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Abstract
In this manuscript, a robust and variationally consistent technique is proposed for local treatment of the phase-field fracture
irreversibility. This technique involves an extension of the phase-field fracture energy functional through a micromorphic
approach. Consequently, the phase-field is transformed into a local variable, while a micromorphic variable regularizes
the problem. The local nature of the phase-field variable enables an easier implementation of its irreversibility using a
pointwise ‘max’ with system level precision. Unlike the popular history variable approach, which also enforces local fracture
irreversibility, the micromorphic approach yields a variationally consistent framework. The efficacy of the micromorphic
approach in phase-field fracture modelling is demonstrated in this work with numerical experiments on benchmark brittle
and quasi-brittle fracture problems in linear elastic media. Furthermore, the extensibility of the micromorphic phase-field
fracturemodel towardsmultiphysics problems is demonstrated. To that end, a theoretical extension is carried out for modelling
hydraulic fracture, and relevant numerical experiments exhibiting crack merging are presented. The source code as well as
the data set accompanying this work would be made available on GitHub (https://github.com/ritukeshbharali/falcon).

Keywords Phase-field fracture · Brittle · Quasi-brittle · Micromorphic · Monolithic · Fracture irreversibility

1 Introduction

The phase-field fracture model emerged from the the varia-
tional treatment of the Griffith fracture criterion in [1], and
its numerical adaptation in [2, 3]. The model introduces an
auxiliary scalar variable, the phase-field, which interpolates
between intact and fully broken (fractured)material states. In
the recent decade, the model has been adopted as a promis-
ing alternative to discrete fracture modelling techniques (for
instance, XFEM [4, 5] and cohesive zone models [6–8]).
This is due to ability of the phase-field fracture model in
handling topologically complex fractures (branching, kink-
ing and merging) on a fixed mesh, solely based on energy
minimization.

The development of a thermodynamically consistent
phase-field fracture framework in [9] spurred its popularity.
Following this development, the model has been extended
towards ductile fracture [10, 11], anisotropic fracture [12,
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13], hydraulic fracture [14, 15], desiccation cracking [16,
17], corrosion [18, 19], fracture in thin films [20], to cite
a few applications. While most literature pertaining to the
phase-field fracture is confined to brittle fracture, Wu [21]
proposed a unified phase-field fracture model, encompassing
both brittle and quasi-brittle fracture. The unified phase-
field fracture model has been applied in the investigation of
size effect of concrete [22], hydrogen assisted cracking [23],
electro-mechanical fracture in piezo-electric solids [24], and
fracture of thermo-elastic solids [25], to cite a few applica-
tions. Furthermore, the phase-field fracture models have also
been investigated in a multi-scale modelling context, both in
concurrent multi-scale modelling [26–29] and hierarchical
multi-scale modelling [30, 31].

The popularity of the phase-field fracture models, how-
ever, comes at the cost of minimising a non-convex energy
functional. In this context, monolithic solution techniques
like the Newton–Raphson (NR) method demonstrate a poor
convergence behaviour. This has led to active research in
the development of solution techniques for phase-field frac-
ture models. For instance, Gerasimov and De Lorenzis
[32] proposed the use of both positive and negative line-
search directions to improve convergence of the NRmethod,
while Kopaničáková and Kraus [33] advocated the use of
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trust region methods. Other efforts at developing mono-
lithic solution techniques for phase-field fracture models
include modified NR methods [34], arc-length method with
dissipation-based arc-length constraints [35–38] and quasi-
Newton (secant-based) methods [39, 40]. In yet another
approach, a convexification strategy for the system of equa-
tions was proposed in [41]. Therein, the phase-field for
the momentum balance equation is extrapolated from that
obtained in the last two (pseudo) time steps. This strategy
not only improves the convergence behaviour of the NR
method but also offers an ease of implementation in existing
finite element frameworks. As such, the extrapolation tech-
nique in [41] is adopted in this manuscript. At this point,
the authors would like to emphasize that this manuscript
does not focus on the development of monolithic solution
techniques. Rather, the focus is on another computational
challenge in phase-field fracture models, the treatment of
variational inequality.

Minimisation of the phase-field fracture energy func-
tional, in conjunction with the notion of fracture irre-
versibility results in a variational inequality Euler–Lagrange
equation for the phase-field [42]. Since the phase-field is a
global field variable with higher regularity, enforcing its irre-
versibility via theKarush–Kuhn–Tucker (KKT) conditions is
not trivial. This has led to several methods being proposed by
different researchers, the simplest of them is the penalisation
approach [32, 43]. Other techniques include the primal-dual
active set method [41], Augmented Lagrangian formulation
based on the Moreau–Yoshida indicator function [34, 44],
and the history variable approach [45].Amongall techniques,
the penalisation approach and the history variable approach
remain popular, owing to their ease in implementation into
existing finite element frameworks. However, the penalisa-
tion approach has the potential to render a stiffness matrix
ill-conditioned, particularlywhen a stricter irreversibility tol-
erance is desired. This is clear from the expressions for the
penalty termderived in Section 3.3.3 in [43]. The history vari-
able approach enforces KKT conditions locally (in pointwise
sense) on the fracture driving energy. However, this not only
results in the loss of variational consistency but also intro-
duces an error which has so far never been quantified. In
order to circumvent the aforementioned issues pertaining to
the penalisation approach and the history variable approach,
amicromorphic approach towards phase-field fracturemodel
is proposed in this manuscript. Leveraging on the micromor-
phic theory [46], this approach admits local KKT conditions
on the phase-field, albeit in a variationally consistent frame-
work. Moreover, the fracture irreversibility is enforced with
system level precision.

The theory of micromorphic media was introduced for
gradient elasticity, viscoplasticity and damage in [46]. Since
then, it has been extended towards crystal plasticity [47–49],
small and finite deformation plasticity coupled with damage

[50, 51], and ductile phase-field fracture [52], to cite a few. To
the best of authors’ knowledge, a micromorphic phase-field
framework for brittle and quasi-brittle fracture have not yet
been proposed for themore basic problem of linear elasticity.
Another important application for which the micromorphic
regularization has not been addressed is that of fracture in
porous media. This manuscript addresses the above research
gaps, specifically, exploiting the micromorphic theory to
enable a variationally consistent local fracture irreversibil-
ity enforcement technique (local KKT conditions). To this
end, the phase-field fracture energy functional is extended
in the spirit of [46]. This transforms the phase-field into a
local quantity, while introducing a ‘new’ micromorphic vari-
able that regularises the problem. The local nature of the
phase-field enables a simpler KKT treatment1 at material
integrations points, for enforcing the fracture irreversibil-
ity. Thereafter, the micromorphic phase-field fracture energy
functional is extended towards porous media, specifically in
the context of hydraulic fracturing. A fluid transport equation
is then added to the system of equations for modelling fluid
content variation within the computational specimen. The
ease of introducing fracture dependent coefficients is dis-
cussed adopting a dual permeability model [53, 54], where
the fracture intrinsic permeability is computed through the
phase-field adaption of the cubic law [55], presented in [56].
A scaling function with the micromorphic variable as its
argument is introduced to iterate between bulk and fracture
intrinsic permeabilities. The efficacy of the novel micromor-
phic phase-field fracture model is demonstrated with linear
elastic and porous media benchmark problems, exhibiting
both brittle and quasi-brittle fracture. These include a single
edge notched specimen under tension and shear, the Winkler
L-panel experiment [57], the three-point bending experiment
carried out in [58], and hydraulic fracturing experiments pre-
sented in [59].

