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Abstract

In Leo Breiman’s influential article “Statistical modeling-the two cultures” he identified
two cultures for statistical practices. The data modeling culture (DMC) denotes practices

tailored for statistical inference targeting a quantity of interest, β̂. The algorithmic mod-
eling culture (AMC) refers to practices defining an algorithm, or a machine-learning (ML)

procedure, that generates accurate predictions about an outcome of interest, Ŷ . As DMC
was the dominant mode, Breiman argued that statisticians should give more attention to
AMC. Twenty years later and energized by two revolutions—one in data-science and one
in causal inference—a hybrid modeling culture (HMC) is rising. HMC fuses the inferen-
tial strength of DMC and the predictive power of AMC with the goal of analyzing cause
and effect, and thus, HMC’s quantity of interest is causal effect, τ̂ . In combining inference
and prediction, the result of HMC practices is that the distinction between prediction and
inference, taken to its limit, melts away. While this hybrid culture does not occupy the
default mode of scientific practices, we argue that it offers an intriguing novel path for
applied sciences.

Keywords: causal inference, prediction, machine learning, data science, statistical cul-
tures

1. Introduction

Breiman (2001a) identified two cultures for statistical modeling. The data modeling culture
(DMC) refers roughly to practices aiming to conduct statistical inference on one or several
quantities of interest. By unbiased statistical inference, we mean a procedure tailored to
estimates a quantity β̂ such that the difference between the true quantity β is as small as
possible: the procedure is unbiased when the difference β − β̂ is negligible in expectation.
This true quantity β exists independently of the statistical model producing β̂. The algo-
rithmic modeling culture (AMC) refers to practices defining a procedure, f, that generates
accurate predictions, Ŷ , about an event (outcome), Y . By accurate, we mean predictions
that are as similar as possible to the true event that f has yet not encountered (Hastie
et al., 2009). The smaller the difference Y − Ŷ , the higher the similarity. A procedure is
an algorithm, or a function, that takes some input X, operates on this input f(X), and
then, produces an output f (X) = Ŷ . Often, this procedure are defined in terms of a
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machine-learning (ML) algorithm (Hastie et al., 2009). Thus, Ŷ -prediction problems and
β̂-inference problems form distinct sets of practices in mobilizing data, algorithms, and
results (Mullainathan and Spiess, 2017).

While Breiman argued that statisticians should devote more attention to Ŷ -problems
than β̂-problems, today a third culture is rising: the hybrid modeling culture (HMC). This
third culture emerges from statistical practices where prediction and inference synthesize
into new procedures (Daoud and Dubhashi, 2020; Kino et al., 2021). As the main concern
of HMC is causality, its focus is on, what we denote, τ̂ -problems. Using the Neyman-Rubin
causal framework or Pearl’s do-calculus, we define causal effects as the difference between
potential outcomes τ = Y 1−Y 0. The potential outcome Y 1 is the outcome when a cause W
(e.g., a treatment, policy, or exposure) is active and Y 0 occurs when W is inactive. While
the interest in identifying causal effects exist in DMC already, a key difference between
DMC-powered models for causal inference and HMC-powered models for causal inference,
is that the latter mobilizes the predictive power of ML. In other words, HMC uses tricks from
AMC to achieve DMC goals. As these tricks rely on combining inference and prediction,
the result of HMC is that the distinction between Ŷ and β̂—taken to its limit—melts away.
In this commentary, we delineate our “melting away” argument.

2. Machine learning for causal inference

Before describing how ML aids in inferring causality, we will refine our definition of what
we mean by causal inference. We define a cause of interest as a binary variable, W . Instead
of merely recording each individual’s outcome as observed by the data, Yi, we assume that
each individual i has two potential outcomes (Imbens and Rubin, 2015). One potential
outcome records the outcome when the individual takes the treatment Y 1

i and one where
he or she does not take it Y 0

i . The causal effect for each individual i is then the difference
between these two potential outcomes:

τi = Y 1
i − Y 0

i

If we could observe both potential outcomes, we could then directly compute τi and
thus identify individual-level causal effects. However, the observed outcome—as supplied
by the data—is a function of both the treatment and the two potential outcomes, Yi =
(W − 1)Y 1

i + WY 0
i . This function shows that the observed data reveals only one of these

two potential outcomes, yet both are required to identify causal effects. Table 1 exemplifies
an observed-data matrix of four individuals with fictitious variable values, and their missing
potential outcomes. This impossibility of observing both potential outcomes is known as
the fundamental problem of causal inference. Much of the causal-method development
pertains to defining procedures for when the causal effect is identified from observational
data (Hernan and Robins, 2020; Imbens and Rubin, 2015; Pearl, 2009; Peters et al., 2017).
By identified, we mean a causal effect calculable from measured data.
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Table 1: A toy dataset illustrating the fundamental problem
of causal inference

Y Y 1 Y 0 W τ X

Jane 20 20 ? 1 ? 10
John 30 30 ? 1 ? 11
Joe 25 ? 25 0 ? 10
Jan 22 ? 22 0 ? 11

Vibrant literature in the overlap between computer science, econometrics, and statistics
combine ML and causal methodology to develop new estimators, used in various domains
(Angrist and Pischke, 2014; Athey and Imbens, 2017; Athey et al., 2019; Chernozhukov
et al., 2018; Daoud et al., 2020, 2019; Daoud and Johansson, 2020; Hedström and Manzo,
2015; Hernan and Robins, 2020; Hill, 2011; Hirshberg and Zubizarreta, 2017; Imai, 2018;
Kraamwinkel et al., 2019; van der Laan and Rose, 2011; Morgan and Winship, 2014; Pearl
and Mackenzie, 2018; Shiba et al., 2021; VanderWeele, 2015). A recurring theme in these
methods is the many creative combinations where predictive AMC-type algorithms are
used in DMC-type of causal inference. There are several ways in which ML algorithms help
the scientific endeavour (for an overview see Daoud and Dubhashi, 2020), but the most
important of them is the use of ML to predicting the missing-potential outcomes (Athey
and Imbens, 2017).

