
thesis for the degree of doctor of philosophy

Deep Learning for Model-Based Multi-Object
Tracking

An investigation on the use of deep learning methods for addressing
shortcomings in current model-based multi-object trackers/smoothers.

Juliano T. A. L. Pinto

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2023

Deep Learning for Model-Based Multi-Object Tracking
An investigation on the use of deep learning methods for addressing shortcomings in
current model-based multi-object trackers/smoothers.

Juliano T. A. L. Pinto
ISBN 978-91-7905-924-8

© 2023 Juliano T. A. L. Pinto
All rights reserved.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5390
ISSN 0346-718X

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31 772 1000

Cover:
Photo by Neida Zarate on Unsplash, adapted by the author.

Printed by Chalmers Reproservice
Gothenburg, Sweden, September 2023

Deep Learning for Model-Based Multi-Object Tracking
An investigation on the use of deep learning methods for addressing shortcomings in current
model-based multi-object trackers/smoothers.
Juliano T. A. L. Pinto
Department of Electrical Engineering
Chalmers University of Technology

i

Abstract
Multi-object tracking (MOT) is the task of estimating the state of multiple
objects based on noisy sensor measurements. MOT is essential in various
applications, such as pedestrian monitoring, vehicle tracking, animal behavior
analysis, and others. It can be broadly divided into two categories: model-free
and model-based, depending on whether accurate and tractable models of the
measurement sensor and objects’ dynamics are available for methods to use.

In model-based MOT, closed-form, Bayes-optimal solutions can be
derived for certain model families. These solutions achieve the best
possible performance in expectation, but become intractable as the time-
horizon increases due to an exponential growth in the number of terms.
Approximations are necessary to make these methods feasible, but they result
in performance degradation for challenging tracking tasks.

The main objective of this thesis is to use deep learning (DL) to address
this limitation, pursued in papers A, C, and D. The approach taken is to treat
MOT as a sequence-to-sequence learning task, devising methods that learn to
map measurement sequences to state estimates directly. This perspective
frees methods from the need to explicitly consider all possible associations
between objects and measurements, thereby side-stepping the intractability of
traditional approaches. Furthermore, the available models of the environment
are leveraged to generate unlimited synthetic data. This is used to train
modern DL architectures that excel in the regime of big data, unlocking their
power to reason about complicated and long-term temporal interactions in
their inputs.

When developing the aforementioned methods, it became necessary to
compare their predictions and estimated uncertainties to the state-of-the-art
trackers for the model-based setting. To allow for this, another contribution
of this thesis is in paper B, which proposes the first uncertainty-aware,
hyperparameter-free, mathematically principled performance measure for
MOT.

Keywords: Deep learning, multi-object tracking, multi-object smoothing,
multi-object tracking performance measures.

ii

List of Publications
This thesis is based on the following publications:

[A] Juliano Pinto, Georg Hess, William Ljungberh, Yuxuan Xia,
Lennart Svensson, Henk Wymeersch, “Next Generation Multitarget
Trackers: Random Finite Set Methods vs Transformer-based Deep Learning”.
Proceedings of FUSION 2021.

[B] Juliano Pinto, Yuxuan Xia, Lennart Svensson, Henk Wymeersch,
“An Uncertainty-Aware Performance Measure for Multi-Object Tracking”.
Published in IEEE Signal Processing Letters, 2021, vol. 28, no. 1689–1693.

[C] Juliano Pinto, Georg Hess, William Ljungberh, Yuxuan Xia,
Henk Wymeersch, Lennart Svensson, “Deep Learning for Model-Based
Multi-Object Tracking”. Accepted for publication in IEEE Transactions on
Aerospace and Electronic Systems, 2023.

[D] Juliano Pinto, Georg Hess, Yuxuan Xia, Henk Wymeersch,
Lennart Svensson, “Transformer-Based Multi-Object Smoothing with
Decoupled Data Association and Smoothing”. In review.

Other publications by the author, not included in this thesis, are:

[E] Viktor Olsson, Wilhelm Tranheden, Juliano Pinto, Lennart Svensson,
“ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised
Learning”. Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, 2021.

[F] Wilhelm Tranheden, Viktor Olsson, Juliano Pinto, Lennart Svensson,
“DACS: Domain Adaptation via Cross-domain Mixed Sampling”. Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision,
2021.

iii

Acknowledgments

I am very grateful to my supervisor, Lennart, for giving me the opportunity
to pursue this PhD. Thank you for believing in my potential, ever since the
beginning, sometimes even more than I did. Thank you for being more than
just a supervisor. Thank you Henk, my co-supervisor, for having been such
a good counterpoint and for caring so much (and being amazing at reviewing
our papers). Thank you both for this, and for a hundred other things.

A big thanks to all my colleagues, in special to Yuxuan, Georg, and William,
for always being so helpful and kind with me, for providing such useful and
stimulating discussions, and for the great collaborations. Thanks also to my
former office mates Erik and Anders. You have been amazingly friendly and
receptive, and created an awesome office environment. Thanks to the Modulai
team, in special Josef and Emil, for the flexibility and support you provided
me to help finish this thesis.

I would also like to express my gratitude to my friends. Thank you, Claudia,
for all the lunches where we would vent together about the hardships of
pursuing a PhD, and for all the good advice. Thank you, Olof, for the
great advice on how to juggle writing my thesis with working. Thank you,
Filipe and Teddy, for your patience and kindness in listening to me talk about
the thousand challenges I was dealing with. Thank you, Tob, Johan, Elin,
and Emeric, for all the fun and distractions that I most definitely needed to
maintain my sanity. Thank you to all my friends, close and distant, new and
old. Your friendship brought balance to my PhD journey.

Thanks to my family. Thanks, mom, for believing in me when others did
not, and reminding me that you have to fight for what you want in life.
Thanks, grandma, for all the love and support, and the lessons in patience
and consistency. Thanks, dad, for reminding me of the need for balance.
Thanks tio Beto and tia Sandra for the amazing support you provided to my
education. Thanks to all of my family for the continued support and love,
even from ten thousand kilometers away.

I am also immensely grateful to my wife. Thank you, love, for being so
strong and patient and kind. Thank you for all the happiness and love you
bring into my life. Thank you for being so supportive and encouraging in this
amazing PhD journey I had. . . and thank you for being there and help pick
up the pieces when it was not so amazing. This thesis would not be what it
is without you.

v

Lastly, thanks to my daughter. Sina, you are too young to read at this
moment, but old enough to have taught me some of the biggest lessons in my
life. Thank you for showing me I am much stronger than I thought, and for
the constant reminders of what is really important in life.

Acronyms

MOT multi-object tracking

DL deep learning

SL supervised learning

PSL probabilistic supervised learning

KLD Kullback-Leibler divergence

SGD stochastic gradient descent

SSM state-space model

RFS random finite sets

MB multi-Bernoulli

MBM multi-Bernoulli mixture

PMBM Poisson multi-Bernoulli mixture

vi

Contents

Abstract ii

List of Papers iii

Acknowledgements v

Acronyms vi

I Overview 1

1 Introduction 3
1.1 Contributions . 6
1.2 Related Work . 7
1.3 Thesis Outline . 9
1.4 Notation . 9

2 Machine Learning 13
2.1 Introduction . 13
2.2 Supervised Learning . 15
2.3 Defining the Optimization Problem 15
2.4 Kullback-Leibler Divergence . 16

vii

2.5 Solving the Optimization . 18
2.6 Examples of Supervised Learning Tasks 20

Linear Regression . 20
Classification . 22

2.7 Generalization . 25
2.8 Review on the Transformer architecture 27

Overall Architecture . 27
Multi-head Self-attention Layer 28
Transformer Encoder . 29
Transformer Decoder . 30

3 Bayesian Inference 33
3.1 Introduction . 33
3.2 Bayesian Inference in State-Space Models 34
3.3 Bayesian Filtering . 36

Linear and Gaussian Models . 37
Nonlinear Models . 39

3.4 Bayesian Smoothing . 40
Linear and Gaussian Models . 41
Nonlinear Models . 41

4 Random Finite Sets 43
4.1 Introduction . 43
4.2 Definition . 45
4.3 Random Finite Set Statistics 45

Set Integral . 45
Multi-Object Densities . 46
Cardinality Distribution . 47
Union of RFSs . 47

4.4 Important Examples . 47
Bernoulli RFS . 48
Multi-Bernoulli RFS . 48
Multi-Bernoulli Mixture RFS 49
Poisson RFS . 49
Poisson Multi-Bernoulli Mixture RFS 50

viii

5 Model-Based Multi-Object Tracking 51
5.1 Problem Statement . 52
5.2 Multi-Object Models . 53

Multi-Object Measurement Model 53
Multi-Object Dynamic Model 54

5.3 Multi-Object Conjugate Priors 56
Multi-Bernoulli Mixture Conjugate Prior 56
Poisson Multi-Bernoulli Mixture Conjugate Prior 58

5.4 MOT for Trajectories . 59
Labelled Object States . 59
Sets of Trajectories . 60

5.5 MOT Metrics . 61
GOSPA Metric . 62
Trajectory-GOSPA . 63

6 Summary of included papers 65
6.1 Paper A . 65
6.2 Paper B . 66
6.3 Paper C . 67
6.4 Paper D . 67

7 Concluding Remarks and Future Work 69

References 71

II Papers 81

A Next Generation Multitarget Trackers A1
1 Introduction . A3
2 Multitarget Models and Problem Formulation A5
3 Background on Transformers A6

3.1 Self-Attention Layer . A6
3.2 Transformer Encoder . A8
3.3 DETR Decoder . A9

4 MTT using Transformers . A10
4.1 MT3 Architecture . A10

ix

4.2 Selection Mechanism . A12
4.3 Iterative Refinement of State A12
4.4 Loss Function . A13
4.5 Contrastive Auxiliary Learning A14
4.6 Preprocessing . A15

5 Results . A15
5.1 Definition of the Tasks A16
5.2 Algorithms . A17
5.3 Performance Metrics . A18
5.4 Task 1 Results . A19
5.5 Task 2 Results . A19
5.6 Ablation studies . A21

6 Conclusion . A22
References . A23

B An Uncertainty-Aware Performance Measure for Multi-Object
Tracking B1
1 Introduction . B3
2 NLL as a performance measure B5
3 Decomposition of the NLL for PMB densities B8

3.1 Decomposing the NLL B8
3.2 Connection to GOSPA B9

4 Illustrative examples . B10
5 Conclusion . B13
References . B15

C Deep Learning for Model-Based Multi-Object Tracking C1
1 Introduction . C3
2 Multitarget Model and Problem Formulation C6

2.1 Measurement and Transition Model C6
2.2 Problem formulation . C7

3 Background on Transformers C7
3.1 Overall Architecture . C7
3.2 Multi-head Self-attention Layer C8
3.3 Transformer Encoder . C10
3.4 Transformer Decoder . C11

x

4 Related Work . C12
4.1 DL for model-free MOT C12
4.2 DL for model-based MOT C13

5 Multitarget Tracking Transformer V2 C14
5.1 Overview of MT3v2 architecture C14
5.2 Selection Mechanism . C16
5.3 Iterative Refinement . C18
5.4 Loss . C19
5.5 Contrastive Auxiliary Learning C20
5.6 Preprocessing . C21

6 Evaluation Setting . C22
6.1 Task Description . C22
6.2 Implementation Details C24
6.3 Performance Measures C26

7 Results . C29
7.1 Illustrative Example . C29
7.2 Comparison to Model-Based SOTA C31
7.3 Ablation Studies . C35
7.4 Complexity Evaluation C37

8 Conclusion . C38
References . C40

D Transformer-Based Multi-Object Smoothing with Decoupled
Data Association and Smoothing D1
1 Introduction . D3
2 Multi-Object Models and Problem Formulation D6

2.1 Multi-Object Models . D6
2.2 Problem Formulation D7

3 Background on Transformers D8
3.1 Multihead Self-attention D8
3.2 Transformer Encoder . D9

4 Method . D11
4.1 Overview of DDA and DS modules D11
4.2 Deep Data Association Module D12
4.3 Partitioning . D13
4.4 Deep Smoother Module D14
4.5 Losses . D14

xi

5 Evaluation Setting . D17
5.1 Task Description . D18
5.2 Implementation Details D19
5.3 Performance Metrics . D21

6 Results . D24
6.1 Training the DDA module D24
6.2 Training the DS module D26
6.3 Visualization of the trained D3AS tracker D28
6.4 Comparison to Model-based Bayesian Benchmark D29

7 Conclusion . D33
References . D34

xii

Part I

Overview

1

CHAPTER 1

Introduction

Multi-object tracking (MOT) is the problem of recursively estimating the
state of an unknown number of objects, based on a sequence of noisy sensor
measurements. The number of objects might vary over time, as objects can
enter and leave the field of view of the sensor. Furthermore, the sensors
are not perfect: there might be missing measurements, and the obtained
measurements might contain false entries due to, e.g., sensor noise or clutter.

This task is illustrated in Fig. 1.1, which shows an example of tracking
for three objects with 1-dimensional states. On the left, the ground-truth
trajectories for each of the three objects are shown, color-coded to distinguish
objects. The middle plot shows a depiction of the measurements generated
at each time step. Note how each measurement does not contain information
about its originating object (nor if it is a false measurement), requiring trackers
to reason probabilistically about all possible associations. Lastly, the plot on
the right shows a visualization of a possible estimate for the trajectories of
such objects, where dark lines represent the mean for that state, and the
shaded regions the corresponding 95% confidence intervals.

Methods capable of solving this problem are of high importance to a diverse
set of applications. For example, MOT can be used for monitoring the

3

Chapter 1 Introduction

0 5 10 15 20 25
Time (s)

10
8
6
4
2
0
2
4
6
8

10
Po

sit
io

n
(m

)

0 5 10 15 20 25
Time (s)

10
8
6
4
2
0
2
4
6
8

10

Po
sit

io
n

(m
)

0 5 10 15 20 25
Time (s)

10
8
6
4
2
0
2
4
6
8

10

Po
sit

io
n

(m
)

Sensor Tracker

Figure 1.1: Common tracking pipeline. On the left, the trajectories for three
objects are plotted over time. At each time step, a measurement sensor
produces a set of measurements, generating the plot in the middle of the
figure. The task of a multi-object tracker is to process this information
into estimates of the states/trajectories of each of the object.

activities of pedestrians in an urban setting [1], tracking the positions and
orientations of cars and cyclists on a road [2], [3], studying the interactions
and dynamics in groups of animals [4], [5], predicting missile trajectories in
military applications [6], analyzing the strategies and performance of players
in team sports [7], and much more.

MOT problems can be broadly divided into two categories: model-free and
model-based. The major topic of this thesis is model-based MOT, which deals
with situations in which accurate and tractable models of the environment are
available for methods to use. Such models encode prior knowledge about how
objects move, interact, appear, and disappear from the field of view. They also
encode information about the sensor being used to generate measurements.
Model-free MOT, on the other hand, is concerned with settings where such
models are not available.

For example, predicting missile trajectories using radar can be tackled
using model-based MOT, as accurate models for the missile’s dynamics and
the measurement sensor are likely available. On the other hand, tasks such
as pedestrian tracking using video cameras are more approachable from the
model-free MOT perspective, since obtaining accurate and tractable models
of how pedestrians move and interact, and how images are formed in a video
camera is a challenging endeavor.

4

In the model-based MOT setting, particularly for certain families of
models, it is possible to derive closed-form, Bayes-optimal solutions to
the MOT problem [8]–[11]. Such solutions achieve the lowest possible
expected error for a given task and are therefore impossible to outperform in
theory. However, the situation is different in practice. Due to the unknown
correspondence between measurements and objects, the number of terms
in these solutions grows super-exponentially over the time horizon being
considered, making such approaches intractable in all but simple tracking
tasks [12]. To be applicable in practice, such methods require approximations
such as pruning unlikely hypotheses or merging similar ones, which inevitably
lead to performance deterioration in challenging tracking tasks.

The main objective of this thesis is to use deep learning (DL) to address
this obstacle. We do so by casting MOT as a sequence-to-sequence learning
task, where methods learn to directly map sequences of measurements to
state estimates, thereby sidestepping the need to explicitly reason about all
possible data associations1. Furthermore, papers A, C, and D share an insight
on how to achieve this: to utilize the available models to generate synthetic
training data. This approach, illustrated in Fig. 1.2, allows for generating
virtually unlimited amounts of data, allowing for modern DL architectures
that are very high-performing but also notoriously data-hungry, such as the
Transformer [13] architecture.