Thismanuscript is structured as follows: Sect. 2 introduces
the reader to the phase-fieldmodel for fracture, its underlying
energy functional and pertinent Euler–Lagrange equations.
The main contribution of this manuscript, the micromorphic
phase-field fracturemodel for linear elastic and porousmedia
are presented in Sects. 3 and 4, respectively. The numerical
benchmark problems are addressed in Sect. 5, followed by
concluding remarks in Sect. 6.

2 Phase-field fracturemodel

2.1 The energy functional

Let � ∈ R
2 be a 2D domain occupied by a fracturing con-

tinuum, as shown in Fig. 1. The fracture is represented by a

1 in comparison to enforcing phase-field irreversibility in the H1 space.
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Fig. 1 A fracturing continuum� ∈ R
2 embedded a diffused (smeared)

crack. Dirichlet and Neumann boundaries are indicated as �u
D and �u

N
respectively. Figure reproduced from [31]

diffused band of finite width l > 0. Within this band, the
phase-field, ϕ ∈ [0, 1] interpolates between intact and fully
broken (fractured) material states. Furthermore, the external
surface of the domain� is split into a Dirichlet boundary �u

D
and a Neumann boundary �u

N , such that � = �u
D ∪ �u

N and
�u
D ∩ �u

N = ∅.
The energy functional for the (phase-field) fracturing con-

tinuum in Fig. 1 is given by,

E(u, ϕ) =
∫

�

g(ϕ)�+(ε[u]) d� +
∫

�

�−(ε[u]) d�

−
∫

�u
N

tup u · d� +
∫

�

Gc

cwl

(
w(ϕ) + l2|∇ϕ|2

)
d�,

(1)

accounting for prescribed external traction tup .Here, the strain
energy density is decomposed into a fracture driving part
�+, and residual part �−. The strain energy densities are a
function of ε[u], the symmetric part of the deformation gradi-
ent, with u as the displacement. A monotonically decreasing
degradation function g(ϕ) is attached to �+ to account for
the loss of bulk energy upon fracture. Furthermore, the last
integral in the above equation represents the fracture energy,
where Gc and l are the Griffith fracture energy and the frac-
ture length-scale respectively. The normalisation constant,
cw is associated with the choice of the locally dissipated frac-
ture energy function w(ϕ). The phase-field fracture model
allows great flexibility in choosing the degradation func-
tion g(ϕ) and the locally dissipated fracture energy function
w(ϕ). This has led to several variants being proposed by dif-

ferent researchers. Table1 presents some of these phase-field
fracture model variants.

In Table1, it is observed that the quasi-brittle phase-
field fracture model requires additional parameters p, a1,
a2 and a3 in the degradation function. These parameters are
user-defined quantities, and are chosen such that different
traction–separation laws may be obtained. Following [21],
the constant a1 is given by,

a1 = 4E0Gc

πl f 2t
, (2)

where the newly introduced parameters E0 and ft represent
theYoung’sModulus and thematerial tensile strength respec-
tively. The other parameters (p, a2 and a3) vary depending
on chosen traction–separation law, as observed from Table2.

Furthermore, the flexibility of the phase-field fracture
models also extends to the choice of fracture driving and
residual strain energy densities. Table3 presents some of
commonly adopted strain energy density decompositions in
the phase-field literature. Here, λ, μ represent the Lame
constants, and K is the bulkmodulus of thematerial. Further-
more, ε± represents the tensile/compressive strains obtained
through spectral decomposition, εdev is the deviatoric strain,
tr is a trace operator, and 〈•〉± indicates the positive/negative
Macaulay brackets.
Given the strain energy decompositions in Table3, the frac-
ture driving and residual stresses maybe obtained as

σ± := ∂�±

∂ε
, (3)

where the function argument ε[u] in �± as well as in σ ± is
dropped henceforth.

2.2 Euler–Lagrange equations

In order to simulate the initiation and propagation of frac-
ture(s) in a continuum, the energy functional (1) isminimised
w.r.t. its field variables, vector-valued displacements u and
scalar-valued phase-field ϕ. This results in the set of Euler–
Lagrange equations. Adopting the stress definition in (3),
along with appropriately defined test and trial spaces, they
result in the following problem:
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Table 1 Brittle and quasi-brittle
phase-field fracture models

Fracture model w(ϕ) cw g(ϕ)

Brittle AT1 [60] ϕ 8/3 (1 − ϕ)2

Brittle AT2 [2] ϕ2 2 (1 − ϕ)2

Quasi-brittle [21] 2ϕ − ϕ2 π
(1 − ϕ)p

(1 − ϕ)p + a1ϕ + a1a2ϕ2 + a1a2a3ϕ3

Problem 1 Find (u, ϕ) ∈ U × P with

∫
�

(
g(ϕ)σ+ + σ−)

: ε[δu] d� −
∫

�u
N

tup · δu d�

(4a)

= 0 ∀ δu ∈ U
0,

∫
�

Gc

cwl

(
w′(ϕ) (ϕ̂ − ϕ) + 2l2 ∇ϕ · ∇(ϕ̂ − ϕ)

)
d�

(4b)

+
∫

�

g′(ϕ)�+(ϕ̂ − ϕ) d� ≥ 0 ∀ ϕ̂ ∈ P,

using pertinent time-dependent Dirichlet boundary
conditions up on �u

D and ϕ p on �
ϕ
D, and Neumann

boundary condition tup on �u
N . The trial and test

spaces are defined as

U = {u ∈ [H1(�)]dim|u = up on �u
D}, (5a)

U
0 = {u ∈ [H1(�)]dim|u = 0 on �u

D}, (5b)

P = {ϕ ∈ [H1(�)]1|ϕ ≥ nϕ|ϕ = ϕ p on �
ϕ
D}. (5c)

Note that the requirement ϕ ≥ nϕ in (5c) ensures
fracture irreversibility, with n referring to the previ-
ous time-step. �

2.3 Treatment of variational inequality

The variational inequality phase-field evolution equation
(4b), observed in Problem 1 stems from the fracture irre-
versibility constraint, ϕ̇ ≥ 0. Consequently, special solution
techniques are required to treat the variational inequality in a
computational efficient way. Some of the popular techniques
adopted for the phase-field fracture model are presented in
this section.

