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Stream Aggregation with Compressed Sliding Windows

PRAJITH RAMAKRISHNAN GEETHAKUMARI and IOANNIS SOURDIS, Computer Science

and Engineering Department, Chalmers University of Technology, Sweden

High performance stream aggregation is critical for many emerging applications that analyze massive vol-

umes of data. Incoming data needs to be stored in a sliding window during processing, in case the aggregation

functions cannot be computed incrementally. Updating the window with new incoming values and reading it

to feed the aggregation functions are the two primary steps in stream aggregation. Although window updates

can be supported efficiently using multi-level queues, frequent window aggregations remain a performance

bottleneck as they put tremendous pressure on the memory bandwidth and capacity. This article addresses

this problem by enhancing StreamZip, a dataflow stream aggregation engine that is able to compress the

sliding windows. StreamZip deals with a number of data and control dependency challenges to integrate a

compressor in the stream aggregation pipeline and alleviate the memory pressure posed by frequent aggre-

gations. In addition, StreamZip incorporates a caching mechanism for dealing with skewed-key distributions

in the incoming data stream. In doing so, StreamZip offers higher throughput as well as larger effective win-

dow capacity to support larger problems. StreamZip supports diverse compression algorithms offering both

lossless and lossy compression to integers as well as floating-point numbers. Compared to designs without

compression, StreamZip lossless and lossy designs achieve up to 7.5× and 22× higher throughput, while im-

proving the effective memory capacity by up to 5× and 23×, respectively.
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tems→ Data compression; Stream management; • Hardware→ Hardware accelerators;
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1 INTRODUCTION

The massive volumes of data produced globally enable a large number of emerging stream process-
ing applications [8]. Such applications are used in various domains, e.g., financial and transporta-
tion, to analyze large unbounded streams of data and make fast, sophisticated decisions. However,
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Fig. 1. Sliding-window stream aggregation with Window Size (WS) = 8 tuples and Window Advance (WA) =
2 tuples for an input data stream, e.g., a vehicular sensor emitting tuples t1, t2, . . . with each tuple containing
a timestamp, vehicle ID, and speed. For simplicity, only tuples from a single vehicle (key) are shown. The grey
tuples indicate the aggregate output generated when the sliding window gets full (e.g., top-3, average, and
median speed).

consuming large data volumes at line rates requires high processing throughput and sometimes,
e.g., in financing, low latency.

Stream aggregation is one of the most challenging tasks in stream processing. An example is
depicted in Figure 1. It can be described by applying the traditional relational database aggregation
semantics to a sliding window. Such a window of size (WS) is updated with incoming elements
(values carried by incoming tuples). Upon aggregation, the window “slides” by a particular number
of elements (Window Advance (WA)) to produce the aggregated values, that is, the window con-
tents before sliding [1]. The aggregated values are subsequently fed to one or multiple functions
that compute an output every time the window slides. Considering a key-value pair system, incom-
ing tuples carry values of different keys, which are aggregated separately using a separate sliding
window per key. This description fits Sliding-Window stream Aggregation (SWAG) that fol-
lows a tuple-based window policy, meaning WS and WA are measured in terms of the count of
elements. An alternative windowing policy is time based, where the size and slide are defined by
time intervals.

For some problems, the sliding-window aggregations can be simplified by computing them in-
crementally [19, 22, 24]. However, many others need to follow the Single sliding-window stream

aggregation (Single-SWAG) approach [9, 27], which is the focus of this article. That is the case
for problems that use non-associative aggregation functions, which cannot be computed incremen-
tally, e.g., median [12], or problems that would be more expensive to compute incrementally than
using Single-SWAG, e.g., frequent aggregations of multiple aggregation functions in geo-tagged
data [16], social media data [14], or manufacturing equipment data [13].

Single-SWAG is a memory-intensive problem [9]. The memory needs to be accessed to update
the window for each incoming tuple, and, when ready for aggregation, the entire window should
be read. These two Single-SWAG steps, window update and window aggregation, generate tremen-
dous memory pressure, the latter especially for queries with frequent aggregations (small WA).
Current state-of-the-art FPGA-based Single-SWAG approaches employ dataflow engines (DFEs)

and mitigate the memory bandwidth bottleneck due to window updates using multi-level queues

(MLQs) [10]. However, this only addresses the first Single-SWAG step, i.e., window updates. For
queries with frequent aggregations, as the dominant part of the single window rests in the farthest
and slowest memory, previous approaches suffer from low processing throughput. This is due to
the memory bandwidth bottleneck posed by the large volume of window aggregation traffic.

One way to alleviate the window aggregation memory bottleneck is to compress the sliding win-
dow. Existing studies on real-world streaming datasets have shown that a dominant part of them
consisting of performance counter, sensor, geolocation, and other time-series data have significant
redundancy that can be exploited through data compression [25]. As an example, Figure 2 illus-
trates the tremendous potential gains in Single-SWAG processing throughput by reducing the tu-
ple’s value size, e.g., up to 28× higher throughput with a 32× data reduction. However, compression
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Fig. 2. Processing throughput in million tuples per second vs. WS in tuples for an FPGA-based MLQ Single-
SWAG dataflow engine [10] at 156.25 MHz with varying value sizes and WA=1 tuple, showing the potential
for data compression.

complicates window management and introduces dependencies. Moreover, due to the on-the-fly
processing, high-throughput, and low-latency requirements of stream processing, sophisticated
compression schemes cannot be afforded due to their high complexity and high latency.

In the past, compression has been proposed for stream processing in TerseCades [25]. However,
TerseCades only supports batch processing of separate non-overlapping tumbling windows, i.e.,
WA = WS, rather than true stream processing with WA ≤WS; therefore, it avoids data overlap
between different window instances and hence avoids the greatest challenge of applying compres-
sion to SWAG. In addition, TerseCades is software based and requires data to be stored in memory
before processing, introducing significant latency. An interesting contribution of that work is the
support for processing directly on compressed data, which requires support by both the compres-
sion algorithm and the aggregation function and is orthogonal to our work.

This article is an extension of StreamZip, which is the first true stream processing engine with
compression support for sliding windows and WA ≤WS [11]. StreamZip is based on previous
FPGA-based MLQ DFE for SWAG systems and is able to support lossless and lossy compres-
sion algorithms aiming to mitigate the memory bandwidth bottleneck of window aggregations.
StreamZip achieves this by addressing a number of concurrency control challenges introduced by
the addition of the compression and decompression steps to the pipeline. This is especially true
for skewed key distributions in which bursts of incoming tuples of the same key (or small subset
of keys) enter the system in close succession and is prevalent in real-world datasets. The stream
aggregation pipeline needs to ensure it generates correct results despite tuples of the same key be-
ing processed in parallel at different stages and without hampering the performance of the system.
Moreover, frequent aggregations in skewed key distributions create redundant memory accesses
that waste bandwidth and limit performance; this performance hit is exacerbated by high-latency
decompressors. StreamZip devises efficient concurrency control mechanisms to mitigate such data
and control dependencies in the pipeline. As a result, StreamZip achieves substantial reduction of
aggregated data volumes and offers up to an order of magnitude higher processing throughput
and reduction in effective memory capacity compared to current state-of-the-art Single-SWAG
systems.

The contributions of this article extending StreamZip [11] are the following:

• Adds support for XOR compression algorithm to support lossless floating-point compression
showing the applicability of Streamzip for diverse compression schemes and handling the
challenges posed by different characteristics of the compression algorithm
• Devises efficient concurrency control schemes such as independent compressed blocks and

compressed block interleaving to mitigate the sequential dependency in the compression
algorithm
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Table 1. Data Types and Compression Schemes in StreamZip

Data Types/Compression Lossless Lossy

Fixed point Base-Delta SZ

Floating point XOR SZ

• Achieves up to 5.6× compression ratio and up to 7.5× higher processing throughput for the
lossless floating-point design using XOR compression than current state-of-the-art FPGA-
based MLQ stream processing engine
• Introduces a caching mechanism to handle skewed key distributions without penalizing per-

formance and achieves up to 3× higher processing throughput compared to Streamzip with-
out caching

The remainder of this article is organized as follows. Section 2 offers background about com-
pression and discusses related work. Section 3 describes the StreamZip design. Section 4 presents
the evaluation and compares StreamZip with related works. Finally, Section 5 summarizes our
conclusions.

2 BACKGROUND AND RELATED WORK

This section offers background on data compression in relation to stream processing and discusses
related work.

2.1 Compression Algorithms

FPGA-based Stream processing engines use deep dataflow pipelines to achieve high processing
rates. As a consequence, they require fine-grained pipelining with as few data dependencies as
possible. Adding compression to such a system introduces a number of challenges. Briefly, the
challenges pertaining to the choice of compression algorithm are related to the arithmetic com-
plexity of compression and the dependencies between computations of consecutive values. Other
compression characteristics that require attention when designing a SWAG with compression are
related to the nature of the algorithm, i.e., being lossy, thus introducing error, versus lossless, as
well as the target compression ratio. Next, we discuss our choice of the diverse compression algo-
rithms used in StreamZip as illustrated in Table 1, namely, the Base-Delta (BD) lossless algorithm
applied to fixed-point numbers, XOR lossless algorithm applied to floating-point numbers, and the
Squeeze (SZ) lossy algorithm applied to fixed- and floating-point numbers.