This approach not only sidesteps the need to explicitly reason about all
possible data associations, but also allows for the use of a much broader family
of MOT models, which would be challenging or impossible to explicitly derive
closed-form solutions for using the random finite sets (RFS) formalism. In
particular, we can use nonlinear models directly, models that capture non-
Markovian dynamics, models for non-independent object movement (where
the state of one object affects the state of other objects), models with non-
Gaussian noise, and many more: if we can sample from the model, we can use
it to train a DL-based tracker.

1Paper D explores a slight variation of this approach, but still does not explicitly represent
all possible data associations.

5

Chapter 1 Introduction

Figure 1.2: The models of the environment are traditionally used to derive Bayes-
optimal trackers which suffer from extremely high complexity in
challenging tracking scenarios. This thesis proposes to instead use the
available models for generating synthetic training data for DL methods
that tackle MOT as a sequence-to-sequence prediction task.

1.1 Contributions
In paper A we perform a preliminary analysis into the feasibility of training
modern deep learning models for model-based MOT. We design a DL-based
tracker (MT3) based on the Transformer encoder-decoder network, supervised
using a combination of the loss proposed in [14] and a novel auxiliary loss
designed specifically for MOT. This paper provides the first thorough
comparison between a tracker using a modern deep learning architecture
and state-of-the-art RFS-based trackers. We show that DL-based trackers
can approximate the Bayes-optimal performance of the benchmarks in
simple tracking tasks while outperforming them when the data association
complexity increases.

Although paper A provides strong evidence of the applicability of DL to
the model-based MOT setting, MT3 has an important limitation compared
to RFS-based approaches: it does not provide uncertainty estimates for its
state predictions. When investigating ways to address this, one challenge
that had to be overcome was the lack of principled uncertainty-aware
performance measures for MOT. Although uncertainty-aware performance
measures do exist [15], [16], these do not account for all the uncertainty
information available, or require access to ground-truth uncertainties. This
motivated the writing of paper B, which introduces the first principled,

6

1.2 Related Work

hyperparameter-free, uncertainty-aware performance measure for MOT. The
proposed performance measure is based on the negative log-likelihood of the
predicted MOT posterior, and is used in all subsequent papers in this thesis
to compare the DL-based uncertainty predictions with the ones from RFS
trackers.

Paper C then expands the preliminary analysis made in paper A. This paper
proposes MT3v2, an improved version of MT3 with redesigned architecture
for better performance, and to allow it to predict the entire kinematic state
of objects (not just its observable part) together with uncertainty predictions.
Similar to our preliminary analysis, we also provide a comparison to state-of-
the-art trackers, but this time in much more depth. More complicated tasks
with nonlinear measurement models are used, more performance measures are
compared, and an error analysis of the trackers considered is provided.

Lastly, this thesis concludes with paper D, which expands the use of deep
learning in model-based MOT to the smoothing task. Smoothing, in contrast
to filtering (the task for papers A and C), takes as input a sequence of
measurements from some time t in the past until now, and is tasked with
predicting the full trajectory for all objects that appeared within that time
window (including objects that disappeared before the end of it). This is a
considerably more challenging task than filtering because both the number
of trajectories and their length are not known beforehand. To deal with this,
paper D proposes a new loss formulation to take this into account, and explores
a decoupling of the data association subtask from the trajectory estimation.

1.2 Related Work
Deep learning has been widely applied to multi-object tracking, resulting
in multiple breakthroughs to the state-of-the-art performance [17]–[19].
However, most of the field is focused on the model-free MOT setting,
specifically in video-based tracking. Several studies have been made that use
DL methods as aid for solving one or several of the MOT subtasks, such as
object detection [20], [21], extracting high-level features from input data [22],
[23], associating new measurements to existing tracks [24]–[26], managing
track initialization/termination [27], predicting motion models [28], [29], and
others. There has also been progress into tackling the entire tracking task
using DL, using architectures based on extensions of object detectors [30],

7

Chapter 1 Introduction

convolutional neural networks [31], [32], and graph neural networks [33], [34],
to cite a few.

Closer to our work, Transformer-based architectures for tracking such
as [35]–[39] have lately become important, obtaining excellent results in
popular video-based MOT benchmarks. These approaches rely on encoder-
decoder architectures with the concept of track queries, vectors predicted by
the decoder and trained to summarize an object’s history. The queries are
used by TrackFormer [35] and TransTrack [37] to select which information
from the current measurements will be used to generate predictions for the
current time step and to link trajectories over time. MOTR [36] extends this
method by introducing a temporal aggregation network, allowing the decoder
to access measurements from previous time steps. Alternatively, MeMOT [38]
maintains an explicit memory bank of prior states to aid with long-term
associations, and uses track queries only to summarize an object’s history,
but not to connect predictions through time (data association is addressed
in a different module). SegDQ [39] includes semantic segmentation as an
auxiliary task to help MOT performance, demonstrating the advantages of
multi-task learning.

Despite the considerable success achieved by DL approaches, their direct
applicability to the model-free setting is inherently limited due to several key
factors. Firstly, there exists a substantial disparity in dimensionality between
model-free and model-based MOT measurements. Model-free MOT often
involves measurements comprising entire images, necessitating DL trackers
to employ architectures with specific inductive biases tailored to this task,
such as convolutional layers and max pooling. Conversely, model-based MOT
typically deals with low-dimensional measurements, thus requiring significant
architectural modifications, if not complete replacement, for the adaptation
of a model-free DL tracker.

Secondly, the two settings have divergent performance requirements
concerning temporal associations. In model-free MOT, processing
measurement data from multiple time steps jointly is often too computationally
expensive, and long-term temporal associations may not always be crucial.
Vision-based MOT, for instance, commonly obtains sufficient information
for accurately estimating object positions from just one or two frames. As
a consequence, most existing model-free MOT trackers [35], [37]–[42] are
unable to process more than a few frames per time step. On the other

8

1.3 Thesis Outline

hand, model-based MOT entails significantly higher uncertainties in data
association: in most tasks in papers A, C, and D, even after considering all
measurements, considerable uncertainty regarding the correct associations
remains. Consequently, achieving accurate temporal associations becomes
crucial for achieving good performance. Extending model-free methods to
handle long-range temporal associations effectively thus becomes a significant
and challenging research endeavor.

Lastly, many of the top-performing DL trackers in popular benchmarks such
as MOT20 rely heavily on the image structure of the input measurements [40],
[41] (e.g., learning appearance cues to handle occlusion properly). However,
such image-based methodologies lack a straightforward counterpart in the
model-based setting, rendering some of the key advancements in the model-
free state-of-the-art inapplicable.

1.3 Thesis Outline
The remainder of part I of this thesis is organized as follows. Chapter 2
provides a review on machine learning, specifically probabilistic supervised
learning. Chapter 3 reviews the most important points about Bayesian
inference on state-space models, including the recursive solutions to Bayesian
filtering and smoothing. The random finite set framework is then introduced
in Chapter 4, with examples of important operations on RFSs and descriptions
of relevant distributions. Chapter 5 provides a review of the assumptions,
algorithms, and performance measures of model-based multi-object tracking,
followed by chapter 6 with a summary of the included papers, and finally
chapter 7 with concluding remarks. Part II then contains the included papers
that comprise this thesis.

1.4 Notation
This section describes the notations used in Part I. For clarity, we use different
typefaces for different mathematical objects, and make a distinction between
random and deterministic variables, as shown in Table 1.1. Sequences are
denoted with subscripts indicating their index sets, e.g., x1:n or AAA1:m, and the
indexes can be used to identify individual elements (x3 is the third element
in x1:10). The sets R+ and R+

0 denote respectively the set of all positive and

9

Chapter 1 Introduction

Table 1.1: Notation used in this thesis for different types of variables and whether
or not they are random.

Type Deterministic Random

Scalar/Vector x x
Matrix X X
Set X XXX
Topological Space X –

non-negative real numbers, and we use the shorthand Na
.= {1, · · · , a}. The

distribution for a random variable x is denoted fx(·), or just fx, whereas the
evaluation of such distribution at a number x is fx(x). When possible we try
to use the same letter for both the random variable and the value for which
its distribution is being evaluated, e.g., fx(x) and fy(y) instead of fx(y) and
fy(x).

Joint distributions are denoted using commas in the subscript, as fx,y, and
conditional distributions with the | symbol in the subscript, fy|x. When a
distribution is parameterized, we separate the arguments from the parameters
with a ‘ ; ’, e.g., fXXX(X; θ) denotes the evaluation of XXX’s distribution at X, with
parameters θ. The distribution of a Gaussian random variable with mean µ

and variance σ2 is denoted N (·, µ, σ2). To assist the reader in interpreting the
notations for this thesis, we provide examples illustrating their usage along
with explanations.

Example 1.4.1. fXXX(·) denotes the distribution for the random set XXX (see
Table 1.1), and is a function mapping sets to R+

0 . On the other hand, fXXX(X)
denotes the evaluation of XXX’s distribution for a specific set X, and is a non-
negative real number.

Example 1.4.2. fx|y(·|y) is the distribution of the random scalar (or vector,
see Table 1.1) x conditioned on the random scalar y taking the specific value
y; it is a function mapping scalars to R+

0 . On the other hand, fx|y(x|·) is not
a distribution, but the likelihood function for y. fx|y(x|y) is the evaluation of
x’s distribution (or y’s likelihood) at x = x and y = y.

Example 1.4.3. fz1:t|KKK(z1:t|K) .= N (maxK; z1, z3) defines the distribution of
the sequence of random vectors z1:t conditioned on the random set KKK taking

10

1.4 Notation

the value K to be equal to a normal distribution with mean z1 and variance
z3, evaluated at the point maxK.

11

CHAPTER 2

Machine Learning

This chapter presents an introduction to the field of machine learning,
specifically probabilistic supervised learning, which is a central topic for the
research presented in this thesis. It starts by formulating the optimization
problem in this setting and then describing the techniques and algorithms
that are commonly used to tackle it. After that, a section with remarks about
generalization in machine learning is provided, along with considerations on
its relevance to the contents of this thesis. This chapter finally concludes with
a review on the Transformer [13] architecture, used in papers A, C, and D.

2.1 Introduction
Machine learning is the branch of research concerned with understanding and
developing methods that learn how to solve tasks without explicit instructions
about how to do so, instead being provided a description of what is to be
done, and data. Such methods leverage data from the task of interest to
autonomously learn the specific steps to achieve the desired goal. They are
especially helpful in tasks where explicitly listing all the steps required to
perform the task of interest is either too laborious or error-prone.

13

Chapter 2 Machine Learning

Figure 2.1: Images of cats and dogs.

For example, consider the task of writing an algorithm for classifying natural
images such as the ones shown in Fig. 2.1 into one of two classes: “cat” or
“dog”. The presence of certain visual cues (say, whiskers, or pointy ears)
guides the inference, but their location and relation to all other cues are also
important. And so are their colors, texture, relative sizes, etc. There is also
plenty of irrelevant information present in the image, such as the background
the subject is in, other objects, whether any text is present, etc. Explicitly
listing all rules and exceptions for correctly classifying such images would be
a daunting task.

The field of machine learning provides a different approach. Using its tools,
we can sidestep the need for explicit instructions on how to classify these
images, and instead require only a dataset of already-classified examples: an
explanation of what is expected of a functioning algorithm. Such a dataset can
be created by asking human annotators to look at thousands of images and
decide if they contain cats or dogs, for example. Machine learning methods
then use this dataset to automatically learn the required steps for reproducing
(and under some conditions, generalizing) the annotations present in the
training dataset.

In fact, this new paradigm provided by machine learning is responsible
for unlocking a level of performance in certain skills that was hitherto
inaccessible to computers (and in some cases, even humans). Tasks such
as image classification [43], object detection [44], translation [45], playing
boardgames [46], and many others, saw a drastic increase in performance,
and now computers are used in a myriad of applications requiring these
capabilities.

The field has many paradigms on what kinds of tasks are tackled and how
they are tackled, and how annotations are to be done (if at all): supervised
learning, unsupervised learning, reinforcement learning, to cite a few [47].
This thesis is primarily concerned with supervised learning, and the rest of

14

2.2 Supervised Learning

this chapter will detail this paradigm in more depth. The reader interested in
other paradigms is referred to [47]–[49].

2.2 Supervised Learning
Supervised learning (SL) is the paradigm of ML that tackles the task of
learning the relationship between a set Y of classes or targets, and a set X
of measurable properties or characteristics, often referred to as features. We
assume the existence of a dataset D = {xi, yi}N

i=1, xi ∈ X, yi ∈ Y, ∀i ∈ NN ,
exemplifying their relation.

For instance, the task of classifying cat and dog images from Section 2.1 can
be defined as learning the relationship between a set X of all possible natural
images (like the ones shown in Fig. 2.1) and a set Y = {‘cat’, ‘dog’}. The set
D is then the annotated dataset mentioned previously, possibly constructed
by human annotators looking at images xi ∈ X and deciding which class
yi ∈ Y the images belong to. As another example, the task of predicting the
temperature for a given day could be formulated with a set X of all possible
values of relevant historical meteorological conditions and the date of the day
for which to predict temperature, and Y = R.

This thesis characterizes the relationship between X and Y probabilistically,
by assuming the existence of a joint probability density fx,y from which the
elements of D were sampled from. This paradigm, denoted probabilistic
supervised learning (PSL) [47, Chapter 5.7], has the task of using D to
approximate the conditional distribution of the targets given the features:
fy|x. This type of characterization includes and generalizes simple mappings
f : X → Y.

Moreover, the papers in this thesis make use of parametric models for
approximating fy|x. Denoting the set of all parameters of a model as θ, the
PSL task is then: learn a model fθ : X → dist(Y) that approximates fy|x,
where dist(Y) denotes the set of all valid probability distributions over Y.

2.3 Defining the Optimization Problem
To find a model fθ that approximates well the conditional distribution fy|x,
we first need to formalize what is meant by “approximate well”. One way
that this can be done is by defining a function D : dist(Y) × dist(Y) → R

15

Chapter 2 Machine Learning

which encodes a notion of distance between distributions. The choice of this
function depends on what we care about in the task and defines what it means
to be “closer” or “further away” from the target distribution1. Using D, we
can formalize the optimization problem as

f∗ = arg min
f∈F

Ex∼fx

[
D(f(·|x), fy|x(·|x))

]
, (2.1)

where fx is the marginal distribution of x

fx(x) =
∫

fx,y(x, y)dy , (2.2)

and F is the set of all possible models considered for the optimization and
needs not (usually, does not) contain fy|x. The expectation over x ∼ fx is
done so that the optimal model f∗ is not a good approximation only for a
specific outcome of x, but a good approximation on average. That is, if a
certain outcome x of x is more common in fx,y, (2.1) will weigh that specific
D(f(·|x), fy|x(·, x)) more when defining what is meant by the “best model”.

Figure 2.2 is a helpful illustration of the optimization over F . Three models
f1, f2, and f∗ in F are shown in the figure. Only f∗ is optimal in this case,
being the closest (in the sense defined by the choice of D) to fy|x. The models
f1 and f2 are sub-optimal, as there is a model (f∗) closer to fy|x than them.

Since we have a parametrized model, the optimization can be done over the
parameter θ instead, transforming (2.1) into

θ∗ = arg min
θ∈Θ

Ex∼fx

[
D(fθ(· |x), fy|x(· |x))

]
. (2.3)

This equation specifies the exact conditions for a model (its parameter vector)
to be optimal, in terms of D and the distribution fx,y. However, we do not
have access to fx,y in general, and can only obtain samples from it (present
in the dataset D). Fortunately, for some choices of D we can approximate the
expression above using samples.

2.4 Kullback-Leibler Divergence
A common choice for which it is possible to approximate (2.3) using samples
is the Kullback-Leibler divergence (KLD) [50]. Although the KLD is not a

1D needs not be a metric in the strict mathematical sense (in many cases, it is not).

16

2.4 Kullback-Leibler Divergence

F
fy,x

f∗

f1

f2

Figure 2.2: Illustration of the optimization landscape in probabilistic supervised
learning. Three models within the model family F are shown; only
one is optimal.

metric in the space of distributions (it is a divergence), using it results in a
special form of equation (2.3). The KLD between two distributions f1 and f2
is defined as

KLD(f1 | f2) =
∫

f1(y) log
(

f1(y)
f2(y)

)
dy . (2.4)

Using the KLD as our choice of D transforms (2.3) into

θ∗ = arg min
θ∈Θ

Ex∼fx

[∫
fy|x(y|x) log

(
fy|x(y|x)
fθ(y|x)

)
dy

]
, (2.5)

which is equivalent to

θ∗ = arg max
θ∈Θ

Ex∼fx

[∫
fy|x(y|x) log fθ(y|x)dy

]
(2.6)

= arg max
θ∈Θ

E(x,y)∼fx,y

[
log fθ(y|x)

]
. (2.7)

We can now use the law of large numbers to write (2.7) in terms of samples
from fx,y

θ∗ = arg max
θ∈Θ

lim
n→∞

1
n

n∑
i=1

log fθ(yi|xi) , (2.8)

17

Chapter 2 Machine Learning

where xi and yi are samples from fx|y. Although (2.8) is just a specialization
of (2.3), it has one fundamental difference: we can compute it without direct
access to fy|x.