Table 2 Quasi-brittle phase-field fracture model parameters for differ-
ent traction–separation laws [21]

Traction–separation (softening) law p a2 a3

Linear 2 − 0.5 0

Exponential 2.5 25/3 − 3 0

Cornelissen et al. [61] 2 1.3868 0.6567

Table 3 Strain energy density decompositions in phase-field fracture
models

Energy split �+ �−

No split [2] 1
2λtr2(ε) + μ ε : ε 0

Spectral [45] 1
2λ〈tr(ε)〉2+ + μ ε+ : ε+ 1

2λ〈tr(ε)〉2− + μ ε− : ε−

Vol-Dev [62] 1
2 K 〈tr(ε)〉2+ + μ(εdev : εdev)

1
2 K 〈tr(ε)〉2−

2.3.1 Relaxed ‘crack-set’ irreversibility

The relaxed ‘crack-set’ irreversibility technique, proposed in
[2, 3] introduces a crack-set,

Sn := {x ∈ �|ϕn ≥ ϕtol}. (6)

Here, n refers to the previous time-step and 0 � ϕtol < 1.
For all x ∈ Sn , a Dirichlet constraint ϕ = 1 is applied.
Consequently, fracture irreversibility constraint holds only
for ϕ ≥ ϕtol . In all other cases, healing of cracks is allowed.

2.3.2 Penalisation

The penalisation technique proposed in [43] augments the
phase-field fracture energy functional (1) with,

P(ϕ) := γ

2

∫
�

〈ϕn − ϕ〉2 d�, (7)

where γ is an appropriately chosen penalty parameter and n
refers to the previous time-step. For γ −→ ∞, Problem 1 is
recovered. Although, the penalisation technique is easier to
implement in existing finite element software, it has a poten-
tial to render the problem ill-conditionedwhen a high value of
γ is used. Furthermore, Wick [44] reported possible stability
issues with the penalization technique in (7), and proposed
the augmentation of the Moreau–Yosida approximation of
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the fracture irreversibility indicator function,

P(ϕ) := 1

2γ

∫
�

〈� + γ (ϕ − ϕn)〉2− d�, (8)

to the phase-field fracture energy functional (1) instead.Here,
γ > 0 is a penalty parameter, � ∈ L2(�) is an additional
unknown and 〈·〉− indicates a negative Macauley bracket.
However, the introduction of the Moreau-Yosida indication
function introduces an additional field �, which increases
the dimension of the problem.

2.3.3 Semi-smooth Newton–Raphsonmethod

The semi-smoothNewton–Raphsonmethodwas proposed in
[63], and extended to phase-field fracturemodels in [41]. The
method incorporates the fracture irreversibility constraint
ϕ̇ ≥ 0 using a Lagrange multiplier. The resulting system
of equations is then treated using a primal-dual active set
strategy [63]. An active set Ak in the kth Newton–Raphson
iteration is defined as,

Ak = {i |(B−1)i i (Rk)i + c(Uk + δUk − Un)i < 0}, (9)

where i represents a phase-field Degree Of Freedom (DOF)
in the discrete system of equations, B is a fictitious lumped
mass matrix with unit density, R being the residual, a scalar
constant c, and the discrete solution vector and its increment
represented by U and δU respectively. Furthermore, n refers
to the previous time-step. For every Newton–Raphson iter-
ation, the active set DOFs are eliminated from the system
of equations. Convergence is achieved when the norm of the
residual is below a certain tolerance limit and the active set
does not change. Although, this technique circumvents the
need for any user-defined parameters, the explicit tracking
of the active and inactive sets increases the computational
expense [42].

2.3.4 History-variable approach

The history-variable approach was proposed in [45], based
on a local phase-field evolution, i.e., (4b)without the gradient
term. The fracture driving energy�+ is then identified as the
‘load term’ driving the phase-field. With this assumption, a
local history field is introduced as

H = max(Hn, �
+(ε[u])) (10)

where n refers to the previous time-step. Thereafter, in the
phase-field evolution Eq. (4b), the history field H replaces

�+, resulting in an equality-based equation, with relaxed
test and trial space. Although, the history variable approach
offers an ease in implementation and has been popular in
the phase-field literature, the variational consistency of the
problem is lost [42].

3 Micromorphic phase-field fracture model

In this section, a micromorphic phase-field fracture model
is developed as an alternative variational inequality treat-
ment technique. The model is based on an extension of the
phase-field fracture energy functional (1) in the spirit of [46].
Consequently, the phase-field ϕ becomes a local quantity,
and a new micromorphic field variable d is introduced to
regularise the problem. This enables a local treatment of
phase-field irreversibility constraint with system level pre-
cision in a variationally consistent fashion.

3.1 The energy functional

The energy functional for themicromorphic phase-field frac-
ture model is an extension of the (1) in the spirit of [46],

Ẽ(u, ϕ, d) =
∫

�

g(ϕ)�+(ε[u]) d� +
∫

�

�−(ε[u]) d�

−
∫

�u
N

tup u d� +
∫

�

Gc

cwl

(
w(ϕ) + l2|∇d|2

)
d�

+
∫

�

η

2
(ϕ − d)2 d�. (11)

Here, d is a ‘new’ micromorphic field variable, and α is an
interaction parameter. Theoretically, in the limit, the inter-
action parameter, α → ∞, the original energy functional
(1) is recovered. Comparing (11) with (1), it is observed
that the micromorphic variable replaces the phase-field in
the gradient term. Consequently, the regularity requirements
on the phase-field w.r.t. the existence of its derivatives is cir-
cumvented. In other words, the phase-field becomes a local
quantitiy.

3.2 Euler–Lagrange equations

The set of Euler–Lagrange equations for the micromorphic
phase-field fracture model is obtained upon minimising the
energy functional (11) w.r.t. its solution variables u, ϕ and
d. Adopting the stress definition in (3), along with appropri-
ately defined test and trial spaces, it results in the following
problem:
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Problem 2 Find (u, ϕ, d) ∈ U × P × D with

∫
�

(
g(ϕ)σ+ + σ−)

: ε[δu] d� −
∫

�u
N

tup · δu d�

(12a)

= 0 ∀ δu ∈ U
0,

∫
�

g′(ϕ)�+(ϕ̂ − ϕ) d� +
∫

�

Gc

cwl
w′(ϕ)(ϕ̂ − ϕ) d�

(12b)

+
∫

�

η(ϕ − d)(ϕ̂ − ϕ) d� ≥ 0 ∀ ϕ̂ ∈ P,

∫
�

2Gcl

cw

∇d · ∇δd d� −
∫

�

η(ϕ − d)δd d�

(12c)

= 0 ∀ δd ∈ D,

using pertinent time-dependent Dirichlet and Neu-
mann boundary conditions, up on �u

D, and t
u
p on �u

N
respectively. The trial and test spaces are given by,

U = {u ∈ [H1(�)]dim |u = up on �u
D}, (13a)

U
0 = {u ∈ [H1(�)]dim |u = 0 on �u

D}, (13b)

D = {d ∈ [H1(�)]1]}, (13c)

