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A B S T R A C T 

Characterizing the sub-mm Galactic emission has become increasingly critical especially in identifying and removing its 
polarized contribution from the one emitted by the cosmic microwave background (CMB). In this work, we present a parametric 
fore ground remo val performed on to sub-patches identified in the celestial sphere by means of spectral clustering. Our approach 

takes into account efficiently both the geometrical affinity and the similarity induced by the measurements and the accompanying 

errors. The optimal partition is then used to parametrically separate the Galactic emission encoding thermal dust and synchrotron 

from the CMB one applied on two nominal observations of forthcoming experiments from the ground and from the space. 
Moreo v er, the clustering is performed on tracers that are different from the data used for component separation, e.g. the spectral 
index maps of dust and synchrotron. Performing the parametric fit singularly on each of the clustering derived regions results in 

an o v erall impro v ement: both controlling the bias and the uncertainties in the CMB B-mode reco v ered maps. We finally apply 

this technique using the map of the number of clouds along the line of sight, N c , as estimated from H I emission data and perform 

parametric fitting on to patches derived by clustering on this map. We show that adopting the N c map as a tracer for the patches 
related to the thermal dust emission, results in reducing the B-mode residuals post-component separation. The code is made 
publicly available https:// github.com/giuspugl/ fgcluster. 

Key words: cosmic background radiation – cosmological parameters – diffuse radiation – inflation – ISM – ISM: clouds. 
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 I N T RO D U C T I O N  

n the past few decades, the anisotropies of the cosmic microwave
ackground (CMB) have been measured to constrain the parameters
f the standard cosmological model, the Lambda cold dark matter
 � CDM), with unprecedented precision (Planck Collaboration XIII
016d ; Planck Collaboration VI 2020b ). In recent years, the polar-
zation of the CMB has received significant attention. The linear
olarization of the CMB arises primarily from Thompson scattering
f photons with free electrons in the photon-baryon plasma of the
poch of recombination. The linearly polarized emission anisotropies
an be decomposed into a field invariant under parity transformation,
ommonly referred to as the E modes, and a field that is not invariant
nown as B modes (Hu & White 1997 ; Seljak & Zaldarriaga 1997 ).
 E-mail: giuseppe.puglisi@uniroma2.it 
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Pub
he E modes are linked to the primordial scalar perturbations,
hereas B modes at the degree scale can be produced only by tensor
erturbations of the space–time metric emitted at the inflationary era
Guth 1981 ; Starobinsky 1982 ). B modes are expected to be observed
t degree angular scales, making them an interesting scientific target
o validate several theoretical models describing the early universe
s their amplitude, commonly parametrized by the tensor-to-scalar
atio r , is proportional to the energy scale when inflation occurred. 

At smaller angular scales ( ∼arcmin), B modes can be sourced
y the direct distortion of E modes due to gravitational lensing of
he intervening large-scale structure. Lensing B modes have been
etected in the past years by many ground-based experiments (e.g.
he Polarbear Collaboration et al. 2017 , 2019 ; Choi et al. 2020 ;
ianchini et al. 2020 ). On the other hand, primordial B modes have
ot been detected yet and the best constraints have recently been
et to r < 0 . 044 , 95 per cent confidence level by Tristram et al.
 2021 ), combining data from the BICEP2/Keck Array and Planck
xperiments. 
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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Together with the instrumental sensitivity, the major challenge 
o detect primordial B modes is the polarized foreground radiation 
mitted at the same CMB frequencies ( ν ∼ 100 GHz) from our 
wn Galaxy. Electrons accelerated by spiralling along the Galactic 
agnetic field lines emit synchrotron emission mostly dominating 

he foreground polarized emission at low frequencies, ν < 70 GHz. 
n the other hand, thermal dust emission arising from grains aligned 
ith the Galactic magnetic field dominates the high frequency end 
f the sub-mm foreground radiation, ν > 100 GHz. Polarization 
rom other processes (e.g. molecular lines from Puglisi, Fabbian & 

accigalupi 2017 ) is expected to be subdominant with respect to that
f Galactic synchrotron and dust emission (Planck Collaboration X 

016b ; Planck Collaboration IV 2020a ). 
Since the Galactic components have different frequency depen- 

ences, they can be disentangled by means of component separation 
r foreground cleaning techniques (Planck Collaboration XII 2014 ; 
lanck Collaboration IX 2016a ; Planck Collaboration X 2016c ). On 
ne hand, blind algorithms (e.g. internal linear combination, ILC) 
re usually aimed at removing emission that is different than the 
MB, exploiting either the assumption of statistical independence for 
ost of the sky components (see Delabrouille, Cardoso & Patanchon 

003 ; Maino et al. 2007 ; Remazeilles et al. 2018 ) or the maximum
ntropy principle (Stolyarov et al. 2005 ). On the other hand, non-
lind approaches e.g. internal template subtraction or parametric 
tting (Bennett et al. 1992 ; Hansen et al. 2006 ; Bobin et al. 2008 ;
riksen et al. 2008 ; Leach et al. 2008 ; Stompor et al. 2008 ; Dunkley
t al. 2009 ) are employed in order to distinguish several Galactic
omponents. These come at the cost of making assumptions to 
odel the frequency scaling of all the emission involved, commonly 

ccounting for a very large number of free parameters. Moreover, 
hat accentuates the difficulties of foreground removal is the fact 

hat the properties of the interstellar medium (ISM) change not only 
patially , i.e. in different locations in the sky (Planck Collaboration 
 2016b ; Planck Collaboration IV 2020a ) but also along the same

ine of sight (Tassis & Pavlidou 2015 ; Clark 2018 ; Panopoulou &
enz 2020 ), eventually leading to frequency dependencies that are 
ore complex than typically assumed (Chluba, Hill & Abitbol 2017 ; 
zzoni et al. 2021 ; Mangilli et al. 2021 ; Pelgrims et al. 2021 ). As a

esult, algorithms relying on parametric component separation would 
end to reconstruct CMB maps with large residual foreground bias 
s the spatial variability of foregrounds is mis-modelled by fitting a 
ingle parameter across the whole observed sky. 

A partition of the sky, where the parameters are fit independently 
n multiple regions, results in a mitigation of the bias but might
ncrease the statistical uncertainties due to instrumental noise. This 
s mainly due to the fact that the fit is performed on a smaller number
f pixels, encoding a lower signal-to-noise ratio (SNR) than the case 
ith all the observed pixels. Moreover, performing a pixel-by-pixel 

ore ground remo val is clearly unfeasible for experiments involving 
arge sky footprints and/or high resolution because fitting for spectral 
ndices in each sky pixel is a very costly process. 

Recently, several techniques to encompass the spatial variability 
f the fore grounds hav e been proposed by decomposing the map
nto wavelets or needlets (Basak & Delabrouille 2011 ; Remazeilles 
t al. 2018 ; Wagner-Carena et al. 2019 ; Irfan et al. 2019 ), by
artitioning the sky into regions (clusters) according to the similarity 
f foreground properties and their location in the sky (Khatri 2019 ;
rumitt, Jew & Dickinson 2020 ). 
In this work, we do spectral clustering on a proxy of SED

roperties of the Galactic foregrounds by considering the spectral 
arameters and the number of clouds along the line of sight map.
nce the clusters are defined used them for component-separating 
ultifrequency observations (Stompor et al. 2008 ; Errard, Stivoli & 

tompor 2011 ; Stompor, Errard & Poletti 2016a ; Alonso et al. 2017 ).
The approach is similar to the one shown in Grumitt, Jew &

ickinson ( 2020 ), but we choose a different clustering method to
ptimally divide the sky. In fact, Grumitt et al. ( 2020 ) used the mean-
hift algorithm (Krzanowski & Lai 1971 ) to locate o v erdensities in
he context of image segmentation. They developed a parametric 
ayesian component separation algorithm that makes use of a 
lustering analysis to forecast the accuracy of component separation 
or a LiteBIRD-like CMB space satellite mission (Sugai et al. 
020 ). They define clusters in a five-dimensional parameter space: 
hree-Cartesian coordinates of pixels of the sphere, and the spectral 
ndices βs and βd used to parametrize, respectively, the emission 
f synchrotron and dust. Ho we ver, as noted by the authors, more
ork is needed to identify the optimal sky templates for this kind of

tudy. An obvious area of improvement is to optimize the definition
f sk y re gions. The characteristics of clusters obtained in Grumitt
t al. ( 2020 ) were almost homogeneous across the sky: showing
pproximately the same size and similar (conv e x) shapes. Ho we ver,
he mean-shift cluster size is highly dependent on the choice of the
andwidth parameter in the definition of the kernels to identify the
lusters. Ideally, the clustering should reflect the underlying spatial 
istribution of the features of interest. More sophisticated algorithms 
or image segmentation are available for this. In this work, we focus
n improving upon the definition of clusters on the sky. 
We propose in this work a different algorithm to partition the

k y via spectr al clustering (Von Luxburg 2007 ). In this specific
pplication, the foreground spectral parameter maps are defined 
 v er the whole celestial sphere and can thus be mathematically
reated as real-valued functions defined on the real manifold S 2 . In
he context of unsupervised image segmentation, spectral clustering 
as pro v ed to be a powerful technique able to capture objects with
ighly non-trivial geometric shapes (Zhang et al. 2018 ; Zelnik- 
anor & Perona 2004 ). Our approach takes into account the degree

f similarity inferred both from geometric positions and from the 
easurements performed in different points of the sky. Being based 

n an eigen-decomposition, it is less affected by high-dimensionality 
ssues. Furthermore, we use the signal-to-noise content of the spectral 
arameter maps to allow the pixel similarity to be informed by the
ntrinsic variability of a given foreground parameter map. 

The definition of clusters on a manifold can be divided into
wo procedures: (i) building the pixel similarity accounting for 
he ‘distances’ in a given metric, (ii) finding the eigenspectrum 

ecomposition for a given set of features. In Section 2, we present the
pectral clustering methodology and the formalism to implement it on 
 

2 . In Section 3, we present our implementation of spectral clustering
hat makes use of the HEALPix sky tesselation. In Section 4, we show
wo applications of how the patches defined with spectral clustering 
an be used to impro v e the performance of parametric component
eparation techniques. We finally discuss results and cosmological 
mplications in Sections 5 and 6. 

 SPECTRAL  I MAG E  S E G M E N TAT I O N  

mage segmentation via spectral clustering is an efficient technique 
hat combines spatial similarity (or affinity) of pixels with the sim-
larity based on image-related characteristics of the pixels (Zelnik- 

anor & Perona 2004 ; Zhang et al. 2018 ). There are profound
eometric and analytical reasons for this and are concisely discussed 
n the dedicated Appendix A. 

Any image can be mathematically encoded by means of a real-
alued (ideally smooth) function f , which is defined on a portion of a
MNRAS 511, 2052–2074 (2022) 
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1 A common example of increasing Dirichlet energy eigenfunctions can be 
found among the eigenfunctions of the Laplace–Beltrami operator in the 
sphere, i.e. the Spherical Harmonics, Y 
 m . We observe increasingly larger 
spatial variability of the Y 
 m in correspondence to larger values of multipole 
number 
 , with fluctuations involving smaller and smaller angular scales. 
2 Similarly, this properties propagates to the eigenvectors of the Laplacian 
matrix (equation 1). 
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urface and sampled with a fixed resolution given by the pixel grid.
 or e xample a gre y-scale image is encoded by one function, whereas
GB images are encoded by three. 
We summarize below the standard steps for a spectral clustering

rocess: 

(i) Translate an image into a graph by defining a suitable adjacency
ondition. A typical choice is that any pixel is connected to its nearest
eighbours. F or e xample, in correspondence to pix el j neighbour of
 , we can set to a non-zero value the ij element of the so-called
djacency matrix A ij . Once the connections among all pixels are
efined via the weights on the adjacency matrix, we can build a graph
y choosing a conventional order of the vertices (pixels) x i . The way
he adjacency weights are assigned is usually based on accounting
or the geometric distance or the distance between the values that f
akes in each pixel. An example of weights estimated from a distance
s commonly weighting the graph nodes by a Gaussian function of
he distance between two pixels. 

(ii) Compute the graph Laplacian matrix from the weighted
djacency matrix. We use the symmetric random walk Laplacian: 

 sym 

≡ I − D 

− 1 
2 AD 

− 1 
2 , (1) 

here the I is the identity matrix and D i = 

∑ 

j A ij is a diagonal matrix
alled degree matrix. 

(iii) Compute the eigenvectors of the graph Laplacian, L sym 

, and
elect a subset of n eigenvectors, in correspondence to the ones that
ontribute the most to the eigenspectrum of L sym 

. For example, for
he specific case of 2D images, each eigenvector can be visualized as
mages encoding large (small) spatial variations depending whether
he correspondent eigenvalue is small (large). This process defines
n embedding of the graph associated with the image in R 

n , i.e. each
ixel i in the image is characterized by n features, i.e. the value of
ach eigenvector in the i th pixel. 

(iv) Once the embedding in R 

n is defined, the standard Euclidean
istance in R 

n is e v aluated for all the pair of pixels in order to run a
uitable Agglomerative or Divisive clustering algorithm. 