Base-Delta encoding is a simple but efficient lossless compression scheme that has been used for
decades in computing systems [6, 31] and offers a competitive compression ratio for a wide range
of fixed-point integer data, including performance counter, geolocation, sensor, and other time-
series data. Briefly, a value is represented as an offset (Delta) from a constant (Base); if that is not
possible, a new base is selected. Multiple bases can also be used. Figure 3 shows a stream of 8-byte
values compressed with Base-Delta encoding to 1-byte deltas. As such, there are no dependencies
in computing (compressing/decompressing) consecutive values and processing is minimal as a
single addition is sufficient. StreamZip applies Base-Delta to fixed-point numbers.

The second algorithm used in StreamZip is based on the XOR lossless compression scheme for
floating-point numbers [20, 26, 28]. Base-delta lossless encoding does not work well as it does
not reduce the number of bits sufficiently for floating-point numbers and hence results in low
compression ratios [25]. On the other hand, XOR is a reversible operation that turns identical bits
into zeros. Since the sign, the exponent, and the top mantissa bits occupy the most significant bit
positions in the IEEE 754 standard, the XOR result of close values would have a substantial number
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Fig. 3. Base-Delta compression of a stream of 8-byte values to 1-byte deltas.

of leading zeros. Hence, it can be encoded and compressed by a leading zero count followed by the
remaining bits. The incoming tuple’s double-precision floating-point values are variable-length
encoded using XOR compression [26] as below:

• The initial value is stored uncompressed.
• If XOR with the previous is zero, i.e., same value, a single “0” bit is stored.
• When XOR is non-zero, the number of leading and trailing zeros in the XOR are calculated

and a “1” bit is stored followed by either:
– Control “0” bit: If the number of leading zeros and trailing zeros is at least as many as

in the previous XORed value, the block of meaningful bits falls within the block of pre-
vious meaningful bits. As a result, the block position information is reused and just the
meaningful XORed value stored.

– Control “1” bit: The number of leading zeros is stored in the next 5 bits followed by the
length of the meaningful XORed value in the next 6 bits. Finally, the meaningful bits of
the XORed value are stored.

Figure 4 shows the XOR compression in action over a stream of 8-byte floating-point values. Both
the previous floating-point value and the previous XORed value are utilized in XOR compression.
This leads to an additional compression factor as the number of leading and trailing zeros are very
similar in a sequence of XORed values in time-series data [26]. There has been a recent study
analyzing the efficacy of XOR compression algorithms for Time Series Management Systems

(TSMSs), which further proposes an updated version of the above XOR compression algorithm
called Chimp [20]. This study offers a detailed performance evaluation of both Gorilla [26], which
is the state-of-the-art lossless compression algorithm for floating-point numbers currently em-
ployed in most widely used TSMSs, and Chimp for different datasets, offering compression ratios
up to 5.4x. Note that in this version of StreamZip, the Gorilla XOR compression algorithm is imple-
mented, but StreamZip has the flexibility to adapt the dataflow-based stream processing pipeline
to incorporate diverse streaming compression algorithms that work well for different time-series
data types.

The third algorithm used in StreamZip is the lossy SZ for both fixed- and floating-point numbers.
SZ compresses a sequence of numeric values by describing each valueXi as a function of the three
preceding values [Xi−3,Xi−2,Xi−1], according to a predefined function model [4]. A typical SZ
supports four such function models (to be encoded with 2 bits per value) [5] as shown in Figure 5(a),
namely:

• a constant value is approximated as equal to the nearest preceding one (Equation (1)),
• a linear value is extrapolated from the preceding two values (Equation (2)),
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Fig. 4. XOR lossless compression of a stream of 8-byte floating-point values. Encodings in quotes represent
actual bits. XORing the same floating-point values results in 0 and is encoded with a single “0” bit header.
The third (9.5) and second (10.5) values are different and there are only 2 meaningful bits in the XOR. This
is encoded with a 2-bit header (“11”), 13 leading zeros, 2 meaningful bits, and the actual XORed meaningful
value (“11”). XORing the fourth (11.5) and the third (9.5) values in the stream shows that the meaningful bits
fall within the block of the previous meaningful bits. This is encoded with just a 2-bit header (“10”) and the
actual meaningful value, “10.”

• a polynomial value fits on the cubic curve described by the preceding three values (Equa-
tion (3)), or
• if none of these models describes a value with an acceptable error, the value is an outlier

and stored explicitly. To start, the sequence the first three values are stored uncompressed
(seeds).

XC

i
= Xi−1 (1)

X L

i
= 2Xi−1 − Xi−2 (2)

X P

i
= 3Xi−1 − 3Xi−2 + Xi−3 (3)

It is clear that computing a value depends on the computations of its previous three, and hence
the computing complexity is important. In case computing a value takes more than a cycle, then
throughput can be limited. As shown by Eldstål-Ahrens and Sourdis, computing a value can be
reduced for the most complex function (polynomial) to two pipeline stages, each with a 3-operand
addition [5]. To stress the system, SZ is applied to floating-point numbers. As a result, compressing
or decompressing a value requires multiple cycles. In general, SZ introduces an error that can be
controlled by the compressor; i.e., if the error is too high an outlier is created, but it offers roughly
4× higher compressibility than lossless compression schemes. Figure 5(b) shows SZ decompression
by reconstructing the value stream using the initial set of seeds, the compressed symbols, and the
explicit outlier values stored.

In the past, SZ has been used in the GhostSZ FPGA-based system for I/O compression [35].
GhostSZ breaks the dependencies between computing consecutive values by splitting them into
multiple parallel sequences that are compressed separately, thereby increasing throughput.
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Fig. 5. SZ compression.

2.2 Stream Processing Platforms

In this section, we discuss related works that use different computing platforms for stream process-
ing. Various computing alternatives have been used for stream processing and stream aggregation
in particular, each having different functionality and performance potential.

Distributed Stream Processing Engines (SPEs) running on conventional CPUs like Apache
Flink, Spark, and Storm provide generic stream processing capabilities and ease of deployment [7,
15, 32, 36]. These software-based distributed stream processing engines are easy to configure, are
flexible to allow for a multitude of operations and analysis on the data, and can process a large
amount of data located in different servers. Nevertheless, as with any general-purpose software
implementation, their performance depends on the underlying hardware and can never match the
throughput or latency offered by dedicated implementations (e.g., custom FPGA-based systems).
In the particular focus of this work, software approaches are not able to cope with the challenges
posed by non-incremental group-by aggregation on large windows (large WS), at high rates (small
WA), and with large number of keys.

Multicore CPU and GPU-based stream processing systems are able to sustain high processing
throughput but have wasteful memory management as they require redundant memory accesses
to store incoming tuples from the network to DRAM even before processing starts [23]. Some
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CPU-based approaches propose algorithmic modifications to reduce latency but are constrained
to only associative aggregation functions [29, 33]. StreamBox-HBM exploits high-bandwidth HBM
memories to improve the processing throughput [21]. TerseCades achieves the same goal with com-
pression [25]. However, both StreamBox-HBM and TerseCades only support aggregation queries
with tumbling windows (WS=WA) and not high-frequency aggregation with small WA.

The most popular GPU-based stream processing systems are SABER [18] and FineStream [37],
which perform only incremental aggregations, and Gasser [3], which supports non-incremental
aggregations but supports queries with only a single key, hence small problem sizes. Moreover,
these GPU-based stream processing systems incur a high latency of hundreds of milliseconds for
aggregation queries mainly due to the unnecessary data movement requiring redundant memory
accesses. Even though FineStream utilizes the CPU-GPU integrated architectures, which avoid the
data movement between the two memory hierarchies via PCI-e, it still suffers the data movement
of the tuples from the network interface to the memory before processing. Moreover, these GPU
systems buffer input tuples in batches and then offload the processing of the batches on the GPU,
rather than processing each incoming tuple in a true streaming fashion, which could negatively
impact the processing latency.

On the contrary, FPGA-based stream processing systems with customized deep pipelines (as
well as the direct network connection) minimize data movement, offering high-throughput and
low-latency stream aggregation. FPGA-based designs can specialize their memory hierarchy and
customize their compute kernels to the specific aggregation query at hand [10]. Thereby, they
achieve better performance and energy efficiency compared to a GPU system, and in some cases
support types of compute functions (i.e., holistic) and problem sizes (WS x #keys) currently not
available in existing GPU systems [9, 27]. As a consequence, some FPGA-based systems deliver
both high processing throughput, on par with the GPU and CPU systems, and ultra low latency in
the order of tens of microseconds [9, 22, 24], at least 3 orders of magnitude lower than CPUs and
GPUs.

