloud

Computing Technology and Science (CloudCom). 175–182. DOI:https://doi.org/10.1109/CloudCom.2019.00035

[10] Daniele De Sensi, Massimo Torquati, and Marco Danelutto. 2016. A reconfiguration algorithm for power-aware paral-

lel applications. ACM Trans. Archit. Code Optim. 13, 4, Article 43 (Dec. 2016), 25 pages. https://doi.org/10.1145/3004054

[11] Christina Delimitrou and Christos Kozyrakis. 2013. QoS-aware scheduling in heterogeneous datacenters with paragon.

ACM Trans. Comput. Syst. 31, 4, Article 12 (Dec. 2013), 34 pages. https://doi.org/10.1145/2556583

[12] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt. 2016. SPARTA: Runtime task allocation for energy efficient

heterogeneous manycores. In 2016 International Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS’16). 1–10.

[13] Stijn Eyerman and Lieven Eeckhout. 2011. Fine-grained DVFS using on-chip regulators. ACM Trans. Archit. Code

Optim. 8, 1, Article 1 (Feb. 2011), 24 pages. https://doi.org/10.1145/1952998.1952999

[14] Anne Farrell and Henry Hoffmann. 2016. MEANTIME: Achieving both minimal energy and timeliness with approx-

imate computing. In 2016 USENIX Annual Technical Conference (USENIX ATC’16). USENIX Association, Denver, CO,

421–435. https://www.usenix.org/conference/atc16/technical-sessions/presentation/farrell.

[15] Henry Hoffmann. 2015. JouleGuard: Energy guarantees for approximate applications. In Proceedings of the 25th Sym-

posium on Operating Systems Principles (SOSP’15). Association for Computing Machinery, New York, NY, 198–214.

https://doi.org/10.1145/2815400.2815403

[16] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and Martin Rinard. 2011. Dy-

namic knobs for responsive power-aware computing. In Proceedings of the 16th International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS XVI). Association for Computing Machinery,

New York, NY, 199–212. https://doi.org/10.1145/1950365.1950390

[17] C. J. Hughes, J. Srinivasan, and S. V. Adve. 2001. Saving energy with architectural and frequency adaptations for

multimedia applications. In Proceedings 34th ACM/IEEE International Symposium on Microarchitecture (MICRO-34).

250–261. https://doi.org/10.1109/MICRO.2001.991123

[18] Connor Imes and Henry Hoffmann. 2015. Minimizing energy under performance constraints on embedded platforms:

Resource allocation heuristics for homogeneous and single-ISA heterogeneous multi-cores. SIGBED Rev. 11, 4 (Jan.

2015), 49–54. https://doi.org/10.1145/2724942.2724950

[19] Stefanos Kaxiras and Margaret Martonosi. 2008. Computer architecture techniques for power-efficiency. Synthesis

Lectures on Computer Architecture 3, 1 (2008), 1–207.

[20] David H. K. Kim, Connor Imes, and Henry Hoffmann. 2015. Racing and pacing to idle: Theoretical and empirical

analysis of energy optimization heuristics. Proceedings of the 3rd IEEE International Conference on Cyber-physical

Systems, Networks, and Applications (CPSNA’15). 78–85. https://doi.org/10.1109/CPSNA.2015.23

[21] Neeraj Kulkarni, Feng Qi, and Christina Delimitrou. 2019. Pliant: Leveraging approximation to improve datacenter

resource efficiency. In 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA’19). IEEE,

159–171.

[22] J. Li and J. F. Martinez. 2006. Dynamic power-performance adaptation of parallel computation on chip multiprocessors.

In The 12th International Symposium on High-Performance Computer Architecture, 2006. 77–87. https://doi.org/10.1109/

HPCA.2006.1598114

[23] I. Lin, B. Jeff, and I. Rickard. 2016. ARM platform for performance and power efficiency — Hardware and software

perspectives. In 2016 International Symposium on VLSI Design, Automation and Test (VLSI-DAT’16). 1–5. https://doi.

org/10.1109/VLSI-DAT.2016.7482541

[24] Nikola Markovic. 2015. Hardware thread scheduling algorithms for single-ISA asymmetric CMPs. TDX (Tesis Doctorals

en Xarxa). https://upcommons.upc.edu/handle/2117/96039.

[25] Larry McVoy and Carl Staelin. 1996. Lmbench: Portable tools for performance analysis. In Proceedings of the 1996

Annual Conference on USENIX Annual Technical Conference (ATEC’96). USENIX Association, 23.