In this work, we combine the spectral clustering and adapted it in
he context of quantities defined in the S 2 manifold. This is generally
eferred to as manifold learning : a discipline that combines statistical
ethods with techniques developed in differential geometry. It

s based on the assumption that point clouds of multi v ariate n -
imensional variables are sampled on or close to smooth compact
ub-manifolds of R 

n (the existence of a boundary is usually ignored).
n Appendix A, we outline more in detail how manifold learning
an be combined with spectral clustering. Ho we ver, we remark here
wo rele v ant and non-standard aspects of the implementation of the
ethod proposed in this paper that make the geometric nature of

pectral clustering very rele v ant: 

(i) Maps from very wide astronomical surv e ys are sampled on
he sphere, we therefore implement the affinity between pixels
ccounting for the angular distance on the S 2 sphere (presented in
ection 3.1). 
(ii) We choose the partition as the one that minimizes the within-

nd between-cluster variances. We present in Section 3.2, how the
ariance depends on several partition choices and eigenvector bands.

In order to better understand the details in the following sections,
e briefly summarize few propositions in the context of Graph
heory which will be used to justify the choice for the adjacency

n Section 3. 
NRAS 511, 2052–2074 (2022) 
ROPOSITION 1. The construction of the graph Laplacian matrix
 is known to approximate the Laplace–Beltr ami oper ator � g on
 Riemannian manifold embedded in R 

n and sampled in a grid of
oints (e .g . our set of pixels). Ther efor e, the weighted adjacency
atrices can be directly derived from the integral kernel (or Green

unction) of the Laplacian operator in the sense of Fredholm’s theory
Fredholm 1903 ). 

ROPOSITION 2. The Laplace–Beltr ami oper ator on a compact
ifferentiable manifold M has discrete spectrum λ0 ≤ λ1 ≤ λ2 ≤... ≤
n and its eigenfunctions ϕ i form an orthonormal basis of the space
 

2 ( M ). Analogously, every discrete approximation of a function on
 manifold can be expressed with respect to a basis of eig envector s
f the graph Laplacian. 

As a consequence of Proposition 1 and 2, estimating the eigen-
pectrum of suitable graph Laplacian matrices sampled in a grid
pproximates the spectrum (eigenvalues and eigenfunctions) of the
aplace–Beltrami operator. 
Moreo v er, in defining the optimal image segmentation it is quite

ommon to define the Dirichlet energy functional , i.e. 

[ f ] ≡ 1 

2 

∫ 
M 

‖ ∇f ( x) ‖ 2 d ω g 

hat measures the spatial variability (or spatial frequency ) of a
mooth function on a manifold M . Thus, since the Dirichlet energy
ssociated to the eigenfunctions of the Laplace–Beltrami operator
s E( ϕ i ) = 

1 
2 λi with monotonically increasing Dirichlet energy 1 

Proposition 2), the set of the first n eigenfunctions provides an
ptimal embedding of M in R 

n corresponding to the minimum
irichlet energy . 2 Generally , this process can be also addressed
y selecting a subset of eigenfunctions (corresponding to a certain
irichlet energy band ) to embed M in a n- dimensional space. 
The choice of the eigenfunctions related to a specific Dirichlet

nergy band can impact the quality of the image segmentation. This
s mainly due to the fact that the clustering methodology is based
n the choice of the eigenvectors of the Laplacian matrix, to which
orresponds a certain degree of spatial variability, or granularity . We
evote Section 3.2 to describe how this applies to the case presented
n this work and how the choice of the energy band affects the
haracteristic size of the clusters. 

The key ingredient in this framework is the definition of the
djacency, from which the Laplacian matrix can be then derived
ia equation (1). In the next section, we describe extensively the
djacency adopted in this work. 

 SPECTRAL  CLUSTERI NG  O N  HEALPI X  

APS  

n this section, we present an implementation of spectral clustering
pplied on images defined on the full celestial sphere. We adopt
aps following the HEALPIX scheme (G ́orski et al. 2005 ; Zonca

t al. 2019 ). 
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Figure 1. Adjacency as estimated in equation (A16) relative to the pixel 
centred at ( 
 , b ) = (0, 30) deg Galactic coordinates. We recall the reader that 
A ij is a n pix × n pix , so its rows and/or columns can be visualized as HEALPIX 

maps. 

3

L  

 

X  

w
s  

�  

n
 

H

A

w  

e
P

A

w  

w
 

d  

L  

i

a  

o  

E
s  

W
o
w

a
g
t  

i

3

d
C

 

c
t  

o
m
w
X  

r  

t  

d  

t  

d
r  

K  

a  

s  

t  

t  

o  

a  

m
 

d  

a

�

w  

r
t  

o  

p  

(  

i  

f
 

t
e
W  

w  

e  

w
e  

e
 

c  

a  

f  

s
q
e  

S
f  

c
 

o  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/2/2052/6505150 by C
halm

ers Tekniska H
ogskola user on 05 O

ctober 2023
.1 Choice of the adjacency 

et us denote by X = ( x 1 , . . . , x n pix ), a set of normed-1 vectors (with
x i ∈ R 

3 ), encoding the coordinates of each HEALPIX pix el. Giv en
 , we can construct a matrix as � = X 

T X , being a n pix × n pix matrix,
ith diagonal equal to 1, and off-diagonal elements encoding the 

calar product estimated pairwise on the columns of X . Notice that
 encodes the cosines of the scalar product as the columns of X are

ormed-1. 
We can therefore define the degree of affinity between pixels in a

EALPIX map from � , as 

 ∝ exp 
(
−(1 − � ) 2 / 2 σ 2 

pix 

)
, (2) 

here σ pix 
3 is related to the pixel scale of the map. By expanding

quation (2) in the Harmonic domain in terms of the Legendre 
olynomials P 
 , as 

 ≡
+∞ ∑ 


 = 0 

2 
 + 1 

4 π
e −
 ( 
 + 1) σ 2 

pix P 
 ( � ) , (3) 

e observe that the scale given by σ 2 
pix sets a threshold 
 max to which

e can stop the sum in equation (3). 
In Appendix A4, we sho w ho w the functional form in equation (3)

erives from the integral kernel (also known as heat kernel ) of the
aplace–Beltrami operator, � g , in S 2 Zhao & Song ( 2018 ). We show

n Fig. 1 a row of the affinity matrix A as defined in equation (2). 
When clustering methodologies are employed, it is common to 

sk oneself how the adjacency in equation (2) is affected in presence
f the uncertainties in the measurements at a giv en pix el location.
.g. suppose that we have measurements of the modified black-body 
pectral index of dust emission, βd , and its uncertainties, σ d ≡ σ ( βd ).
e require that two pixels encoding statistically compatible values 

f βd would be more easily associated together into a single cluster 
ith respect to pixels with incompatible values. 
We therefore want to identify a way to combine the measurements 

nd the uncertainties into the heat-kernel adjacency (equation 2) 
iven realistic measurements of foreground spectral parameters. For 
he following application, we will use the map of the dust spectral
ndex βd and the uncertainty map σ d obtained from the Planck 
 In this work, we adopted nside = 32 which results in σ pix ∼ 46 
′ 
. 

M  

s  

m
v

ata processed with the COMMANDER separation algorithm Planck 
ollaboration X ( 2016b ). 
Intuitively, we can distort � defined in equation (2) with a

ertain weight given by the measurements and the uncertainty of 
he parameter at a given pixel location. Given the state of art data
n Galactic foregrounds in the sub-mm regime, we consider the 
easurements in each pixel i to be normally distributed around βd , i 

ith a width given by its uncertainties, σ d , i (Planck Collaboration 
 2016b ). We therefore generate a mock sample of 100 Gaussian

andom numbers given the features ( βd , p , σ d , p ), and we estimate
he two-sample Kolmogoro v–Smirno v (KS) test on to pairs of
ifferent pixels i and j . This allows us to test the null hypothesis
hat the distribution of βi 

d values is drawn from the same underlying
istribution as those of βj 

d within an assumed confidence level. We 
epeat the test 100 times, e v aluate the statistical quantile Q ij of each
S test, and set the median value all the KS tests, Q 

med 
ij as the

djacency weight e v aluated for the ij pixel pair. Thus, if Q 

med 
ij is

mall enough to reject the null hypothesis at a 2 σ confidence level,
he connection is weighted with a very low weight and it is unlikely
hat the two pixels will be associated into the same cluster. On the
ther hand, when Q 

med 
ij ∼ 1 we cannot reject the null hypothesis

nd the two pixels can be associated, as they are parallel in this
etric. 
In order to combine the adjacency from the KS test and the one

efined in equation (2), we can treat the KS quantiles as cosine of
ngles, so that a straightforward deformation of � can be 

 

′ = cos 
(

arccos ( � ) + α
(
1 − Q 

med 
) π

2 

)
, (4) 

here 0 < α ≤ 0.5 is a scaling factor parameter that weighs the
elative contribution of the KS quantile similarity with respect to 
he geometrical one (the proximity of two pixels on the sky). Values
f α > 0.5 result into too large distortions that break the metric
roperties of equation (4) and make the Laplacian a singular matrix
see Section 3.2). The updated cosine matrix � 

′ 
is then finally

nserted into equation (2) to e v aluate the adjacency weights obtained
rom this distortion. 

Given the definition of adjacency (equation 2 or 4), we can
herefore estimate the Laplacian matrix as in equation (1) and 
stimate its first N eigen eigenpairs, related to the smallest eigenvalues. 
e remark that we do not factorize the whole Laplacian matrix, since
e are interested in a subset of eigenvectors. We thus approximate the

igenpairs by means of the so-called Ritz approximation , a technique
hich has already been exploited in previous literature (Szydlarski 

t al. 2014 ; Puglisi et al. 2018 ) to approximate very well the exact
igenpairs of a matrix. 

In Fig. 2 , we show the first 100 Ritz eigenvalues λ of L for different
hoices of α. We firstly focus on the α = 0 case. As already mentioned
bo v e, the functional form of the adjacency in equation (2) descends
rom the integral kernel of the Laplacian operator in S 2 , which
pecifically coincides to the angular momentum operator, ˆ L 

2 , in 
uantum mechanics (see Appendix A4 for further details). We thus 
 xpect the eigenv ectors to be e xactly the eigenfunctions of ˆ L 

2 , the
pherical Harmonics, and to present the same algebraic multiplicity: 
or a given multipole number 
 , its multiplicity goes as 2 
 + 1, in
orrespondence of the m azimuthal multipole number. 

Indeed, we notice that for the α = 0 case (solid blue) line
f Fig. 2 , the algebraic multiplicity grows exactly with 2 
 + 1.
oreo v er , the eigen vectors shown in Fig. 3 perfectly resemble the

pherical harmonics. Both the eigenvalue de generac y as well as the
orphology of the Laplacian eigenvectors represent a remarkable 

alidation test for the o v erall implementation described abo v e. 
MNRAS 511, 2052–2074 (2022) 
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Figure 2. Eigenvalues of Laplacian matrix estimated as in equation (1), for 
several choices of the scaling factor α. 
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On the other hand, the distortion introduced by α �= 0 breaks the
aplacian eigenfunction algebraic multiplicity, so that the eigenspec-

rum increases more piecewise, for different higher values of α. As a
onsequence, the eigenvectors as well deviate from the spherical
armonics, being more and more weighted by the measurement
ncertainties. In fact, for our specific case where Galactic emission
s involved, we observe several anisotropies in correspondence of the
alactic plane (see Fig. 4 ). 

lgorithmic 1. Spectral Clustering Optimization of a field X with
ncertainty σ ( X) 

1: pr ocedur e SPECTRAL CLUSTERING ( X , σ ( X )) 
2: Parameter Affinity, Q Initialization with ( X , σ ( X )) data 
3: for α in [0 , . . . , αmax ] do 
4: Build Affinity matrix with α distortion (eq. 4) 
5: Build Laplacian matrix, L (eq. 1) 
6: Estimate Ritz eigenpairs 
7: Select an eigenvector-band, U 

8: Estimate the euclidean affinity E from the columns of U 

9: for δ in [0 , . . . , δmax ] do 
10: Run Agglomerative clustering 
11: Estimate W ( α, δ) 
12: end for 
13: end for 
14: Find local minima of W , ( α∗, δ∗) 
15: end pr ocedur e 

.2 Identifying the optimal partition 

n this subsection, we aim at discussing how the clusters are estimated
nd how to identify the range of partition optimality. The o v erall
pectral clustering algorithm described in the sections abo v e is sum-
arized in Algorithm 1. In particular, we employ the implementation

f agglomerative clustering publicly available in the SCIKIT-LEARN

YTHON package 4 to estimate the clusters. 
The relationship between the eigenvectors of the Laplacian and

he spatial frequency of the associated eigenvectors (measured by
he Dirichlet energy functional) is explained at the beginning of
ppendix A. Lower eigenvalues correspond to eigenvectors with
 ht tps://scikit -learn.org/stable/modules/generated/sklearn.cluster.Agglomer 
t iveClust ering.ht ml 

e

5

NRAS 511, 2052–2074 (2022) 
o wer spatial v ariability (lo wer Dirichlet energy). The Dirichlet
nergy of the Laplacian eigenfunctions on a smooth manifold can
ncrease indefinitely, while in the discrete case the Laplacian matrix
eaches a maximum eigenvalue. The spectrum of the Laplacian
atrix manifests concave shape for different values of the scaling

actor α (see Fig. 2 ). The eigenvalues of the Laplacian matrix on
 

2 increase at a decreasing rate while their algebraic multiplicity
ncreases. Moreo v er, the algebraic multiplicity of the eigenvalues is
roken by the geometric deformation introduced by α. 
Since we want to identify the smallest eigenvalues encoding most

f the bulk of the Laplacian eigenspectrum, we consider the first n eig 

 256 Ritz eigenpairs and therefore build the matrix U ∈ R 

n pix ×n eig 

ontaining n eig eigenvectors as columns. 
We remark here that the eigenvector matrix U is critical in the

ontext of spectral clustering because it provides the embedding of
 

2 into R 

n eig space spanned by the Laplacian eigenv ectors. Moreo v er,
t helps in reducing the dimensionality of our problem from n pix 

eatures, i.e. the number of features we have in a map, to n eig 

nd in a v oiding the curse of high dimensionality which clustering
ethodologies might frequently incur. 
We then consider each row of U , ( u i ) i= 1 , ... ,n pix 

as our data vector
nd we perform agglomerative clustering with n pix samples and
 eig features. We measure the pairwise similarity, E ij , between two
ectors u i and u j (representing the i th and j th pixels) by estimating
he euclidean distance between them. The two pixels are associated
ith a group if E ij < δ, with δ being a free parameter, commonly

eferred as the linka g e distance threshold . Small values of δ tend
o typically produce small clusters, and vice versa. This can be
ntuitively understood as follows: the more constraining the distance
hreshold, the harder it is to associate two pixels together into a
luster. 