P = {ϕ ∈ [L2(�)] | ϕ ≥ nϕ}. (13d)

�

3.3 Treatment of variational inequality

The micromorphic phase-field fracture model yields a local
variational inequality phase-field evolution equation (12c),
as observed in Problem 2. As such, (12c) is assumed to hold
‘point-wise’ in the computational domain �. In other words,
a local phase-field ϕ is obtained as the root(s) of the possibly
nonlinear scalar equation,

g′(ϕ)�+(ε[u]) + Gc

cwl
w′(ϕ) + η(ϕ − d) = 0, (14)

for nϕ < ϕ < 1. With locally computed phase-field ϕ, a
two-field micromorphic phase-field problem is stated as:

Problem 3 Find (u, d) ∈ U × D with

∫
�

(
g(ϕ)σ+ + σ−)

: ε[δu] d� −
∫

�u
N

tup · δu d�

(15a)

= 0 ∀ δu ∈ U
0,

∫
�

2Gcl

cw

∇d · ∇δd d� −
∫

�

η(ϕ − d)δd d�

(15b)

= 0 ∀ δd ∈ D,

using pertinent time-dependent Dirichlet boundary
conditions up on �u

D, and Neumann boundary con-
dition tup on �u

N . The trial and test spaces are defined
as

U = {u ∈ [H1(�)]dim |u = up on �u
D}, (16a)

U
0 = {u ∈ [H1(�)]dim |u = 0 on �u

D}, (16b)

D = {d ∈ [H1(�)]}, (16c)

with the local phase-field ϕ computed using (14). �

It is worth mentioning that the local phase-field evolution
(14) is linear for Brittle AT1 and AT2 fracture models. This
is due to the quadratic nature of the degradation function
g(ϕ) = (1− ϕ)2 coupled with linear/quadratic locally dissi-
pated fracture energy function w(ϕ) = ϕ and ϕ2 for the AT1
and AT2 models respectively. This yield explicit expressions
for the local phase-field variable,

ϕ = min

(
max

(
2�+ + ηd − 3Gc

8l

2�+ + α
, nϕ

)
, 1

)
, (17)

for AT1, and

ϕ = min

(
max

(
2�+ + ηd

2�+ + η + Gc
l

, nϕ

)
, 1

)
. (18)

forAT2model respectively. In the case of quasi-brittle phase-
field fracture model, the rational nature of the degradation
function (see Table1) results in nonlinear scalar equation for
the local phase-field variable. The equation is then solved
using the Newton–Raphson method.
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Remark 1 The irreversibility constraint on the locally com-
puted phase-field ϕ, ϕ ≥ ϕn may be enforced with system
level precision.

3.4 Convexification via extrapolation

Similar to the conventional phase-field fracture mode, the
energy functional corresponding to the micromorphic phase-
field fracture model is also non-convex. This renders mono-
lithic solution techniques, like the Newton–Raphson method
ineffective. In order to circumvent this issue, the convex-
ification strategy was proposed in [41] for conventional
phase-field fracture model is adapted to the micromorphic
phase-field fracture model. To this end, the micromorphic
variable is extrapolated from the two previous converged
(time) steps as,

d̂ = dn−1 + �t + �tn

�tn
(dn − dn−1). (19a)

The extrapolated micromorphic variable, d̂ is then used to
compute an approximated local phase-field ϕ̂ for themomen-
tum balance equation (12b) using,

g′(ϕ̂)�+(ε[u]) + Gc

cwl
w′(ϕ̂) + η(ϕ̂ − d̂) = 0, (19b)

where n and n − 1 represents the two previous converged
(time) steps. However, for the micromorphic variable evolu-
tion equation (15b), the local phase-field ϕ is computed using
the currentmicromorphic variable d, and not the extrapolated
variable d̂ . In order to emphasize this difference, the compu-
tation of the local phase-field without extrapolation, (14) is
restated,

g′(ϕ)�+(ε[u]) + Gc

cwl
w′(ϕ) + η(ϕ − d) = 0. (20)

On applying the above convexification strategy toProblem
3, its convex variant is obtained as:

Problem 4 Forpre-computed ϕ̂ using (19a, 19b), find
(u, d) ∈ U × D with

∫
�

(
g(ϕ̂)σ+ + σ−)

: ε[δu] d� −
∫

�u
N

tup · δu d� = 0

(21a)

∀ δu ∈ U
0,

∫
�

2Gcl

cw

∇d · ∇δd d� −
∫

�

η(ϕ − d)δd d� = 0

(21b)

∀ δd ∈ D,

where ϕ is computed using (20), and pertinent time-
dependent Dirichlet boundary conditions up on �u

D
and Neumann boundary condition tup on �u

N are
enforced. The trial and test spaces are defined as

U = {u ∈ [H1(�)]dim |u = up on �u
D}, (22a)

U
0 = {u ∈ [H1(�)]dim |u = 0 on �u

D}, (22b)

D = {d ∈ [H1(�)]}, (22c)

�

Remark 2 The convexification strategy through extrapola-
tion is adopted for the micromorphic phase-field fracture
model in this manuscript due to the ease in implementation.
It is possible to adopt other strategies as well ...

3.5 Discrete equations

In this manuscript, the Euler–Lagrange equations of the
micromorphic phase-field fracture Problem 4 is discretized
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using the finite element method [64, 65], using triangular
(T3) elements. This allows assuming the displacement and
the micromorphic fields at the nodes (ũi , d̃i ) are considered
as the primary unknowns, with the corresponding continuous
fields (u, d) approximated as,

u =
m∑
i=1

N u
i ũi , d =

m∑
i=1

Nd
i d̃i . (23)

In the above equation, N u
i and Nd

i are the interpolation func-
tions for the displacement and the micromorphic phase-field,
associated with the i th node. The spatial derivatives of the
interpolation functions N u

i and Nd
i in a two-dimensional case

are given by,

Bu
i =

⎡
⎣ Ni,x

0
Ni,y

0
Ni,y

Ni,x

⎤
⎦ , Bd

i =
[
Ni,x

Ni,y

]
. (24)

Here, the subscripts , x and , y indicate spatial derivatives in
x and y directions respectively. Using (24), the strain ε, and
the gradient of the micromorphic variable∇d are defined as,

ε =
m∑
i=1

Bu
i ũi , ∇d =

m∑
i=1

Bd
i d̃. (25)

The discrete phase-field fracture problem is obtained upon
inserting (23–25) in the Euler–Lagrange equations from
Problem 4. Thereafter, (21a) and (21b) are assumed as the
internal forces, and stiffness matrix derived from its deriva-
tive. This notation is consistent with [66], and allows the
presentation of the phase-field fracture problem in the incre-
mental iterative framework as:

Discrete Problem 1 Compute the solution increment
(�ũ, �d̃)i+1 in the current iteration i + 1 using