This specific choice of D is also special for another reason. Approximating (2.8)
with the finite number of samples in D yields

θ∗ = arg max
θ∈Θ

1
N

N∑
i=1

log fθ(yi|xi) , (2.9)

which can be rewritten as

θ∗ = arg max
θ∈Θ

1
N

log
N∏

i=1
fθ(yi|xi) (2.10)

= arg max
θ∈Θ

N∏
i=1

fθ(yi|xi) , (2.11)

showing that the model fθ∗ obtained by minimizing the KLD with respect to
(w.r.t.) fy|x is also the maximum likelihood model of yi given xi.

2.5 Solving the Optimization
Our choice of D determines the optimization problem, defining θ∗ in terms of
{xi, yi}N

i=1. In general, the optimization can be written as

θ∗ = arg min
θ∈Θ

L
(

θ, {xi, yi}N
i=1

)
, (2.12)

where L is referred to the loss function for the problem at hand. For example,
using the KLD for our choice of D (Section 2.4) results in the following loss
function

L
(
θ, {xi, yi}N

i=1
)

= − 1
N

N∑
i=1

log fθ(yi|xi) . (2.13)

In some applications, the model fθ and loss L are simple enough that L
is convex in terms of θ. Finding θ∗ in that scenario is then straightforward;
several efficient algorithms exist for finding the global optimum of such a
function. However, in most cases, such simple models are not sufficient

18

2.5 Solving the Optimization

for obtaining good performance, and L is typically a complicated, high-
dimensional function of the samples, with multiple local minima, plateaus,
and saddle points.

This thesis considers model families comprised of different types of neural
networks. Such models are powerful parametrized functions formed by
stacking multiple nonlinear layers, in an overall structure for fθ which is
usually differentiable w.r.t the parameter vector θ. When this is the case,
we can use gradient-based optimization for tackling the loss optimization.
Although gradient-based optimization is not guaranteed to find the global
optimum of (2.12), practitioners in the field have empirically discovered that
this approach works surprisingly well for most tasks. The reasons for this are
still partially unknown, and a great deal of research is currently devoted to
better understanding this conundrum [51]–[55].

Perhaps the simplest and most well-known gradient-based optimization is
gradient descent. This method starts with some initial parameter vector θ0
(say, initialized at random) and updates it iteratively according to

θk = θk−1 − η · ∇θ

(
L
(
θ, {xi, yi}N

i=1
))

, (2.14)

where ∇θ is the gradient operator w.r.t. θ, and η ∈ R+ is a hyperparameter
called learning rate, which has to be tuned properly for each task. That is,
the parameter vector is always updated in the direction of steepest descent.
Gradient descent has appealing convergence properties, such as guaranteed
optimality for smooth, convex functions [56], but it has a severe drawback.
At each iteration k, one must compute the loss function over all samples in
the dataset, which becomes prohibitively expensive for modern deep learning
datasets with thousands if not millions of samples.

To address this, practitioners opt instead for a modification of this algorithm
called stochastic gradient descent (SGD) [57]. In it, the direction of descent
is estimated using a single sample (x′, y′) from the dataset

θk = θk−1 − ηk · ∇θ

(
L
(
θ, (x′, y′)

))
, (2.15)

where x′, and y′ are sampled uniformly at random from D. Note that this
estimate is stochastic, but its expectation equals the true descent direction.
SGD has similar convergence properties to regular gradient descent, provided

19

Chapter 2 Machine Learning

that the learning rate η can be changed during training to satisfy three
conditions [57]:

ηk ≥ 0, ∀k ≥ 0 , (2.16)
∞∑

k=0
ηk = ∞ , (2.17)

∞∑
k=0

η2
k < ∞ . (2.18)

Despite its convergence properties, estimating the descent direction using a
single sample can result in high variance estimates, which in practice can
negatively impact training. A compromise between estimating it with a single
sample and estimating it with the entire dataset is to use a subset of the
dataset, usually called a “mini-batch”, or just “batch”.

Several other extensions of SGD have been proposed, such as RMSProp [58],
Adam [59], AdamW [60], and many others [61]. Comparing optimizers for a
task is complicated [62], and the current consensus on the field is that there
is not a single optimizer that is best for all tasks. Instead, the choice of
optimizer is often either replicated from previous related work or treated as
another hyperparameter to be optimized.

2.6 Examples of Supervised Learning Tasks
To further illustrate the concepts introduced in the previous sections, this
section presents some examples of tasks that can be tackled with the
probabilistic supervised learning framework, along with their corresponding
inputs, outputs, model definitions, and illustrations of trained models.

Linear Regression
In a regression task, we are interested in learning the relationship between a
response variable y which is real-valued, and an explanatory variable x, and
we have a dataset D = {xi, yi}n

i=1 exemplifying their relation. Both variables
can be either scalars or vectors. If the response and explanatory variables
are scalars, we refer to the task as univariate regression, and multivariate
regression otherwise. In some cases, the relationship between the response

20

2.6 Examples of Supervised Learning Tasks

(a) Relationship between
petal length and width.

(b) Linear model with
constant σ.

(c) Linear model with
feature-dependent σ.

Figure 2.3: Linear regression example in the IRIS flower dataset.

and explanatory variables is modeled as a linear (or affine) combination of the
explanatory variables, and denoted linear regression.

One illustrative example of a univariate linear regression task can be made
on the IRIS flower dataset [63]. This dataset comprises 150 records of three
species of the Iris flower. Each record contains morphological attributes from
a flower, two of which are its petal’s length and width. Figure 2.3a shows the
relationship between these two features in a scatter plot.

As one can see from the plot, the relationship between these variables seems
mostly linear, and hence a linear model is justified. Following the probabilistic
supervised learning paradigm explained in this chapter, we can tackle the
linear regression task by treating y and x as random, and assuming that our
dataset was sampled from their joint distribution D ∼ fx,y(·, ·). An interesting
model fθ for this setting is a Gaussian density with fixed standard deviation
and mean which is a linear function of the explanatory variable

fθ(y|x) = N (y; θ⊤
1 x + θ2, σ2) . (2.19)

In this single-variable regression task θ = [θ1, θ2] ∈ R2 and σ ∈ R, but σ

is not a parameter of the network, and will not be learned (its value does
not impact θ∗, as we shall see). Training this model by minimizing the loss

21

Chapter 2 Machine Learning

function in (2.13) results in the following optimization problem

θ∗ = arg max
θ

1
N

N∑
i=1

log N (yi; θ⊤
1 xi + θ2, σ2) (2.20)

= arg max
θ

1
N

N∑
i=1

−1
2

(
yi − θ⊤

1 xi − θ2

σ

)2

− ln(σ
√

2π) (2.21)

= arg min
θ

1
N

N∑
i=1

(
yi − θ⊤

1 xi − θ2)2 , (2.22)

which shows (1) that the optimum is independent of σ, and (2) that finding θ∗

for this model is equivalent to minimizing the expected squared error between
ground-truth (yi) and predictions (θ⊤

1 xi + θ2), a common approach in regular
(non-probabilistic) supervised learning2. Figure 2.3b illustrates the result of
solving for θ∗, by plotting its mean as a function of the input feature.

The advantage with PSL is that we can now go further. Instead of having
a model with a fixed σ, we can use (2.9) to train it. In fact, it can even be
a function of the features (instead of being fixed). To exemplify, consider a
model of the form

fθ(y|x) = N (yi; θ⊤
1 xi + θ2, θ⊤

3 xi + θ4) , (2.23)

where both its mean and standard deviation are affine functions of the
input feature (with independent parameters). Training it by using SGD to
minimize (2.13) results in an uncertainty-aware model, illustrated in Fig. 2.3c.
The figure illustrates both the mean and the ±2σ region, and we can see that
the model learned that there is more uncertainty in the petal’s width when
its length is larger. Being uncertainty-aware makes the resulting model much
more useful to any downstream systems, which can now use the uncertainty
quantification to decide how to best handle the model’s predictions in each
case.

Classification
Classification is a fundamental task in machine learning that aims to learn the
relationship between input features x and an output variable y. In contrast to

2This equivalence also holds for nonlinear regression, when the model fθ mean is a
nonlinear function of the features.

22

2.6 Examples of Supervised Learning Tasks

regression, where the output variable is a continuous value, the output variable
in classification is categorical (can only take one of a predefined number of
values), and is usually referred to as the class of the input.

The primary goal of a classification model is to accurately predict the class
of its input based on the learned patterns from the labeled training data. The
input features, represented as a feature vector, can be either single or multi-
dimensional, depending on the nature of the data being analyzed. These
features are used to train the model to recognize patterns that are associated
with different classes.

As an illustration of a possible classification task, we will revisit the IRIS
dataset. This time we will attempt to use the petal length and width features
to predict the class of the Iris flower. Each of the 150 examples in the dataset
is annotated with the class of the flower, being either “Setosa”, “Virginica”,
or “Versicolor”. The classes of each example are illustrated in Fig. 2.4a, along
with the two features studied earlier. It is clear from the graph that the two
features hold significant importance in classifying the flowers accurately, even
if not perfectly. For brevity, in the equations we will represent each class as

(a) Classes for all 150 records in the
dataset, plotted against petal length
and width.

(b) Confusion matrix for trained model.

Figure 2.4: Classification example in the Iris flower dataset.

an integer, with Setosa, Virginica, and Versicolor corresponding to 0, 1, and
2, respectively. The first step for using PSL to address this task is to select a

23

Chapter 2 Machine Learning

model. For simplicity, we train a model of the form

fθ(y = i|x) = ezi∑2
j=2 ezj

, (2.24)

where each zi is computed as

zi = θ⊤
i,1x + θi,2 . (2.25)

That is, the predicted probability for y to have the value i (i.e., that the input
flower has class i) is the softmax of affine functions of the input features.
Note that now, in contrast to the regression example, x is 2-dimensional.
Hence, since we have three different classes, our parameter vector θ is 9-
dimensional: 6 parameters for the weights θi,1 ∈ R2 multiplying the features,
and 3 parameters for the constant offsets θi,2 ∈ R.

Similarly to the regression example, this model is trained by minimizing (2.13)
with the help of SGD. Doing so results in a model that takes a feature vector
x as input and outputs a probability mass function (pmf) over the three
possible classes for y. For example, according to this trained model, the class
pmf for the input vector x = (1.5, 0.5) (i.e., petal length of 1.5 and petal width
of 0.5) is (0.99, 0.01, 0.00), showing that the model is very certain that the
class for this input is Setosa (as one can see in Fig. 2.4a, all flowers have that
class in that region of the feature space). On the other hand, the predicted
class pmf for the input vector x = (5.0, 1.7) is (0.0, 0.51, 0.49), indicating that
the model is uncertain between classes Versicolor and Virginica.

To get a sense of how well the model performs on the entire dataset, we can
compare the most likely predicted class by the model (arg maxi fθ(y = i|x))
with the ground-truth label, for each of the 150 records in the dataset. One
way to illustrate the results obtained is by using a confusion matrix, as
depicted in Fig. 2.4b. This matrix presents a comparison between the classes
predicted by the model (shown on the x-axis) and the actual classes of each
record (shown on the y-axis). The number inside grid cell xy represents how
many dataset samples with class y were classified as x (e.g., 3 Versicolor flowers
were misclassified as Virginica). The figure demonstrates that all the flowers
from the Setosa species were correctly classified by the model, which is not
surprising considering that this class is easily distinguishable from the others
based on the two available features. Additionally, the Virginica and Versicolor
classes were mostly accurately predicted, with only a few exceptions that were
misclassified, corresponding to the points near a petal length of 5.

24

2.7 Generalization

Judging from how the classes are separated in Fig. 2.4a, and the fact that we
only used two of the four available features of the dataset, the model seems to
perform satisfactorily. However, if the objective behind developing this model
is to classify new, previously unseen flowers into one of the three categories
that have been trained, one should exercise caution. The problem is that we
have optimized the model only to be performant on the 150 samples of the
dataset. This does not guarantee that the model will be equally performant
on flowers outside the dataset, especially if they are from a very different
distribution than the one used to sample D. This challenge, referred to as
generalization, is a significant issue for practitioners, and various tools and
techniques have been developed to tackle it.

2.7 Generalization
The previous sections have explained how to train models fθ by minimizing a
distance function to a true conditional distribution fy|x. To do so, we rely on a
Monte-Carlo approximation to (2.7), so that we can use samples from a finite
dataset D to train the model. Doing so raises a problem: what guarantees
that minimizing the Monte-Carlo approximation will also minimize (2.7)?

This question highlights the primary difference between the field of
optimization and machine learning. In machine learning, practitioners are
typically interested in the performance of the model on new, previously
unseen samples (denoted test performance), not simply in its performance
on D (denoted training performance). In fact, training performance is only
useful as a proxy, because it is often impossible to directly optimize test
performance.

Evidently, the larger the number of samples N used, the better the Monte-
Carlo approximation will be, and the smaller the gap between training and
test performance. However, the field of statistical learning theory has studied
this problem for decades, and one of its most important conclusions is that
there is another important factor at play: the model’s capacity.

Informally speaking, a model’s capacity is a measure of how flexible the
model is, and hence how able it is to represent a wide variety of different
functions. For example, for binary classifier models, one way to quantify
their model capacity is via the Vapnik-Chervonenkis dimension [64]. This
dimension is defined as the largest possible number of points in feature space

25

Chapter 2 Machine Learning

ModelD fy|x

Training
performance

Test
performance

Generalization
gap

Decreases with N

Increases with
model capacity

Figure 2.5: Illustration of training (model applied to samples from the dataset D)
and test performance (model applied to new samples from fy|x). The
difference between these performances is the generalization gap, which
decreases with the number N of samples in D, and increases with the
model’s capacity.

that the classifier can label arbitrarily. That is, no matter the labels assigned
to each of the points, there is a parameter vector θ∗ that allows the model to
correctly classify all of them.

For all but trivial models, it is infeasible to compute their exact capacity.
Fortunately, an exact computation is often not needed, as there are simpler
takeaways from this concept that can be applied in practice. For example,
any model A that generalizes a model B (i.e., can represent any function
representable by B and more), will necessarily have higher capacity. Therefore,
increasing the dimensionality of θ usually increases the model’s capacity.

The most important results from statistical learning theory show that there
is an upper bound on the generalization gap (the gap between training and
test performance), and it depends both on the number of samples in the
training set and the model’s capacity [65]–[68]. The exact details are outside
the scope of this thesis, but the main results are: (1) increasing the number
of samples decreases the generalization gap (as mentioned previously), but
also that (2) increasing the model’s capacity increases the generalization gap.
Fig. 2.5 illustrates the performance gap and its dependencies.

This brings to light an important tradeoff. Models with too low capacity for

26

2.8 Review on the Transformer architecture

a given task will not be able to learn all the existing patterns in the training
dataset, and will therefore not be able to obtain good training performance,
a phenomenon referred to as underfitting. On the other hand, models with
too high capacity can achieve excellent training performance but might have
terrible testing performance, a phenomenon referred to as overfitting. This
balancing between under- and overfitting a model is a complex optimization
problem, as one very rarely knows beforehand the optimal model capacity for
a given task.

There are still missing pieces in the theory to completely explain what is
seen in practice, however. Modern deep learning provides ample evidence of
extremely high-capacity models being able to generalize well to the testing
set, which seems to go against theory [69], [70]. Much work is currently
being devoted to try and explain this behavior with new theories of learning,
see [71]–[74] for examples.

Fortunately, all the papers in this thesis tackle the task of multi-object
tracking in the model-based setting. In it, we have accurate and tractable
models of the object’s dynamics and measurement functions available, from
which we can sample a virtually unlimited amount of training samples. By
increasing the size of the dataset, we can keep the generalization gap small
even when training modern deep-learning models with enormous capacity
(millions of parameters), such as models based on the Transformer [13]
architecture.