We notice that for several values of α the distance matrix range
hanges in such a way that we get smaller eigenvector similarities
or larger values of α. This is a consequence of the fact that the
eformation of adjacency with KS weights (equation 4) results into
 compression of the Laplacian eigenspectrum to smaller condition
umbers. In fact, we notice a trend in the Laplacian eigenspectrum
o (i) lose the typical 2 
 + 1 de generac y for α �= 0, (ii) flatten
o smaller condition number, (iii) to become degenerate to a small
alue numerically close to zero. As a results the convergence of the
aplacian Ritz eigenpairs estimation time increases for α > 0.3. 5 

Furthermore, the eigenvector distance for several values of α needs
o be normalized in such a way that we use the same range in δ to
ompare the variances estimated from each run of the agglomerative
lustering. We therefore rescale the eigenvector distance E α e v aluated
or different choices of α as it follows: 

 

′ 
α = 

E α/M − m 

1 − m 

, (5) 

ith M = E max, α and m = E min, α . We note that E 

′ 
ranges from E 

′ 
max =

 to E 

′ 
min = Cm , with C = (1 − M )/ M ∼ constant for different values

f α. The rescaling in equation (5) can be seen as a sort of rigid scaling
f the distance, making the distance matrices for different choices of
and α to be comparable without losing too much information.
otice that equation (5) scales the maximum of the distance to
 but we make sure that it does not affect the shape of distance
istribution. We also make sure that the ratio of minimum distances
or different choices of α is the same as before the rescaling in
quation (5). 
 This is the reason why we set the maximum value of α to 0.3. 

art/stac069_f2.eps
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Figure 3. The first eigenvectors of L corresponding to 
 = 0, . . . , 3 and assuming no uncertainty deformation (i.e. α = 0). The colourbar ranges for all the 
maps between ±0.07. 
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Furthermore, we consider three bands to identify the eigenvectors 
ith major contribution to the total Dirichlet energy budget, i.e. the 

patial variability, in the domain partition: 

(i) 
 b 1 , including the first 100 eigenvectors, corresponding to 1 � 

 � 10. 
(ii) 
 b 2 , including vectors between the 90th and 150th eigenvec- 

ors, corresponding to 9 � 
 � 12. 
(iii) 
 b 3 , sampling the whole eigenspectrum every other 5 vectors 

p to the 175th one, corresponding to 1 � 
 � 14. 

We create a grid with different points evaluated in the α − δ

arameter space, with α ∈ [0, 0.5], δ ∈ [0.05, 0.3], and estimate the
luster variance, W , defined as 

 ≡
√ 

V 

2 
w + V 

2 
b , (6) 

ith V w being the within-cluster variance, 

 w ≡
K ∑ 

k= 1 

∑ 

u k ∈ C k 
( u k − μk ) 

2 , 

 b the between cluster variance, 

 b ≡
∑ 

k �= k ′ 
( μk ′ − μk ) 

2 , 

 the total number of clusters and μk the centroid of cluster C k . 
Fig. 5 shows W defined in α − δ space e v aluated for the three dif-

erent eigenvector bands. The optimal parameters ( α∗, δ∗) correspond 
o local minima of W . Notice that the range of optimality changes for
ifferent eigenvector bands as different scales are encoded in each 
and. We emphasize that similar optimal ranges are found among 
he three bands, indicating that the clustering is stable with respect
o the choice of the band. 

Since the 
 b 3 band encodes scales from most of the Laplacian
igenspectrum, we adopt this band as a baseline for the applications
resented in the following sections. 
Finally, we notice that the optimality, shown in Fig. 5 , does not

orrespond to a very localized region in the parameter space spanned
y α and δ. Rather it shows as a narrow vertical band at around
 certain value of δ for which several choices of α can be equally
ptimal. We find that intermediate values of α ∼ 0.15 lead to a
alanced trade-off between defining the clustering, given the features 
f spectral parameters and the intrinsic adjacency in S 2 . We refer the
eader to Appendix C for further details. 

The estimation of the Laplacian adjacency and eigenpairs and the 
ptimization of spectral clustering has been performed on 300 Cori 
NL nodes of the NERSC Supercomputing facility. 6 It takes ∼4000 

pu-hours to e x ecute the o v erall procedure outlined in Algorithm 1
ith maps at nside = 32 . 

 APPLI CATI ONS  

e present two applications of our spectral clustering algorithm for 
he purpose of performing parametric component separation. First, 
n Section 4.1, we apply the spectral clustering algorithm to derive a
artition of the sky from publicly available maps of synchrotron 
MNRAS 511, 2052–2074 (2022) 
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Figure 4. The first eigenvectors of L with affinity deformation α = 0.25. For sake of comparison with Fig. 3 , we report also in this plot the correspondence to 

 = 0, . . . , 3 although the analogy lose specific meaning for α �= 0. The colorbar ranges for all the maps between ±0.02. 

Figure 5. Variance W as in equation (6) in the α − δ space, e v aluated in clusters constructed with the three eigenvector bands as defined in the main te xt. F or 
the analysis shown in Section 4, we adopted the 
 b 3 being the band that accounts for the eigenvectors encoding most of the angular scales to be clustered. 
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nd dust spectral parameters. Once the patches are defined we
erform a parametric component separation on each patch and assess
he post-foreground cleaning residuals in the CMB B-mode maps.
econdly, in Section 4.2, we identify the patches by means of an
ncillary data set: the number of H I clouds along the line of sight,
 c , presented in Panopoulou & Lenz ( 2020 ). This data set is an

ndependent tracer of the foreground dust emission. We then perform
omponent separation within these patches and estimate the quality
f the reconstruction. 

.1 Clustering applied on Galactic for egr ound spectral 
arameters 

e perform parametric component separation by fitting for three
omponents: CMB, dust, and synchrotron emission. We consider
NRAS 511, 2052–2074 (2022) 
wo different combinations of data, to be representative of the
orthcoming experiments aimed at observing primordial B modes:
he Simons Observatory Small Aperture Telescope (SO-SAT; Si-

ons Observatory Collaboration et al. 2019 ) from the ground and
he LiteBIRD space satellite (Sugai et al. 2020 ). The component
eparation is performed, respectively, on 27 per cent and 60 per cent
f the sky (see Fig. 9 ) with frequency channels encoding the specifics
hown in Table 1 . Notice that for SO-SAT we assume conserv ati vely
he baseline configuration as described in Simons Observatory
ollaboration et al. ( 2019 ). 
We use the Python Sky Model 7 (PySM; Thorne et al. 2017 ) to

imulate full-sky polarized emission of thermal dust, CMB, and

art/stac069_f4.eps
art/stac069_f5.eps
https://pysm3.readthedocs.io/
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Table 1. Nominal specifics of CMB experiments to run component separation with FGBUSTER . 

Frequency (GHz) Sensitivity ( μK arcmin ) FWHM (arcmin) 

SO-SAT 27, 39, 93 35, 21, 2.6 91, 63, 30 
145, 220, 270 3.3, 6.3, 16 17, 11, 9 

LiteBIRD 40, 50, 60, 68, 78 37.5, 24, 19.9, 16.2, 13.5 69,56,48,43,39 
89, 100, 119, 140, 166 11.7, 9.2, 7.6, 5.9, 6.5 35, 29, 25, 23, 21 
195, 235, 280, 337, 402 5.8,7.7,13.2,19.5,37.5 20, 19, 24, 20, 17 
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ynchrotron. 8 The synchrotron radiation is commonly parametrized 
s a power law 

 ν, synch ∝ νβs , (7) 

hereas the thermal dust emission is described by a modified black- 
ody, i.e. 

 ν, dust ∝ νβd B ν( T d ) , (8) 

ith T d being the black-body dust temperature. 
Among the different models available in PySM, we choose as a 

eference the d1s1 model, which accounts for spatial variation in 
he synchrotron and dust spectral indices, βs , βd , and in T d . 

The synchrotron spectral index of the s1 model is the Miville-
esch ̂ enes et al. ( 2008 , model 5), estimated by combining the Haslam

t al. ( 1982 ) map at 408 MHz and the map at 23 GHz from WMAP
Hinshaw et al. 2009 ). The βs map and its uncertainties σ ( βs ) are
vailable online 9 at 5 deg resolution. 

The d1 model is derived from the Planck data products 10 released 
n Planck Collaboration X ( 2016b ), with βd and T d parameters ob-
ained at about 1 deg resolution with the COMMANDER component 
eparation algorithm Planck Collaboration X ( 2016b ). 

When multiple frequency channels are simulated with the d1s1 
odel, algorithms relying on parametric component separation 
ould tend to reconstruct CMB maps with large residual foreground 
ias (commonly referred as systematic bias ) if a single constant 
pectral parameter is fitted for each Galactic component across the 
hole observ ed sk y, as the spatial variability of fore grounds is not

aken into account in the fit. Several approaches in the literature 
ried to tackle this bias, in the literature the most common one is
ommander (Eriksen et al. 2006 , 2008 ). Commander employs a 
ayesian parameter fit to estimate the free parameters by means 
f Markov Chains with Gibbs sampler and non-linear searches. It 
as successfully been applied on Planck real data both in intensity 
nd polarization. Although it provided the state-of-art maps of 
ynchrotron and dust parameters with spatial variation at the ∼
egree scale, Commander can work only on coarse pixel grids, 
s its computational cost scales with the number of pixels. Lately, 
hatri ( 2015 , 2019 ) implemented a no v el methodology combining

lustering and ILC methods to intensity only Planck data to exactly 
stimate high-resolution spectral parameter maps. 

On the other hand, the instrumental noise is responsible for the 
tatistical uncertainties that can be commonly assessed by running 
omponent separation on frequency maps encoding different Monte 
arlo (MC) realizations of instrumental noise and astrophysical 

ignal. 
A partition of the sky where the parameters are fit independently 

n multiple regions might mitigate the systematic bias but increase 
 The contribution in polarization from AME, CO and free–free is expected 
o be very small and it is neglected in the following. 
 https:// lambda.gsfc.nasa.gov/ 
0 ht tps://pla.esac.esa.int 

s  

i

1

he statistical uncertainties, as the fit is then performed on a smaller
umber of pixels, hence encoding a lower signal-to-noise ratio (SNR) 
han the case with all the observed pixels (Errard & Stompor 2019 ). 

Once the set of parameters is defined together with their associ-
ted uncertainties, we can run the spectral clustering optimization 
rocedure as outlined in Section 3. The variance planes for βs , βd ,
 d are shown in Fig. 6 . We show the optimal patches selected in
orrespondence of local minimum of the variance in Fig. 7 . 