[26] Mehrzad Nejat, Madhavan Manivannan, Miquel Pericàs, and Per Stenström. 2020. Coordinated management of DVFS

and cache partitioning under QoS constraints to save energy in multi-core systems. J. Parallel and Distrib. Comput.

144 (2020), 246–259. https://doi.org/10.1016/j.jpdc.2020.05.006

[27] Mehrzad Nejat, Miquel Pericas, and Per Stenstrom. 2019. QoS-driven coordinated management of resources to save

energy in multi-core systems. In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS’19).

303–313. https://doi.org/10.1109/IPDPS.2019.00040

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

https://pm.bsc.es/projects/bar
https://www.semanticscholar.org/paper/Heterogeneous-MultiProcessing-Solution-of-Exynos-5-Chung/0
https://doi.org/10.1109/CloudCom.2019.00035
https://doi.org/10.1145/3004054
https://doi.org/10.1145/2556583
https://doi.org/10.1145/1952998.1952999
https://www.usenix.org/conference/atc16/technical-sessions/presentation/farrell
https://doi.org/10.1145/2815400.2815403
https://doi.org/10.1145/1950365.1950390
https://doi.org/10.1109/MICRO.2001.991123
https://doi.org/10.1145/2724942.2724950
https://doi.org/10.1109/CPSNA.2015.23
https://doi.org/10.1109/HPCA.2006.1598114
https://doi.org/10.1109/VLSI-DAT.2016.7482541
https://upcommons.upc.edu/handle/2117/96039
https://doi.org/10.1016/j.jpdc.2020.05.006
https://doi.org/10.1109/IPDPS.2019.00040

Reducing Energy on Heterogeneous Multicore Processors 44:25

[28] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang. 2013. Accurate modeling of the delay and energy

overhead of dynamic voltage and frequency scaling in modern microprocessors. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 32, 5 (May 2013), 695–708. https://doi.org/10.1109/TCAD.2012.2235126

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.

Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Ma-

chine learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[30] V. Petrucci, M. A. Laurenzano, J. Doherty, Y. Zhang, D. Mossé, J. Mars, and L. Tang. 2015. Octopus-Man: QoS-driven

task management for heterogeneous multicores in warehouse-scale computers. In 2015 IEEE 21st International Sym-

posium on High Performance Computer Architecture (HPCA’15). 246–258. https://doi.org/10.1109/HPCA.2015.7056037

[31] Hashim Sharif, Yifan Zhao, Maria Kotsifakou, Akash Kothari, Ben Schreiber, Elizabeth Wang, Yasmin Sarita, Nathan

Zhao, Keyur Joshi, Vikram S. Adve, Sasa Misailovic, and Sarita Adve. 2021. ApproxTuner: A compiler and runtime

system for adaptive approximations. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming (PPoPP’21). Association for Computing Machinery, New York, NY, 262–277. https://doi.org/

10.1145/3437801.3446108

[32] Jinho Suh, Chieh-Ting Huang, and Michel Dubois. 2015. Dynamic MIPS rate stabilization for complex processors.

ACM Trans. Archit. Code Optim. 12, 1, Article 4 (April 2015), 25 pages. https://doi.org/10.1145/2714575

[33] Vassilis Vassiliadis, Charalampos Chalios, Konstantinos Parasyris, Christos D. Antonopoulos, Spyros Lalis, Nikolaos

Bellas, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. 2016. Exploiting significance of computations for energy-

constrained approximate computing. International Journal of Parallel Programming 44, 5 (2016), 1078–1098.

[34] Jie You, Jae-Won Chung, and Mosharaf Chowdhury. 2023. Zeus: Understanding and optimizing GPU energy con-

sumption of DNN training. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI’23).

119–139.

[35] Qian Zhang, Ting Wang, Ye Tian, Feng Yuan, and Qiang Xu. 2015. ApproxANN: An approximate computing frame-

work for artificial neural network. In 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE’15).

IEEE, 701–706.

[36] Qian Zhang, Feng Yuan, Rong Ye, and Qiang Xu. 2014. ApproxIt: An approximate computing framework for itera-

tive methods. In Proceedings of the 51st Annual Design Automation Conference (DAC’14). Association for Computing

Machinery, New York, NY, 1–6. https://doi.org/10.1145/2593069.2593092

Received 5 October 2022; revised 17 April 2023; accepted 15 June 2023

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 44. Publication date: July 2023.

https://doi.org/10.1109/TCAD.2012.2235126
https://doi.org/10.1109/HPCA.2015.7056037
https://doi.org/10.1145/3437801.3446108
https://doi.org/10.1145/2714575
https://doi.org/10.1145/2593069.2593092