2.8 Review on the Transformer architecture
Due to the recent success of the Transformer architecture proposed in [13]
for solving complex sequence-to-sequence learning tasks [75]–[77], parts of
this architecture are used in papers A, C, and D included in this thesis.
To familiarize the reader with this deep learning architecture, this section
provides a background review of its most important parts.

Overall Architecture
The Transformer architecture proposed in [13] is comprised of two main
components: an encoder and a decoder, as illustrated in Fig. 2.6. The
encoder is in charge of processing an input sequence z1:n so that each element

27

Chapter 2 Machine Learning

is transformed into a new representation that encodes both its value and
its relationship to other elements of the sequence. This is accomplished
primarily by the use of a special type of layer called self-attention, and the
new sequence is referred to as the embeddings e1:n of the input sequence,
with ei ∈ Rd, i ∈ Nn.

The decoder part of the architecture then processes these embeddings
(using slightly modified self-attention layers) into an output sequence y1:k,
either autoregressively [13] or using learned input queries o1:k [14]. These
components together make for a powerful learnable mapping between an
input sequence z1:n and an output sequence y1:k, typically trained using
stochastic gradient descent on a loss function L(y1:k, x1:k) that compares the
network predictions with a ground-truth sequence x1:k.

Multi-head Self-attention Layer
Before describing the encoder and decoder modules, we start with a
description of their main building block: the self-attention layer. This layer
processes an input sequence a1:n into an output b1:n, starting by computing
three different linear transformations of the input:

Q = WQA, K = WKA, V = WV A , (2.26)

where A =
[
a1, . . . , an

]
∈ Rd×n is the matrix containing each of the ai vectors

as columns, and the matrices Q, K, V are referred to as queries, keys, and
values, respectively. The matrices WQ, WK , WV ∈ Rd×d are the learnable
parameters of the self-attention layer. The output sequence b1:n is then
computed as

B = V · Softmax-c
(

K√
d

)
, (2.27)

where B =
[
b1, . . . , bn

]
∈ Rd×n and Softmax-c is the column-wise application

of the Softmax function, defined as

[Softmax-c(Z)]i,j = ezi,j∑d
k=1 ezk,j

; i, j ∈ Nn ,

for Z ∈ Rn×n, where zi,j is the element of Z on row i, column j. Because
of the structure of the self-attention layer, each output bi directly depends on
all inner products of the type a⊤

i Waj , for j ∈ Nn, with learnable W , between

28

2.8 Review on the Transformer architecture

the elements of the input sequence. This allows for the potential to learn an
improved representation of each ai that takes into account its relationship to
all the other elements of the sequence. Compound applications of these layers
can then result in complex representations of the input sequence that take
into account more complicated relationships between all the elements. This
property is very important in MOT, allowing the model to learn and exploit
complicated, long-range temporal patterns in the sequence of measurements.

In practice, most DL architectures use several self-attention layers in parallel
and then combine the outputs, referring to the entire computation as a multi-
head self-attention layer (shown in green in Fig. 2.6). Specifically, A is fed
to nh different self-attention layers (with separate learnable parameters) in
parallel, generating nh different outputs B1, . . . , Bnh

, all ∈ Rd×n. The final
output B is then computed by vertically stacking the results and applying a
linear transformation to reduce the dimensionality back to Rd×n:

B = W 0

 B1
...

Bnh

 , (2.28)

where W 0 ∈ Rd×dnn is a learnable parameter of the multi-head self-
attention layer. Finally, B is converted back to a sequence b1:n =
MultiHeadAttention(a1:n).

Transformer Encoder
The Transformer encoder is the module in charge of processing the input
sequence z1:n into embeddings e1:n containing contextual information about
all input elements. This module is built from N “encoder blocks” in series, as
shown in the left of Fig. 2.6. The output for encoder block l ∈ NN is computed
as

z̃
(l−1)
1:n = z

(l−1)
1:n + qe

1:n , (2.29)

t
(l)
1:n = MultiHeadAttention(z̃(l−1)

1:n) , (2.30)

t̃
(l)
1:n = LayerNorm(z̃(l−1)

1:n + t
(l)
1:n) , (2.31)

z
(l)
1:n = LayerNorm(t̃(l)

1:n + FFN(t̃(l)
1:n)) , (2.32)

where MultiHeadAttention is a multi-head self-attention layer, FFN is a fully-
connected feedforward neural network applied to each element of the input

29

Chapter 2 Machine Learning

sequence separately, LayerNorm is a Layer Normalization layer (introduced
in [78]), and z

(l)
1:n is the input sequence after being processed by l encoder

blocks. For instance, z
(0)
1:n is the original input sequence z1:n, and z

(N)
1:n is

the output of the encoder module, also denoted e1:n. Note that both multi-
head self-attention and layer normalization preserve the size of the input, so
z

(l)
1:n ∈ Rdz , for l ∈ NN

Importantly, qe
1:n in (2.29), referred to as the positional encoding for

the input sequence, is added to the input of every encoder block (as done
in [14]). This is computed as qe

i = fe
p (i), where f : Z → Rdz , and fe

p

can either be fixed [13] or learnable [14]. Without it, the encoder module
becomes permutation-equivariant3, which is undesirable in many contexts.
For instance, when processing text with Transformer architectures the order
of the elements in the input sequence is related to their location in the
sentence, essential information for correctly solving language tasks.

Transformer Decoder
The decoder module is in charge of using the embeddings e1:n computed by the
encoder to predict the output sequence y1:k. Several variants of this module
have been proposed [13], [79], [80], each with different pros and cons. The
decoder used for papers A and C is based on [14] (illustrated on the right
part of Fig. 2.6), due to its speed and capacity to generate outputs in parallel,
instead of autoregressively. Similarly to the encoder module, the decoder is
comprised of M “decoder blocks”, where the output for decoder block l ∈ NM

is computed as

õ
(l−1)
1:k = o

(l−1)
1:k + qd

1:k , (2.33)

r
(l)
1:k = MultiHeadAttention(õ(l−1)

1:k) , (2.34)

r̃
(l)
1:k = LayerNorm(õ(l−1)

1:k + r
(l)
1:k) , (2.35)

ẽ
(l)
1:k = MultiHeadCrossAttention(r̃(l)

1:k, e1:n) , (2.36)

ē
(l)
1:k = LayerNorm(r̃(l)

1:k + ẽ
(l)
1:k)) , (2.37)

o
(l)
1:k = LayerNorm(ē(l)

1:k + FFN(ē(l)
1:k) , (2.38)

where MultiHeadCrossAttention is a regular multi-head self-attention layer as
described in Section 2.8, with the difference that the matrices K, Q, and V in

3A function f is equivariant to a transformation g iff f(g(x)) = g(f(x)).

30

2.8 Review on the Transformer architecture

(2.26) are respectively computed as WKe1:n, WQr̃
(l)
1:k, and WV e1:n (all of the

subsequent self-attention computations are the same).
The first encoder block receives the object queries o1:k, which are a sequence

of learnable vectors trained alongside other model parameters. After training,
each oi ∈ Rdo , i ∈ Nk, can potentially learn to focus on specific parts of the
embeddings e1:n that aid in predicting yi. Similar to the encoder module, o

(l)
1:k

represents the object queries after passing through l decoder blocks. Here,
o

(M)
1:k refers to the output of the decoder module y1:k. To ensure that the

decoder module is not permutation-equivariant, a positional encoding qd
1:k is

added to the input of each layer, computed as qd
i = fd

p (i).

31

Chapter 2 Machine Learning

×M

Add & Norm

Multi-head
attention

Multi-head
cross-attention

Add & Norm

FFN

Add & Norm

o1:k

y1:k

qe
1:n qd

1:k

Multi-head
attention

Add & Norm

FFN

N×

z1:n

e1:n

Add & Norm

Figure 2.6: Simplified diagram illustrating the Transformer architecture. Encoder
on the left, containing N encoder blocks, processes the input sequence
z1:n into embeddings e1:n. Decoder on the right, containing M decoder
blocks, uses the embeddings e1:n produced by the encoder together with
the object queries o1:k to predict the output sequence y1:k. FFN stands
for fully-connected feedforward neural network.

32

CHAPTER 3

Bayesian Inference

This chapter provides a background review of Bayesian inference methods.
In specific, the general equation for Bayesian inference in state-space models
is presented in Section 3.2, along with considerations about its tractability.
Sections 3.3 and 3.4 then respectively describe the sub-problems of filtering
and smoothing.

3.1 Introduction
Bayesian inference is a class of methods that reason about how to update the
probability of a hypothesis H given evidence E. In specific, all algorithms in
this class update the hypothesis probability according to Bayes’ theorem:

P (H|E) = P (E|H)P (H)
P (E) , (3.1)

where P (E|H) is the probability of observing evidence E assuming hypothesis
H is true (also denoted likelihood), P (E) is the probability of the evidence
(regardless of whether or not H is true), and P (H) and P (H|E) are
respectively the prior (before observing E) and posterior (after observing E)

33

Chapter 3 Bayesian Inference

probabilities of the hypothesis.
Due to their generality and principled way of dealing with uncertainties,

Bayesian inference methods have numerous applications, ranging from
localization systems such as GPS [81], to estimation of hidden parameters in
biological processes [82], machine learning [83], and multi-object tracking[8]–
[10].

Although all methods in this class use Bayes’ theorem for updating beliefs,
they can be quite distinct depending on the structure of the hypotheses and
evidence considered. For example, consider a Bayesian inference algorithm
for estimating how many people are currently infected by a virus given data
about hospitalizations, and one for estimating the position of a car given a
GPS signal. The first algorithm could use a compartmental epidemiological
model such as SIR [84] together with a model of how likely it is for an infected
person to be hospitalized to reason about the likelihood of a hypothesis and
the probability of observing a certain evidence. On the other hand, the second
algorithm would likely use a model of how GPS communication works together
with a model for the car dynamics to do the same. Although both methods
use Bayes’ theorem to update their hypothesis probabilities, they rely on very
different models and tools to do so and therefore differ substantially in their
implementation.

3.2 Bayesian Inference in State-Space Models
The papers in this thesis focus on the problem of performing Bayesian
inference on state-space models. A state-space model (SSM) is a stochastic
process composed of a sequence of random states x1:T ∈ Rdx×T and
measurements y1:T ∈ Rdy×T where:

1. The sequence x1:T satisfies the Markovian property:

fxt+1|x1:t(xt+1|x1:t) = fxt+1|xt
(xt+1|xt), ∀t ∈ NT −1 . (3.2)

2. The measurements are conditionally independent on all previous states
given knowledge about the current state:

fyt|x1:t(yt|x1:t) = fyt|xt
(yt|xt), ∀t ∈ NT . (3.3)

In such a model, the states x1:T are the quantity of interest, but they cannot
be directly observed. Instead, one has to use the information from the

34

3.2 Bayesian Inference in State-Space Models

µt−1 µt µt+1

πt−1 πt

yt+1ytyt−1

xt−1 xt xt+1

Figure 3.1: Graph depicting a state-space model and the conditional
independencies between states and measurements.

measurements y1:T to infer the conditional distribution of x1:T . A visual
depiction of an SSM model is shown in Fig. 3.1. The symbols πt and µt

denote respectively the motion model and the measurement model of the
SSM for time step t, defined as the following conditional distributions

πt(xt+1|xt)
.= fxt+1|xt

(xt+1|xt) , (3.4)
µt(yt|xt)

.= fyt|xt
(yt|xt) . (3.5)

State-space models are a common representation of systems for which
we cannot directly observe the quantity of interest. For instance, in an
autonomous driving setting, we are often interested in the kinematic state
of the car (position, velocity, heading, etc), but we cannot directly measure
these variables. Instead, we rely on measurement devices that can give
us partial, noisy information about the kinematic state (such as the car’s
odometer, a GPS signal, etc). An SSM can be used to model this scenario
by defining the kinematic state of the car at time t as the state xt, and the
signals from the measurement devices as yt.

Given only y1:T , the most complete description of x1:T is the conditional
distribution fx1:T |y1:T . It is straightforward to express this distribution for
any sequence x1:T and y1:T using Bayes’ theorem

fx1:T |y1:T (x1:T |y1:T) =
fy1:T |x1:T (y1:T |x1:T)fx1:T (x1:T)

fy1:T (y1:T) . (3.6)

Although the Markovian properties stated earlier can simplify this equation,
it has two unavoidable problems. First, each time a new measurement yt

35

Chapter 3 Bayesian Inference

is obtained, the entire posterior has to be recomputed. This is problematic
for online applications which receive new measurements and must provide
state estimates at each time step. Second, the dimensionality of the posterior
fx1:T |y1:T increases with the number of time steps, and consequently so does
the cost of computing it. Hence, no matter how much computational power
is available, (3.6) will eventually become intractable. Unless additional
restrictions or information are available, there is no way to sidestep this
problem, and approximations are required.

Fortunately, there are simpler variations of the problem posed above
which have efficient closed-form solutions and are useful for many practical
applications. This thesis is concerned with two such variations: Bayesian
filtering and Bayesian smoothing. For both of these variations, we let go
of the requirement of computing the joint posterior over all states x1:T
and instead settle for computing the marginals at each time step. Because
of this, we can derive algorithms that require only a constant number of
computations per step.

3.3 Bayesian Filtering
Bayesian filtering is the task of estimating the distribution fxt|y1:t , t ∈ NT .
Compared to the joint posterior over all states defined in (3.6), this
distribution does not contain all the information about the sequence x1:T .
For example, it does not contain enough information to compute probabilities
about relations between different states, such as P (xt > xt−1). However, such
considerations are not of practical interest in many applications, and this
form avoids one of the challenges discussed previously in computing (3.6).

The estimation of fxt|y1:t can be efficiently solved by using a recursion
with two steps, denoted prediction and update. These steps alternate between
computing the prior and posterior state distributions at each time step.
The prior and posterior states distributions at time t, denoted gp

t and gu
t

respectively, are defined as

gp
t (xt|y1:t−1) .= fxt|y1:t−1(xt|y1:t−1) , (3.7)
gu

t (xt|y1:t)
.= fxt|y1:t(xt|y1:t) . (3.8)

In the prediction step, we compute the prior distribution of xt assuming we
have access to the posterior distribution of xt−1. This is done by using the

36

3.3 Bayesian Filtering

Chapman-Kolmogorov equation

gp
t (xt|y1:t−1)︸ ︷︷ ︸
Prior of xt

=
∫

πt−1(xt|xt−1) gu
t−1(xt−1|y1:t−1)︸ ︷︷ ︸
Posterior of xt−1

dxt−1 . (3.9)

The update step then uses Bayes’ theorem to compute the posterior
distribution of xt from its prior distribution

gp
t (xt|y1:t)︸ ︷︷ ︸

Posterior of xt

= µt(yt|xt)
Prior of xt︷ ︸︸ ︷

gp
t (xt|y1:t−1)∫

µt(yt|x′) gp
t (x′|y1:t−1)︸ ︷︷ ︸
Prior of xt

dx′ . (3.10)

Starting from a prior fx1 , these two steps provide a closed-form solution
to the marginal fxt|y1:t for any t. More importantly, this form does not have
the first problem encountered when computing (3.6): the need to recompute
the entire posterior whenever a new measurement arrives. By using eqs. (3.9)
and (3.10), when a new measurement yt+1 arrives we only need to compute
one new prediction and update step; the ones for estimating the marginal of
xt+1. The marginals for all other states need no recomputing.

However, the second problem, intractability, is still present in this
formulation. For nontrivial choices of the distribution families of the prior
fx1 , the measurement model µt, and the motion model πt, the number of
parameters necessary to represent fxt|y1:t increases unboundedly with t,
eventually making it intractable to compute the posterior (as the complexity
of the prediction/update steps is linked to the number of parameters in the
posterior for the previous time-step). One way to deal with this is by adding
certain restrictions on the distribution families used in the SSM.

Linear and Gaussian Models
One such restriction is considering only SSMs where the prior for x1 is
Gaussian, and both the motion process and measurement process are
Gaussian densities with parameters that are linear functions of the state xt:

fx1(x1) = N (x1; x̄1|1, P1|1) , (3.11)
πt(xt+1|xt) = N (xt+1; Fxt, Q) , (3.12)

µt(yt|xt) = N (yt; Hxt; R) , (3.13)

37

Chapter 3 Bayesian Inference

where x̄1|1 and P1|1 are known, F ∈ Rdx×dx , H ∈ Rdy×dx are respectively
referred to as the transition and observation matrices, and Q ∈ Rdx×dx ,
R ∈ Rdy×dy are the covariance matrices of the process and measurement
noises. Under these assumptions, the prediction and update steps simplify
considerably, yielding a closed-form solution referred to as the Kalman
Filter [85].