We estimate the median value of the number of pixels included
n each cluster and we find about 4 pixels per cluster for βd , 8 for
 d , and 16 for βs , resulting in a typical angular sizes for the cluster
ange from ∼ 3 . 5 , 7 , 14 de g, respectiv ely, for βd , T d , and βs . The
ifferent morphologies and sizes, as well as the different number of
lusters, result from a trade-off between the intrinsic variability due 
o the astrophysical emission, the resolution of each map (see the left
olumn of Fig. 8 ) and the SNR. Specifically, the clustering algorithm
nds it harder to agglomerate pixels related to very high SNR regions
e.g. at low Galactic latitudes) with respect to regions with larger
ncertainties. In fact, this trend is observed in all the regions: smaller
atches where the SNR is high, larger patches where it is low. 
We then implement a new functionality in FGBUSTER 

11 (Stompor, 
rrard & Poletti 2016b ), a package for parametric component 
eparation, aimed at fitting parameters within the set of multiple 
artitions of the sky. Further details of the implementation will be
resented in two companion papers (Errard et al. in preparation; 
oletti et al. in preparation). 
We adopt the usual emission model assumed parametric fitting. 

or a given pixel p , each map at a given frequency, m ( ν), can be
xpressed as 

 

p,X ( ν) = A 

p,X 
s f s ( ν, βs ) + A 

p,X 

d f d ( ν, βd , T d ) 

+ A 

p,X 

cmb f cmb ( ν) + n p,X ( ν) , (9) 

.e. a linear combination of amplitudes of each astrophysical com- 
onent, with functions f s ( ν, βs ), f d ( ν, βd , T d ), f cmb ( ν) encoding the
pectral dependence of synchrotron, dust, and CMB, a at a given
requency ν as outlined in Section 4.1; n ( ν) accounts for instrumental
oise of a given frequency channel coadded to the signal. For a
iven free parameter, the fit is performed on different sk y re gions.
 or e xample, a single value of βd is estimated within each cluster
hown in Fig. 7 (left). Whilst, T d value in the same location is
tted from a different set of pixels with respect to βd and βs (see
or a comparison the patches in Fig. 7 ). This mainly implies that
ach spectral parameter in the same sky location is estimated by
onsidering a different set of pixels from the multifrequency maps 
ith respect to the ones employed for another parameter. Essentially, 

ach fit performs in an adaptive way given the intrinsic morphology,
ize and SNR of the emission. This is the reason why we expect large
mpro v ements in terms of parametric e v aluation. 
1 ht tps://fgbust er.git hub.io/fgbuster
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Figure 6. Variance surfaces estimated for several choices of α and δ, for (left) βs , (middle) βd , (right) T d . Note that regions of optimality correspond to local 
minima (lighter regions) in the surfaces. 

Figure 7. Cluster-defined patches obtained from the parameters in the d1s1 model (each colour denotes pixels belonging to different clusters). We show 

Clusters estimated with f = 0 (top row) and with f = 1 (bottom row). 

 

w  

d  

d  

p  

w  

p  

0  

S  

c  

a  

t  

c  

i
 

i  

t  

b  

w
 

t  

d  

w  

i  

d  

G  

e  

S  

m  

d
 

b  

u  

m  

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/2/2052/6505150 by C
halm

ers Tekniska H
ogskola user on 05 O

ctober 2023
We generate 20 Monte Carlo realizations of noisy frequency maps
ith the nominal specifications of LiteBIRD and for SO-SAT (see
etails in Table 1 ). The frequency maps are produced with the PySM
1s1 model at nside = 64 and include both the input astrophysical
olarized signal and the instrumental noise (assumed to be only
hite noise). We show in Fig. 9 the nominal sky patches where the
arametric fit is performed. Notice that we choose a larger f sky =
.27 for SO-SAT with respect to the ef fecti ve f sky = 0.10 reported in
imons Observatory Collaboration et al. ( 2019 ). The reason for this
hoice is mainly moti v ated by the fact that we want to conserv ati vely
ssess the performance of this methodology on to larger regions of
he sky being thus more susceptible to larger Galactic residuals. This
hoice further allows us to compare our results with the ones reported
n Thorne et al. ( 2019 ). 

In Fig. 8 (middle column), we show the parameter maps estimated
n each cluster region with the LiteBIRD frequencies and we e v aluate
he relative error of this estimate by considering the difference
NRAS 511, 2052–2074 (2022) 
etween the PySM parameter maps and the parameters estimated
ith FGBUSTER (see the right column in Fig. 8 ). 
In Fig. 10 , we show the distributions of relative errors for the

hree parameters together with the median v alues sho wn as vertical
ashed lines to be 0.002, 0.006, 0.017, respectively, for βs , βd , T d ,
ith the largest errors, ≤ 20 per cent , found in T d estimates. This

mplies that the component separation performed on the cluster-
efined patches in Fig. 7 (top) reco v ers faithfully the spatially varying
alactic components. Furthermore, we somewhat expect the worst

stimate to be the one related to T d , since both LiteBIRD and SO-
AT high-frequency channels probe frequency regimes far from the
odified black-body peak ( ν ∼ 600 GHz), making T d essentially

egenerate with βd at lower frequencies. 
The case shown in Fig. 8 is an ideal-limit case as the patches have

een derived by clustring on to the same parameter maps that are
sed to simulate the frequency channels. In order to introduce a mis-
odelling between the two set of maps, we inject a noise proportional

art/stac069_f6.eps
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Figure 8. Left column: F ore ground parameters from the PySM d1s1 model, (middle column) parameter maps estimated with FGBuster on each clustering 
region (see Fig. 7 ) using the LiteBIRD frequency channels. Right column: Relative residuals on the estimated maps with FGBuster and the input ones from 

PySM. 
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o the per-pixel uncertainties on βs , βd , T d , as 

˜ 
 = X + f N w [ σ ( X)] , (10) 

here X = βs , βd , T d ; N w [ σ ( X )] is a random Gaussian noise map
ith zero mean and width given by the uncertainty map, and f is a
eighting constant factor, ranging from 0 to 1. 
The f = 1 case represents a pessimistic case where the foregrounds

re fully mis-modelled, given the uncertainty budget in the spectral 
arameters and f = 0 represents the ideal case without any mis-
odelling. 
For each mis-modelling case, we estimate the statistical residuals 

y performing component separation on maps encoding 20 MC 

ndependent realizations of instrumental noise and astrophysical sig- 
al. The systematic bias is instead estimated by running component 
eparation on noiseless maps. 
We therefore run the spectral clustering algorithm on the mis- 
odelled parameter maps ˜ βs , ˜ βd , ˜ T d for se veral v alues of f . For

xample, in Fig. 7 (bottom), we show the cluster obtained from
arameter maps with maximum mis-modelling ( f = 1). We note a
rend to have smaller number of clusters with similar sizes and more
niformly distributed with respect to the f = 0 case for similar values
f α, δ. This is particularly noticeable for the dust parameters, since
hey are provided with a higher resolution than the synchrotron one.

e conclude that injecting the mis-modelling noise into the spectral 
arameter maps tends to homogenize the typical size of the patches.
We then perform the component separation separately for Lite- 

IRD and SO-SAT channels (simulated without mis-modelling) on 
o the cluster patches derived with the mis-modelling. This procedure 
llows us to further set requirements on the mis-modelling given the
esidual bias we observe in the recovered CMB map for different
alues of f = [0, 0.1, 0.5, 1]. 
MNRAS 511, 2052–2074 (2022) 
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Figure 9. Masks used for component separation and for the power spectra 
estimation with NAMASTER (Alonso, Sanchez & Slosar 2019 ) for Lite- 
BIRD (top) and SO-SAT (bottom) encoding, respectively, 60 per cent and 
27 per cent of the sky. 

Figure 10. Histograms e v aluated from the relative error maps of βs , βd , T d 
(the right column of Fig. 8 ), respectively, in solid blue, orange, and green. 
Shown as vertical dashed lines the median values, namely 0.002, 0.006, 0.017, 
respectively, for βs , βd , T d . 
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As the output maps of FGBUSTER are estimated on a partial
ky (see Fig. 9 ), we estimate the power spectra in the observed
egions with NAMASTER (Alonso, Sanchez & Slosar 2019 ) to
orrect the power spectra for the E − B leakage introduced by
asking. We show in Fig. 11 the angular power spectra of CMB
 -mode polarization anisotropies as estimated from the reco v ered
ap outputs of FGBUSTER . 
We notice that the statistical residuals are not affected by the mis-
odelling since the instrumental noise is the dominant contribution to

he post-component separation residuals. On the other hand, the mis-
odelling is clearly visible when we assess the systematics bias in the
NRAS 511, 2052–2074 (2022) 
esidual maps. In particular, we observe an increase of the systematic
ias proportional to f , indicating how the partition is less and less
epresentative with increasing values of f of the underlying Galactic
oreground emission. Ho we ver, e ven with the largest mis-modelling
cenario f = 1, the residuals increase by only an order of magnitude.
s expected, larger f sky (including lower Galactic latitudes) yields

arger residuals in the power spectra, this is the reason why we
bserve higher residuals for LiteBIRD with respect to the SO-SAT
ase). 

Furthermore, to show the effective gain of performing parametric
omponent with clustering, we consider two extreme cases of sys-
ematic residual estimates. We mainly focus on LiteBIRD channels
nd, for these specific tests no clustering methodology is employed.
e simply skip the fitting procedure and consider two sets of maps

f βd , βs , T d with f = 0 and f = 1 (see equation 10), each set
een provided as solution to the component separation problem.
his test results in delivering a range of allowance , where we expect
lustering to perform between the lower and upper limit. The lower
imit [not shown in Fig. 11 (left) for graphical purposes] represents
he best case scenario: the parameters of the model and the ones
dopted for LiteBIRD observations exactly match (since f = 0).
his test gives numerically zero residuals as the maps provided to

he parametric fit are the exact solution of the problem (i.e. the
ame spectral parameter maps with which we have constructed the
requency channels). Consequently, the B-mode spectrum amplitude
t every 
 is numerically close to 0. The upper limit of the grey-
haded area in Fig. 11 (left) is instead estimated by providing maps
f βd , βs , T d with f = 1, hence fully mis-modelled with respect to
he templates adopted to simulate the LiteBIRD frequency channels.
his represents the worst case scenario where the mis-modelling
ropagates fully through the parametric fitting pipeline for each
ixel of the map. This results in a residual mis-modelling bias of

5 μK 

2 
CMB almost independent on 
 . The fact that the power spectra

btained with clustering are well within this range, quantifies the
 v erall benefit of performing the parametric fitting by partitioning
he sky with respect to the pixel-by-pixel case, e.g. compare the case
ith clusters are obtained with the largest mis-modelling case ( f =
) with the upper limit of the shaded grey area in Fig. 11 (left). 
Finally, we notice in Fig. 11 that all the B-mode systematic residual

pectra tend to converge to a certain residual level at around 
 � 60.
ereafter, we refer to it as a partition noise being essentially related to

he combination of the typical angular scales of the cluster patches.
his results as a ‘noise’ residual term in the power spectrum, as

hat prevents to estimate the variability of the spectral parameters at
ultipoles larger than this scale. 

.2 Clustering applied on H I clouds maps. 

n the previous section, the component separation is performed
n partitions derived from the same maps used in the parametric
odelling, i.e. βs , βd , T d . Ho we ver, this relies on the assumption

hat spectral parameter maps, from which we derive the cluster
atches, are not contaminated by other Galactic (or extra-galactic)
oregrounds. Indeed, this is commonly the case for both the thermal
ust emission, mainly affected by the cosmic infrared background
CIB) residuals and for synchrotron contaminated by free–free and
ME. 
Moreo v er, giv en the fact that the use of ancillary data sets for

oreground modelling has been proposed by a number of works (e.g.
I4PI Collaboration et al. 2016 ; Clark 2018 ), we wish to explore
hether such an ancillary data set can in principle yield accurate

nough results for CMB parameter estimation purposes. To this end,
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Figure 11. B -mode angular power spectra for the (left) LiteBIRD and (right) SO-SAT cases, estimated with NAMASTER on to the reco v ered CMB maps 
from FGBUSTER performed on to cluster regions. (solid blue thick) Average of foreground statistical residuals obtained from 20 MC signal + noise simulations 
(shaded blue) 1 σ standard deviation of MC simulations, (filled circles) foreground residual bias estimated with noiseless component separation for different 
choices of foreground mis-modelling given by the colourbar. The shaded grey area in the left-hand panel indicates two extreme cases: the upper limit is obtained 
by propagating through FGBuster the f = 1 mis-modelling to the spectral parameters, the lower limit spectra (not shown here) is nearly equal to zero and it 
is estimated by propagating in the component separation the f = 0 case. As a reference we show the primordial B modes for two different chosen values of 
tensor-to-scalar ratio, r = 0.01, 0.001, respectively, in dashed black and solid black. Lensing B modes are also shown in solid thick grey. The spectra in the 
left-hand and right-hand panels are binned, respectively, with �
 = 5 and �
 = 15. 
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e use a complementary data set that traces foreground dust: H I

mission. In particular, we make use of the parametrization of line-of-
ight complexity in the dust distribution presented by Panopoulou & 

enz ( 2020 ). We briefly explain the data set and our post-processing
f it in the following. 
Panopoulou & Lenz ( 2020 ) measured the number of clouds along

he line of sight that appear as distinct peaks in H I spectra. They
resent a peak-finding algorithm that makes use of the HI4PI surv e y
HI4PI Collaboration et al. 2016 ) o v er the high Galactic latitude sky
nd outputs a measure of the number of clouds in each pix el. The y
ntroduced a robust measure of the number of clouds expected to 
ontribute to the dust emission, which takes into account the relative 
ontribution of the dust from each cloud along the line of sight,
efined as N c : 