[
Kuu Kud

Kdu Kdd

]
i︸ ︷︷ ︸

Stiffness matrix

{
�ũ
�d̃

}
i+1

=
{
fext,u

fext,d

}
i
−

{
f int,u

f int,d

}
i︸ ︷︷ ︸

Residual

,

(26a)

and update the solution fields,

{
ũ
d̃

}
i+1

=
{
ũ
d̃

}
i

+
{
�ũ
�d̃

}
i+1

, (26b)

until a certain convergence measure is fulfilled. The
local element stiffness matrices are computed as:

Kuu =
∫

�

[
Bu]T (

g(ϕ̂)
∂σ+

∂ε
+ ∂σ−

∂ε︸ ︷︷ ︸
D

) [
Bu] d�,

Kud = 0,

Kdu = −
∫

�

[
Nd

]T (
η
∂ϕ

∂ε

) [
Bu] d�,

Kdd =
∫

�

{[
Bd

]T (
2Gcl

cw

) [
Bd

]
+

[
Nd

]T

η

(
1 − ∂ϕ

∂d

)[
Nd

]}
d�,

(26c)

and the local internal force vectors are computed as

f int,u =
∫

�

[
Bu]T (

g(ϕ̂)σ+ + σ−)
d�,

f int,d =
∫

�

{[
Bd

]T (
2Gcl

cw

)[
Bd

]
d̃

−
[
Nd

]T
η (ϕ − d)

}
d�.

(26d)

The local phase-fields ϕ̂ and ϕ are computed using
(19b) and (20) respectively. The external force vec-
tors fext,u and fext,d are considered equal to zero.
The material stiffness matrix D depends on the cho-
sen strain energy density split (see Table3). �
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4 Extension towards fracture in porous
media

In this section, the micromorphic phase-field fracture model
is extended towards modelling fracture in porous media,
specifically, hydraulic fracturing. To that end, a biphasic
porous rockmaterial is assumed, comprising of a solidmatrix
and fluid filling up the pore space. Modelling such a material
requires the extension of the energy functional (11) with an
additional fluid contribution term. Furthermore, a fluid trans-
port equation is added to the system of equations to account
for variation in the fluid content. The following subsections
explain these modelling choices in detail, and derives the
corresponding Euler–Lagrange and discrete finite element
equations.

4.1 The energy functional and the fluid transport
equation

The micromorphic phase-field fracture model, developed
in the previous section, allows a straightforward extension
towards modelling fracture in porous media. Upon incor-
porating the contribution of the fluid phase, the energy
functional in (11) assumes the form,

Ẽ(u, ϕ, d) =
∫

�

g(ϕ)�+(ε[u]) d� +
∫

�

�−(ε[u]) d�

−
∫

�

α p∇ · u d�
︸ ︷︷ ︸
fluid phase contribution

−
∫

�u
N

tupud�+
∫

�

Gc

cwl

(
w(ϕ)+l2|∇d|2

)
d�

+
∫

�

η

2
(ϕ − d)2 d�. (27)

The coefficient in the fluid phase contribution term, α rep-
resents the Biot coefficient. Since, the energy functional
corresponds to a fixed pressure, a fluid transport equation is
added to account for the variation in fluid phase content. Fol-
lowing [67], the fluid transport equation for saturated porous
media is stated as,

[
α − n

Ks
+ n

K f

]
∂ p

∂t
+α

∂εvol

∂t
+∇ ·

[
− ki

μ f
(∇p−ρ f g)

]
= 0.

(28)

Here, Ks and K f are the solid grain and fluid bulk stiffness,
n is the initial porosity, εvol is the volumtric strain, κi is the
intrinsic permeability of thematerial,μ f is the fluid dynamic
viscosity, ρ f is the density of the fluid, g is vectorial repre-
sentation of the acceleration due to gravity.

Furthermore, the effect of fracture on the intrinsic per-
meability of the porous media is accounted for, using a
dual permeability model [53, 54]. To that end, the intrin-
sic permeability ki (d) is assumed to be comprising of a bulk
contribution ki,b and a fracture contribution ki, f ,

ki (d) = [1 − h(d)] ki,b + h(d) ki, f . (29)

A micromorphic variable dependent scaling function h(d) is
introduced as,

h(d) = 〈25(d − 0.8)2〉+, (30)

such that the effect of the fracture intrinsic permeability
begins at d = 0.8 and reaches it maximum value at d = 1.
Note that d is used as an argument instead of the local phase-
field variable ϕ under the assumption d ≈ ϕ. The bulk
intrinsic permeability is considered amaterial property,while
the fracture intrinsic permeability is computed based on a
Poiseullie type flow between the parallel fractured surfaces,
first proposed in [55]. The original work in [55] considered
discrete fractures, however, it was adapted for the phase-field
fracture model in [56]. Following [56], the fracture intrinsic
permeability is defined as,

ki, f = w2
h

12
. (31)

where wh is an approximate fracture aperture, given by,

wh := ||hel(1 + nd · ε[u] · nd)||, (32)

using the characteristic element size hel , and the normalized
gradient of the micromorphic variable nd .

Remark 3 The micromorphic phase-field fracture model
offers flexibility in parametrization of model parameters/coe
fficients w.r.t. both, the local phase-field ϕ and themicromor-
phic variable d. For a sufficiently high value of the interaction
parameter, ϕ ≈ d, and the parametrization choice does not
affect the solution. The only difference between the choice ϕ

or d is that the former results in additional derivatives w.r.t.
the strain and the micromorphic variable, while the latter
circumvents these derivatives.

4.2 Euler–Lagrange equations

The set of Euler–Lagrange equations pertaining tomicromor-
phic phase-fieldmodelling of hydraulic fracturing is obtained
upon minimising the energy functional (27) w.r.t. its solution
variables u, ϕ and d, and incorporating an Euler–Lagrange
equation for the fluid transport. Adopting the strategy demon-
strated in Sects. 3.2 and 3.3, the local phase-field evolution
Eq. (14) is obtained. However, in order to obtain a convex
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problem, the strategy proposed in [41] and demonstrated
in Sect. 3.4 is adopted. This results in a local phase-field
evolution equation (19b) for the momentum balance equa-
tion. Next, the fluid transport equation (28) is, however,
stated in its strong form. A Bubnov–Galerkin procedure is
adopted to obtained the correspondingEuler–Lagrange equa-
tion. Finally, a three-field problem is stated as:

Problem 5 Forpre-computed ϕ̂ using (19a, 19b), find
(u, p, d) ∈ U × P × D with∫

�

(
g(ϕ̂)σ+ + σ− − α p I

)
: ε[δu] d� (33a)

−
∫

�u
N

tup · δu d� = 0 ∀ δu ∈ U
0,

δ p

[
α − n

Ks
+ n

K f

]
∂ p

∂t
+ δ p α

∂εvol

∂t
+ ∇δ p (33b)

·
[
ki (d)

μ f
(∇p−ρ f g)

]
−

∫
�
p
N

q p δ p d� = 0, ∀ δ p ∈ P
0,

∫
�

2Gcl

cw

∇d · ∇δd d� −
∫

�

η(ϕ − d)δd d� = 0 (33c)