In the Kalman Filter, both the prior and the posterior densities of xt are
Gaussian

fxt|y1:t−1(xt|y1:t−1) = N (xt; x̄t|t−1, Pt|t−1) , (3.14)
fxt|y1:t(xt|y1:t) = N (xt; x̄t|t, Pt|t) , (3.15)

where x̄t|t−1 ∈ Rdx , Pt|t−1 ∈ Rdx×dx are the mean and covariance parameters
of the prior for xt, and x̄t|t ∈ Rdx , Pt|t ∈ Rdx×dx the parameters for its
posterior. The prediction step then amounts to computing

x̄t|t−1 = Fx̄t−1|t−1 , (3.16)
Pt|t−1 = FPt−1|t−1F T + Q , (3.17)

and the update step to computing

x̄t|t = x̄t|t−1 + Kt(yt − ȳt) , (3.18)
Pt|t = (I − KtHt)Pt|t−1 , (3.19)

where ȳt is the predicted measurement

ȳt = Hx̄t|t−1 , (3.20)

Kt is the kalmain gain
Kt = Pt|t−1HT S−1

t , (3.21)

and St is the innovation

St = HPt|t−1HT + R . (3.22)

A big advantage of this form over equations (3.9) and (3.10) is that the
number of parameters required to specify the posterior at time-step t is always
constant. The posterior only has two parameters, of fixed size: x̄t|t and Pt|t.
This provides an efficient way to compute the exact posterior fxt|y1:t even for
long sequences y1:t.

38

3.3 Bayesian Filtering

Nonlinear Models

In certain applications, it so happens that linear motion and measurement
models are not sufficient for accurately describing the phenomenon of
interest, and nonlinear models must be used. However, it is often the case
that the distributions of these nonlinear models can be reasonably well
approximated with Gaussian distributions. When such approximations are
accurate, a common approach for handling the nonlinearities is to first
obtain linear models from the nonlinear ones, and then apply the Kalman
filtering equations for linear Gaussian systems. There are many approaches
for obtaining a linearized version of the models, based on tools such as
the unscented transform, sigma-point methods, statistical linearization, and
more [85].

One of the simplest and most commonly used methods is the extended
Kalman filter (EKF). The EKF uses a 1st-order Taylor expansion for
linearizing the motion and measurement models. For SSMs with additive
Gaussian noise of the form

πt(xt+1|xt) = N (xt+1; f(xt), Q) , (3.23)
µt(yt|xt) = N (yt; h(xt), R) , (3.24)

where f and h are differentiable, the prediction step for the EKF is obtained
by linearizing f around the posterior mean for xt−1, resulting in the equations

x̄t|t−1 = f(x̄t−1|t−1) , (3.25)
Pt|t−1 = F (x̄t−1|t−1)Pt−1|t−1F (x̄t−1|t−1)T + Q , (3.26)

where F (x̄t−1|t−1) is the jacobian of f , evaluated at the posterior mean of
xt−1

F (x̄t−1|t−1) = ∂f

∂x

∣∣∣∣
x̄t−1|t−1

. (3.27)

The update equations are similarly derived by linearizing h around the prior

39

Chapter 3 Bayesian Inference

mean for xt

x̄t|t = x̄t|t−1 + Kt(yt − ȳt) , (3.28)
pt|t = (I − KtH(x̄t|t−1))Pt|t−1 , (3.29)
ȳt = h(x̄t|t−1) , (3.30)

Kt = Pt|t−1H(x̄t|t−1)T S−1
t , (3.31)

St = H(x̄t|t−1)Pt|t−1H(x̄t|t−1)T + R , (3.32)

where H(x̄t|t−1) is the jacobian of h, evaluated at the prior mean of xt

H(x̄t|t−1) = ∂h

∂x

∣∣∣∣
x̄t|t−1

. (3.33)

These equations can then be iteratively applied to approximate fxt|y1:t for all
t. As before, the arrival of new measurements only requires one additional
prediction and update step to be computed, and the computational
complexity for each step is the same regardless of t. Compared to alternatives
for obtaining linearized models, the EKF is easier to understand and
implement, and often delivers acceptable performance, making it the de-facto
method for handling nonlinear SSMs.

3.4 Bayesian Smoothing
Bayesian filtering is a powerful tool when we are interested in the marginals
for each xt and only have the y1:t measurements available. This is the
common scenario for online applications, which at each time step receive
a new measurement and should compute a new updated belief about the
current state of the system. In some applications, however, knowledge about
measurements further in time than xt is available. Bayesian smoothing is
a different variation of the joint estimation problem of (3.6) where we use
measurements both up until and after xt to update our belief about it.

Concretely, Bayesian smoothing is the task of computing fxt|y1:T where
T > t. That is, the distribution of xt conditioned on all the measurements
from the first time-step up until the T -th time-step, which occurs after the
time-step we are estimating the state for. This can be solved by using the

40

3.4 Bayesian Smoothing

backward recursive equation

fxt|y1:T (xt|y1:T) = fxt|y1:t(xt|y1:t)
∫

πt(x′|xt)fxt+1|y1:T (x′|y1:T)
fxt+1|y1:t(x′|y1:t)

dx′ . (3.34)

Before starting the recursion, Bayesian filtering is performed from time-step 1
to1 T + 1, computing fxt|y1:t (in the update step for time t) and fxt+1|y1:t (in
the prediction step of time-step t + 1). Then the equation (3.34) is iteratively
computed backwards in time, from time-step T to time-step t.

Linear and Gaussian Models
As for Bayesian filtering, the Bayesian smoothing equation also simplifies
considerably when dealing with linear and Gaussian SSMs with the structure
as in (3.11) to (3.13). The recursive equation (3.34) simplifies to a closed-form
solution named the Rauch-Tung-Striebel smoother (RTSS)

Gt = Pt|tF
T P −1

t+1|t , (3.35)

x̄t|T = x̄t|t + Gt(x̄t+1|T − x̄t+1|t) , (3.36)
Pt|T = Pt|t + Gt(Pt+1|T − Pt+1|t))GT

t , (3.37)

where the marginal at each time-step is Gaussian, fxt|y1:T = N (xt; x̄t|T , Pt|T),
and Gt ∈ Rdx×dx is the smoothing gain.

Nonlinear Models
Similarly to Bayesian filtering, although there are efficient closed-form
solutions for the linear and Gaussian case, certain applications require the
use of nonlinear models. The usual approach here is also to first obtain
linear models from the nonlinear ones, via any of the techniques mentioned
in Section 3.3.

To exemplify, consider again the nonlinear SSM defined in (3.23)-(3.24).
One approach for performing Bayesian smoothing in this case is to linearize
the motion model f around the posterior marginal for xt. The resulting
equations define the extended RTS smoother (ERTSS). The only difference
between it and equations (3.35)-(3.37) is in the computation of the smoothing

1The last update step is not needed for solving the recursion.

41

Chapter 3 Bayesian Inference

gain, which becomes
Gt = Pt|tF (x̄t|t)T P −1

t+1|t , (3.38)

where F (x̄t|t) is the Jacobian of f evaluated at the posterior mean of xt

F (x̄t|t) = ∂f

∂x

∣∣∣∣
x̄t|t

. (3.39)

42

CHAPTER 4

Random Finite Sets

This chapter provides an introduction to the framework of random finite sets.
It starts with an introduction to give readers intuition about what RFSs are
and why they are useful, and then details certain important operations and
useful types of RFSs that will be used in this thesis.

4.1 Introduction
In some applications, it is necessary to reason about sets of entities, where
there are uncertainties about both their cardinalities and the elements inside
them. To give an example, consider the task of object detection in computer
vision. Given an image, the algorithm is tasked with predicting bounding
boxes that locate objects of interest. An example of such a task is shown in
Fig. 4.1, where the goal is to locate all people in the image.

We are not given any information about: (1) how many people are present
in the image, and (2) where they are located. The figure shows predictions
from two fictional algorithms, in blue and in red. Note how both the number
of bounding boxes and their locations/extent are different for each algorithm.
Additionally, the task requires no ordering of the bounding boxes. Hence, the

43

Chapter 4 Random Finite Sets

Figure 4.1: An object detection task. Algorithms are presented such an image and
must predict bounding boxes determining the location and extent of
objects of interest, in this case people. In here, possible (imperfect)
predictions for two algorithms are shown in blue and red. Note how
different predictions might vary in the number of bounding boxes but
also their locations/extent.

44

4.2 Definition

most natural way to model the required output for this task is with a set B. If
we are to develop algorithms that reason probabilistically about B, we need a
principled manner for dealing with random variables with outcomes that are
sets. The framework of random finite sets accomplishes exactly this.

4.2 Definition
Random finite sets are a mathematical framework that extends the notion of
scalar/vector random variables to sets. These objects obey most of the same
laws of probability that regular random variables do, with the difference that
their outcomes are sets, instead of scalar values or vectors. More formally, a
random finite set XXX is a random variable on the set F(Y) (the set of all finite
subsets of Y), where Y is any Hausdorff, locally compact, and completely
separable topological space.

For example, if Y = R, the resulting RFS has outcomes which are sets of
real numbers, such as {1, π, −3.1}, {7, 11, 13, 17}, or {}. Note that there is
uncertainty in both the cardinality of the set and its constituents. If Y = R3

instead, possible outcomes could be {[0, 0, 0], [8.8, −3, 0]}, {[0, π, π2]}, or {}.
This framework is very useful for, among others, the multi-object tracking

field, as it provides a convenient and concise way to describe entities with
uncertain cardinality and elements, e.g., the set of objects alive at the current
time, or the set of measurements obtained in the previous time-step.

4.3 Random Finite Set Statistics
As mentioned previously, RFSs are similar to regular scalar/vector random
variables, but there are important differences. This section reviews some of
the most important differences and also provides definitions that will be used
in the rest of the thesis.

Set Integral
Given a function f : F(Rn) → R, its set integral is defined as∫

f(X)δX =
∞∑

i=0

1
i!

∫
· · ·
∫

f
(
{x1, . . . , xi}

)
dx1 · · · dxi . (4.1)

45

Chapter 4 Random Finite Sets

Intuitively, the set integral computes the area under f
(
{x1, . . . , xi}

)
for all

possible values of x1, . . . , xi (similar to a regular integral for f : Rn → R).
However, it does so not only for a single cardinality i, but instead computes
the area under f for all possible cardinalities i ∈ N. The sum of all these
areas, each divided by i!, is then the final value of the set integral.

The division by i! is needed due to the order-invariance of sets, to avoid
summing duplicate areas. For instance, for i = 2, the integral∫∫

f
(
{x1, x2}

)
dx1dx2 , (4.2)

evaluates f both for (x1 = a, x2 = b) and (x1 = b, x2 = a), for a, b ∈ R.
However, both possibilities result in the same set {a, b}, so we should divide
the computed area by 2 to avoid counting duplicates like these. In general,
for i variables, we can permute them in i! different ways that all result in the
same set, which justifies the division by i! in the set integral.

Multi-Object Densities
An RFS density, often denoted multi-object density in the MOT literature, is
a function f : F(Y) → R+, such that∫

f(X)δX = 1 . (4.3)

We will denote the multi-object density for an RFS XXX using subscripts: fXXX.
Such densities, similar to the case of regular random variables, can be used to
completely specify an RFS. For instance, the density

fXXX(X) =


0.3 if X = {π} ,

0.7 if X = {−1, 0, 1} ,

0 otherwise.
(4.4)

specifies an RFS XXX on F(R) which has only two possible outcomes: {π} (30%
of the time) and {−1, 0, 1} (70% of the time). More flexible definitions of
fXXX will give rise to more useful RFS types. Several examples are given in
Section 4.4.

46

4.4 Important Examples

Cardinality Distribution
The cardinality of a set X, denoted |X| is defined as the number of elements
inside the set. For example, |{1, 0, π}| = 3. For an RFS XXX, its cardinality is a
random variable on N, with distribution

P
(
|XXX| = n

)
= 1

n!

∫
· · ·
∫

fXXX
(
{x1, . . . , xn}

)
dx1 · · · dxn , (4.5)

where fXXX is the multi-object density of XXX. Intuitively, summing up all possible
cardinalities results in

∞∑
n=0

P (|X| = n) =
∞∑

n=0

1
n!

∫
· · ·
∫

fXXX
(
{x1, . . . , xn}

)
dx1 · · · dxn (4.6)

=
∫

fXXX(X)δX , (4.7)

which equals 1, since f is a multi-object density.

Union of RFSs
The RFS density fYYY of an RFS YYY, defined as YYY .= XXX1

⋃
· · ·
⋃
XXXn, can be

computed as

fYYY(Y) =
∑

Y=X1⊎···⊎Xn

fXXX1,··· ,XXXn
(X1, · · · ,Xn) , (4.8)

where fXXX1,··· ,XXXn
is the joint RFS density of XXX1, . . . ,XXXn. The symbol ⊎ denotes

disjoint union: the summation is over all mutually disjoint (including empty)
subsets X1, . . . ,Xn whose union forms Y. In the case where all XXXi are
independent, this simplifies to

fYYY(Y) =
∑

Y=X1⊎···⊎Xn

n∏
i=1

fXXXi
(Xi) . (4.9)

4.4 Important Examples
This section reviews certain important types of RFS that are used throughout
this thesis.

47

Chapter 4 Random Finite Sets

Bernoulli RFS
A Bernoulli RFS is an RFS BBB on F(Y) with multi-object density given by
fBBB(B) = B(B; θ), where B(B; θ) is shorthand for

B(B; θ) .=


1 − r if B = ∅ ,

rp(b) if B = {b} and b ∈ Y ,

0 otherwise,
(4.10)

and θ = (r, p) is the tuple containing the parameters to completely specify
BBB. The parameter r ∈ [0, 1] is the existence probability of BBB, and p(·) is a
probability density with support on Y. To illustrate, a Bernoulli RFS with
density

B (· ; (0.5, N (· ; 0, 1)))
has possible outcomes such as {}, {3}, and {−0.2} (and its cardinality is
always at most 1).

Multi-Bernoulli RFS
A multi-Bernoulli (MB) RFS YYY on F(Y) is the union of n independent
Bernoulli RFSs XXXi on F(Y), i ∈ Nn. Its multi-object density fYYY can be
trivially computed by applying (4.9)

fYYY(Y) =
∑

Y=X1⊎···⊎Xn

n∏
i=1

B(Xi; θi) , (4.11)

which will be abbreviated as

fYYY(Y) = MB(Y; θ) , (4.12)

where θ
.= {θi}n

i=1 is the set containing the parameters that completely specify
YYY, and θi denotes the parameters for the i-th Bernoulli component.

In contrast to Bernoulli RFSs, multi-Bernoulli RFSs have a more flexible
cardinality distribution: an outcome Y from an RFS YYY with n components
can have any cardinality from zero to n. To exemplify, an RFS with density
MB

(
· ; {θ1, θ2}

)
, where

θ1 = (0.5, N (· ; 0, 1)) ,

θ2 = (0.9, N (· ; 10, 3)) ,

has outcomes such as {}, {−0.8}, {1.1, 10.9}, and {9}.

48

4.4 Important Examples

Multi-Bernoulli Mixture RFS
A multi-Bernoulli mixture (MBM) RFS MMM on F(Y) is a weighted sum of
m MB RFSs {YYY1, . . . ,YYYm} on F(Y). Its multi-object density fMMM is directly
computed by weighing the densities for each MB component

fMMM(M) =
m∑

i=1
wi · MB(M; θi) , (4.13)

which will be abbreviated as

fMMM(M) = MBM(M; θ) , (4.14)

where θ
.= {(wi, θi)}m

i=1 are the parameters that completely specify the multi-
Bernoulli mixture. The parameters {wi}m

i=1 are the non-negative weights
for each mixture component and sum to 1. Additionally, θi denotes the
parameters (existence probability and density for each Bernoulli component)
for the i-th multi-Bernoulli mixture component.

Poisson RFS
A Poisson RFS PPP on F(Y) is an RFS with multi-object density of the form

fPPP(P) = e−λλ|P|
∏
x∈P

p(x) , (4.15)

which will be abbreviated as

fPPP(P) = P(P; θ) , (4.16)

where θ
.= (λ, p) are the parameters that fully specify the Poisson RFS PPP,

where λ ∈ R+
0 and p is a density on Y. The name for this type of RFS comes

from its cardinality distribution

P (|PPP| = n) = 1
n!

∫
· · ·
∫

fPPP
(
{x1, . . . , xn}

)
dx1 · · · dxn (4.17)

= e−λλn

n! , (4.18)

which is Poisson distributed with parameter λ. This gives an intuitive
interpretation to a Poisson RFS: a random set with Poisson-distributed
cardinality, where each element is independently sampled from p(·).