 c = 

N clouds ∑ 

i= 1 

N 

i 
H I 

N 

max 
H I 

, (11) 

here N 

i 
H I refers to the column density of the i th cloud along

he sightline and N 

max 
H textsci is the highest value of column density 

or a cloud in the same direction. We therefore expect non-integer 
alues for N c especially when there is an imbalance in the column
ensity for clouds along a sightline. The N c map was estimated 
y segmenting the sky into large superpixels at nside = 128
corresponding to ∼30 arcmin), with each superpixel encoding 64 
ixels of the HI4PI map. Recently, Pelgrims et al. ( 2021 ) adopted the
aps publicly released by Panopoulou & Lenz ( 2020 ) to estimate

he line-of-sight frequency decorrelation of dust polarization in the 
lanck maps. For the purposes of our clustering analysis, we require 
aps at nside = 32 and nside = 64 . We thus repeat the analysis in
anopoulou & Lenz ( 2020 ) to produce maps at these lower nside s,

nstead of downgrading the publicly available maps, as recommended 
y the authors. The publicly available N c maps did not include 
ncertainties. As our clustering relies on the use of uncertainties, we 
alculate the per-pixel uncertainty in the N c maps that we use as
escribed in Appendix D. 
As discussed in Panopoulou & Lenz ( 2020 , Section 5.3.1), the

erived maps do not present any imposed spatial coherence at scales 
bo v e the superpixel size, leading to the eventuality of discontinuities
etween neighbouring pixels. Ho we ver, clustering methodologies 
resented in this work can implement the spatial coherence abo v e a
iv en pix el scale. 
We employ the N c and the associated uncertainties as in equa-

ion (D2) with maps at nside = 32 (shown in top panel of Fig. 12 )
nd run the spectral clustering methodology outlined in Section 3. 
e then e v aluate the total variance of the partition in a similar grid

o the one shown in Fig. 6 and find the minimum variance to be at α
 0.10 and δ = 0.20, corresponding to K = 1481 clusters. 
To e v aluate ho w well the clustering morphologies track the input
ap, we estimate the median value of pixels of N c belonging to the

ame clusters and produce a binned map, N 

bin 
c . We can then estimate

he relative error defined as 

N c = | N c − N 

bin 
c | / N c . (12) 

he bottom row of Fig. 12 shows in the left-hand panel the partition
stimated with spectral clustering and in the right one the relative
rrors. We observe that especially around the North and South 
alactic Poles (90 ◦ < | b | < 60 ◦) the clustering optimization tends to
roduce smaller clusters, essentially encoding few pixels per cluster. 
n the contrary, at intermediate Galactic latitudes, clusters contain a 

arger number of pixels. This might be related to the fact that the N c 

aps are produced on too large pixelization ( nside = 32 ), resulting
n an o v erall reduction of the uncertainty budget and a consecutive
ncrease in SNR of the estimates. As already stated in Section 4.1, in
he presence of very high SNR features, the optimal partition leads
o pixel-sized clusters. We will devote a further investigation on this
espect in a future work. 

Notice that in the regions where the uncertainties are small, the
rror is below ∼ 10 per cent . Vice versa, in large uncertainties regions 
he relative error can be as much as 50 per cent although those
egions are localized mainly in the North Galactic Hemisphere. 
o we ver, we remark here that these larger errors should not be

ompared with the ones shown in Fig. 8 as larger errors on N c do
ot necessarily translate on larger residuals on the reco v ered dust
arameters. 
MNRAS 511, 2052–2074 (2022) 
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Figure 12. Top: Maps of N c (left) and its uncertainties σ ( N c ) (right) e v aluated as in equation (D2). Bottom left: Partition of N c ; each colour identifies a 
different clustering region. Bottom right: Relative errors δN c estimated with (equation 12). 
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As already mentioned in Panopoulou & Lenz ( 2020 ), one of the
nteresting applications of the map of number of clouds per line of
ight is to inform realistic models of polarized dust emission for
arametric component separation methods as the one we adopt in
ection 4.1. In this specific case, we utilize the patches derived from

he N c map (the bottom left-hand panel in Fig. 12 ) to perform the
omponent separation estimation of dust and CMB (simulated at
side = 64 ). In fact, since the N c map traces the dust emission,
e do not include the synchrotron as well as all the ν < 90 GHz

requency channels in this analysis. This helps in better singling out
he effects of residuals due to the dust component only. 

Furthermore, to run NAMASTER we regularize the HI4PI ob-
ervation area ( f sky = 0 . 55 per cent ) by apodizing it, yielding to

0 . 35 per cent of the sk y. F or the run with SO-SAT we combine this
ask with the SO-SAT one shown in Fig. 9 (bottom). The combined

bservation patches results in a further reduction, f sky ∼ 22 per cent .
In Fig. 13 , we show the B-mode power spectra of the residuals in

he reco v ered CMB map estimated with NAMASTER . We observe
hat the statistical residuals are reduced by about one order of

agnitude compared to the ones shown in Fig. 11 . This is mostly
ue to the fact that we hav e e xcluded the low frequency channels that
ave lower sensitivity (see Table 1 ), yielding larger post-component
eparation noise when taken into account. Interestingly, the residual
ias achieves levels comparable to r � 10 −3 . It therefore seems
hat the parameters from the component separation performed on
he dust-emission-agnostic N c -based sky partitioning are accurately
epresenting the underlying signal. 

One might wonder whether this dust-emission-agnostic clustering
onstitutes a real benefit in parameter estimation or it is only related
o the fact that we are simply partitioning the northern and southern
olar caps with small patches. In other words: is there intrinsic value
n the information contained in the number-of-clouds map? 

To answer this question, we disentangle the sky partition from the
nderlying physical information by flipping the cluster coordinates
orth to south. Ho we ver, since the north and south Polar caps
NRAS 511, 2052–2074 (2022) 
ave different footprints, we firstly flip the map and then apply the
egularized mask to the N c map. Encoding the mask on a smaller
raction of sky ensures that each pixel in the flipped map falls within
he N c map footprint. 

We then perform the parametric fit with the same combination of
requency channels as before but with the flipped cluster regions.
he thick dashed lines shown in Fig. 13 indicate the power spectra
f systematic residuals from the output of this component separation
un and we notice a remarkable increase of the residuals especially
t lower multipoles both for SO-SAT and LiteBIRD. 

A visual inspection of the relative error and standard deviation
aps estimated in both cases for T d and βd , reveals that both the

rror and the standard deviation (particularly in T d ) increase when
e consider the case with flipped regions. This also indicates that

he bias we observe in Fig. 13 is mostly due to wrong estimation of
he T d parameter. 

This is not unexpected since N c has been shown to be correlated
ith T d (Panopoulou & Lenz 2020 ). The higher values of N c coincide
ith regions where the emission from two physically distinct families
f clouds o v erlap (low v elocity and intermediate velocity clouds).
ne family of clouds resides at larger distances from the Galactic
lane and is found to have higher dust temperatures, presumably due
o dust shattering as it falls on to the mid-plane (Planck Collaboration
XIV 2011 ). Therefore, a mis-modelling of the cloud population

e.g. by flipping the north–south map) naturally leads to a wrong
stimate of T d . We thus can conclude that partitioning the sky
bservations with patches inferred from the N c map can impro v e
he performances of parametric fitting methodologies. 

Finally, we observe also for this case the effects of a partition
oise in the power spectra: with B-mode residuals in Fig. 13 (dashed
ines and filled circles) converging at around 
 ∼ 60. A partition with
maller patches, as the one shown in Fig. 7 , results into shifting to
igher multipoles the contribution due to this partition noise. Grumitt
t al. ( 2020 ) proposed a hierarchical approach to o v ercome e xactly
his limitation and we plan to integrate it in a future work. 
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Figure 13. B-mode residuals from the reco v ered CMB maps output of FGBUSTER performed within multiple regions defined by clustering of N c map for 
(blue) LiteBIRD and (orange) SO-SAT frequency channels, respectively, on f sky = 0.35 and 0.22. (filled circles) Foreground residual bias performed on noiseless 
simulations, (shaded area) 1 σ standard deviation of statistical residuals evaluated from 20 MC signal and noise simulations (the average of the 20 MC realization 
is shown as solid line). (dashed) F ore ground residual bias estimated from the component separation run performed by flipping the map of N c clusters north to 
south. These spectra show an excess at lower multipoles, demonstrating that the N c map provides useful constraints for parameter estimation. 

4

W  

f
f  

c
F  

r  


  

m

w  

(
s
r  

t

C

w
r
s  

a
s

C

w  

e
e

 

l

Table 2. Estimated values for the bias and the uncertainty on r obtained by 
e v aluating the likelihood in equations (13), (16), and (17). 

Clustering on βs , βd , T d 
FG Mis-modelling f LiteBIRD SO-SAT 

0 (0.22 ± 0.66) × 10 −3 (0.08 ± 1.21) × 10 −3 

0.1 (0.28 ± 0.66) × 10 −3 (0.10 ± 1.21) × 10 −3 

0.5 (0.59 ± 0.67) × 10 −3 (0.14 ± 1.21) × 10 −3 

1.0 (2.18 ± 0.68) × 10 −3 (0.20 ± 1.19) × 10 −3 

Clustering on N c (0.09 ± 0.26) × 10 −3 (0.04 ± 0.16) × 10 −3 
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.3 Estimates on r 

e recall the reader that to specifically assess the bias introduced by
oregrounds, we do not include the CMB emission in the simulated 
requency maps. Ho we ver, we instead fit for CMB in the parametric
omponent separation. Given the B-mode power spectra shown in 
igs 11 and 13 , we estimate the value of residual bias in terms of
 by e v aluating the likelihood L ( r) in the binned multipole domain,
 b , given the fact that the power spectra have been corrected by the
ode coupling with NAMASTER . 
The likelihood function reads as 

ln L ( r) = 


 max ∑ 


 b = 
 min 

ln 

( 

−f sky �
 
2 
 b + 1 

2 

[ 

ˆ C 
 b 

C 
 b 

+ ln C 
 b 

] ) 

, (13) 

here 
 max = 200, 
 min = 2 (30), and �
 = 5(15) for LiteBIRD
SO-SAT) and ˆ C 
 b ( C 
 b ) is the measured (modelled) B-mode power 
pectrum. As we are interested in estimating the bias of systematic 
esiduals we assume the measured B - mode spectrum to encode all
he contributions but the primordial one ( r = 0), i.e. 

ˆ 
 
 b = C 

lens 

 b 

+ 

〈 

C 

fg , tot 

 b 

〉 

, (14) 

here 〈 C 

fg , tot 

 b 

〉 is the expected statistical noise power spectrum 

esiduals after component separation obtained by averaging the 
pectra of 20 MC signal + noise simulations (Errard & Stompor 2019 )
nd C 

lens 

 b 

is the lensing B-mode power spectrum. The modelled power 
pectrum is given as 

 
 b = rC 

tens 

 b 

+ C 

lens 

 b 

+ 

〈 

C 

fg , tot 

 b 

〉 

− C 

fg , sys 

 b 

, (15) 

here C 

tens 

 b 

is the tensor mode with r = 1 and C 

fg , sys 

 b 

is the spectrum
ncoding the systematics bias due to mis-modelling the foreground 
mission. 

Thus, the bias on r , � r is defined as the value that maximizes the
ikelihood function: 

d L ( r) 

d r 

∣∣∣∣ = 0 , (16) 

r= �r 
nd the error on r , δr is defined as the value co v ering the 68 per cent
rea of the total likelihood function, i.e. ∫ δr 
0 L ( r)d r ∫ ∞ 

0 L ( r)d r 
= 0 . 68 . (17) 

The values reported in Table 2 are e xtensiv ely discussed in the
ollowing section. 

 DI SCUSSI ON  

e devote this section to discuss in more detail the results presented
n Section 4. We estimate how the bias from systematic residuals
or different choices of the mis-modelling parameter f affects the 
etection of primordial CMB B modes and compare with the 
equirements for SO-SAT and LiteBIRD. 

As reported in Table 2 and shown in Fig. 14 , the effect of
oreground mis-modelling is visible in terms of systematic bias on 
 estimate but slightly affects the uncertainties (which are instead 
riven by the sensitivity of the e xperiment, f sky , frequenc y co v erage,
tc). Although the bias for LiteBIRD is al w ays < 10 −3 for most cases,
e observe an increase proportional to the mis-modelling. Without 

urther optimizing the Galactic mask for polarization the values in 
he top row of Table 2 show that we can meet the latest LiteBIRD
equirements ( δr < 10 −3 , Sugai et al. 2020 ) with a mis-modelling
 ≤ 0.5. 