FPGA designs based on incremental aggregation algorithms do not support non-associative func-
tions [19, 24]. Recently, there has been work on FPGA-accelerated approximable query processing
using sketches [2], which maintains statistics rather than explicit values and thus can only provide
estimates. On the other hand, FPGA-based single window stream aggregation for tuple-based [9]
and time-based [27] windowing policies explicitly stores values and supports generic aggregation
functions (including non-associative), varying window slides, large window sizes, and a large num-
ber of keys. However, these works use only DRAM for maintaining the single window state, which
requires slow and bandwidth-wasteful read-modify-writes for window updates. Recently, an MLQ
approach for single window aggregation was proposed to offer faster window updates [10]. MLQ
constructs logical queues for storing sliding windows composed of BRAM, off-chip SRAM, and
DRAM. The tail of the queue is always in the BRAM offering high bandwidth window updates,
i.e., enqueues, thereby improving performance. However, window aggregations are limited by the
available memory bandwidth. StreamZip builds on top of MLQ and compresses sliding windows
to reduce their size and alleviate the memory bandwidth pressure of the aggregation step, thereby
improving processing throughput.

3 STREAMZIP DESIGN

StreamZip is a reconfigurable, stream aggregation DFE with compression support for sliding win-
dows that reduces the volume of aggregated data, improving processing throughput and effective
memory capacity. It can be reconfigured to support different queries or aggregation problems based
on the application at hand. As in MLQ [10], StreamZip windows are stored in multi-level queues,
but in this case, they are compressed. Figure 6 illustrates the StreamZip pipeline. Incoming tuples
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Fig. 6. Top-level view of the StreamZip compression pipeline for dataflow-based stream aggregation.

of the form 〈ts,key,value〉 are carried by network packets and received by the receiver module
(Rx ). The key of each tuple is first hashed to the hash table. Multiple hash functions are used to
reduce collisions [17]. Each hash table entry corresponds to a key and stores metadata needed for
compression, multi-level memory management, and decompression of this key’s incoming tuples.

After the hash table stage, the tuple’s value is compressed and memory commands are generated
to update the window at each memory level based on the metadata state. The compressor also
feeds back the compressed state to the hash table to update the metadata. The data collector acts
as a buffer to synchronize the dataflow of the compressed single-window compartments from the
various memory levels. On aggregation trigger, the entire compressed single window of the key
is streamed to the decompressor and the decompressed values are fed to the compute kernel(s),
where the aggregation function(s) are computed. The decompressor feeds back the information
regarding the invalid values evicted upon window-slide following the aggregation to the hash table
stage. The result of the aggregation function is finally transmitted back to the network through the
Tx module. The dataflow between the stages is controlled through FIFOs, which stall the pipeline
via back-pressure when necessary.

3.1 Hash Table Organization

The hash table stores the metadata required for managing the window update and aggregation
steps of single-window stream aggregation. In our implementation, the table is direct-mapped
and uses dual-port BRAMs with a depth chosen to support a large number of concurrently active
key entries. Alternatively, associativity can be added to the hash table to reduce collisions [17].
Each entry of the hash table corresponds to a single key and stores various fields separated in
three banks for the management of the sliding window, the compressor, and the decompressor as
shown in Figure 7.

3.1.1 Window Management Bank. The window management bank contains (1) a valid bit to in-
dicate whether the hash table entry is valid; (2) the key assigned to the entry; (3) tuple counter, tc , to
determine when the key is ready for aggregation for tuple-based windows; (4) window start times-
tamp, ts , for key replacement in case of collision and to trigger aggregation in time-based windows;
(5) optionally, starting stream number (#stream), used in case a key’s compressed stream is divided
into multiple sub-streams to account for the compressor and decompressor pipeline latency, which
is described in Section 3.4.1; and (6) outstanding aggregation counter, Oa , which stores the count
of the outstanding aggregations triggered per key used to solve dependency between consecutive
aggregations and discussed in Section 3.4.2.

3.1.2 Compressor Bank. The compressor bank contains (1) current seed(s), denoted by SC , used
to compress the incoming tuple’s value; (2) write pointers to each memory level, wi , pointing to
the tail index of each memory level for inserting the upcoming compressed value; and (3) an extra
write pointer to M2, denoted by w2S , pointing to the index to store the updated base upon BD or
the outlier upon SZ compression. The extra pointer is needed for alignment reasons as the larger
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Fig. 7. Hash table organization.

base or outlier values are stored from the most significant side of a memory line, as opposed to
the smaller compressed symbols, which are stored staring from the least significant side of the
block. This extra pointer is not needed for XOR compression as the scheme involves variable-
length encoding and the compressed symbols are written in a continuous fashion in the memory
hierarchy. The memory packing and alignment for the various compression schemes are explained
in Section 3.2. In case of BD encoding, the current seed is the latest base utilized for the compression
of the incoming stream. For XOR compression, the seed field stores the latest incoming value and
the leading and trailing zeros from the latest XOR operation. Similarly, for SZ, as the upcoming
compression depends on the computations of the preceding three values, the three latest selected
predictions based on the function models are stored.

3.1.3 Decompressor Bank. The decompressor bank contains (1) starting seed(s), SD , for decom-
pressing the window, used to start the decompression of a window on aggregation trigger, and
(2) read pointers to each memory level, ri , pointing to the head index in level i from which to start
reading the compressed values. The seeds stored here for the selected compression scheme are
similar to the ones in the compressor bank, except that these seed(s) are the oldest ones from the
start of the single window of a key used to initiate the decompression.

Partitioning the compressor and decompressor metadata into separate hash table banks enables
to update them at different instances following the compressor and the decompressor pipeline
stages, respectively. The hash table is accessed in a pipelined fashion using multiple hash func-
tions [17]. First, the selected hash table entries are checked to match the requested key. In case of
a miss, a new entry is made evicting the least recently used key out of the ones identified by the
hash functions and the corresponding (de)compressor entries reset. If the evicted key is still active,
a flag is raised indicating collision and the information is sent to software. The memory hierarchy
can be used to extend the hash table and/or a software process could handle the keys that do not
fit in the on-chip hash table due to collisions.

A hit in the hash table enables fetching the remaining metadata fields of the associated key
from the compressor and decompressor banks. The compressor metadata determine (1) the current
seed(s) needed for the compression of the incoming tuple’s value; (2) the write address to insert
the compressed value upon compression in M1; (3) the address in M2 based on w2S to flush to,
which is used only in case of BD and SZ if the compression results in a new base or an outlier,
respectively; (4) indicate whether a memory level is full and needs to be flushed to the next level;
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Fig. 8. Block format of a compressed sliding window for two different compression algorithms: (a) Base-Delta
fixed-point lossless compression. Bases, denoted by base∗, and deltas, denoted by Δ∗, are written from the
most and least significant addresses, respectively. D represents the demarcation in the compressed sequence
to denote a new base to be picked up from the most significant side. (b) SZ lossy floating-point compression.
Outliers and symbols are written from the most and least significant addresses, respectively. Black symbol in-
dicates an outlier and the three grey shades indicate constant, linear, and polynomial prediction compressed
symbols.

and (5) provide the write address of the successive level for insertion of the flushed block. If the
window is full, the key is ready for aggregation and the metadata from the decompressor bank
are used to determine (1) the starting seed(s) needed to decompress the window and (2) the read
addresses of each memory level to be passed on to the Memory Command Generator for fetching
the compressed single-window parts spread across the memory levels. In parallel to decompression,
sliding the window requires a number of values (defined by WA) to be invalidated and evicted from
the window. Accordingly, the window read pointers for each memory level are updated and fed
back to the hash table. The detailed example of memory management and dataflow using the hash
table is discussed in Section 3.3.

3.2 Memory Alignment and Packing

The format used for packing and storing the output of the compressor to the memory levels is key
for the efficient utilization of the available memory space and bandwidth. It determines memory
footprint of the window and the number of accesses required to read and update it. In our imple-
mentation, three memory levels are used, namely, on-chip BRAMs (M1), off-chip QDR-SRAM (M2),
and off-chip DRAM (M3), as shown in Figure 6. A compressed window is partitioned in blocks of
fixed size defined by the access granularity of the last memory level (M3/DRAM), which is 64B. A
compressed block is denoted byCB. In order to maximize the number of keys supported for stream
aggregation, BRAMs are mostly used for storing metadata, so M1 stores only a few compressed
values. Then, M2 is configured to store one block of 64B per key matching the access granularity
of M3. The access granularity of M2 is 16B, and so four M2 lines compose one block that can be
stored in one M3 line. Figure 8 shows the format of a CB for BD and SZ compression algorithms
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Fig. 9. Block format of StreamZip compressed sliding window for XOR compression: (a) for dependent DRAM
lines and (b) for independent DRAM lines with starting uncompressed value (8B) and the leading (5b) and
trailing (5b) zeros in red to aid in decompression by preventing the sequential dependency between consecu-
tive compressed blocks. The various shades of yellow and grey in both formats indicate different compressed
variable-length encodings generated by XOR compression and written continuously from the most signifi-
cant side.

used in StreamZip. The size of an uncompressed value in a tuple is 8B. BD uses full-size Bases (8B)
and Δs are set to 1B. SZ encoding uses half-precision outliers (4B) (if permitted within acceptable
error thresholds) and compressed symbols of just 2 bits. Using half-precision seeds and outliers
reduces the constant capacity overhead, enabling to support larger problem sizes. To simplify the
data alignment in a block, we separate the data in a block based on their size. More precisely, val-
ues (bases or outliers) are stored starting from one end of the block and compressed values (Δs
or 2-bit symbols) starting from the other end. This format simplifies block accesses during decom-
pression, providing simpler address calculations for reading each type of data. It also packs data
more efficiently in the available block space. Finally, it prevents multiple write accesses to M2 due
to misalignment, improving M2 bandwidth utilization. In the case of BD compression, a demar-
cation, D, is used to denote a base change. The largest value of a Δ is reserved to represent such
demarcation. For SZ, the demarcation is implicit as outliers are marked by an already reserved
combination of the 2-bit compressed symbol.