49

Chapter 4 Random Finite Sets

Poisson Multi-Bernoulli Mixture RFS
The last RFS density to be defined in this thesis is the Poisson multi-Bernoulli
mixture (PMBM). A PMBM RFS XXX on F(Y) is the union of a Poisson RFS
PPP and a multi-Bernoulli mixture RFS MMM. Its RFS density can be computed
directly from (4.9), resulting in

fXXX(X) =
∑

X=P⊎M
P(P; θP) · MBM(M; θMBM) , (4.19)

which will be abbreviated as

fXXX(X) = PMBM(X; θ) , (4.20)

where θ
.= (θP, θMBM) are the parameters that fully specify the PMBM RFS

XXX: θP, the Poisson component parameters, and θMBM, the parameters for the
multi-Bernoulli mixture component. The main importance of this RFS family
is its multi-object conjugacy properties, discussed in detail in Section 5.3.

50

CHAPTER 5

Model-Based Multi-Object Tracking

Multi-object tracking (MOT) is the problem of recursively estimating the
state of an unknown number of objects, based on a sequence of noisy
sensor measurements. Methods capable of solving this problem are of high
importance to a diverse set of applications, such as autonomous driving [2],
[3], pedestrian tracking [1], tracking animal behavior [4], [5], military
applications [6], sports players tracking [7], to cite a few.

Obtaining good performance in multi-object tracking tasks is challenging
because of multiple reasons. First, the number of objects is unknown and may
vary over time, as objects can enter and leave the field of view of the sensor.
Second, objects may be missed by the sensor at any given time, and false
measurements may be generated due to sensor noise or extraneous objects
appearing in the field of view. Third, the correspondence between objects and
measurements is unknown, as measurements do not contain any information
about which was their originating object.

The MOT domain can be broadly classified into two categories: model-free
and model-based. The primary emphasis of this thesis centers around
model-based MOT, which specifically pertains to situations where accurate
and tractable environment models are available for methods to leverage.

51

Chapter 5 Model-Based Multi-Object Tracking

The following chapter provides a review of model-based MOT. It starts
by defining what problem is to be solved, and under which conditions, in
Sections 5.1 and 5.2. This is followed by descriptions of two important
conjugate priors and corresponding practical implementations in Section 5.3.
It then provides information on how to extend MOT to handle trajectories
in 5.4, and finishes with a brief description of two important MOT metrics
for comparing performance in Section 5.5.

5.1 Problem Statement
The set of states of the objects present at time-step t is denoted
XXXt = {x1, . . . , xnt}, where xi ∈ Rdx , i ∈ Nnt

. The set of measurements
obtained in this same time-step is denoted ZZZt = {z1, . . . , zmt}, where
zi ∈ Rdz , i ∈ Nmt . Since the constituents and cardinality for both of these
sets are random, they are modeled as RFSs. The task of multi-object tracking
is to estimate the multi-object density fXXXt|ZZZ1:t(·|Z1:t) given a sequence of
measurements sets Z1:t.

For conciseness, we define shorthands for the predicted multi-object
posterior

gp
t (A|B1:t−1) .= fXXXt|ZZZ1:t−1(A|B1:t−1) , (5.1)

and the updated multi-object posterior

gu
t (A|B1:t)

.= fXXXt|ZZZ1:t(A|B1:t) . (5.2)

Similarly to Chapter 3, the estimation of the multi-object density
gu

t (Xt|Z1:t) for any set Xt can be performed by recursively computing
alternating steps of prediction and update:

gp
t (Xt|Z1:t−1) =

∫
πt(Xt|Xt−1)gu

t−1(Xt−1|Z1:t−1)δXt−1 , (5.3)

gu
t (Xt|Z1:t) = µt(Zt|Xt)gp

t (Xt|Z1:t−1)∫
µt(Zt|X′)gp

t (X′|Z1:t−1)δX′ , (5.4)

where
πt(Xt|Xt−1) .= fXXXt|XXXt−1(Xt|Xt−1) (5.5)

is referred to as the multi-object dynamic model for the task, governing object
birth/death and state evolution. Moreover,

µt(Zt|Xt)
.= fZZZt|XXXt

(Zt|Xt) (5.6)

52

5.2 Multi-Object Models

is the multi-object measurement model for the task, characterizing how both
true and false measurements are generated. Common choices for such MOT
models are described in the next section.

5.2 Multi-Object Models
This section describes common choices for the multi-object measurement and
dynamics models, along with their corresponding assumptions.

Multi-Object Measurement Model

We use the standard model for ZZZt as the union of two RFS:

ZZZt = OOOt ∪CCCt . (5.7)

The set OOOt corresponds to object measurements from time step t:
measurements originated from the objects present at that time step.
The set CCCt corresponds to false measurements (interchangeably referred to
as clutter measurements): extraneous measurements due to sensor noise or
irrelevant objects in the sensor field of view.

For defining the model that characterizes the set OOOt, we make the
usual point-object assumptions that: (1) each object can generate at most
one measurement, and (2) each measurement originated from at most
one object. Furthermore, we assume that the probability of an object
generating a measurement is conditionally independent of all other objects
and measurements, given the originating object’s state. Concretely, an object
with state x is detected with probability pd(x). If detected, it generates
a measurement z ∼ µ(·|x), where µ : F(Rdz) → R+ is the single-object
measurement model (not to be confused with µt, the multi-object model).

With these assumptions, for a set of object states Xt = {x1
t , . . . , xnt

t }, the
set of object measurements OOOt can be expressed as

OOOt = OOOt(x1
t) ∪ · · · ∪OOOt(xnt

t) , (5.8)

where OOOt(x) is the RFS representing the set of object measurements from an

53

Chapter 5 Model-Based Multi-Object Tracking

object with state x

fOOOt(x)(O) =


1 − P D(x) if O = ∅ ,

P D(x)µ(z|x) if O = {z}, z ∈ Rdz ,

0 if |O| > 1 .

(5.9)

Therefore, the full set of object measurements OOOt is a multi-Bernoulli RFS
with distribution

fOOOt
(O|Xt) =

∑
O=O1⊎···⊎Ont

nt∏
i=1

fOOOt(xi
t)(Oi) . (5.10)

For the set of false measurements CCCt, we assume that they are distributed
according to a Poisson RFS with distribution

fCCCt
(C) = e−λλ|C|

∏
z∈C

pc(z) , (5.11)

where λ is a model parameter controlling the average number of false
measurements per time step, and pc(·) is the clutter measurement density
over the measurement space, pc : Rdz → R+.

Putting these together, we arrive at the complete multi-object measurement
model

fZZZt|XXX(Z|{x1, . . . , xnt}) =
∑

Z=C⊎O1⊎···⊎Ont

fCCCt
(C)

nt∏
i=1

fOOOt(xi
t)(Oi) . (5.12)

Multi-Object Dynamic Model
At each time-step t, the set of object states evolves according to

XXXt+1 = SSSt ∪BBBt , (5.13)

where SSSt and BBBt are respectively the set of objects which have survived from
and born since time step t.

Object survival is modeled as independent for each object: for a set of object
states Xt−1 = {x1

t−1, . . . , xnt
t−1}, the set SSSt can be expressed as the following

union
SSSt = SSSt(x1

t−1) ∪ · · · ∪ SSSt(xnk
t−1) , (5.14)

54

5.2 Multi-Object Models

where SSSt(x) is an RFS which contains the updated state for an object with
state x if it survived, or is empty otherwise:

fSSSt(x)(S) =


1 − P S(x) if S = ∅ ,

P S(x)π(s|x) if S = {s} , s ∈ Rdx ,

0 otherwise,
(5.15)

where P S(x) denotes the survival probability for an object with state x, and
π is the single-object dynamic model (not to be confused with πt, the multi-
object dynamic model). This model governs how individual object states
evolve over time; the interested reader is referred to [86] for several examples
of possible single-object dynamic models. Given (5.15), the set of surviving
states SSSt is a multi-Bernoulli RFS with distribution

fSSSt
(S) =

∑
S=S1⊎···⊎Sn

nt∏
i=1

fSSSt(x)(Si) . (5.16)

Regarding the set BBBt of objects that were born since time step t, models for
it usually allow for a specification of the distribution of the number of objects
being born at each time-step, and the distribution of the states of these newly-
born objects. Two major types of models are used in most literature: the
Poisson and the multi-Bernoulli birth models.

The Poisson birth model characterizes BBBt as an RFS with density

fBBBt
(B) = e−λλ|B|

∏
b∈B

pb(b) , (5.17)

where λ ∈ R is a model parameter, and pb(·) is the birth state density over the
state space, pb : Rdx → R. That is, at each time step the number of objects
born is Poisson-distributed with parameter λ, and the states for the newborn
objects are independently sampled from pb(·).

Alternatively, a multi-Bernoulli birth model with N components
characterizes BBBt instead with the density

fBBBt
(B) =

∑
B=B1⊎···⊎BN

N∏
i=1

fBBBi
t
(Bi) , (5.18)

55

Chapter 5 Model-Based Multi-Object Tracking

where

fBBBi
t
(B) =


1 − ri if B = ∅ ,

ri pi
b(b) if B = {b} ,

0 otherwise.
(5.19)

and the parameters for its i-th Bernoulli components are the existence
probability, ri, and the state density for a newborn object, pi

b.

5.3 Multi-Object Conjugate Priors
Although equations (5.3) and (5.4) completely specify the MOT posterior,
directly computing it is often intractable. One of the main problems is that
the set integrals in these equations can become very complicated, and for
many choices of dynamic and measurement models they do not have closed-
form expressions.

This challenge can be sidestepped in certain classes of model families,
referred to as MOT conjugate priors, which maintain the structure of the
posterior after prediction and update. This section describes two useful
MOT conjugate priors and their corresponding practical implementations:
the MBM conjugate prior and the Poisson MBM conjugate prior.

Multi-Bernoulli Mixture Conjugate Prior
If the birth process is modeled as a multi-Bernoulli (mixture), as in (5.18),
then the MBM density is a multi-object conjugate prior to the multi-object
dynamic and measurement models. That is, if the multi-object posterior at
time t − 1 has the form

fXXXt−1|ZZZ1:t−1(X|Z1:t−1) = MBM(X; θt−1|t−1) , (5.20)

where
θt−1|t−1 =

{(
wh,

{
ri

h, pi
h

}N

i=1

)}H

h=1
, (5.21)

then it can be shown that

fXXXt|ZZZ1:t−1(X|Z1:t−1) =
∫

πt(X|Xt−1)MBM(Xt−1; θt−1|t−1)δXt−1

= MBM(X; θt|t−1) ,

56

5.3 Multi-Object Conjugate Priors

and that

fXXXt|ZZZ1:t(X|Z1:t) =
µt(Zt|X)MBM(X; θt|t−1)∫
µt(Zt|Y)MBM(Y; θt|t−1)δY

= MBM(X; θt|t) ,

i.e., both the predicted and the updated posterior densities at time-step t are
also multi-Bernoulli mixture densities. Therefore, the prediction and update
steps of an MBM filter are simplified to the computation of the updated
parameters θt|t−1 and θt|t, for which the interested reader is referred to [87]
for explicit equations.

Besides yielding simpler prediction and update steps, the multi-Bernoulli
mixture density also provides an intuitive interpretation of its parameters in
the MOT context. Each of the H multi-Bernoulli components in the mixture
corresponds to one possible sequence of data associations, with probabilities
{wh}H

h=1. Within one multi-Bernoulli h, its Bernoulli components correspond
to potential objects present in the FOV given a data association, each with a
state density pi

h(·) and existence probability ri
h.

Although this conjugate prior allows for an intuitive interpretation and
simpler prediction and update steps, the number of parameters necessary
to exactly describe the multi-object posterior density grows rapidly over
time. In the prediction step the number N of Bernoulli components in
each hypothesis h of the MBM density is increased by n, the number of
Bernoulli components in the MB birth model. In the update step, due to the
unknown correspondence between measurements and objects, the number of
hypotheses H is multiplied by the number of possible associations between
N Bernoulli components and |Zt| measurements, which is immense in all but
trivial applications. Therefore, filters using the MBM conjugate prior must
resort to certain approximations for maintaining computational tractability.
The MBM filter [87], for example, prunes multi-Bernoulli components with
low weights and Bernoulli components with low existence probability after
every update step.

Another relevant filter to this thesis is the MBM01 filter. It uses the
same prediction and update steps as the MBM filter, but performing MBM01
expansion after every prediction step. This results in a super-exponential
increase in the number of multi-Bernoulli components for this filter. The δ-
generalized labelled multi-Bernoulli filter [10] is equivalent to the labelled (see
Section 5.4) MBM01 filter.

57

Chapter 5 Model-Based Multi-Object Tracking

Poisson Multi-Bernoulli Mixture Conjugate Prior
Similarly to the MBM density, the PMBM density is a multi-object conjugate
prior to the measurement model described earlier and a dynamics model with
Poisson birth. If the multi-object posterior at time t − 1 has the form

fXXXt−1|ZZZ1:t−1(X|Z1:t−1) = PMBM(X; θt−1|t−1) , (5.22)

then it can be shown that

fXXXt|ZZZ1:t−1(X|Z1:t−1) =
∫

πt(X|Xt−1)PMBM(Xt−1; θt−1|t−1)δXt−1

= PMBM(X; θt|t−1) ,

and that

fXXXt|ZZZ1:t(X|Z1:t) =
µt(Zt|X)PMBM(X; θt|t−1)∫
µt(Zt|X)PMBM(X; θt|t−1)δY

= PMBM(X, θt|t) ,

i.e., the predicted and updated multi-object posterior densities are also Poisson
multi-Bernoulli mixture densities. The interested reader is referred to [8], [9]
for explicit equations for computing the updated parameters θt|t−1 and θt|t.

Besides its conjugacy property, the PMBM density is also particularly
well-suited for representing MOT uncertainties. Because of the addition
of the Poisson component, the PMBM density is capable of explicitly
representing possible existing but undetected objects: the Poisson RFS state
distribution encodes the estimate of where in the state-space it is more likely
that the undetected objects are. Additionally, the initiation of new Bernoulli
components is measurement-driven: instead of always adding the same
number of Bernoulli components in the prediction step (like MBM filters
must), Bernoullis are only added to a multi-Bernoulli component if they are
associated to an existing measurement in the update step. This leads to a
more efficient representation of the hypotheses, which in turn makes PMBM
filters generally better than MBM filters in terms of computational cost and
estimation error [87]–[89].

Similarly to the MBM filters, PMBM filters also require approximations
for maintaining computational tractability, as the number of multi-Bernoullis
components in the mixture also grows very quickly with time. For example,

58

5.4 MOT for Trajectories

filters such as [8] remove Bernoulli components with low probability of
existence by approximating them as a Poisson RFSs and adding it to the
Poisson component (recycling), remove multi-Bernoulli components with
low weights (pruning), and limit the maximum number of components to a
predefined maximum (capping).

5.4 MOT for Trajectories
So far we have only described MOT algorithms that perform filtering:
estimating the set of object states at time t, given measurements up until
that point. However, in some applications it is important to also link states
over time into individual trajectories for each object. Given only the marginal
distributions for XXXt−1 and XXXt, we do not have enough information to decide
which states at time t − 1 correspond to the ones at time t.

This section explains two common approaches for dealing with this
challenge: labeling object states and considering trajectories as objects.

Labelled Object States
One way to automatically form trajectories is to add labels to objects, so that
each object is identified over its lifetime [90], [91]. Each object state is now
defined as a tuple (x, L), where x ∈ Rdx is what we so far have called the state
of the object, and L ∈ N is a label associated to it. Importantly, labels must
be unique to each object to guarantee that linking states over time according
to their labels generates correct trajectories.

To do so, one must extend the multi-object birth model to also label objects
uniquely at the time of their birth. Although it is not mathematically possible
to guarantee label uniqueness for some birth models (e.g., the Poisson birth
model described in (5.17)), this is possible for the MB birth model. Doing so
results in a labeled multi-Bernoulli birth model, for which the conjugate prior
is a labeled multi-Bernoulli mixture density. One filter based on this conjugate
prior is the δ-generalized labeled multi-Bernoulli mixture (δ-GLMB) filter [10],
which is capable of estimating complete trajectories via the use of labels.

Although assigning labels to objects seems like a straightforward way for
linking object states through time, it has some problems. First, labels by
themselves do not have any physical meaning, and the association between

59

Chapter 5 Model-Based Multi-Object Tracking

objects and labels is arbitrary: an object that has been assigned a label “3”
could just as well be assigned a label “4” instead. Not only this increases the
dimensionality of the state without good reason, but it also makes it more
complicated to propose metrics with physical interpretation between sets of
labeled states.