We notice that the bias on r obtained in this work for SO-SAT
s slightly lower than the reported values in Simons Observatory 
MNRAS 511, 2052–2074 (2022) 
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Figure 14. r estimates and the accompanying uncertainties e v aluating the 
likelihood in equations (13), (16), and (17). We adopt the same colour scheme 
as in Fig. 11 to indicate different amounts of mis-modelling. 
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12 An interesting application in Grumitt et al. ( 2020 ) was indeed the combi- 
nation of the C-BASS data at 5 GHz with the LiteBIRD frequency channels. 
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ollaboration et al. ( 2019 , table 4), indicating a net impro v ement
hanks to this technique. The larger uncertainties and the lower
ystematic bias observed in SO-SAT, with respect to LiteBIRD ones,
re mostly due to the smaller co v erage both in frequency and in the
ngular scales observ ed. Moreo v er, the r estimates for SO-SAT are
ssessed by e v aluating the likelihood in a limited range of 
 (30 < 


 200). Vice versa, LiteBIRD benefits of the full-sky angular range
llowing also the large angular scales to be included in the likelihood
2 < 
 < 200). 

Alternatively to foreground parameter maps, we also apply clus-
ering to partition the map of number of dust clouds along the line of
ight, N c , presented in Panopoulou & Lenz ( 2020 ). We perform the
ame parametric fitting as before on the patch derived from N c , and
nd similar level of residuals post-component separation for both
O-SAT and LiteBIRD cases when compared with ones obtained
rom clusters derived with foreground parameter maps. Not only
o we find that the partition obtained is representative of the dust
mission, but also that the patches inferred from N c yield lower
esiduals in the estimates of the thermal dust temperature parameter,
 d . 
We further estimate the leakage in terms of r also for this case

f application by means of the likelihood defined in equation (13)
nd we found ˆ r = (0 . 09 ± 0 . 26) × 10 −3 and (0.04 ± 0.16) × 10 −3 ,
espectively, for LiteBIRD and SO-SAT. The reason we obtain lower
iases with respect to the one reported in Table 2 for the f = 0 mis-
odelling case is mainly due to the fact that low-frequency channels

re not accounted for in the component separation and we assume
he synchrotron to be negligible at ν > 90 GHz. Moreover, we get
 lower noise bias for SO-SAT with respect to LiteBIRD mainly
ecause to the fact that we do not account for the 1/ f noise in our
imulations for both instruments. Ho we ver, the lo w bias on r is a
tricking indication that the N c map can be a very promising tracer
o probe the thermal dust emission in the range of 100 −300 GHz.
lthough Pelgrims et al. ( 2021 ) showed that the N c maps can be
sed as a tracer for frequency decorrelation in the dust polarization
ap, the results shown in this paper offer a further indication of their

otential. 
As already mentioned, this is not the first time that clustering
ethodologies are employed to segment the sky into patches where

o perform foreground cleaning [see Grumitt et al. ( 2020 ) where they
sed the mean-shift algorithm]. Ho we ver, by comparing the maps
f clusters in Fig. 7 with those in Fig. 2 of (Grumitt et al. 2020 ),
NRAS 511, 2052–2074 (2022) 
e w ould lik e to address several reasons why the two methods yield
ery different partitions. 

One immediate consideration is the fact that mean-shift and
pectral clustering are based on different algorithms that naturally
ight yield different results even when applied on samples with

ewer features than the ones in this context. 
The clusters obtained in Grumitt et al. ( 2020 ) are larger than the

nes shown in Fig. 7 , although we also notice a trend in estimating
arger clusters particularly for the βs clusters. This makes the method
etter suited for low-resolution and low-frequency channels where
ynchrotron emission dominates, 12 but it was essentially unable to
rack the finer structure of the dust parameters. 

One of the major differences is that we derive the clusters
eparately for each spectral parameter, whereas in Grumitt et al.
 2020 ) the dust and synchrotron spectral indices βs and βd are
ombined together to derive a single cluster map used to perform
he parametric fit (see fig. 2 of Grumitt et al. 2020 ). 

Furthermore, the features in Grumitt et al. ( 2020 ) included the two
pectral indices together with the Cartesian coordinates on the sphere
 , y , z. On the contrary, our analysis does not rely on the coordinates
s features since the adjacency is defined from the distance between
ixels (Section 3.1). We further account also for T d as an extra-
arameter for the thermal dust emission, leading to a reduction in the
oreground bias especially at high Galactic latitudes. 

A no v el feature of the technique presented in this work is to
erform the clustering by accounting for the statistical significance
f the measurements reported in the spectral parameter maps and
heir uncertainties. We weigh the pix el adjacenc y in such a way
hat the significance plays a non-negligible role in defining the
ixel similarities especially in regions of high SNR. Moreover, we
rastically reduce the dimensionality of our problem by performing
he clustering on the eigenspace spanned by the eigenvectors related
o the smallest 256 eigenvalues. This a v oids high-dimensionality
roblems occurring frequently in clustering algorithms with large
umber of features [e.g. the number of pixels in a nside = 64
EALPIX map see section 4 of Grumitt et al. ( 2020 )]. 
Finally, in Appendix B, we report also the clustering analysis

erformed on the GNILC βd and T d maps. The morphologies are
lightly different with respect to the ones observed in the clusters in
ig. 7 as the spectral parameter features and the uncertainties in the

wo data sets are different. 

 C O N C L U S I O N S  

n this work, we aim at identifying regions in the sky within which
he Galactic foreground emission can be assumed homogeneous. We
efine a partitioning of the full celestial sphere by means of a no v el
echnique based on a spectral clustering algorithm embedded in the S 2 

anifold. In contrast to previous applications of clustering for CMB
tudies, this method works directly on the celestial sphere instead
f mapping points on to a Cartesian grid. It also takes into account
he uncertainties in the clustering procedure. To our knowledge, this
s the first time where image segmentation has been performed on
eatures defined on the S 2 manifold. 

Another key advancement of our algorithm is the use of an
bjective criterion for selecting the optimal partition parameters ( α
nd δ). Many off-the-shelf algorithms rely on subjective measures,
uch as visual inspection, to select a ‘reasonable’ segmentation of the
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omain (e.g. the maximum pixel size parameter in mean-shift). The 
lgorithm presented here borrows established metrics for partition 
easure e v aluation in clustering problems to produce an optimal 

artition. We rely on the comparison of within- and between-cluster 
ariances for this, while adding new modifications to incorporate the 
resence of uncertainties in the data. 
We apply this clustering approach to e v aluate Galactic contam- 

nation in CMB polarization studies. We firstly characterize the 
mission of thermal dust and synchrotron available from the latest 
bservations of the spectral parameter maps (together with their 
ncertainties) to divide the celestial sphere into regions with spectral 
lustering. The choice of using these maps of spectral parameters 
s mainly due to the fact that those are the template employed in
ySM to simulate the foreground spatial v ariability. Ho we ver, since

hey are released at low-resolution, we applied the clustering to maps 
ixelized on a coarser Healpix grid ( nside = 32 ). With the future
MB surv e ys, e.g. SO, CMB-S4, we will be able to estimate high-

esolution templates and with an unprecedented sensitivity both in 
ntensity and polarization. Moreo v er, sev eral methodologies in the 
iterature (Khatri 2015 ; Grumitt et al. 2020 ) aimed at estimating
pectral parameters at high-resolution. We devote a future work to 
mploy similar methodologies in the context of parametric fitting. 
e then perform a parametric component separation for each region 

imulating the nominal frequency channels from two forthcoming 
MB experiments observing from the ground and from space. 
he optimal clustering partition yields low residuals in the CMB 

olarization maps after component separation, even in the case where 
he Galactic emission is mis-modelled up to some extent. 

We further apply clustering to partition the map of number of
I clouds along the line of sight. Although this is one of the first

pplications using this kind of tracer, we find that clusters derived 
rom the N c map yield a residual bias as low as r ∼ 10 −3 and that
he dust spectral parameters are estimated on these regions up to 
 10 per cent relative errors. This is a remarkable result since the 

onstraints on T d from far-infrared data have been so far complicated 
y the de generac y with the spectral inde x βd . On the other hand, the
se of ancillary data combined with the latest data-science techniques 
hows promising results in order to impro v e the modelling of Galactic
oregrounds. 

In conclusion, this technique could be applied on a wide range 
f contexts involving spherical images, e.g. Earth images, identifi- 
ation of Solar features, wide astronomical surv e ys and it can be
asily extended to higher dimensional data sets, like 3D surv e ys or
osmological simulations. 
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PPENDI X  A :  A  G E O M E T R I C  I N T U I T I O N  O N  

PECTRAL  I MAG E  S E G M E N TAT I O N  

he Laplace–Beltrami operator � g is the generalization of the
aplace operator � (divergence of the gradient) on a Riemannian
anifold with metric g . In Local coordinates, it can be written as 

 g f = 

1 √ | g| ∂ i 
(√ 

| g| g ij ∂ j f 
)

. 

he Laplace–Beltrami operator is a second-order linear elliptic
ifferential operator. It is the Hodge (connection) Laplacian acting on
unctions, it is by construction self-adjoint and positive-semidefinite.

The spectral properties of � g on a compact differentiable manifold
 are well known. The spectrum λi is discrete, λ1 = 0 is al w ays

n eigenvalue, all eigenvalues 0 ≤ λ1 ... ≤ λj ≤ are positive. The
igenfunctions ϕ i of the Laplace–Beltrami operator on M form a
omplete orthonormal basis of the space L 

2 ( M ), i.e. any function
n L 

2 ( M ) can be written as a convergent series in L 

2 ( M ) with real
oefficients. This is the celebrated Sturm–Liouville decomposition
f L 

2 functions on smooth compact manifolds. The discussion of
he eigenvalue problem on manifolds with boundary (with Dirichlet
r Newmann boundary conditions) is often irrele v ant in the discrete
pplications. 

The Dirichlet energy functional of a function on M is defined as 

[ f ] = 

1 

2 

∫ 
M 

||∇f ( x) || 2 d ω g , 

here ω g denotes the volume form o v er a Riemannian manifold. The
irichlet energy measures the ‘variability’ of f on M . 
The Dirichlet functional e v aluated on the eigenfunctions ϕ i of
 g is monotonously increasing as the corresponding eigenvalues

ncrease. The Stokes theorem applied on a function f and a vector
eld X implies that −div and ∇ are formally adjoint operators (see
elkin & Niyogi 2003 ); that is, ∫ 
M 

〈 X, ∇f 〉 = −
∫ 
M 

( ∇ · X) f . 

o that ∫ 
M 

‖ ∇f ( x) ‖ 2 d ω g = 

∫ 
M 

〈∇ f , ∇ f 〉 d ω g 

= −
∫ 
M 

( ∇ · ∇f ) f d ω g = −
∫ 
M 

f ( � g f )d ω g

The former equation implies 

[ ϕ i ] = 

1 

2 

∫ 
M 

||∇ ϕ i ( x) || 2 d ω g = 

1 

2 

∫ 
M 

〈∇ ϕ i , ∇ ϕ i 〉 d ω g 

= 

1 

2 

∫ 
M 

ϕ i ( � g ϕ i )d ω g = 

1 

2 
λi 

For f = 

∑ 

i αi ϕ i this expression linearly extends to 

[ f ] = 

1 

2 

∑ 

i 

α2 
i λi . 

The Laplace–Beltrami operator on L 

2 ( M ) can be alternatively
efined though the quadratic functional E [ f ]: 

[ f ] = 〈∇ f , ∇ f 〉 L 2 ( M) = 〈 � g f , f 〉 L 2 ( M) . (A1) 

nterestingly, ∇E [ f ] = � g f i.e. the Laplace–Beltrami operator is the
 ariational deri v ati ve of Dirichlet energy in L 

2 ( M ). 