On the other hand, XOR compression is variable-length encoded and therefore, the compressed
data in a block cannot be separated based on their size. Instead, the compressed data is written
in continuous fashion from the most significant side of the compressed block. This is as shown in
Figure 9(a). Multiple write accesses to M2 due to misalignment are avoided by writing the spilled-
over compressed bits, if any on a flush, to the first level in the memory hierarchy, thereby improv-
ing the bandwidth utilization of the second level.

3.3 Memory Management and Dataflow

StreamZip memory management and dataflow are illustrated by the example in Figure 10. Here,
lossless base-delta compression is described, but the dataflow is similar for other compression
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Fig. 10. (a) A stream of tuples t1, t2, . . . of a key aggregated with WS = 8 and WA = 2 tuples. (b) Base-delta
compression metadata management in the hash table stage and compressed dataflow through the memory
hierarchy for the above stream. The red numbers in the Init row indicate the indices of each memory cell.
basei and Δi denote the base and delta corresponding to ti . Δ requires only one memory cell and a base
(value) requires two cells. M1, M2, and M3 are configured to store up to 1 Δ, 4 Δs, and 8 values; Mi -Wu,
Mi -Ru, and Mi -Ra denote writes due to window update, reads due to window update, and reads due to
aggregation in memory level i , respectively. The green and blue highlights indicate flushes due to window
update between memory levels and aggregation reads from each level, respectively.
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choices too. As discussed in Section 3.1, tc in the hash table stores the count of the tuples in the
sliding window and is used to determine when the window gets full and trigger aggregation. In
the compressor bank, SC stores the current base, which is the seed to perform the base-delta com-
pression on an incoming tuple. w1, w2, and w3 are the write pointers to the tail indices of the first,
second, and third memory levels, respectively, for updating the compressed window spanning
across the memory hierarchy. w2S is the extra write pointer to the second memory level pointing
to the index to store the updated base as the larger bases are stored from the most significant side,
as opposed to the smaller compressed deltas, which are stored starting from the least significant
side of the compressed block, as shown in Figure 8(a). Finally, in the decompressor bank, SD stores
the starting base needed to initiate the base-delta decompression of the window upon aggrega-
tion trigger. r1, r2, and r3 are the read pointers to the head indices of the first, second, and third
memory levels, respectively, from which to start reading the compressed values and stream to the
decompressor upon aggregation. Now let’s discuss the dataflow in action.

On arrival of t1 with value 50, tc is incremented by 1. As this is the first tuple of the key, the
compressor and decompressor partitions are set with SC = SD = 50 and the read and write pointers
at each memory level are initialized. Note that for M2, there are two write pointers to indicate the
base side written from the most significant memory cell, denoted byw2S , and the delta side written
from the least significant cell, denoted by w2. When t2 arrives with value 51, tc is incremented to
2 and the compressor takes as input the previous SC =50 and performs base-delta compression to
produce Δ2 = 51 − 50= 1. The compressor metadata partition is updated by incrementing w1 by 1
as the Δ gets written to M1. On arrival of t3, M1 is full, so it is flushed to M2 along with the new
Δ3=52 − 50=2. This causes w1 to reset to 0 as M1 gets empty and w2=3 − 2=1 as the two Δs get
written from the least significant side of the M2 line. Similarly, for t4, Δ4=53 − 50=3 gets written
to M1, and for t5, M1 gets flushed to M2 with the new Δ5 = 4. When t6 enters the system, Δ6 = 5
gets written to M1, and as M2 is full (w2 = 4), it is flushed to M3, which leads to resetting w2 to 3
and w3 points to the next line at index 4. Note that by using MLQ, wasteful read-modify-writes to
M3 (DRAM) are completely eliminated by writing first to the nearer and faster memories in the
hierarchy (M1 and M2), ensuring faster window updates. Tuple t7 carries a value of 320 and this
causes a base change in the compressor. A base change is marked by a demarcation (D) on the
delta side as described in Section 3.2. Then, SC gets updated to 320, and M1 is flushed along with
D to M2, leading to w1 getting reset to 0, w2 shifting to 1, and w3 remaining at 4.

Arrival of tuple t8 makes the window full (tc =7=WS−1) and triggers aggregation, causing the
compressed sequence {M3[1, 2, 3, 4];M2[5,D];M1[320]} to be read and passed to the decompres-
sor with the starting seed (base), SD = 50, and the current tuple, t8:330. The decompressor, upon
traversing the compressed sequence, marks the delta read index corresponding to the WA for evic-

tion and feeds it back to the decompressor partition in the hash table stage. In this case, eviction
of invalid tuples t1: t2 during window slide is marked by shifting r3 to 2. In order to maintain the
continuity in the compressed sequence for decompression, SC=320 is written to M2, leadingw2S to
point to 2 as a base occupies two cells. The compressed Δ8=10 gets written to M1, leading tow1=1.
w2 and w3 remain unchanged at 1 and 4, respectively. tc is decremented by WA= 2, making the
total tuple count in the single window 6. Now M2 is full as the most significant side with base and
least significant side with deltas have overlapped and on arrival of t9, M2 gets flushed to M3. Simi-
larly, on arrival of t10, t12, and t14, aggregation gets triggered and {M3[2, 3, 4, 5,D, 320];M2[10, 11]},
{M3[4, 5,D, 320];M2[10, 11, 12, 13]}, and {M3[D, 320, 10, 11, 12, 13];M2[D, 580, 20]} get streamed to
the decompressor. Note that on arrival of t14, M2 with {580, 20,D} gets flushed to M3, causing w3

to wrap around and point to 0, thus maintaining the circular buffer per key, which is statically
allocated in the memory hierarchy.
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An interesting point to note here is that in this small example with an original value of size
2B (assuming a memory cell is a byte) being compressed to 1B using base-delta encoding, the
aggregation reads from the farthest and slowest memory (M3) have been reduced by half, thereby
alleviating the memory bandwidth bottleneck. This enables StreamZip to achieve overall higher
processing throughput. In addition, the effective memory capacity improves, leading to support of
larger problem sizes (WS × number of keys).

3.4 Data Dependencies and Concurrency Control Mechanisms

There are various concurrency control challenges in adding compression support to a stream ag-
gregation DFE pipeline without negatively impacting processing rate. Some of these challenges are
generic and others are artifacts of particular compression characteristics. In general, the stream
aggregation pipeline needs to ensure it generates correct results despite things happening in par-
allel at different stages. For example, one tuple may be updating the window while another tuple
of the same key has already initiated an aggregation. In other words, the design needs to cor-
rectly handle data dependencies between tuples of the same key entering the pipeline in close
succession, which is prevalent in real-world datasets with skewed key distributions. Skewed key
distribution implies bursts of incoming tuples of the same key (or small subset of keys) entering the
system in successive cycles. Besides making the pipeline longer, adding compression introduces
the following challenges. First, it creates more dependencies between consecutive values, when
the compression algorithm requires the previous values to generate the next. Second, a decom-
pression triggered by an aggregation may depend on ongoing compression of values before it can
start decompressing the window. Third, aggregations cause a window to slide and evict a number
of values, but in a compressed window, evictions can be performed only after decompression; this
creates a dependency between successive aggregations. Fourth, handling a compressed window
stored in multiple memory levels makes data collection (upon aggregation) more complex than
an uncompressed window. Finally, frequent aggregations in skewed key distributions create re-
dundant memory accesses, which wastes bandwidth, and this performance hit is exacerbated with
decompressors with high latency. Some of these challenges could be handled by pipeline stalls
or bubbles; however, this would compromise performance. Below we discuss how StreamZip ad-
dresses these challenges without giving up performance.

3.4.1 Intra-(de)compressor Pipeline Dependency. There are two inefficiencies within the
(de)compr-essor pipeline affecting the processing throughput of StreamZip that need to be
addressed:

(i) (De)compressor latency due to arithmetic complexity: The varied arithmetic complexity of
the compression algorithms needs to be dealt with. Base-delta requires a single addition to
compress or decompress a value, and when applied to fixed-point numbers, this can be han-
dled in a single cycle without affecting StreamZip’s processing rate. Similarly, XORing two
values and calculating the leading and trailing zeroes for XOR compression can be handled in
a single cycle without affecting the processing throughput of StreamZip. On the contrary, SZ
requires more complex computations and, applied to floating-point numbers, needs about 20
cycles at the operating frequency that supports line-rate processing. This may reduce pro-
cessing throughput 20-fold if not addressed, since compressing or decompressing a value
depends on completing the computation of the previous value first.