Second, tracking is usually performed by estimating the multi-object
densities at each time-step, instead of the joint posterior distribution over all
time steps. This, when using labels to form trajectories, can cause unrealistic
track switches in settings where multiple objects are born at the same time
or when objects get close to each other and then separate.

Third, the use of labels makes it challenging to fuse information in a
multiple-sensor environment. Consider two independent trackers using
sensors with overlapping field-of-view. Since labels do not have any physical
meaning, and the association between them and objects is arbitrary, it is not
straightforward to decide how to fuse estimates from these trackers.

Sets of Trajectories
An alternative way to link object states through time, which sidesteps the
aforementioned problems, is to perform filtering on sets of trajectories [92],
instead of sets of objects.

A trajectory is represented as a tuple of the form (t, x1:i), where t is the
initial time-step of the trajectory, i is its length, and the sequence x1:i contains
the object states at all time steps in the window [t, t + i − 1]. The set of all
possible trajectories up to a finite time k, denoted T(k) is then computed as

T(k) = ⊎(t,i)∈I(k) {t} × Rdx×i , (5.23)

where I(k) denotes the set of all possible start times and durations for
trajectories up until time k

Ik
.= {(t, i) : 0 ≤ t ≤ k and 1 ≤ i ≤ k − t + 1} . (5.24)

The integral for a real-valued function p(·) on a the trajectory space T(k),
henceforth referred to as a trajectory integral is defined as∫

p(x)dx
.=

∑
(t,i)∈I(k)

∫
· · ·
∫

p(t, x1:i)dx1 · · · dxi . (5.25)

60

5.5 MOT Metrics

Note that it sums over all possible start times t and durations i up until
time k, and integrates over all possible corresponding state sequences x1:i.
Using this definition it is possible to define the set integral for sets of
trajectories according to (4.1), and consequently to define RFS densities
whose outcomes are sets of trajectories. By doing so, the equations for MOT
prediction (5.3) and update (5.4) generalize to perform Bayesian inference
on sets of trajectories, automatically yielding principled methods for tackling
the problem of linking states through time.

In specific, it is possible to show that the PMBM multi-object density for
sets of trajectories is a conjugate prior to the standard multi-object models
with Poisson birth [11], which allows for the derivation of the trajectory-
PMBM (TPMBM) filter. The TPMBM filter contains information about the
entire trajectories of all objects directly in the estimated posterior [11] and
generalizes the PMBM filter. Similarly to the PMBM filter, the trajectory
Poisson RFS component of the TPMBM filter models the trajectories of the
set of undetected objects. Correspondingly, the MBM component models
the trajectories of the set of detected objects, where each multi-Bernoulli
corresponds to one possible sequence of data associations. The interested
reader is referred to [11] for explicit equations and implementation details.

5.5 MOT Metrics
Because of the unknown correspondence between measurements and their
originating objects, evaluating performance in MOT is not trivial. Given an
estimated multi-object posterior fXXXt|ZZZ1:t(·) and a set of ground-truth object
states Xt, how can one evaluate the quality of the estimate?

Several MOT performance measures have been proposed in the literature,
such as the Hausdorff and Wasserstein metrics [93], multi-object tracking
precision and accuracy (MOTP and MOTA) [94], higher-order tracking
accuracy (HOTA) [95], optimal subpattern assignment (OSPA) [96],
generalized OSPA (GOSPA) [97], to name a few.

All of these metrics first require a point-estimate X̂ to be extracted from
the multi-object posterior. The exact details on how to do it are left to
practitioners, and vary depending on the RFS distribution used to model
fXXXt|ZZZ1:t(·). For example, one way [8] to extract such an estimate from a PMBM
posterior is to use the means of the Bernoullis of the most likely MB component

61

Chapter 5 Model-Based Multi-Object Tracking

which has existence probability above a predetermined threshold.
These types of estimate extraction discard most of the uncertainty

information available in fXXXt|ZZZ1:t(·), which is unwanted in many settings.
There have been efforts to extend MOT performance measures to be more
uncertainty-aware, but, except for the performance measure proposed in
paper B, such efforts only evaluate some of the available uncertainty [15], [16],
and/or require access to ground-truth uncertainties which are not applicable
to general MOT applications [16].

In the model-free multi-object setting, MOTA and MOTP are popular
choices, especially in computer vision tasks. On the other hand, OSPA and
its generalization GOSPA are common choices for model-based MOT. As
this thesis focuses on model-based MOT, we will provide a review of the
GOSPA metric and its trajectory-based counterpart, trajectory-GOSPA [98],
two popular metrics in this setting.

GOSPA Metric
The GOSPA metric, introduced in [97], is a metric on the space of finite
sets of object states and can take any non-negative finite value, with lower
values corresponding to better performance. It deals with the unknown object-
measurement correspondence by solving a minimum-cost assignment problem
with a user-defined distance function, penalizing false positives and false
negatives in a sound manner.

For two sets X = {x1, . . . , x|X|} and Y = {y1, . . . , y|Y|}, where |X| ≤ |Y|, the
GOSPA metric is defined as

d(c,α)
p (X,Y) .=

 min
π∈Π|Y|

|X|∑
i=1

d(c)(xi, yπ(i))p + cp

α
(|X| − |Y|)

 1
p

, (5.26)

d(c)(xi, yj) .= min
(
db(xi, yj), c

)
, (5.27)

where Πn denotes the set of all permutations of {1, . . . , n}, for any n ∈ N, and
elements π ∈ Πn are tuples of the form π = (π(1), . . . , π(n)). The function
db(·, ·) is a user-defined metric on the space of the elements of X and Y (e.g.,
Rdx in the case of object states). Furthermore, c ∈ R+ denotes the cutoff
hyperparameter, which defines the maximum allowed localization error, and
1 ≤ p < ∞ determines how heavily outliers will influence the metric value.

62

5.5 MOT Metrics

Lastly, 0 < α ≤ 2 is another hyperparameter, which at value 2 allows the
GOSPA metric to be rewritten as an optimization over assignment sets [97]

d(c,2)
p (X,Y) =

min
γ∈Γ

 ∑
(i,j)∈γ

db(xi, yj)p + cp

2 (|X| + |Y| − 2|γ|)

 1
p

, (5.28)

where an assignment γ between the sets of indices {1, . . . , |X|} and {1, . . . , |Y|}
is a set with the following properties

γ ⊂ {1, . . . , |X|} × {1, . . . ,Y} ,

(i, j), (i, j′) ∈ γ =⇒ j = j′ ,

(i, j), (i′, j) ∈ γ =⇒ i = i′ ,

and Γ denotes the set of all possible such assignment sets.

Trajectory-GOSPA
The trajectory-GOSPA (TGOSPA) metric is an extension of GOSPA to sets of
trajectories. It handles the unknown object-measurement correspondence in a
similar way as GOSPA, but it requires solving a multidimensional assignment
problem instead, due to trajectory matches being allowed to change over time.

We start with a few necessary definitions. For a set of trajectories X =
{X1, . . . , X |X|}, each trajectory Xi is of the form (ωi, xi

1:l(i)), where ωi ∈ N
is the initial time of the trajectory, l(i) ∈ N is its length, and xi

1:l(i) is the
sequence of object states at the l(i) consecutive time steps starting from ωi.
Given a single trajectory Xi, the set τt(Xi) denotes the state of that trajectory
at time t

τt(Xi) .=
{

{xi
t+1−ω} if ω ≤ t ≤ ω + l(i) − 1 ,

∅ otherwise.
(5.29)

Additionally, for a set of trajectories X = {X1, . . . , X |X|}, τt(X) denotes the
set of all object states from these trajectories at time t

τt(X) .=
|X|⋃
i=1

τt(Xi) . (5.30)

63

Chapter 5 Model-Based Multi-Object Tracking

We can now define the metric. For two sets X and Y of trajectories up to
time step T , the TGOSPA metric is defined as

d(c,γ)
p (X,Y) = min

πt∈ΠX,Y
t=1,...,T

(
T∑

t=1
dt
X,Y(X,Y, πt)p +

T −1∑
t=1

sX,Y(πt, πt+1)p

) 1
p

, (5.31)

where ΠX,Y denotes the set of all possible assignment vectors between the index
sets {1, . . . , |X|} and {0, . . . , |Y|}. An assignment vector πt = [π1

t , . . . , π
|X|
t]T

at time step t is a vector πt ∈ {0, . . . ,Y}|X| such that for its i-th component
πi

t = πi′

t = j > 0 =⇒ i = i′. Also, πi
t = j ̸= 0 implies that trajectory i in X is

assigned to trajectory j in Y at time step t and πi
t = 0 implies that trajectory

i in X is unassigned at time step t. Further, we have

dt
X,Y(X,Y, πt)p = (5.32)∑

(i,j)∈θt(πt)

d(Xi
t,Y

j
t)p + cp

2 (|τt(X)| + |τt(Y)| − 2|θt(πt)|) , (5.33)

where

θt(πt) =
{

(i, πi
t) : i ∈ {1, . . . , |X|}, |Xi

t| = |Yπi
t

t | = 1, d(Xi
t,Y

πi
t

t) < c
}

, (5.34)

and Xi
t and Yj

t are respectively abbreviations for τt(Xi) and τt(Y j). Note
that for (i, j) ∈ θt(πt), Xi

t and Yπi
t

t contain exactly one element, with their
distance being smaller than c. Hence, the distance d(Xi

t,Y
j
t) coincides with

db(·, ·) evaluated at the corresponding object states, i.e., the localization error
on a user-defined distance function between object states (similar to (5.26)).
Hence, (5.33) represents the sum of localization errors for properly detected
objects (assignments in θt(πt)), number of missed objects (|τt(X)| − |θt(πt)|)
and false predictions (|τt(Y)| − |θt(πt)|) at time step t.

Finally, the switching cost from time step t to t + 1 is given by

sX,Y(πt, πt+1)p = γp

|X|∑
i=1

s(πi
t, πi

t+1) , (5.35)

s(πi
t, πi

t+1) =


0 if πi

t = πi
t+1 ,

1 if πi
t ̸= πi

t+1, πi
t ̸= 0, πi

t+1 ̸= 0 ,
1
2 otherwise.

(5.36)

64

CHAPTER 6

Summary of included papers

This chapter provides a summary of the included papers.

6.1 Paper A
Juliano Pinto, Georg Hess, William Ljungberh, Yuxuan Xia,
Lennart Svensson, Henk Wymeersch
Next Generation Multitarget Trackers: Random Finite Set Methods vs
Transformer-based Deep Learning
Proceedings of the 4th International Conference on Information Fusion
(FUSION), granted best student paper award
IEEE, 2021, pp. 1–8 .

This paper contains a preliminary analysis into the feasibility of training
deep learning models for MOT as a tractable alternative to standard model-
based methods based on the RFS formalism. It proposes the “Multi-Target
Tracking Transformer” (MT3), a DL model using a Transformer-based
encoder-decoder architecture similar to DETR [14], but adapted to the
multi-object setting. This architecture is supervised with a combination of

65

Chapter 6 Summary of included papers

the loss proposed in [14] and a novel auxiliary loss developed specifically
for MOT. We evaluate the performance of MT3 and compare it to the
state-of-the-art RFS-based trackers PMBM [8] and δ-GLMB [10] in tasks
with a constant velocity motion model and a simple measurement model that
directly measures position with added Gaussian noise. To the best of our
knowledge, this is the first thorough comparison between RFS-based trackers
and deep learning trackers using modern architectures like Transformers.
The results show that the DL tracker is able to match performance to the
benchmarks in simpler tasks, while outperforming them when the data
association complexity increases.

6.2 Paper B

Juliano Pinto, Yuxuan Xia, Lennart Svensson, Henk Wymeersch
An Uncertainty-Aware Performance Measure for Multi-Object Tracking
Published in IEEE Signal Processing Letters
IEEE, 2021, vol. 28, no. 1689–1693 .

Most of the existing performance measures for MOT require practitioners
to extract point-estimates from the multi-object posterior of the methods
being compared, causing all the uncertainty information to be lost in
the comparison. Although certain works have attempted to include more
uncertainty information to MOT evaluations, these have several shortcomings
that make them not ideal for most settings. This letter proposes a performance
measure for MOT which is uncertainty aware, hyperparameter-free, and
mathematically principled, based on the negative log-likelihood (NLL) of the
multi-object posterior. Efficient algorithms for approximating this measure
for several common families of MOT models are provided, which in some
cases allow the performance measure to decompose into easily understandable
components. Additionally, examples are provided to illustrate the benefits
of using NLL as a performance measure, along with a connection between it
and the popular GOSPA metric.

66

6.3 Paper C

6.3 Paper C
Juliano Pinto, Georg Hess, William Ljungberh, Yuxuan Xia,
Henk Wymeersch, Lennart Svensson
Deep Learning for Model-Based Multi-Object Tracking
Accepted for publication in IEEE Transactions on Aerospace and
Electronic Systems, 2023 .

This paper extends the preliminary analysis done in paper A. It proposes
several extensions to MT3, such as a redesigned selection mechanism, new loss
formulations, and a new architecture capable of predicting entire kinematic
states along with uncertainty estimates, resulting in the new DL-based
tracker MT3v2. The comparison to state-of-the-art RFS-based trackers is
considerably extended, with new tasks of varying complexity using a realistic
nonlinear RADAR measurement model, and a new performance measure
being included in evaluations. An error analysis is also included, depicting
how the missed ratio for each of the considered trackers depends on the
tracked object’s position in the field of view. This paper complements and
extends paper A, providing stronger evidence towards the applicability of
deep learning to the model-based MOT setting, not just to the model-free
counterpart.

6.4 Paper D
Juliano Pinto, Georg Hess, Yuxuan Xia, Henk Wymeersch,
Lennart Svensson
Transformer-Based Multi-Object Smoothing with Decoupled Data
Association and Smoothing
In review .

This paper investigates the use of deep learning in the model-based
multi-object smoothing setting. The smoother “Deep Decoupled Data
Association and Smoothing” (D3AS) is proposed, specifically designed for
this setting with an architecture that decouples the data association and
filtering subtasks by performing them in separate modules, resulting in
more performant and efficient smoothing. The proposed data association
module and the corresponding data association loss provide a novel learnable

67

Chapter 6 Summary of included papers

architecture for learning soft associations between a variable number of
objects and classes in a general fashion. The resulting smoother is thoroughly
compared to the state-of-the-art model-based smoother TPMBM, with results
providing evidence that DL-based smoothers can outperform traditional
approaches in complicated, nonlinear smoothing tasks.

68

CHAPTER 7

Concluding Remarks and Future Work

This thesis studies how deep learning can be applied to model-based multi-
object tracking. The available models of the environment are used to generate
unlimited training data for training modern deep learning architectures,
resulting in systems that are flexible and performant even in challenging
tracking settings. Concluding remarks and future work of the included papers
are provided here.

• Paper A: Next Generation Multitarget Trackers: Random
Finite Set Methods vs Transformer-based Deep Learning
This paper provides a preliminary investigation of the performance
of deep-learning trackers for model-based MOT. A model tailored
to the model-based setting is proposed, MT3, and its performance
compared to two state-of-the-art RFS-based trackers. The results
provide evidence for the applicability of DL in this context. Interesting
future directions are to investigate the capabilities of MT3 under
model mismatch, develop loss functions that are closer to GOSPA, and
investigate MT3’s performance in the model-free context.

• An Uncertainty-Aware Performance Measure for Multi-Object

69

Chapter 7 Concluding Remarks and Future Work

Tracking This letter proposes the first principled, hyperparameter
free, uncertainty-aware MOT performance measure. It provides efficient
algorithms for approximating the measure for several common MOT
methods, and shows a connection to GOSPA. One interesting research
direction left for future work is analyzing how to use this performance
measure as a loss for training DL-based MOT trackers.

• Deep Learning for Model-Based Multi-Object Tracking This
paper extends the preliminary analysis done in paper A. It proposes
MT3v2, an extension of MT3 capable of predicting entire kinematic
states along with uncertainty estimates. The tracker is compared to
RFS-based approaches in challenging non-linear tasks, and an error
analysis is provided. Interesting future directions are adding more
flexibility to the predicted state densities, adapting the architecture to
predict entire trajectories, and extending MT3v2 to work with image
inputs.