∀ δd ∈ D,

where ϕ is computed using (20), and pertinent time-
dependent Dirichlet boundary conditions up on �u

D, p
p on

�
p
D and d p on �d

D, and Neumann boundary conditions tup
on �u

N and q p on �
p
N are enforced. The trial and test spaces

are defined as

U = {u ∈ [H1(�)]dim |u = up on �u
D}, (34a)

U
0 = {u ∈ [H1(�)]dim |u = 0 on �u

D}, (34b)

P = {p ∈ [H1(�)] | p = pp on �
p
D}, (34c)

P
0 = {p ∈ [H1(�)] | p = 0 on �

p
D}, (34d)

D = {d ∈ [H1(�)] | d = d p on �d
D}, (34e)

D
0 = {d ∈ [H1(�)] | d = 0 on �d

D}, (34f)

�

4.3 Discrete equations

The set of Euler–Lagrange equations pertaining to hydraulic
fracturing (see Problem 5) is discretized using the finite
element method [64, 65], with triangular (T3) elements.
Following the strategy in Sect. 3.5, the displacement, fluid
pressure, and the micromorphic fields at the nodes (ũi , p̃i , d̃i )
are considered as the primary unknowns. The corresponding
continuous fields (u, p, d) are approximated as,

u =
m∑
i=1

N u
i ũi , p =

m∑
i=1

N p
i p̃i , d =

m∑
i=1

Nd
i d̃i . (35)

In the above equation, N u
i , N

p
i and Nd

i are the interpolation
functions for the displacement, the fluid pressure and the
micromorphic phase-field, associated with the i th node. The
spatial derivatives of the interpolation functions N u

i , N
p
i , and

Nd
i in a two-dimensional case are given by,

Bu
i =

⎡
⎣ Ni,x

0
Ni,y

0
Ni,y

Ni,x

⎤
⎦ , Bp

i =
[
Ni,x

Ni,y

]
, Bd

i =
[
Ni,x

Ni,y

]
.

(36)

Here, the subscripts , x and , y indicate spatial derivatives in
x and y directions respectively. Using (24), the strain ε, and
the gradient of the fluid pressure ∇p and the micromorphic
variable ∇d are defined as,

ε =
m∑
i=1

Bu
i ũi , ∇p =

m∑
i=1

Bp
i p̃, ∇d =

m∑
i=1

Bd
i d̃. (37)

The discrete problem is obtained upon inserting (35–37) in
the Euler–Lagrange equations from Problem 5. Thereafter,
Equations (33a), (33b) and (33c) are assumed as the internal
forces, and the stiffness matrix is derived from their deriva-
tives. This notation is consistent with [66], and allows the
presentation of the micromorphic phase-field fracture prob-
lem in the incremental iterative framework as:
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Discrete Problem 2 Compute the solution increment (�ũ, � p̃,
�d̃)i+1 in the current iteration i + 1 using

⎡
⎣Kuu Kup Kud

Kpu Kpp Kpd

Kdu Kdp Kdd

⎤
⎦
i︸ ︷︷ ︸

Stiffness matrix

⎧⎨
⎩

�ũ
� p̃
�d̃

⎫⎬
⎭

i+1

(38a)

=
⎧⎨
⎩
fext,u

fext,p

fext,d

⎫⎬
⎭

i

−
⎧⎨
⎩
f int,u

f int,p

f int,d

⎫⎬
⎭

i︸ ︷︷ ︸
Residual

,

and update the solution fields,

⎧⎨
⎩
ũ
p̃
d̃

⎫⎬
⎭

i+1

=
⎧⎨
⎩
ũ
p̃
d̃

⎫⎬
⎭

i

+
⎧⎨
⎩

�ũ
� p̃
�d̃

⎫⎬
⎭

i+1

, (38b)

until a certain convergence measure is fulfilled. The local element
stiffness matrices are computed as:

Kuu =
∫

�

[
Bu]T (

g(ϕ̂)
∂σ+

∂ε
+ ∂σ−

∂ε︸ ︷︷ ︸
D

) [
Bu] d�,

Kup = −
∫

�

[
Bu]T (

α pI
) [
Np] d�,

Kpu = − 1

�t

[
Kup]T

Kpp =
∫

�

[
Np]T (

α − n

Ks
+ n

K f

) [
Np]

+ [
Bp]T (

ki (d)

μ f

) [
Bp] d�,

Kdu = −
∫

�

[
Nd

]T (
η

∂ϕ

∂ε

) [
Bu] d�,

Kdd =
∫

�

{[
Bd

]T (
2Gcl

cw

) [
Bd

]
+

[
Nd

]T

η

(
1 − ∂ϕ

∂d

) [
Nd

]}
d�,

Kud = Kdp = Kpd = 0,

(38c)

and the local internal force vectors are computed as

f int,u =
∫

�

[
Bu]T (

g(ϕ̂)σ+ + σ−)
d�,

f int,p =
∫

�

{[
Np]T ([

α − n

Ks
+ n

K f

]
�p

�t

+α
�εvol

�t

)
+ [

Bp]T ki (d)

μ f
(∇p − ρg)

}
d�,

f int,d =
∫

�

{[
Bd

]T (
2Gcl

cw

) [
Bd

]
d̃ −

[
Nd

]T

η (ϕ − d)} d�.

(38d)

The local phase-fields ϕ̂ and ϕ are computed using (19b) and (20)
respectively. The external force vectors fext,u and fext,d are considered
equal to zero. The material stiffness matrix D depends on the chosen
strain energy density split (see Table 3). Note that Kpd = 0 indicates
that the true tangent stiffness is not assembled. This is a modelling
choice adopted in this manuscript. �

5 Numerical study

In this section, numerical experiments are carried out on
benchmark brittle and quasi-brittle phase-field fracture prob-
lems in linear elastic and poroelastic media. For each
problem, the geometry, loading conditions as well as the
additional model parameters are presented in the respective
sub-sections. Unlessmentioned otherwise, all geometries are
discretised with three-noded triangular element with a sin-
gle integration point. The phase-field fracture topology in
the final step of the analysis, the fluid pressure distribution,
and the load–displacement curves are also shown, wherever
relevant, therein.

All problems are solved in a fully coupled (monolithic)
sense, adopting the Newton–Raphson method. The iterative
procedure is terminated when an error measure defined as
ratio of the norm of the residual in the current iteration to
that of the first iteration is less than 1e−4. The linear prob-
lem within each iteration is solved using the Intel Pardiso
solver. Moreover, for all numerical experiments, the interac-
tion parameter η is parametrized as

η = β
Gc

l
, (39)

with β being a user-defined non-dimensional scalar.