StreamZip deals with this using value interleaving similar to previous designs used in
other domains [5, 35]. The incoming values of each key are divided into multiple independent

sub-streams as shown in Figure 11. Then, a pipelined version of the SZ computations can
handle these sub-streams without data hazards. This is performed by storing the initial seeds
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Fig. 11. Value interleaving to support multiple sub-streams in StreamZip. C1, . . . ,Cn denote the n pipeline
stages of the (de)compressor. The various color-coded uncompressed values denoted byv1, . . . ,vn represent
the n substreams that can be interleaved and fed to the compressor to process one value every FPGA cycle
to generate a compressed symbol, si , every cycle.

for (de)compression for each stream separately in the hash table stage and maintaining a sub-
stream counter to identify the current active sub-stream for a key, as indicated in the window
management bank of the hash table in Section 3.1. Although this is sufficient for maintaining
correctness and high processing throughput, it complicates window aggregation and may
affect compression quality. This is because, without sub-stream support, the data of each key
are stored in a contiguous, statically allocated block in memory. Then, upon aggregation,
a contiguous memory region is read with a single memory command, leading to efficient
use of the DRAM bandwidth. Should these subs-treams store their data in non-contiguous
memory blocks, accessing them would need multiple DRAM commands, resulting in reduced
memory performance. To prevent this, StreamZip shares the same contiguous memory block
for storing data of all sub-streams of a key. This simplifies window aggregation as only a
single contiguous memory read is necessary, improving memory bandwidth utilization and
hence processing throughput. Moreover, multiple decompressor pipelines are added, each
handling a window of a different key, to cope with the processing rates. In our SZ StreamZip
implementation, up to 128 parallel decompressor pipelines are used.

(ii) Sequential Dependency between Symbols in Compressed Blocks: At the decompressor, the
sequential dependency between consecutive symbols in compressed blocks needs to be dealt
with. In order to achieve the best possible processing throughput, the available memory
bandwidth needs to be fully utilized without the decompressor becoming the bottleneck.
The decompressor is fed with 64-byte compressed blocks from the memory, and in order to
achieve the best processing throughput, the decompressor should be able to decompress the
CBs at bandwidth provided by the memory interface. XOR decompressor is fed with up to
512 compressed symbols per CB. XOR decompressor operates at 1 bit per cycle as the min-
imum granularity of a XOR compressed symbol is a single bit. As a consequence, the XOR
decompressor requires 512 cycles before which a new CB can be pulled into the decompres-
sor. This is due to dependency between consecutive symbols in CBs. Due to this sequential
dependency, the processing of consecutive CBs cannot be pipelined (cannot decompress the
next CB before first completing the previous one), limiting the processing throughput by
512-fold (to 1 CB/512 cycles). This is unlike base-delta encoding where the new bases are
explicitly stored in the block format and the starting base for the successive memory line
is already available at the start of decompressing a memory line. Moreover, for base-delta
encoding, the decompressor stage performs a precompute step on the compressed block to
find the bases, if any, in the compressed block based on the demarcations. This allows the de-
compression of all the deltas per CB in parallel and enables the BD decompressor to process
one compressed block every cycle without any sequential dependency.

For a compressed single-window size of up to a single CB, line-rate processing throughput
can also be achieved for XOR compression by using pipelined parallel decompressors as there
are no sequential dependencies between CBs as shown in Figure 12. However, for larger
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Fig. 12. Compressed blocks denoted by CB1 . . .CBn processed once every cycle when there are no depen-
dencies between consecutive CBs. n denotes the number of compressed symbols in a block that are fed to
the unrolled decompressor stages, D1, . . . ,Dn . s1, . . . , sn denote the various symbols that are buffered and
fed to the decompressor in consecutive cycles.

Fig. 13. Idling due to sequential dependency between compressed blocks costing processing throughput.
Here CB2 can be fed to the decompressor only after n cycles after processing CB1 as the decompression of
symbol sn+1 inCB2 requires the decompressed value from the symbol sn inCB1. s1, . . . , sn denote the various
symbols that are buffered and fed to the decompressor in consecutive cycles.

windows and keys triggering aggregation in close succession, the processing throughput is
penalized due to the idle time between consecutive CBs as shown in Figure 13.

One way to solve this problem is by making the compressed blocks independent as shown
in Figure 14(a) using the block format shown in Figure 9(b). However, making compressed
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Fig. 14. Solutions for sequential dependency in compressed blocks.
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blocks independent by storing the starting uncompressed seed per CB can lead to lower
compression ratios.

Another approach pursued in StreamZip is to perform compressed block interleaving across
keys so that each block entering the decompressor pipeline is from a different key in con-
secutive cycles as shown in Figure 14(b). This would require buffering per key after the
decompressor to store the intermediate decompressed values for computation. However, for
skewed key distributions, it would not be possible to interleave compressed blocks, which
can be solved using caching of the decompressed values as discussed in Section 3.4.4.

3.4.2 Dependencies between Consecutive Aggregations. Stream aggregation queries with small
WA may cause tuples of the same key to trigger aggregations in close succession or even in con-
secutive cycles. However, each aggregation causes the window to slide and some of its elements
(values) to be evicted. Evictions are implemented during decompression by updating the hash table,
but the latency between the hash table and decompressor is prohibitive for supporting successive
evictions and therefore successive aggregations. StreamZip solves this problem by maintaining an
outstanding aggregations field, which stores the count of the outstanding aggregations triggered
per key in the hash table using a separate field as shown in Figure 7(a). The outstanding aggre-
gations count for a key is reset to 0 on arrival of the first tuple and incremented by 1 on each
aggregation trigger. Upon aggregation, the compressed single window is read as usual based on
the available read and write pointers in the hash table stage, and the outstanding aggregation
count is also passed to the decompressor. This count enables the decompressor to identify the
unreported invalid compressed values in the window (count×WA) and to skip them. The count
is decremented by 1 each time the hash table stage receives feedback from the decompressor for
a completed aggregation. Although this works for tuple-based windowing policy, for time-based
windows, storing just the count would not suffice. This is because the number of evicted tuples in
a WA is time dependent and so a cumulative sum of the number of tuples in the WA time-unit per
outstanding aggregation needs to be maintained and stored in the outstanding aggregation field.

3.4.3 Inter-compressor-decompressor Dependency. When an aggregation is triggered for a key,
which has some tuples pending compression, the decompressor would need to stall until the com-
pression of the pending tuples is completed. This would limit processing throughput especially for
compression methods with high latency/deep pipelines (e.g., SZ). This is detrimental to the process-
ing throughput of the pipeline, which in case of SZ can be 20-fold (SZ compressor pipeline depth)
reduction if tuples of the same key trigger frequent aggregations (small WA). StreamZip addresses
this by buffering the uncompressed values of each key under compression in the Inter-buffer until
they are compressed, as shown in Figure 15. Then, on an aggregation trigger, the Inter-buffer is
searched for any tuples of the key that triggered aggregation that are pending compression. If there
are such tuples, their uncompressed values are forwarded to the compute kernel using a separate
bypassing path as shown in Figure 15 and annotated as 1 , thereby preventing the decompressor
from stalling. The inter-buffer is dequeued each time the compressor comes back with a comple-
tion response. Note that bypassing is not beneficial for low-latency (i.e., single-cycle) compression
algorithms such as base-delta and XOR.

3.4.4 Caching Optimization for Skewed-key Distribution. For skewed-key distributions and es-
pecially for large WS and frequent aggregations, redundant memory reads for the single window
of the same key waste valuable memory bandwidth and thereby become a performance bottle-
neck in StreamZip. In order to alleviate this bottleneck, the idea is to cache the decompressed
window of a few recently seen keys that triggered aggregation at the decompressor DFE pipeline
stage using on-chip memory as shown in Figure 15. Moreover, reusing the single window of a

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 37. Pub. date: June 2023.



37:20 P. Ramakrishnan Geethakumari and I. Sourdis

Fig. 15. StreamZip pipeline optimizations: (1) Inter-buffer to solve Inter-compressor-decompressor Depen-
dency and (2) Caching Optimization for skewed-key distribution in StreamZip.

key in on-chip memory would prevent the need to go all the way to DRAM to fetch the window
upon aggregation, thereby reducing DRAM pressure and enabling higher processing throughput
for skewed-key distributions. The size of a cached block per key at the decompressor side is equal
to WS, and the oldest tuples corresponding to WA will be invalidated upon window slide during
aggregation. For tuple-based windows, the size is deterministic as the WS and WA are defined on
the count of the tuples. However, for time-based windows, an upper bound on the WS is measured
based on a per-key arrival rate and is used as the cache block size.