• Transformer-Based Multi-Object Smoothing with Decoupled
Data Association and Smoothing This study proposes D3AS, a DL
tracker designed for the model-based multi-object smoothing task. The
proposed model decouples the subtasks of data association and filtering
and is able to predict entire sets of trajectories over the considered
time window. Interesting future directions are to extend D3AS to also
predict uncertainty estimates, to compare its performance under model-
mismatch to RFS-based trackers, and to adapt it to the model-free MOT
setting.

70

References

[1] Y.-C. Yoon, D. Y. Kim, Y.-M. Song, K. Yoon, and M. Jeon, “Online
multiple pedestrians tracking using deep temporal appearance matching
association,” Information Sciences, vol. 561, pp. 326–351, 2021, issn:
0020-0255.

[2] A. Rangesh and M. M. Trivedi, “No blind spots: Full-surround multi-
object tracking for autonomous vehicles using cameras and lidars,” IEEE
Transactions on Intelligent Vehicles, vol. 4, no. 4, pp. 588–599, 2019.

[3] A. Rangesh and M. M. Trivedi, “No blind spots: Full-surround multi-
object tracking for autonomous vehicles using cameras and lidars,” IEEE
Transactions on Intelligent Vehicles, vol. 4, no. 4, pp. 588–599, 2019.

[4] E. Itskovits, A. Levine, E. Cohen, and A. Zaslaver, “A multi-animal
tracker for studying complex behaviors,” BMC Biology, vol. 15, no. 1,
p. 29, Apr. 2017, issn: 1741-7007.

[5] C. Spampinato, Y.-H. Chen-Burger, G. Nadarajan, and R. B. Fisher,
“Detecting, tracking and counting fish in low quality unconstrained
underwater videos.,” VISAPP (2), vol. 2008, no. 514-519, p. 1, 2008.

[6] C. J. Harris, A. Bailey, and T. Dodd, “Multi-sensor data fusion in
defence and aerospace,” The Aeronautical Journal (1968), vol. 102,
no. 1015, pp. 229–244, 1998.

[7] P. Nillius, J. Sullivan, and S. Carlsson, “Multi-target tracking-linking
identities using bayesian network inference,” in 2006 IEEE Computer

71

References

Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), IEEE, vol. 2, 2006, pp. 2187–2194.

[8] Á. F. García-Fernández, J. L. Williams, K. Granström, and L.
Svensson, “Poisson multi-Bernoulli mixture filter: Direct derivation and
implementation,” IEEE Transactions on Aerospace Electronic Systems,
vol. 54, no. 4, pp. 1883–1901, 2018.

[9] J. L. Williams, “Marginal multi-Bernoulli filters: RFS derivation of
MHT, JIPDA, and association-based MeMber,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 51, no. 3, pp. 1664–1687, 2015.

[10] B. Vo, B. Vo, and H. G. Hoang, “An efficient implementation of the
generalized labeled multi-Bernoulli filter,” IEEE Transactions on Signal
Processing, vol. 65, no. 8, pp. 1975–1987, 2017.

[11] K. Granström, L. Svensson, Y. Xia, J. Williams, and Á. F. García-
Fernández, “Poisson multi-bernoulli mixtures for sets of trajectories,”
arXiv preprint arXiv:1912.08718, 2019.

[12] R. P. S. Mahler, Statistical Multisource-Multitarget Information Fusion.
USA: Artech House, Inc., 2007, isbn: 1596930926.

[13] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
in NIPS, 2017, pp. 5998–6008.

[14] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European Conference on Computer Vision, vol. 12346, Springer, 2020,
pp. 213–229.

[15] S. Nagappa, D. E. Clark, and R. Mahler, “Incorporating track
uncertainty into the OSPA metric,” in 14th International Conference
on Information Fusion, IEEE, 2011, pp. 1–8.

[16] X. He, R. Tharmarasa, T. Kirubarajan, and T. Thayaparan, “A track
quality based metric for evaluating performance of multitarget filters,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 49, no. 1,
pp. 610–616, 2013.

[17] P. Dendorfer, A. Osep, A. Milan, et al., “MOTchallenge: A benchmark
for single-camera multiple target tracking,” International Journal of
Computer Vision, pp. 1–37, 2020.

72

References

[18] G. Ciaparrone, F. L. Sánchez, S. Tabik, L. Troiano, R. Tagliaferri, and
F. Herrera, “Deep learning in video multi-object tracking: A survey,”
Neurocomputing, vol. 381, pp. 61–88, 2020.

[19] C.-Y. Chong, “An overview of machine learning methods for multiple
target tracking,” in 2021 IEEE 24th International Conference on
Information Fusion (FUSION), 2021, pp. 1–9.

[20] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-
time object detection with region proposal networks,” in NIPS, 2015,
pp. 91–99.

[21] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–
788.

[22] F. Yu, W. Li, Q. Li, Y. Liu, X. Shi, and J. Yan, “Poi: Multiple object
tracking with high performance detection and appearance feature,” in
European Conference on Computer Vision, Springer, 2016, pp. 36–42.

[23] J. Shen, D. Yu, L. Deng, and X. Dong, “Fast online tracking with
detection refinement,” IEEE Transactions on Intelligent Transportation
Systems, vol. 19, no. 1, pp. 162–173, 2018.

[24] J. Chen, H. Sheng, Y. Zhang, and Z. Xiong, “Enhancing detection model
for multiple hypothesis tracking,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2017, pp. 18–
27.

[25] J. Shen, Z. Liang, J. Liu, H. Sun, L. Shao, and D. Tao, “Multiobject
tracking by submodular optimization,” IEEE Transactions on
Cybernetics, vol. 49, no. 6, pp. 1990–2001, 2019.

[26] Y. Zhang, P. Sun, Y. Jiang, et al., “Bytetrack: Multi-object tracking by
associating every detection box,” in ECCV (22), ser. Lecture Notes in
Computer Science, vol. 13682, Springer, 2022, pp. 1–21.

[27] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler, “Online
multi-target tracking using recurrent neural networks,” in Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

73

References

[28] H. Zhou, W. Ouyang, J. Cheng, X. Wang, and H. Li, “Deep continuous
conditional random fields with asymmetric inter-object constraints
for online multi-object tracking,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 29, no. 4, pp. 1011–1022, 2018.

[29] J. Yin, W. Wang, Q. Meng, R. Yang, and J. Shen, “A unified object
motion and affinity model for online multi-object tracking,” in CVPR,
Computer Vision Foundation / IEEE, 2020, pp. 6767–6776.

[30] P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking without
bells and whistles,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 941–951.

[31] Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “Fairmot: On the
fairness of detection and re-identification in multiple object tracking,”
International Journal of Computer Vision, pp. 1–19, 2021.

[32] P. Voigtlaender, M. Krause, A. Osep, et al., “MOTS: Multi-object
tracking and segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Jun. 2019.

[33] X. Weng, Y. Wang, Y. Man, and K. M. Kitani, “Gnn3dmot: Graph
neural network for 3d multi-object tracking with 2d-3d multi-feature
learning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 6499–6508.

[34] J. Li, X. Gao, and T. Jiang, “Graph networks for multiple object
tracking,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2020, pp. 719–728.

[35] T. Meinhardt, A. Kirillov, L. Leal-Taixé, and C. Feichtenhofer,
“Trackformer: Multi-object tracking with transformers,” CoRR,
vol. abs/2101.02702, 2021.

[36] F. Zeng, B. Dong, Y. Zhang, T. Wang, X. Zhang, and Y. Wei, “MOTR:
End-to-end Multiple-Object tracking with tRansformer,” in European
Conference on Computer Vision (ECCV), 2022.

[37] P. Sun, Y. Jiang, R. Zhang, et al., “Transtrack: Multiple-object tracking
with transformer,” arXiv preprint arXiv:2012.15460, 2020.

[38] J. Cai, M. Xu, W. Li, et al., “Memot: Multi-object tracking with
memory,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Jun. 2022, pp. 8090–8100.

74

References

[39] Y. Liu, T. Bai, Y. Tian, et al., “Segdq: Segmentation assisted
multi-object tracking with dynamic query-based transformers,”
Neurocomputing, vol. 481, pp. 91–101, 2022.

[40] G. Maggiolino, A. Ahmad, J. Cao, and K. Kitani, “Deep OC-SORT:
multi-pedestrian tracking by adaptive re-identification,” CoRR,
vol. abs/2302.11813, 2023.

[41] Y. Du, Y. Song, B. Yang, and Y. Zhao, “Strongsort: Make deepsort
great again,” CoRR, vol. abs/2202.13514, 2022.

[42] J. Hyun, M. Kang, D. Wee, and D. Yeung, “Detection recovery in online
multi-object tracking with sparse graph tracker,” in WACV, IEEE, 2023,
pp. 4839–4848.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1106–1114.

[44] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in CVPR, IEEE Computer Society, 2014, pp. 580–587.

[45] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in NIPS, 2014, pp. 3104–3112.

[46] D. Silver, J. Schrittwieser, K. Simonyan, et al., “Mastering the game of
go without human knowledge,” Nat., vol. 550, no. 7676, pp. 354–359,
2017.

[47] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[48] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[49] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. Springer, 2006, vol. 4.

[50] S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The
Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[51] M. Soltanolkotabi, A. Javanmard, and J. D. Lee, “Theoretical insights
into the optimization landscape of over-parameterized shallow neural
networks,” IEEE Transactions on Information Theory, vol. 65, no. 2,
pp. 742–769, 2018.

75

http://www.deeplearningbook.org

References

[52] S. Arora, S. S. Du, W. Hu, Z. Li, and R. Wang, “Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural
networks,” in ICML, ser. Proceedings of Machine Learning Research,
vol. 97, PMLR, 2019, pp. 322–332.

[53] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the
loss landscape of neural nets,” in NeurIPS, 2018, pp. 6391–6401.

[54] K. Kawaguchi and J. Huang, “Gradient descent finds global minima for
generalizable deep neural networks of practical sizes,” in Allerton, IEEE,
2019, pp. 92–99.

[55] S. S. Du, X. Zhai, B. Póczos, and A. Singh, “Gradient descent provably
optimizes over-parameterized neural networks,” in ICLR (Poster),
OpenReview.net, 2019.

[56] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for
large-scale machine learning,” SIAM Rev., vol. 60, no. 2, pp. 223–311,
2018.

[57] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400–407, 1951.

[58] T. Tieleman and G. Hinton, Coursera: Neural networks for machine
learning, lecture 6 - RMSProp, Course Slides, Slide 27, 2012.

[59] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR (Poster), 2015.

[60] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in ICLR (Poster), OpenReview.net, 2019.

[61] S. Ruder, “An overview of gradient descent optimization algorithms,”
CoRR, vol. abs/1609.04747, 2016.

[62] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E.
Dahl, “On empirical comparisons of optimizers for deep learning,” arXiv
preprint arXiv:1910.05446, 2019.

[63] R. A. Fisher, “The use of multiple measurements in taxonomic
problems,” Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[64] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth,
“Learnability and the vapnik-chervonenkis dimension,” Journal of the
ACM (JACM), vol. 36, no. 4, pp. 929–965, 1989.

76

References

[65] V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence
of relative frequencies of events to their probabilities,” Measures of
complexity: festschrift for alexey chervonenkis, pp. 11–30, 2015.

[66] V. Vapnik, Estimation of dependences based on empirical data. Springer
Science & Business Media, 2006.

[67] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth,
“Learnability and the vapnik-chervonenkis dimension,” Journal of the
ACM (JACM), vol. 36, no. 4, pp. 929–965, 1989.

[68] V. Vapnik, The nature of statistical learning theory. Springer science &
business media, 1999.

[69] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[70] T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot
learners,” Advances in neural information processing systems, vol. 33,
pp. 1877–1901, 2020.

[71] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever,
“Deep double descent: Where bigger models and more data hurt,” in
ICLR, OpenReview.net, 2020.

[72] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals,
“Understanding deep learning (still) requires rethinking generalization,”
Commun. ACM, vol. 64, no. 3, pp. 107–115, 2021.

[73] T. Poggio, A. Banburski, and Q. Liao, “Theoretical issues in deep
networks,” Proceedings of the National Academy of Sciences, vol. 117,
no. 48, pp. 30 039–30 045, 2020.

[74] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep
learning via over-parameterization,” in International Conference on
Machine Learning, PMLR, 2019, pp. 242–252.

[75] A. W. Senior, R. Evans, J. Jumper, et al., “Improved protein structure
prediction using potentials from deep learning,” Nature, vol. 577,
no. 7792, pp. 706–710, 2020.

77

References

[76] S. Karita, N. Chen, T. Hayashi, et al., “A comparative study on
transformer vs rnn in speech applications,” in 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), 2019,
pp. 449–456.

[77] N. Parmar, A. Vaswani, J. Uszkoreit, et al., “Image transformer,” in
International Conference on Machine Learning, PMLR, 2018, pp. 4055–
4064.

[78] L. J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” in Neural
Information Processing Systems Deep Learning Symposium, 2016.

[79] D. R. So, Q. V. Le, and C. Liang, “The evolved transformer,” in ICML,
ser. Proceedings of Machine Learning Research, vol. 97, PMLR, 2019,
pp. 5877–5886.

[80] H. Le, J. Pino, C. Wang, J. Gu, D. Schwab, and L. Besacier,
“Dual-decoder transformer for joint automatic speech recognition and
multilingual speech translation,” in COLING, International Committee
on Computational Linguistics, 2020, pp. 3520–3533.

[81] E. D. Kaplan and C. Hegarty, Understanding GPS/GNSS: principles
and applications. Artech house, 2017.

[82] J. D. Murray, Mathematical biology: I. An introduction. Springer, 2002.
[83] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine

learning. Springer, 2006, vol. 4.
[84] N. T. Bailey et al., The mathematical theory of infectious diseases and

its applications. Charles Griffin & Company Ltd, 5a Crendon Street,
High Wycombe, Bucks HP13 6LE., 1975.

[85] S. Särkkä, Bayesian filtering and smoothing. Cambridge University
Press, 2013.

[86] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking.
part i. dynamic models,” IEEE Transactions on aerospace and electronic
systems, vol. 39, no. 4, pp. 1333–1364, 2003.

[87] Á. F. García-Fernández, Y. Xia, K. Granström, L. Svensson, and J. L.
Williams, “Gaussian implementation of the multi-bernoulli mixture
filter,” in 2019 22th International Conference on Information Fusion
(FUSION), IEEE, 2019, pp. 1–8.

78

References

[88] K. Granström, M. Fatemi, and L. Svensson, “Poisson multi-bernoulli
mixture conjugate prior for multiple extended target filtering,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 56, no. 1,
pp. 208–225, 2019.

[89] Y. Xia, K. Granstrcom, L. Svensson, and Á. F. García-Fernández,
“Performance evaluation of multi-bernoulli conjugate priors for multi-
target filtering,” in 2017 20th International Conference on Information
Fusion (Fusion), IEEE, 2017, pp. 1–8.

[90] B.-T. Vo and B.-N. Vo, “Labeled random finite sets and multi-object
conjugate priors,” IEEE Transactions on Signal Processing, vol. 61,
no. 13, pp. 3460–3475, 2013.

[91] B.-N. Vo, B.-T. Vo, and D. Phung, “Labeled random finite sets and
the bayes multi-target tracking filter,” IEEE Transactions on Signal
Processing, vol. 62, no. 24, pp. 6554–6567, 2014.

[92] Á. F. García-Fernández, L. Svensson, and M. R. Morelande, “Multiple
target tracking based on sets of trajectories,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 56, no. 3, pp. 1685–1707, 2019.

[93] J. R. Hoffman and R. P. Mahler, “Multitarget miss distance via optimal
assignment,” IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, vol. 34, no. 3, pp. 327–336, 2004.

[94] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: The clear mot metrics,” EURASIP Journal on Image and
Video Processing, vol. 2008, pp. 1–10, 2008.

[95] J. Luiten, A. Osep, P. Dendorfer, et al., “Hota: A higher order metric
for evaluating multi-object tracking,” International journal of computer
vision, vol. 129, no. 2, pp. 548–578, 2021.

[96] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE transactions on
signal processing, vol. 56, no. 8, pp. 3447–3457, 2008.

[97] A. S. Rahmathullah, Á. F. García-Fernández, and L. Svensson,
“Generalized optimal sub-pattern assignment metric,” in 20th
International Conference on Information Fusion (Fusion), IEEE,
2017, pp. 1–8.

79

References

[98] Á. F. García-Fernández, A. S. Rahmathullah, and L. Svensson, “A
metric on the space of finite sets of trajectories for evaluation of
multi-target tracking algorithms,” IEEE Trans. Signal Process., vol. 68,
pp. 3917–3928, 2020.

80