ROPOSITION 3. The function that minimizes the Dirichlet energy
nd is orthogonal in L 

2 ( M ) to the space spanned by ϕ 0 ,..., ϕ i is ϕ i + 1 .
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1 Fredholm theory and discrete differential operators 

igitally produced images resemble smooth functions sampled dis- 
retely o v er re gular domains (a grid of pix els), the abo v e construction
eeds to be replicated in a discrete form. For some general ideas
bout the discretization of differential operators acting on sections of 
ensor bundles, we refer the reader to Mihaylov & Spallanzani ( 2016 ).

anifold learning techniques that include consistent discretizations 
f key elements of Riemannian geometry (vector fields, connections) 
ave been described in Singer & Wu ( 1997 ). Recently this approach
as been further developed in Berry & Giannakis ( 2020 ) including
ifferential forms, Laplace-De Rham operators, etc. 
Let us consider the following differential equation: 

f = g, (A2) 

here D : L 

2 ( M) −→ L 

2 ( M) is a linear differential operator. The
reen’s function of a differential operator is a special integral kernel 

elated to the Dirac’s delta: 

G ( x , y ) = δ( x − y) . 

s an application of Fredholm’s theory, the solution of equation (A2)
an be written in the following equivalent integral form: 

 ( x) = 

∫ 
M 

G ( x, y) g( y)d ω. 

or operators with discrete spectrum and a complete orthonormal 
asis of eigenfunctions { ϕ i } the Green’s function can be expressed: 

 ( x , y ) = 

∑ 

i 

1 

λi 

ϕ i ( x) ϕ i ( y) . (A3) 

If we consider a sampling of n points x i ∈ M and choose a
onventional order for the sampled points, a finite sampling of a 
unction f can be represented by a real n -dimensional vector. Denote
y G ( x , y ) the Green’s function of a linear differential operator D 

n M . In line with Mihaylov & Spallanzani ( 2016 ), we call a coarse
iscretization of D, the linear map D : R 

n −→ R 

n defined by 

G ( x i , x j ) = δij , (A4) 

here δij denotes Kronecker’s symbol. With this definition, the 
ontinuous eigenfuction problem Df = λf is discretized into ∑ 

i 

G ( x i , x j ) f ( x j ) = μf ( x i ) , (A5) 

he Green’s function measures the way in which two points are 
eometrically related. In the abo v e problem, the contribution of the
ampling f ( x j ) to the computation of f ( x i ) can be further localized by
ntroducing an adjacency matrix W ij that provides the sampling x i 
 M with a graph structure. The elements of W ij are equal to 1 or
 based on different criteria depending on the problem, a distance- 
ased cut-off, a fixed number of neighbouring points (pixels), etc. 
quation (A5) becomes 

f ( x i ) = 

∑ 

jk 

G ( x i , x j ) W jk f ( x k ) = μf ( x i ) . (A6) 

elf-adjoint operators give rise to symmetric discretizations and the 
iscrete version of equation (A3) is 

 ( x m 

, x n ) = 

∑ 

i 

1 

λi 

ϕ i ( x m 

) ϕ i ( x n ) . 

his equation and equation (A4) mean that D is the generalized 
nverse of G (or GW ). By construction, if we increase the density of
he sampling as n −→ ∞ , the coarse discretization converges to the
ifferential operator. 
The coarse discretization of a known differential operator on 
 given manifold is a conceptually straightforward process and it 
iffers from the typical manifold learning problem of approximating 
 linear differential operator D on a point cloud sampled from a priori
nknown sub-manifold of R 

n . We call such a linear map the sample
iscretization of D. 
The elements used for building a sample discretization are the same 

s in equation (A6) i.e. an affinity graph and a kernel function K ( x i , x j )
hat satisfy certain symmetry and regularity assumptions (see Singer 
 Wu 1997 ; Berry & Sauer 2016 ). In the manifold learning set-

p, the kernel K ( x i , x j ) reproduces the expression of the (unknown)
reen’s function of the manifold in terms of the coordinates of the
oints x i in the space of measured variables. A first approximation
ttempt regarding the expression of the kernel can be found between
he Green’s function of the same operator on R 

n computed with the
mbedding coordinates x i . 

This estimate must be corrected by bias terms that include for
xample the curvature on M , the sample variance etc. Intuitively, the
ias of the geodesic distance on M with respect to the Euclidean
istance in the ambient space is measured by the curvature. 
Given a sample discretization of a differential operator, two types 

f convergence problems arise in the limit of infinite sampling: 

(i) Point convergence Dϕ ( x i ) −→ Dϕ ( x) 
(ii) Spectral – eigenvectors of D converge to eigenfunctions D. 

Spectral convergence is a stronger condition. Proving the conver- 
ence of a discretized operator is a non-trivial analytical problem 

hat includes the curvature of the manifold, the density of sampling,
ormalization choices, etc. Remarkable results in this direction have 
een achieved in Belkin & Niyogi ( 2003 ) and Singer & Wu ( 1997 ). 

2 Discrete Laplacian 

or a point cloud in R 

n , we define a graph with adjacency matrix A ij 

ith weights K ( x i , x j ) and compute the (weighted) diagonal degree
atrix D i = 

∑ 

j A ij . There are several definitions of Laplace operators
n graphs that use these elements. Typically, the adopted expressions 
or K ( x i , x j ) are inspired by the Laplacian Green’s function in the
mbient space of the point cloud. For example the Green’s functions
f the Laplacian in R 

2 and R 

3 are well known: 

 R 2 ( x , y ) = 

1 

2 π
ln ( | x − y | ) , G R 3 ( x , y ) = 

1 

4 π| x − y | . 

erry & Sauer ( 2016 ) studied more general kernel constructions that
ake into account non-uniform sampling densities. 

The most popular construction is the graph Laplacian 

 : = D − A. (A7) 

This definition arises from the Newton’s cooling law on a graph.
he heat transferred between connected nodes i and j is proportional

o the difference f ( x i ) − f ( x j ) and a heat capacity coefficient k , i.e. 

d f ( x i ) 

d t 
= −k 

∑ 

j 

A ij ( f ( x i ) − f ( x j )) 

= −k 

⎛ 

⎝ f ( x i ) 
∑ 

j 

A ij −
∑ 

j 

A ij f ( x j ) 

⎞ 

⎠ . 

his is further moti v ation for the degree matrix D in equation (A7). 
The random walk Laplacian is defined as 

 rw : = D 

−1 L = I − D 

−1 A (A8) 
MNRAS 511, 2052–2074 (2022) 
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nd is related to Markov processes on graphs. The matrix L rw is not
ymmetric, but row-stochastic (satisfies the Markov property). This
efinition has been further developed in the theory of diffusion maps
see Coifman & Lafon 2006 ; Singer & Wu 1997 ). 

The symmetric random walk Laplacian is 

 sym 

: = D 

− 1 
2 LD 

− 1 
2 = I − D 

− 1 
2 AD 

− 1 
2 . (A9) 

he relations between these definitions and the transformations that
ap their spectral structures, respectively, are well known. 
Remarkably, L sym 

matrix approximates the Laplace–Beltrami
perator both in pointwise and spectral sense (see Singer & Wu
997 ; Belkin & Niyogi 2003 ). More precisely for n −→ ∞ , 

f ( x i ) ≈ �f ( x) + O 

( ||∇f ( x) || √ 

n ε1 / 2 + dim ( M) / 4 

)
, 

here ε is a parameter (see Berry & Sauer 2016 ). Moreo v er,
n the case of uniform sampling, Belkin & Niyogi ( 2003 ) have
hown that the eigenvectors of the graph Laplacian converge to the
igenfunctions of the Laplace–Beltrami operator on the manifold. 

Constructions of discrete Laplacian operators from non-uniform
istributions of manifold have been developed. Sample density can be
bsorbed in the definition of the kernel itself or a ‘right normalization’
s introduced Berry & Sauer ( 2016 ). These constructions are less
ele v ant for the purposes of image segmentation, where images are
sually sampled on regular girds of pixels. 
The geometric relation between kernels and Riemannian metrics

as been investigated in Berry & Sauer ( 2016 ) for uniform and non-
niform sampling. The expression of the Laplace–Beltrami operator
hanges if the Riemannian metric on M varies in a family of metrics,
hich includes the one induced by the embedding M ↪→ R 

n . These
hanges are captured by modifications in the form of the Green’s
unction of the operator and subsequently in its discretization.
very symmetric local kernel with exponential decay corresponds

o a Laplacian operator in a Riemannian geometry and vice
ersa. 

Once a discrete Laplacian is provided, the discrete Dirichlet energy
unctional of equation (A1) applied on a sampling f ( x i ) becomes 

[ f ( x i )] = 

1 

2 
〈 f ( x i ) , Lf ( x i ) 〉 . 

he construction of low-energy embedding of a graph in R 

m with m
ower or equal to the number of sampled points is directly applied in
he discrete case and is used in spectral image segmentation. 

3 Spectral segmentation by means of the heat propagator 

he geometric affinity/similarity between points on a given manifold
an be measured by a diffusion process. Equation (A14) is the heat
if fusion dif ferential equation on a smooth manifold. 
The Laplace–Beltrami-based construction described abo v e can be

eplicated by means of a closely related differential operator e −t� g :
 

2 ( M) −→ L 

2 ( M) called (for t > 0) the heat propagator . Fredholm
heory in this case is applied through a Green’s function called the
eat kernel G ( x , y , t ). Similarly to the Schr ̈odinger equation, the heat
ernel is a special solution of 

 g G ( x , y , t) = ∂ t G ( x , y , t) , such that G ( x , y , t) = e t� g δ( x − y ) .

he heat kernel is used to solve in integral form the diffusion
quation with a source term f ( x ) and with boundary conditions: 

 ( x, t) = e −t� g f ( x) = 

∫ 
M 

G ( x, y, t) f ( y)d ω g (A10) 
NRAS 511, 2052–2074 (2022) 
he heat propagator inherits from the Laplace–Beltrami operator the
roperties of being a self-adjoint, positive-definite and compact. Its
igenfunctions form a complete orthonormal basis of L 

2 ( M ). The
igenvalue problem for the heat propagator becomes 

 

−t� g ϕ i = βt 
i ϕ i . (A11) 

et us set λi : = −ln( β i ). By construction e −t� g ϕ i satisfies the heat
iffusion equation for all i . Substituting equation (A11), we get 

 = L [e −t� g ϕ i ] = e −λi t ( � g ϕ i − λi ϕ i ) . 

o ϕ i are precisely the eigenfunctions of the Laplace–Beltrami opera-
or with eigenvalues λi . As a consequence, the rele v ant properties that
nable image segmentation through the Laplace–Beltrami operator
eigenfunctions define a low Dirichlet energy embedding of M in R 

n )
an be directly extended to the heat propagator. In particular, 

 ( x , y , t) = 

∑ 

i 

e −λi t ϕ i ( x) ϕ i ( y) . (A12) 

or instance, the heat kernel in R 

3 is 

 ( x , y , t) R 3 = 

(
1 

4 πt 

)3 / 2 

exp 

(
−‖ x − y ‖ 2 

4 t 

)
, G ( x , y , 0) 

= δ( x − y ) . 

n argument provided in Belkin & Niyogi ( 2003 ) derives equa-
ion (A7) by discretizing the heat propagator. By substituting in
quation (A10) in (A14), we get 

 g f ( x) = � g u ( x, 0) = 

∂ 

∂t 

(∫ 
M 

G ( x , y , t) f ( y )d ω g 

)
t= 0 

≈ −1 

t 

(
f ( x) −

∫ 
M 

G ( x, y, t) f ( y)d ω g 

)

≈ −1 

t 

⎛ 

⎝ f ( x i ) −
∑ 

j 

G ( x , y , t) f ( x j ) 

⎞ 

⎠ . (13) 

The o v erall coef ficient 1/ t does not af fect the spectrum of the
xpression in the brackets. This argument is in line with the abo v e
iscussion on the heat propagator and justifies further the diagonal
erm in the discrete definitions of the discrete Laplacian based on
iffusion arguments. 
Pointwise and spectral convergent discretizations of the heat

ropagator have been developed in the manifold learning theory of
iffusion maps (Singer & Wu 1997 ; Coifman & Lafon 2006 ; Berry
 Sauer 2016 ). Given the functional form of the heat kernel in R 

n ,
his class of discrete constructions of the Laplace–Beltrami operator
re-dominantly exploits global and local Gaussian kernels. 

4 Heat-kernel in S 

2 

s discussed in Section 3, we choose the adjacency weights to be
he ones derived from the functional form of the integral kernel of
he Laplace–Beltrami operator in S 2 . In this section, we derive the
unctional form in equation (2). 

First, we write the heat equation in spherical coordinates: 

 ∂ t − � g ) u ( x, t) = L [ u ( x, t)] = ρ( x, t) , (A14) 

ith � g being the Laplace–Beltrami operator in S 2 , u the unknown
unction describing the heat diffusion, ρ the source term, x and t ,
espectively, the spatial and time variables. We can express � g in
pherical coordinates (assuming a radius r = 1): 

 ≡ 1 

sin θ

∂ 

∂θ

(
sin θ

∂ 

∂θ

)
+ 

1 

sin 2 θ

∂ 2 

∂ φ2 
. (A15) 
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xpressed in this way, we can easily recognize that the Laplace–
eltrami operator corresponds to − ˆ L 

2 , i.e. the square of the orbital
ngular momentum operator in quantum mechanics, whose eigen- 
unctions are the spherical harmonics , Y 
 m , and whose eigenvalues 
re −
 ( 
 + 1) ( 
 ∈ N ). We further notice that the heat propagator
perator, exp ( − ˆ L 

2 t) shares the same eigenfunctions and eigenvalues 
s − ˆ L 

2 . In Appendix A, we show how the integral kernel of the
eat equation is related to the eigenfunctions of exp ( − ˆ L 

2 t) operator 
see Section A12), we can thus derive the kernel in spherical 
oordinates 15 : 

 ( x , y , t) = 

∑ +∞ 


 = 0 e 
−t
 ( 
 + 1) 

∑ + 
 

m =−
 Y 
m 

( x ) Y 

∗

m 

( y ) 

= 

∑ +∞ 


 = 0 
2 
 + 1 
4 π e −t
 ( 
 + 1) P 
 

(
� x y 

)
, (A16) 

here we exploit in the last equality the properties of spherical 
armonics, see further details in Appendix A. In particular, the last
quality is obtained by expressing the Y 
 m as a function of Legendre
olynomials , P 
 , e v aluated across the cosine matrix , defined as 

 x y ≡ cos θx y = 

x · y 
‖ x ‖‖ y ‖ . (A17) 

We devote Section 3 to describe how to derive the adjacency 
eights from equation (A16), so that we can construct the Laplacian 
atrix as in equation (1) and estimate the eigenpairs to perform the

pectral clustering. 