5.1 Single edge notched specimen under tension
(SENT)

The single edge notched specimen [45] has been studied
extensively under tensile and shear loading in the phase-field
fracture literature. The geometry consists of a unit square
(in mm) embedded with a horizontal notch, midway along
height and equal to half of the edge length as shown in Fig. 2.
The notch is modelled explicitly in the finite element mesh.
A quasi-static loading is applied at the top boundary in the
form of prescribed displacement increment �u = 1e−4
[mm] for the first 55 steps, following which it is changed to
1e−6 [mm]. The bottom boundary remains fixed. The model
parameters are presented in Table4.

Figure3a present the load–displacement curves, corre-
sponding to the brittle AT2 model. They are compared with
the load–displacement curves from the literature [19, 45, 68].
While β = 100, 200 yield curves similar to those obtained
by [68], β = 10 results in under-estimation of the peak load.
The latter observation is due to the insufficient regulariza-
tion of the phase-field. This is evident from Fig. 4a, where the
phase-field ϕ and themicromorphic variable d is plotted for a
section, x = 0.75 [mm] of the specimen. Therein, a localized
behaviour is observed for ϕ ≥ 0.6. Upon increasing β to 100
and 200, the ϕ and d curves are similar, i.e., ϕ ≈ d, which
is an indication of sufficient regularization. When ϕ ≈ d,
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Fig. 2 SENT experiment

Table 4 Model parameters

Parameters Value

Fracture model AT2

Energy split No split

E0 210.0 (GPa)

ν 0.3 (–)

Gc 2.7 (N/mm)

l 1.5e−2 (mm)

η βGc/l

the micromorphic phase-field fracture model is similar to
the conventional phase-field fracture model. This explains
the similar load–displacement curves for β = 100, 200 and
those obtained with conventional phase-field fracture model
in the literature [19, 45, 68]. Moreover, the phase-field frac-
ture topology in the final step of the simulation in Fig. 3b is
also similar to those in the literature [19, 45, 68].

5.2 Single edge notched specimen under shear
(SENS)

The single edge notched specimen in the previous section
is loaded horizontally along the top edge as shown in Fig. 5
for a shear test. Following the recommendations in [68], the
geometry is discretised with four-noded quad elements with
four integration points. The relevant model parameters are
presented in Table5, where a spectral decomposition based
energy split is adopted to capture the tension–compression
asymmetric response. A quasi-static loading is applied to the
top boundary in the form of prescribed displacement incre-
ment �u = 1e−4 [mm] for the first 85 steps, following
which it is changed to 1e−6 [mm]. Furthermore, the bottom
boundary remains fixed, and roller supports are implemented
in left and right edges restricting the vertical displacement.

Figure6a shows the load displacement curves obtained
using β = 10, 100, 200, and from [45]. The curves from
[40, 68] are excluded since the former adopts a variationally
inconsistent hybrid formulation, and the latter used adifferent
set of boundary conditions.While β = 100, 200 yield curves
similar to those obtained by [45], β = 10 results in under-
estimation of the peak load. The latter observation is due to
the insufficient regularization of the phase-field. The effect
of the insufficient regularization has been explained in the
previous sub-section. Moreover, the phase-field topology at
the final step of the analysis is presented in Fig. 6b), where
the fracture path is similar to that presented in [45].

5.3 Winkler L-panel

TheconcreteL-shapedpanel studiedby [57, 69] is considered
in this sub-section. Figure7 shows the geometry as well as
the loading conditions. The longer edges of the panel are 500
[mm] and the smaller edges are 250 [mm]. The loading is
applied on the edge marked in blue, 30 [mm] in length, and
is in the form of displacement increments of �u = 1e−3
[mm]. The model parameters are presented in Table6. The

Fig. 3 Figure a presents the
load–displacement curves for
the single edge notched
specimen under tension. Here, β
is varied as {10, 100, 200}.
Figure b shows the distribution
of the phase-field variable at the
final step of the analysis
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Fig. 4 Figures present the
phase-field (ϕ) and the
micromorphic variable (d) for
different β values at x = 0.75
[mm], along the height of the
SENT specimen

Fig. 5 SENS experiment

Table 5 Model parameters

Parameters Value

Fracture model AT2

Energy split Spectral

E0 210.0 (GPa)

ν 0.3 (–)

Gc 2.7 (N/mm)

l 1.5e−2 (mm)

η βGc/l

reader is referred to Sect. 2.1 for a detailed explanation of
these parameters.

Figure8a presents the load–displacement curves using
the micromorphic phase-field fracture model, with β =
100, 200. The range of the experimentally obtained load–
displacement curves is shown in the shaded region. For
both values of β, the load–displacement curves exhibit a
good agreement with the experimental region. Moreover, the
phase-field topology in the final step of the simulation in
Fig. 8b is similar to that from the literature [57].

5.4 Quasi-brittle: concrete three-point bending

A three-point bending experiment on a notched concrete
beam reported in [58] is considered here. The beam has
dimensions 450×100 [mm2], and has a notch 5×50 [mm2].
A schematic of the beam along with the loading conditions
is presented in Fig. 9. Displacement-based load increments
of �u = 1e−3 [mm] is enforced throughout the simulation.
The model parameters are presented in Table7. The reader
is referred to Sect. 2.1 for a detailed explanation of these
parameters.

Figure10a presents the load–displacement curves using
the micromorphic phase-field fracture model, with β =
100, 200. The range of the experimentally obtained load–
displacement curves is exhibited by the shaded region. For
both values of β, the load–displacement curves exhibit a
good agreement with the experimental region. Moreover, the
phase-field topology in the final step of the simulation in
Fig. 10b is similar to that from the literature [58].

5.5 Hydraulic fracturing

Two numerical experiments, adopted from [59] are con-
sidered for simulating hydraulic fracturing. The geometry
consists on a square (2 × 2 [m2]) embedded with a Single
Natural Fracture (SNF) in Fig. 11 and Three Natural Frac-
tures (TNF) in Fig. 12. The fracture in the SNF specimen has
a length 0.4 [m] and is located midway along the height. In
the TNF specimen, two additional fractures are introduced.
The vertical fracture has a length 1 [m] and is located at an
x-offset 0.6 [m] from the centre of the specimen. The third
fracture is a line segment from coordinates (−0.8, −0.3) to
(−0.3, −0.8) assuming the axes origin placed at the centre
of the specimen. Furthermore, on the external boundaries of
the SNF and TNF models, the displacements and the fluid
flux are set to zero. fluid is injected into the existing fractures
(shown in red in Figs. 11 and 12) at a rate q p. Note that in
[59], the fluid injection is carried out using a point source
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Fig. 6 Figure a presents the
load–displacement curves for
the single edge notched
specimen under shear. Here, β is
varied as {10, 100, 200}. Figure
b shows the distribution of the
phase-field variable at the final
step of the analysis

Fig. 7 Winkler L-panel

Table 6 Parameters for L-shaped panel test [69]

Parameters Value

Fracture model Quasi-brittle

Energy split Spectral

Softening Cornellisen et al. [61]

E0 2.0e4 (MPa)

ν 0.18 (–)

ft 2.5 (MPa)

Gc 0.130 (N/mm)

l 10 (mm)

η βGc/l

instead of a line source. The model parameters, required for
the simulation, are presented in Table8.

