When is repair environmentally beneficial? The case of high-voltage electric motors

1) Context

One energy-intensive product: high voltage electric motors used in industry (e.g., pumps and compressors in chemical and metal industries)

- 30 tons of steel, copper and plastics,
- In operation for 50 weeks/year in Sweden,
- Output power of 16 MW,
- Used until failure, lifetime above 20 years.

The most common failure could be repaired by rewinding, i.e., replacing copper windings, but with the risk of affecting the energy efficiency.

3 Results - Resource depletion

Legend (IM): induction motor, used for 20 years (SM): synchronous motor, used for 20 years

Motor recycling Electricity losses during use

Motor production Credits from motor recycling (+20): SM repaired and used for 20 additional years (+20↓): (+20) with an efficiency reduction of 0.6%

Rewinding

Old windings recycling

Credits from windings recycling

 The more efficient SM results in lower impact than the IM.

 A small efficiency reduction (>0.4%) offsets the benefit of repair.

The impact reduction from SM's better efficiency outweighs its higher impact from extraction and production (more copper in the motor).

2) Results - Global warming

(+20): SM repaired and used for 20 additional years (+20↓): (+20) with an efficiency reduction of 0.6%

Rewinding

Old windings recycling Credits from windings recycling

 The more efficient SM results in lower impact than the IM.

 A small efficiency reduction (>0.05%) offsets the benefit of repair.

(4) Sensitivity analysis

Changing the electricity mix:

- Baseline: mix of nuclear, hydro, bio and wind (Swedish mix)
- Low-carbon: hydroelectricity only
- High-carbon: oil-based only

Conclusions are not changed

Conclusions

After a minimum additional use only (2-7 years), repair is beneficial, but less than choosing a more energy-efficient design, and a small energy efficiency reduction outweighs the benefits of repair.

For LCAs of use extension of energy-using products: include resource use from electricity production and transmission.

For motor manufacturers and users: focus on high energy efficiency rather than repairability.

Adeline Jerome¹, Maria Ljunggren¹ and Matty Janssen¹

MISTRA CHALMERS ! REES. **Resource-Efficient and UNIVERSITY OF TECHNOLOGY Effective Solutions**

¹ Environmental Systems Analysis