At the compressor side, the recently seen keys that triggered aggregation are marked and un-
compressed values for those keys up to WA tuples are buffered. These cached uncompressed values
of the key are streamed directly to the compute kernel upon the next aggregation trigger using a
bypass path, annotated as 2 in Figure 15 and used in conjunction with the cached decompressed
values at the decompressor. The replacement policy of the caches follows an LRU policy based
on the incoming keys similar to the cache structure in Time-SWAD [27]. In our implementation,
we buffer the decompressed windows of up to two keys using on-chip memory, and the interface
width of the cache at the decompressor side can feed the compute kernel up to 128 decompressed
values per cycle.

3.4.5 Data Collection. The compressed window of each key is scattered across the memory
levels. In addition, parts of the window may need to be taken from the buffer next to the compressor
that stores uncompressed values for ongoing compressions, as explained in Section 3.4.3. To make
matters worse, data may be moving from one memory level to the next at any point in time. Upon
aggregation, StreamZip uses a data collection controller to ensure that all parts of the particular
window instance are gathered correctly to be forwarded to the compute kernel. Separate queues
are maintained for metadata and compressed data for each memory level and the uncompressed
buffer. Then, the controller synchronizes the contents of the queues to deliver data in order to the
decompressor. Value reordering is needed because the aggregation read operations are performed
in parallel for all memory levels that contain valid data and correct value order is required for
computing non-commutative aggregation functions like rank.

4 EVALUATION

The performance of StreamZip is evaluated in terms of processing throughput and latency. First,
the experimental setup is discussed. Then, the implementation and performance results are pre-
sented and compared to existing approaches.

4.1 Experimental Setup

All designs are implemented on a Maxeler N-series ISCA (MAX4AB24B) PCIe card with Altera
Stratix V (5SGXAB) that provides a 10 Gb/s direct network connection to the FPGA. The board
offers 6 MB on-chip BRAMs, 72 MB off-chip QDR-SRAM, and 24 GB off-chip DDR3 DRAM. The
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Table 2. Resource Utilization for the FPGA Implementations

Design/Resource Logic (ALMs) BRAMs DSP

DFE-Base 86,208 (24%) 1,136 (43%) 0

MLQ 93,392 (26%) 1,347 (51%) 0

Streamzip-Lossless-Fixed 104,168 (29%) 1,584 (60%) 0

Streamzip-Lossless-Float 219,112 (61%) 1,796 (68%) 0

Streamzip-Lossy-Float 308,912 (86%) 2,139 (81%) 165 (47%)

designs are implemented in MaxJ, a Java-based High Level Synthesis (HLS) language, and com-
piled using MaxCompiler.

Three different types of FPGA-based single-window SWAG dataflow engines (DFEs) are imple-
mented: first, a baseline SWAG engine that uses only DDR3 DRAM, denoted as DFE-Base, that
follows the designs described in [9, 27]; second, a SWAG engine with a three-level MLQ memory
system using BRAM, off-chip QDR-SRAM, and DRAM, denoted as MLQ, that follows the best-
performing previous design [10]; and third, StreamZip, the compressed SWAG engine using lossless
(base-delta encoding for fixed-point numbers and XOR compression for double-precision floating-
point numbers) and lossy (SZ for double-precision floating-point numbers) compression schemes
with the three-level MLQ memory system. These designs are denoted by StreamZip-Lossless-Fixed,
StreamZip-Lossless-Float, and StreamZip-Lossy-Float, respectively, aptly capturing the principles
of our approach.

The memory configuration of each design (partitioning per memory level) was generated using
the partitioning algorithm in [10] with MLQ configured to store one and eight values in theM1 and
M2 levels, respectively. StreamZip-Lossless-Fixed using the BD compression scheme is configured
with 1 and up to 64 Δs, StreamZip-Lossless-Fixed using XOR compression is configured with 8
bytes and 64 bytes, and StreamZip-Lossy design is configured with 4 and up to 256 symbols per
key in the M1 and M2 levels, respectively. M3, being the last level, needs to have a capacity of a
number of tuples equal to the WS per key.

The Google compute cluster monitoring (CM) [34] real-world dataset is used as the input
streaming data. The tuples from the task events stream from the cluster usage traces are used
for the experiments. For the standard group-by stream aggregation query that we consider in the
article, we require only three fields for the timestamp, key, and value in the original tuple, namely,
the timestamp (32-bit integer), job ID (32-bit integer), and resource request for CPU cores (64-bit
floating point), respectively. The CPU resource usage field in the original dataset is originally in
64-bit floating-point format and is used as is for the Streamzip designs that work on floats. For
designs that require the value field in the tuples to be integers such as Streamzip-Base-Delta, the
floats were cast to integers. The tcpreplay tool [30] is used to inject the captured packets at varying
injection rates to determine the highest sustainable system throughput.

The implemented query, comprising algebraic, distributive, and holistic aggregation functions,
is the following: “Find the average, minimum, maximum, and median CPU usage for each job ID for
the last WS tuples and return the aggregate every WA tuples” [18]. The WS ranges from 64 to 4K
tuples; the WA varies from 1 to WS tuples with support for up to 16K concurrently active keys.

4.2 Implementation Results

The resource utilization of the evaluated designs is as shown in Table 2. For StreamZip-Lossless-
Fixed, the increase in logic utilization over MLQ is attributed to the extra (de)compressor metadata
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management and encoding. StreamZip-Lossless-Float requires a deeper decompressor pipeline due
to the XOR compression scheme and hence a higher logic utilization. StreamZip-Lossless-Float
also implements the independent compressed blocks to tackle sequential dependency. StreamZip-
Lossy-Float has about 3× higher logic utilization due to the replicated parallel decompressor
pipelines (up to 128) across keys and the associated state machine to control the dataflow per
key. StreamZip-Lossy-Float relies on value interleaving to tackle the sequential dependency in the
SZ compressed block.

In the case of StreamZip-Lossless-Fixed, an extra seed (base) for initiating the (de)compressor
process is required per key in the hash table stage, which is attributed to the increase in BRAM uti-
lization. StreamZip-Lossless-Float needs to store up to 8 bytes of compressed symbol(s) in BRAMs
and consumes more BRAMs than StreamZip-Lossless-Fixed. StreamZip-Lossy needs to store three
(de)compressor seeds per key in the hash table stage to aid in (de)compression and, as a result, has
the highest resource utilization. DSP blocks are also utilized for the StreamZip-Lossy floating-point
computations. In order to fit StreamZip floating-point designs in the FPGA, only one aggregation
function (min) is implemented in the compute kernel stage and the reported resource utilization
is based on this implementation.

All designs operate at 156.25 MHz supporting one incoming tuple (128 bits) every two FPGA cy-
cles, fully utilizing the 10 Gb/s 64-bit network interface bandwidth. This translates to a theoretical
line rate of 78.125 million tuples/sec. However, in practice, the highest measured rate of incoming
tuples on the board is about 70 million tuples/sec, so about 90% of the theoretical. Finally, off-chip
SRAM and DRAM are clocked at 350 MHz and 800 MHz, respectively.

4.3 Performance Results

The graphs in Figures 16(a), 16(b), 17(a), and 17(b) show the processing throughput in million tu-
ples per second and latency in microseconds for WS ranging from 64 to 4K tuples for the various
designs. A general observation is that the throughput of all designs in Figures 16(a), 16(b), 17(a),
and 17(b) is reduced for small WA, especially for large WSs. This is in line with the trend observed
in the previous work [9, 10, 27] because smaller WA queries trigger aggregations more frequently,
and in addition, the larger windows aggregate more data. This leads to the problem becoming more
memory bandwidth intensive. However, with StreamZip, this phenomenon is less pronounced as
the number of compressed DRAM lines read upon aggregation is smaller compared to DFE-Base
and MLQ by a factor of the overall compression ratio (CR, calculated as the ratio between the over-
all memory footprint of a design point without and with compression). This alleviates the DRAM
bandwidth bottleneck to a large extent, leading to better processing throughput even for prob-
lems with extremely frequent aggregations (WA = 1). In case of the CM stream aggregation query,
StreamZip-Lossless-Fixed (BD) and StreamZip-Lossless-Float (XOR) designs achieve, on average, a
compression ratio of 5.3× and 5.6×, respectively. The StreamZip-Lossy (SZ) design achieves a com-
pression ratio of 23×. In general, it is observed that the gains in processing throughput compared
to designs with no compression are proportional to this ratio and the corresponding reduction in
the number of DRAM lines read upon aggregation.

The latency follows an opposite trend as, the larger the WS and smaller the WA, the tuples will
have to suffer longer queuing latency in the Data Collection Controller waiting for the outstand-
ing aggregations to be completed before they can be processed. Compression helps to reduce the
number of DRAM lines to be read for aggregation, and this helps to reduce the DRAM read traffic
and hence the queuing latency suffered by the tuples in the pipeline. The achieved reduction is
proportional to the CR especially for queries with frequent aggregations (WA < 16).