Figure13 presents the distribution of the phase-field in
the SNF specimen at different times (t = 0.01, 0.1 and
0.2 [s]) during the fluid driven fracture propagation simula-
tion. A similar fracture topology compared to [59] has been
observed. Furthermore, the corresponding fluid pressure dis-
tributions are presented in Fig. 14. The localization of the
fluid pressure follows from the dual permeability model (see
Sect. 4.1), wherein the intrinsic permeability in the fracture is

larger than the intrinsic permeability of the bulkmaterial. Fur-
thermore, as reported in [59], negative fluid pressure values
are observed at the fracture tips, throughout the simulation.

Next, the TNF specimen is presented in this manuscript to
demonstrate the fracture merging capabilities of the micro-
morphic phase-field fracture model. To this end, Fig. 15
presents the distribution of the phase-field in the SNF speci-
men at different times (t = 0.001, 0.024 and0.048 [s]) during
the fluid driven fracture propagation simulation. Figure15b
illustrates the merging of the evolving phase-field from the
horizontal fracture onto the vertical fracture. In the same
figure, the phase-field from the horizontal fracture evolves
leftwards in a curved fashion subsequently merging with the
inclined fracture, as shown in Fig. 15c. Furthermore, owing
to the dual permeability model, localized fluid pressure dis-
tributions are observed in Fig. 16. Similar observations were
made in [59] albeit with a point source of fluid injection, and
a different dual permeability relationship.

6 Conclusions and outlook

A novel phase-field fracture model is proposed in this
manuscript, based on the micromorphic extension of the
phase-field fracture energy functional. In this model, the
phase-field variable is local, and a ‘new’ micromorphic vari-
able is introduced for regularization. In conjunction with
the fracture irreversibility criterion, the phase-field evolution
equation is a local variational inequality. This local equa-
tion is then solved pointwise (i.e., at integration points) in
the computational domain. For brittle AT1 and AT2 frac-
ture models, an explicit closed-form expression exist for
the phase-field. However, for quasi-brittle fracture models, a
nonlinear scalar equation needs to be solved iteratively. Fur-
thermore, the local nature of the phase-field also provides
the ease in implementing bounds, ϕ ∈ [0, 1] using the trivial
‘min’ and ‘max’ operations. The micromorphic phase-field
fracturemodel enforces fracture irreversibility and bounds on
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Fig. 8 Figure a presents the
load–displacement curves for
the concrete Winkler L-panel
test, for β = 100, 200. The
experimental range is
represented by the shaded area.
Figure b shows the distribution
of the phase-field variable at the
final step of the analysis

Fig. 9 Three point bending test

Table 7 Parameters for three point bending test

Parameters Value

Fracture model Quasi-brittle

Energy split Spectral

Softening Cornellisen et al. [61]

E0 2e4 (MPa)

ν 0.2 (–)

ft 2.4 (MPa)

Gc 0.113 (N/mm)

l 2.5 (mm)

η βGc/l

the phase-field with system-level precision without the need
for any user-defined parameter, tracking of active/inactive
sets, and without any loss of variational consistency.

The micromorphic phase-field fracture model converges
towards the conventional phase-field fracture model for an
appropriately chosen interaction parameter η. An appro-
priately chosen value of α results in ϕ ≈ d, thereby
establishing the equivalence of the energy functional of the
two models. This convergent behaviour is demonstrated in
this manuscript through numerical experiments on a single
edge notched specimen loaded in tension with varying α. For
α � 100Gc/l, ϕ ≈ d for an arbitrarily chosen section of the
computational domain. In this case, both, the fracture topol-
ogy as well as the load–displacement curve is similar to those

obtainedwith conventional phase-field fracturemodels in the
literature. For lower values of α, the regularization is insuffi-
cient, and a local material behaviour is obtained. Additional
numerical experiments were conducted, loading the afore-
mentioned specimen in shear, and Winkler L-shaped panel
and the concrete three-point bending tests for demonstrating
quasi-brittle fracture phenomenon. For all experiments, the
fracture topology as well as the load–displacement curve for
α � 100Gc/l were in agreement with results from the liter-
ature. The micromorphic phase-field fracture model, is thus
able to demonstrate both brittle and quasi-brittle fracture in
linear elastic media.

Furthermore, the feasibility of extending the micro-
morphic phase-field fracture model towards multiphysics
problems is demonstrated through hydraulic fracturing simu-
lations. To this end, the energy functional developed for linear
elasticmedia is extended towards porousmedia,with an addi-
tional fluid phase contribution. A fluid transport equation is
added to the system of equations, wherein a dual perme-
ability model is introduced. The dual permeability model is
defined using a fracture dependent scaling function that iter-
ates between the bulk and fracture intrinsic permeabilities.
For a sufficiently high η, the phase-field ϕ ≈ the micromor-
phic variable d. This allows the construction of a fracture
dependent scaling function using the micromorphic vari-
able instead of the phase-field. This choice circumvents the
additional derivatives of the scaling function w.r.t. the strain
and the micromorphic variable. Numerical experiments in
hydraulic fracture demonstrates the fracture merging capa-
bilities of the micromorphic phase-field fracture model in a
multiphysics hydraulic fracturing context.

Finally, the novel micromorphic phase-field fracture
model opens a plethora of future research extensions, par-
ticularly, in other multi-physics applications, or composite
laminates [70]. Other studies may include the implemen-
tation of a dissipation-based arc-length method [36, 38]
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Fig. 10 Figure a presents the
load–displacement curves for
the concrete three-point bending
test, with β = 100, 200. The
experimental range is
represented by the shaded area.
Figure b shows the distribution
of the phase-field variable at the
final step of the analysis in a
section of the beam

Fig. 11 Single natural fracture

or quasi-Newton methods [39, 40] for addressing the non-
convexity of energy functional.

Fig. 12 Three natural fractures

Fig. 13 Figures a–c present the distribution of the phase-field variable at the different times during the analysis of the single natural fracture (SNF)
specimen
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Fig. 14 Figures a–c present the distribution of the fluid pressure at the different times during the analysis of the single natural fracture (SNF)
specimen

Fig. 15 Figures a–c present the distribution of the phase-field variable at the different times during the analysis of the three natural fractures (TNF)
specimen

Fig. 16 Figures a–c present the distribution of the fluid pressure at the different times during the analysis of the three natural fractures (TNF)
specimen
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Table 8 Model parameters

Parameters Value

Fracture model AT2

Energy split Spectral split

E0 1 (GPa)

ν 0.2 (–)

Gc 1 (N/m)

l 5e−2 (m)

α 1.0 (–)

n 0.3 (–)

ki,b 1e−12 (m2)

μ f 1e−3 (Pa s)

Ks 1 (GPa)

K f 40 (MPa)

q p 0.01 (m/s)

η 200Gc/l
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