As observed data only reveal one-half of the potential outcomes, the other half is re-
garded as missing data. One way of handling this fundamental problem is to cast it as a
missing-data problem and proceed to identify conditions for imputing these data to pop-
ulate all the Y 1

i and Y 0
i cells, based on covariates X (for a critique of this missing-data

definition see Pearl and Mackenzie, 2018). These imputation procedures rely on common
identifiability assumptions. One such central assumption is conditional independence (also
known as conditional ignorability and conditional exchangability), W ⊥Y 1

i , Y
0
i |X. This

mathematical statement means that the treatment is as-if randomly assigned conditional
on one or more covariates.

Because ML excels in prediction tasks compared to commonly used parametric models,
HMC-influenced scholars have developed many different procedures to predict potential
outcomes (Künzel et al., 2018). For example, the T-learner—“T” stands for two—procedure
defines one ML-algorithm fw=1(xi) = E[Y = yi|W = 1, X = xi] trained on the treated
group and another algorithm fw=0(xi) = E[Y = yi|W = 0, X = xi] trained on the control
group. A Lasso, a random forest, or a collection of algorithms (an ensemble) are often used
to define fw=1 and fw=0. The SuperLearner provides a well-tested framework to mobilize
ensembles for causal inference (van der Laan and Rose 2011). After training, fw=1 imputes
potential outcomes for the control group and fw=0 imputes these outcomes for the treated
group. Based on the toy data of Table 1, fw=1 trains on Jane and John, and imputes
Y 1
i of Joe and Jan; likewise, fw=0 trains on Joe and Jan, and imputes Y 0

i of Jane and

John. This procedure culminates by calculating the difference τ̂i = Ŷ 1
i − Y 0

i for the

control group and τ̂i = Y 1
i − Ŷ 0

i for the treated group, and then averaging over all groups
τ̂ = E[E [τ̂i|W = wi]] to calculate the average treatment effect.
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The T-learner algorithm is one of several, but common to most of these ML algorithms
is the procedure of imputing potential outcomes (Künzel et al., 2018) or imputing the treat-
ment effect directly (Athey et al., 2019). Although much research is devoted to analyzing
biases arising from ML regularization, these HMC algorithms demonstrate how τ̂i-problems
subsume β̂-problems originating from DMC by mobilizing the algorithmic power of AMC
used for Ŷ -problems. Thereby, the original distinction between β̂ and Ŷ has dissipated—
melted away.

3. Conclusions

It is perhaps a historical irony that one of the most popular HMC algorithms, the generalized
random forest (Athey et al., 2019), uses a random-forest algorithm as a key ingredient for
causal inference; the same algorithm that Breiman (2001a) used to exemplify what AMC-
type of predictions had to offer the scientific endeavour. It is the same algorithm he devoted
much research in developing (Breiman, 2001b).

Evidently, Breiman’s work has opened up new a new perspective not only for statistics
but also for applied sciences. This perspective direct our attention towards the possibilities
of our time—the era of data science. Twenty years later, based on the advances in machine
learning and causal inference, scholars are enabled to move one step further. As identifying
causal effects is one of the core goals of the scientific endeavor, we conclude that instead
of retaining the dichotomy between AMC-prediction and DMC-inference, this endeavor
gains more by embracing both synthetically. HMC provides a way to think about how this
synthesis is possible in the era of data science (Meng, 2020) while still maintaining the
scientific endeavor’s higher goal: explaining reality. Although this hybrid culture does not
occupy the default mode of scientific practices, we argue that it offers an intriguing novel
path forward for applied sciences (Daoud and Dubhashi, 2020).
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David A. Hirshberg and José R. Zubizarreta. On two approaches to weighting in causal
inference. Epidemiology, 28(6):812, 11 2017. ISSN 1044-3983. doi: 10.1097/EDE.
0000000000000735.

Kosuke Imai. Quantitative Social Science: An Introduction. Princeton University Press,
Princeton, illustrated edition edition, 2 2018. ISBN 978-0-691-17546-1.

5

[8
7.

22
7.

18
.8

5]
   

P
ro

je
ct

 M
U

S
E

 (
20

25
-0

9-
19

 0
9:

57
 G

M
T

)



Adel Daoud and Devdatt Dubhashi

Guido W. Imbens and Donald B. Rubin. Causal Inference for Statistics, Social, and Biomed-
ical Sciences: An Introduction. Cambridge University Press, New York, 1 edition edition,
4 2015. ISBN 978-0-521-88588-1. 00005.

Shiho Kino, Yu-Tien Hsu, Koichiro Shiba, Yung-Shin Chien, Carol Mita, Ichiro Kawachi,
and Adel Daoud. A scoping review on the use of machine learning in research on social
determinants of health: Trends and research prospects. SSM - Population Health, 15:
100836, 9 2021. ISSN 2352-8273. doi: 10.1016/j.ssmph.2021.100836.
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