5 Laplacian eigenfunctions and the Ricci cur v ature 

here are two conceptually distinct ways in which eigenfunctions 
f the Laplace–Beltrami operator and their discrete analogues are 
xploited for image processing. 

An image is interpreted as a function on a regular domain (typically
 rectangle in R 

2 ). This function is decomposed with respect to the
pecial basis of eigenfunctions. This decomposition provides a useful 
haracterization of an image, allows highlighting or filtering global 
omponents with specific Dirichlet energy i.e. spatial ‘frequency’. 
s an elementary example the coefficient of ϕ 0 captures an overall 

ntensity. This approach, similar to spectral shape analysis, has been 
dopted in M. Reuter & Peinecke ( 2005 ) and Rustamov ( 2007 ) and
s not typically used for segmentation purposes. 

An image itself is considered as smooth surface (real two- 
imensional manifold) sampled in a discrete set of pixels. The 
eodesic distance between points on the manifold combines the 
istance between pixels with the ‘vertical deformation’ that encodes 
he image. Spectral geometry is a field of differential geometry 
hat exploits the spectral structure of Laplace–Beltrami operator to 
escribe rele v ant geometric and topological properties of manifolds. 
he spectral structure of the discrete Laplacian approximates the 
pectral structure of the Laplace–Beltrami operator. This is the 
anifold learning approach to spectral segmentation. 
The application of ideas from geometry and theory of partial 

ifferential equations to image segmentation is an active field of 
esearch. Variational calculus based on a variety of energy functionals 
Mumford-Shah, Chan-Vese, elastic energy with additional forcing 
erms and well potentials) and dynamics on different time-scales 
ave been developed in Hu & Bertozzi ( 2015 ), Meng et al. ( 2017 ),
nd Boyd et al. ( 2018 ). The deep geometric nature of the spectral
lustering methods is yet to be investigated. In fact, the formulation 
f spectral image segmentation in the smooth case means that points
5 Assuming as an initial condition to the source term, ρ in (A14) to be a 
irac’s delta distribution, i.e. ρ( x , 0) = δ( x ). 

u  

t  

b
o

n plateauing regions of the manifold are close to level sets of
he eigenfunctions of the Laplace–Beltrami operator in a suitable 
irichlet energy band. Rele v ant properties of the nodal (and more
eneral level) sets of the eigenfunctions of � g have been studied
n special geometric cases (constant curvature or curvature bounded 
rom below). Less is known on how the level sets of eigenfunctions
apture the geometry of a manifold in the general case. 

Equi v alently, we expect that eigenfunctions of the Laplace–
eltrami operator with given Dirichlet energy are characterized by 

mall variations on plateauing regions of the manifold. The key 
uestion is how can we characterize plateauing regions. 
Our hypothesis is that these are the regions in which the Ricci

urvature of the manifold is low (either positive or ne gativ e). A
ersion of the celebrated Bochner’s formula establishes a direct 
elation between the Ricci’s curvature tensor, the Laplace–Beltrami 
perator and the norm of the Hessian of a smooth function ϕ on a
iemannian manifold M with metric g : 

1 

2 
� g |∇ϕ| 2 = g( � g ∇ϕ , ∇ϕ ) + | H ( ϕ) | 2 + Ric( ∇ϕ , ∇ϕ ) . 

or eigenfunctions � g ϕ = λϕ, the Bochner’s formula becomes 

ic( ∇ ϕ, ∇ ϕ) = 

1 

2 
� g |∇ ϕ| 2 − λ|∇ ϕ| 2 − | H ( ϕ) | 2 . 

or smooth surfaces (images) this equation means that the sectional 
urvature in the direction of the maximum variation of the eigen-
unction depends directly on the magnitude of the gradient of the
igenfunction and the eigenvalue. 

The abo v e considerations suggest the e xistence of a deep geomet-
ic reason for the fact that spectral image segmentation is very effi-
ient in detecting objects with complicated shapes in unsupervised 
et-up. Understanding spectral image segmentation in the context of 
pectral geometry is a promising field of future research. 

PPENDI X  B:  CLUSTERI NG  APPLIED  O N  

LANCK -GNI LC  DUST  MAPS  

lanck Collaboration XLVIII ( 2016e ) released a set of maps obtained
y separating the Galactic thermal dust emission from the CIB 

nisotropies. They implemented a tailored component-separation 
ethod, the Generalized Needlet Internal Linear Combination 

GNILC) method, that adopts spatial information (e.g. the angular 
ower spectra) to separate the Galactic dust emission and CIB 

nisotropies. We thus considered the temperature T d and spectral 
ndex βd maps of thermal dust and the uncertainties accompanying 
hese maps to partition the sky into multiple domains accounting 
oth for the geometrical similarities and the uncertainties. 
Given the fact that we are interested to derive patches at the ∼

egree scales, we firstly reduce the resolution of the GNILC maps
released at nside = 2048 and 5 arcmin resolutions), to a coarser
eam, 110 

′ 
and to a lower pixel resolution, nside = 32 . This also

akes the Laplacian matrix computation faster with less memory 
equirements. 

We then performed the clustering following the Algorithm 1 
eparately for T d and for βd . In Fig. B1 , we show the variances
stimated from the GNILC maps in an α − δ grid. We note the
resence of a minimum variance vertical stripe at around δ ∼ 0.2 and
or α ≤ 0.2. Notice that high variance regions can be identified in the
pper right and lower left corners of the image related, respectively,
o o v er and under partition re gimes. Moreo v er, ranges of optimality
oth for βd and T d present similar variance contours. Since the 
ptimization is performed independently for the two dust parameters, 
MNRAS 511, 2052–2074 (2022) 
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Figure B1. Variance surfaces estimated for several choices of α and δ for (left) βd , (right) T d . Notice that regions of optimality corresponds to local minima 
(lighter regions) in the surfaces. 

Figure B2. Cluster maps of (left) βd and (right) T d GNILC maps. 

Figure B3. First and second columns: Dust parameter and uncertainty maps from Planck -GNILC. Third column: Dust spectral parameter maps e v aluated by 
taking the median value of the input GNILC maps on each region defined by spectral clustering procedure. Fourth column: Relative errors estimated by taking 
the difference of GNILC maps with the binned ones. 
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e interpret this result as an indication that the methodology might
e optimizing for similar Galactic scale features in both βd and T d 

aps. 
NRAS 511, 2052–2074 (2022) 
We find the optimal number of clusters to be: 1300 and 1415,
especti vely, for βd and T d sho wn in Fig. B2 , corresponding to the
arameter values of α = 0.15, δ = 0.20. 

art/stac069_fB1.eps
art/stac069_fB2.eps
art/stac069_fB3.eps
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Finally, we want to assess how well the optimal regions track 
he observed features in the GNILC maps. We thus estimate within 
ach cluster patch, the median value of the pixels identified in a
ingle cluster and build a binned map for T d and βd , labeled as ˜ T d 
nd ˜ βd . We show in Fig. B3 the maps from GNILC and the binned
aps. To quantify the error of this procedure, we estimate the relative

ifference of the input and binned maps as in equation (12). 
Relative error maps are shown in the right-most column of Fig. B3 .
e note that the errors are lower than the 10 per cent . 

PPENDIX  C :  DEFINING  T H E  OPTIMALI TY  

A N G E  

rom the variances shown in Figs B1 , 6 and 5 , we notice that the
ange of optimality corresponds to a narrow range in δ but seldom 

nvolves a broader range in the α parameter. 
In the top row of Fig. C1 , we show several cluster configurations

hosen in the range of optimality from the variance in Fig. B1 (left).
e quantify the size of the cluster by estimating how many pixels

elong to each cluster. The logarithm of the number of pixels per
luster is shown in the bottom row of Fig. C1 . Values of α < 0.1, lead
o a very homogeneous and isotropic partition which is intuitively 
xpected as we partition the celestial sphere given the properties of
he symmetric Laplacian adjacency (equation 2). On the other hand, 
ncreasingly larger values of α > 0.2 make the cluster morphology 

ore and more dictated by the SNR content of the features, resulting
n inhomogenuous sizes and anisotropic shapes in the vicinity of 
he Galactic plane as the manifold adjacency gets more and more 
istorted (see equation 4). We find that intermediate values for α in 
he range around 0.1 ÷ 0.2 result in a good trade-off between these
wo extreme cases. 
igure C1. Top: Cluster patches for βd GNILC maps, in regions of optimality as s
ogarithm of the number of pixels within each cluster shown in the top row. 
PPENDI X  D :  ESTIMATION  O F  

NCERTAI NTI ES  F O R  T H E  N c M A P  

s described in Section 4.2, we apply our clustering algorithm to
artition the sky in regions of near-constant number of clouds per
ine of sight, as determined by the analysis of H I data in Panopoulou
 Lenz ( 2020 ). A critical component of the clustering analysis is its

bility to handle measurement uncertainties. The public map of N c 

oes not contain uncertainties and so we repeat steps of the original
nalysis to obtain estimates of the per-pixel uncertainties in the map.

We compute the uncertainty on N c by taking into account the two
ources of error that enter in the calculation of N c : 

(i) The uncertainty on the number of velocity peaks identified in 
he H I spectrum. 

(ii) The uncertainty on the column density of each cloud. 

As explained in Panopoulou & Lenz ( 2020 , Appendix B1), both
ources of uncertainty are driven by the choice of the velocity kernel
ize (a parameter that implements smoothing in velocity space, also 
eferred to as the bandwidth). The choice of bandwidth presents 
 trade-off between resolving power (ability to distinguish nearby 
eaks in velocity) and fidelity (a v oiding spurious peak detections).
urthermore, the kernel size also alters the shape of the probability
istribution, including the position of extrema and saddle points, 
sed to define the range of each peak. 
We therefore estimate the uncertainties by considering maps of 
 c with three different choices of bandwidth: namely 3, 4, and
 velocity channels, indicated respectively as N 

bw3 
c , N 

bw4 
c , N 

bw5 
c ,

ith N c ≡ N 

bw4 
c being the default value in Panopoulou & Lenz

 2020 ). We e v aluated the relati ve dif ferences of N c between dif ferent
andwidth runs as 

 

i, 4 
rel = ( N 

bw i 
c − N 

bw4 
c ) / N 

bw4 
c . (D1) 
hown in Fig. B1 , for several choices of α and δ. Bottom: Maps showing the 
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igure D1. Distribution of asymmetric uncertainties on N c at nside = 32 ,
sing the relative difference between N c measured at different values of the
andwidth parameter. Vertical axis: Difference between bandwidths of 3 and
, normalized to the N 

bw4 
c . Horizontal axis: Same for bandwidths 5 and 4.

he dashed lines mark the 16th and 84th percentiles containing 68 per cent
f the distribution of � 

3 , 4 
rel and � 

5 , 4 
rel . 

hese differences can be used to quantify the systematic uncertainty
f the cloud identification method, and hence N c . 

Fig. D1 shows the joint distribution of � 

4 , 3 
rel and � 

5 , 4 
rel for the map

t nside = 32 . The majority of pixels sho w relati ve dif ferences
f < 0.1 (10 per cent). The 16 percentile and 84 percentiles of
NRAS 511, 2052–2074 (2022) 
he distribution of � 

4 , 3 
rel are −0.3 and 0.01, respectiv ely. F or � 

5 , 4 
rel ,

hese values are −0.1 and 0.01. There are long tails extending
ut to −2 for the distribution of � 

4 , 3 
rel and −0.6 for that of � 

5 , 4 
rel .

e interpret these distributions as follows: by using a smaller
andwidth, a larger number of clouds is detected (due to the increased
elocity resolution). The bulk of the observed differences (within
0 −30 per cent relative difference) are likely related to changes in
he identification of low-column density clouds. These clouds are
re v alent in the H I decomposition, as discussed in Panopoulou &
enz ( 2020 ), and contribute a lo w-le vel noise to the determination of
 c . We will assign this lo w-le vel noise as a floor in the uncertainty

n N c . The longer (ne gativ e) tails of the distributions are likely
elated to edge cases, where clouds of significant column density
ere unresolved at low bandwidth but become resolved with a small

ncrease in the velocity resolution. 
Because our clustering algorithm deals with Gaussian uncer-

ainties, we need to translate these asymmetric differences into
n equi v alent standard de viation. We choose to err on the side of
 v erestimating the uncertainties, by adopting the following estimate
f the uncertainty on N c : 

( N c ) = max 
(

0 . 3 , � 

3 , 4 
rel , � 

5 , 4 
rel 

)
, (D2) 

eaning that we assign the maximum observed difference between
ifferent bandwidth runs as the (symmetric) 1 − σ uncertainty
n each pixel. The aforementioned lo w-le vel noise contributed
y faint clouds represents the uncertainty floor that we assign
and corresponds to the absolute value of the 16th percentile
f � 

3 , 4 
rel )). 
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