The DRAM-only design, DFE-Base, which follows the design principles of [9, 27], achieves the
lowest throughput out of the three designs, supporting up to 15% of the line rate. This is primarily
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Fig. 16. Throughput in million tuples per second (MT/s) and latency in microseconds of the various designs
for WS of (a) 64 and (b) 256 tuples.

because it handles the window update accesses inefficiently. More precisely, it requires slow and
bandwidth-wasteful DRAM read-modify-writes, since an incoming tuple’s value (8B) is smaller
than the DRAM line (64B).

MLQ mitigates the above window-update problem by utilizing the multi-level queues that span
across three memory levels in the platform to completely eliminate the wasteful read-modify-
writes. Then, window-update writes of an incoming tuple happen always directly to the on-chip
BRAM, which is configured to store one value per key and is flushed to the off-chip SRAM once
every two tuples. As off-chip SRAM offers direct writes and the capacity required for storing an
entire DRAM line of key-values before flushing to DRAM, MLQ completely eliminates the read-
modify-writes. This allows to achieve up to 90% of the theoretical line-rate, which in practice
matches the actual maximum rate of incoming tuples on the board. However, for small WA, it
suffers a similar throughput reduction as DFE-Base. This is due to the following reasons. First, in
these cases, despite MLQ’s efficiency in handling window updates, the aggregation traffic is the
bottleneck. Second, MLQ cannot take advantage of the aggregated bandwidth offered by BRAM
and off-chip SRAM because, even for small WS, e.g., 64 as shown in Figure 16(a), the dominant
portion of the window is stored in DRAM, which becomes the bottleneck.
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Fig. 17. Throughput in million tuples per second (MT/s) and latency in microseconds of the various designs
for WS of (a) 1K and (b) 4K tuples.

StreamZip mitigates the above two problems to a large extent as the tuple’s values are com-
pressed on the fly during window updates, and this helps to improve the processing throughput and
latency for smaller WA proportional to the compression ratio offered by the compression scheme.
For instance, without compression, upon aggregation of a window of size 256, data of up to 32
DRAM lines need to be read and streamed to the compute kernel. With StreamZip-Lossless-Fixed
(BD encoding), compressing the values to 1-byte Δs, the DRAM read traffic due to aggregation re-
duces by a factor of up to 5.7×, leading to proportional improvement in processing throughput as
shown in Figure 16(b). StreamZip-Lossless-Float (XOR compression) achieves a compression ratio
of 6× for this design point.

The StreamZip-Lossless-Float (XOR compression) design mitigates the performance bottle-
neck due to the sequential dependency between the CBs using independent CBs as discussed in
Section 3.4.1. However, the tradeoff here is the reduction in compression ratio as a result of adding
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Fig. 18. Throughput gains for various designs normalized to DFE-Base design for WA = 1 tuple.

the extra starting seeds to the beginning of each CB versus the benefit of processing one CB every
FPGA cycle. In our experiments, we see that this benefit outweighs the reduction in compres-
sion ratio as the decompressor can consume one CB every FPGA cycle, enabling to achieve better
processing throughput, especially for larger compressed windows with mutliple CBs. As a con-
sequence, StreamZip-Lossless-Float has the independent CB feature enabled by default and the
numbers reported are for this design. Without using independent CBs, StreamZip-Lossless-Float
is able to achieve a compression ratio of 6.5×, which gets reduced to 5.6× with the extra starting
seeds per CB for mitigating the sequential dependency.

This is even further improved by utilizing lossless compression (SZ), which at best compresses
a value to just 2 bits, offering better compressibility and hence higher throughput. Another inter-
esting design point is WS=64 in Figure 16(a), where StreamZip takes advantage of the aggregated
bandwidth offered by BRAM and off-chip SRAM, because employing compression enables a large
fraction of the window to remain in the first two memory levels, which in turn increases process-
ing throughput up to line-rate. In our implementation, the output error for lossy SZ compression
is configurable and set to 1%. The effective capacity gain is proportional to the compression ratio
and StreamZip-lossless and StreamZip-lossy increase it by 5× and 23×, respectively.

From an end user’s perspective of StreamZip, the idea here is to have more knobs in the user’s
arsenal to enable efficient use of various compression methods that may have different character-
istics, while offering high-performance stream aggregation.

4.3.1 Overall Throughput Gains. Adding compression to the MLQ design improves the perfor-
mance of extremely frequent aggregations with small WA by reduction of data volume being read
upon aggregation. Figure 18 shows the overall throughput gains achieved by the various compres-
sion schemes for extremely frequent aggregations with WA = 1. The gains are normalized to the
throughput achieved by the DFE-Base baseline design. Compared to DFE-Base and MLQ system,
StreamZip-Lossless-Fixed, StreamZip-Lossless-Float, and StreamZip-Lossy-Float achieve process-
ing throughput gains of up to 5.7×, 6×, and 23×, respectively.

4.3.2 Caching Results for Skewed Key Distribution. Figure 19 shows the effect of adding the
stream cache to buffer the decompressed values of the most recently seen keys for varying WS.
In order to stress the system, the experiment uses a synthetic dataset with a single key triggering
extremely frequent aggregations with WA = 1, which is the worst-case scenario for a system with
no caching support. This causes each tuple entering StreamZip to trigger aggregation. In our cur-
rent implementation, the cache stores the window of only a single key because for systems with
large window sizes the FPGA resources were not enough to implement larger caches. In general,
StreamZip with cache support would be able to offer the reported performance also for N keys
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Fig. 19. Throughput of StreamZip-Lossless-Float with Caching. A synthetic benchmark is used with a single
key triggering aggregation in every cycle with WA = 1 tuple.

provided the cache is able to store windows of N keys. This is an expected implementa-
tion/resource limitation, which in our view does not reduce the value of the proposed caching
mechanism in general.

Compared to StreamZip-Lossless-Float, StreamZip-Lossless-Float+Cache achieves up to 3× bet-
ter processing throughput. In this implementation, the cache output interface width is 128 values
and the compute kernel is fed up to 128 values every cycle. So, for window sizes greater than 128,
we see a drop in line-rate processing throughput. Should the cache interface be bigger, the DFE
would be able to achieve higher processing rates.

4.3.3 Comparison with Related Work. Overall, StreamZip offers higher performance by allevi-
ating the memory bandwidth bottleneck of window aggregations using compression, especially
for smaller WA. In addition, there is a reduction on the memory footprint, offering higher effec-
tive memory capacity available for solving larger stream aggregation problems. Compared to the
best-performing previous work, MLQ [10], StreamZip-Lossless-Fixed, StreamZip-Lossless-Float,
and StreamZip-Lossy offer up to 7×, 7.5×, and 22× better processing throughput, respectively.
In terms of latency, for larger WS and smaller WA (<4), StreamZip-Lossless-Fixed, StreamZip-
Lossless-Fixed, and StreamZip-Lossy-Float offer up to 6×, 4×, and 3× lower latency than MLQ.
However, for larger WS and WA, StreamZip-Lossless-Float and StreamZip-Lossy-Float have up
to 12× higher latency. This is due to the deep pipeline required during aggregation for decom-
pressing a large number of values packed per read DRAM line. Nevertheless, it is still orders of
magnitude better than CPU and GPU systems. We also tested with uniformly random values (zero
compressibility), and the processing throughput of Streamzip for this worst case is similar to the
MLQ system with a slight overhead of up to 5% on average. This overhead is mainly attributed to
the increase in data footprint due to the extra bits required for compression-packing.

It is worth noting that, similar to MLQ, StreamZip matches GPU processing throughput and
offers substantially better latency. Gasser is the fastest GPU system in literature that supports non-
associative functions and therefore follows a non-incremental aggregation approach [3]. However,
it supports queries with only a single key, as opposed to 16K keys supported by our StreamZip
implementation. As a consequence, Gasser handles only small problem sizes and also does not
capture tuples from the network. We experimented with a single key query and StreamZip was able
to achieve similar throughput (up to line-rate) to Gasser for varying WS/WA. However, StreamZip
achieves this at a much lower latency, which is three to four orders of magnitude lower than Gasser.
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5 CONCLUSION

This article extended StreamZip, a dataflow stream aggregation engine that is able to compress
the sliding windows, alleviates the memory pressure posed by window aggregation traffic, and im-
proves performance as well as effective memory capacity. StreamZip addresses a number of concur-
rency control challenges to integrate a compressor in the stream aggregation pipeline. StreamZip
supports both lossy and lossless compression algorithms with diverse characteristics, applied to
both fixed- and floatingpoint numbers. Compared to designs without compression, StreamZip loss-
less and lossy designs achieve up to 7.5× and 22× higher throughput, respectively, while reducing
effective memory capacity by up to 5× and 23×, respectively.

REFERENCES

[1] Henrique C. M. Andrade, Buğra Gedik, and Deepak S. Turaga. 2014. Fundamentals of Stream Processing: Application

Design, Systems, and Analytics. Cambridge University Press.

[2] Grigorios Chrysos, Odysseas Papapetrou, Dionisios Pnevmatikatos, Apostolos Dollas, and Minos Garofalakis. 2019.

Data stream statistics over sliding windows: How to summarize 150 million updates per second on a single node. In

2019 29th International Conference on Field Programmable Logic and Applications (FPL’19). 278–285. https://doi.org/10.

1109/FPL.2019.00052

[3] T. De Matteis, G. Mencagli, D. De Sensi, M. Torquati, and M. Danelutto. 2019. GASSER: An auto-tunable system for

general sliding-window streaming operators on GPUs. In IEEE Access, vol. 7 (2019), 48753–48769.

[4] Sheng Di and Franck Cappello. 2016. Fast error-bounded lossy HPC data compression with SZ. In 2016 IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS’16). IEEE, 730–739.

[5] Albin Eldstål-Ahrens and Ioannis Sourdis. 2020. MemSZ: Squeezing memory traffic with lossy compression. ACM

Transactions on Architecture and Code Optimization (TACO) 17, 4 (2020), 1–25.

[6] Matthew Farrens and Arvin Park. 1991. Dynamic base register caching: A technique for reducing address bus width.

In Proceedings of the 18th Annual International Symposium on Computer Architecture (ISCA’91). 128–137.

[7] Apache Flink. 2022. https://flink.apache.org/.

[8] John Gantz and David Reinsel. 2012. The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest

Growth in the Far East. (December 2012).

[9] Prajith Ramakrishnan Geethakumari, Vincenzo Gulisano, Bo Joel Svensson, Pedro Trancoso, and Ioannis Sourdis.

2017. Single window stream aggregation using reconfigurable hardware. In 2017 International Conference on Field

Programmable Technology (ICFPT’17). 112–119. https://doi.org/10.1109/FPT.2017.8280128

[10] Prajith Ramakrishnan Geethakumari and Ioannis Sourdis. 2021. A specialized memory hierarchy for stream ag-

gregation. In 2021 31st International Conference on Field-programmable Logic and Applications (FPL’21). 204–210.

https://doi.org/10.1109/FPL53798.2021.00041

[11] Prajith Ramakrishnan Geethakumari and Ioannis Sourdis. 2021. StreamZip: Compressed sliding-windows for stream

aggregation. In 2021 International Conference on Field-programmable Technology (ICFPT’21). 203–211. https://doi.org/

10.1109/ICFPT52863.2021.9609952

[12] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali Venkatrao, Frank Pellow, and

Hamid Pirahesh. 1997. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals.

Data Mining and Knowledge Discovery 1, 1 (1997), 29–53.

[13] Vincenzo Gulisano, Zbigniew Jerzak, Roman Katerinenko, Martin Strohbach, and Holger Ziekow. 2017. The DEBS 2017

grand challenge. In ACM International Conference on Distributed and Event-based Systems (DEBS’17). ACM, 271–273.

[14] Vincenzo Gulisano, Zbigniew Jerzak, Spyros Voulgaris, and Holger Ziekow. 2016. The DEBS 2016 grand challenge. In

ACM International Conference on Distributed and Event-based Systems (DEBS’16). ACM, 289–292.

[15] Vincenzo Gulisano, Ricardo Jiménez-Peris, Marta Patiño-Martínez, Claudio Soriente, and Patrick Valduriez. 2012.

StreamCloud: An elastic and scalable data streaming system. IEEE Transactions on Parallel and Distributed Systems

23, 12 (2012), 2351–2365. https://doi.org/10.1109/TPDS.2012.24

[16] Vincenzo Gulisano, Yiannis Nikolakopoulos, Ivan Walulya, Marina Papatriantafilou, and Philippas Tsigas. 2015. De-

terministic real-time analytics of geospatial data streams through scalegate objects. In Proceedings of the 9th ACM

International Conference on Distributed Event-based Systems (DEBS’15). ACM, 316–317.

[17] A. Kirsch, M. Mitzenmacher, and G. Varghese. 2010. Hash-based techniques for high-speed packet processing. In

Algorithms for Next Generation Networks.

[18] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L. Wolf, Paolo Costa, and Peter Pietzuch.

2016. SABER: Window-based hybrid stream processing for heterogeneous architectures. In Int. Conf. on Manag. of

Data.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 37. Pub. date: June 2023.

https://doi.org/10.1109/FPL.2019.00052
https://flink.apache.org/
https://doi.org/10.1109/FPT.2017.8280128
https://doi.org/10.1109/FPL53798.2021.00041
https://doi.org/10.1109/ICFPT52863.2021.9609952
https://doi.org/10.1109/TPDS.2012.24


37:28 P. Ramakrishnan Geethakumari and I. Sourdis

[19] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. 2005. No pane, no gain: Efficient evaluation

of sliding-window aggregates over data streams. ACM SIGMOD Rec. 34, 1 (2005), 39–44.

[20] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022. Chimp: Efficient lossless floating point

compression for time series databases. Proceedings of the VLDB Endowment 15, 11 (2022), 3058–3070.

[21] Hongyu Miao, Myeongjae Jeon, Gennady Pekhimenko, Kathryn S. McKinley, and Felix Xiaozhu Lin. 2019. Streambox-

hbm: Stream analytics on high bandwidth hybrid memory. In Proceedings of the 24th International Conference on

Architectural Support for Programming Languages and Operating Systems. 167–181.

[22] Rene Mueller, Jens Teubner, and Gustavo Alonso. 2009. Streams on wires: A query compiler for FPGAs. VLDB 2,

1 (2009), 229–240.

[23] Mohammadreza Najafi, Kaiwen Zhang, Mohammad Sadoghi, and Hans-Arno Jacobsen. 2017. Hardware acceleration

landscape for distributed real-time analytics: Virtues and limitations. In 2017 IEEE 37th International Conference on

Distributed Computing Systems (ICDCS’17). IEEE, 1938–1948.

[24] Yasin Oge, Masato Yoshimi, Takefumi Miyoshi, Hideyuki Kawashima, Hidetsugu Irie, and Tsutomu Yoshinaga. 2013.

An efficient and scalable implementation of sliding-window aggregate operator on FPGA. In International Symposium

on Computing and Networking (CANDAR’13). IEEE, 112–121.

[25] Gennady Pekhimenko, Chuanxiong Guo, Myeongjae Jeon, Peng Huang, and Lidong Zhou. 2018. Tersecades: Efficient

data compression in stream processing. In 2018 USENIX Annual Technical Conference (USENIX ATC’18). 307–320.

[26] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin Meza, and Kaushik Veeraraghavan.

2015. Gorilla: A fast, scalable, in-memory time series database. Proceedings of the VLDB Endowment 8, 12 (2015), 1816–

1827.

[27] Prajith Ramakrishnan Geethakumari, Vincenzo Gulisano, Pedro Trancoso, and Ioannis Sourdis. 2019. Time-SWAD:

A dataflow engine for time-based single window stream aggregation. In 2019 International Conference on Field-

programmable Technology (ICFPT’19). 72–80. https://doi.org/10.1109/ICFPT47387.2019.00017

[28] Paruj Ratanaworabhan, Jian Ke, and Martin Burtscher. 2006. Fast lossless compression of scientific floating-point data.

In Data Compression Conference (DCC’06). IEEE, 133–142.

[29] Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. 2017. Low-latency sliding-window aggregation in worst-

case constant time. In Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems

(DEBS’17). ACM, 66–77.

[30] Tcpreplay. (n. d.). http://tcpreplay.appneta.com/.

[31] Walter F. Tichy. 1985. RCS–A system for version control. Software: Practice and Experience 15, 7 (1985), 637–654.

[32] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel, Sanjeev Kulkarni, Jason Jackson,

Krishna Gade, Maosong Fu, Jake Donham, et al. 2014. Storm@ Twitter. In ACM SIGMOD Int. Conf. on Management of

Data. ACM, 147–156.

[33] Alvaro Villalba, Josep Lluís Berral, and David Carrera. 2019. Constant-time sliding window framework with reduced

memory footprint and efficient bulk evictions. IEEE Transactions on Parallel and Distributed Systems 30, 3 (2019), 486–

500.

[34] John Wilkes and Charles Reiss. 2011. Google Cluster Data. https://github.com/google/cluster-data/blob/master/

ClusterData2011_2.md.

[35] Qingqing Xiong, Rushi Patel, Chen Yang, Tong Geng, Anthony Skjellum, and Martin C. Herbordt. 2019. Ghostsz: A

transparent FPGA-accelerated lossy compression framework. In 2019 IEEE 27th Annual International Symposium on

Field-programmable Custom Computing Machines (FCCM’19). IEEE, 258–266.

[36] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica. 2013. Discretized streams:

Fault-tolerant streaming computation at scale. In ACM Symposium on Operating Systems Principles. 423–438.

[37] Feng Zhang, Lin Yang, Shuhao Zhang, Bingsheng He, Wei Lu, and Xiaoyong Du. 2020. FineStream: Fine-grained

window-based stream processing on CPU-GPU integrated architectures. In 2020 USENIX Annual Technical Conference

(USENIX ATC’20). 633–647.

Received 7 February 2022; revised 10 January 2023; accepted 17 March 2023

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 37. Pub. date: June 2023.

https://doi.org/10.1109/ICFPT47387.2019.00017
http://tcpreplay.appneta.com/
https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md

