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Abstract

Precision medicine relies on the identification of robust disease and risk factor signatures from omics data. However, current knowledge-
driven approaches may overlook novel or unexpected phenomena due to the inherent biases in biological knowledge. In this study, we
present a data-driven signature discovery workflow for DNA methylation analysis utilizing network-coherent autoencoders (NCAEs)
with biologically relevant latent embeddings. First, we explored the architecture space of autoencoders trained on a large-scale
pan-tissue compendium (n = 75 272) of human epigenome-wide association studies. We observed the emergence of co-localized
patterns in the deep autoencoder latent space representations that corresponded to biological network modules. We determined
the NCAE configuration with the strongest co-localization and centrality signals in the human protein interactome. Leveraging the
NCAE embeddings, we then trained interpretable deep neural networks for risk factor (aging, smoking) and disease (systemic lupus
erythematosus) prediction and classification tasks. Remarkably, our NCAE embedding-based models outperformed existing predictors,
revealing novel DNA methylation signatures enriched in gene sets and pathways associated with the studied condition in each case.
Our data-driven biomarker discovery workflow provides a generally applicable pipeline to capture relevant risk factor and disease
information. By surpassing the limitations of knowledge-driven methods, our approach enhances the understanding of complex
epigenetic processes, facilitating the development of more effective diagnostic and therapeutic strategies.

Keywords: deep learning, autoencoders, DNA methylation, transfer learning, biomarkers, systems medicine

INTRODUCTION
Knowledge-driven methods for data analysis in systems medicine
involve the use of prior biological understandings to guide and
inform the analysis of large datasets. One of the most common
of these approaches are network models, which represent bio-
logical entities, such as proteins or genes, and their functional
relationships as nodes and edges within the interactome network.
The interconnected nature of disease genes and their protein
products has been exploited by algorithms that can detect so-
called disease modules from omics data, validated using disease-
associated single nucleotide polymorphisms (SNPs) from genome-
wide analyses [1, 2]. However, despite curation efforts, human
protein–protein interaction (PPI) networks are often incomplete
and may not reflect the full complexity of biological systems. They
are prone to research biases, as studies tend to focus on well-
known proteins or on interactions that are easier to detect [3–5].
Furthermore, network inference tools often use simplifications
in order to construct networks, which can affect the certainty of

their predictions [6, 7]. They are also limited by the coverage and
quality of omics data: incomplete or noisy data lead to inaccurate
networks [8]. Therefore, there is a need for robust data-driven
approaches with the potential to mitigate knowledge biases and
identify novel and meaningful signatures.

DNA methylation (DNAm) modifications are well-established
biomarkers due to their capacity to capture long-term environ-
mental effects. DNAm is an ideal modality for large-scale analyses
due to its molecular stability, continuously variable nature and
accessibility. It has proven useful in multiple studies of aging,
cancer and other diseases [9]. Changes in the DNAm at specific
positions, known as 5′-cytosine-phosphate-guanine-3′ (CpG) sites,
located in genes involved in inflammation and DNA damage
responses, have been shown to occur alongside age in a pre-
dictable manner [10]. This has allowed researchers to develop
algorithms named DNAm clocks, which can accurately estimate
chronological age from epigenetic profiles [11–13]. Similarly, dis-
tinct alterations in DNAm caused by tobacco exposure can be
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used as precise biomarkers of the effects of smoking habits on
gene expression and lung function [14–16]. DNAm homeostasis
dysregulation also plays a key role in certain autoimmune dis-
eases like systemic lupus erythematosus (SLE), neurodegenerative
disorders and cancer. For instance, in SLE patients, several genes
involved in immune response mechanisms such as inflammation
and antibody production present characteristic DNAm patterns
[17] that have been associated with different degrees of disease
activity, severity and susceptibility [18–20].

The emergence of deep learning techniques, based on the
concept of artificial neural networks (ANNs), has revolutionized
the scientific panorama due to their superb capacity to model
complex big data [21–23]. Autoencoders (AEs) are a type of ANN
trained to efficiently compress and reconstruct unlabeled feature
sets by learning their internal representations. AEs of different
types and configurations have been successfully applied to omic
research. For instance, deep undercomplete or variational AE
architectures, such as scETM [24], VEGA [25], LDVAE [26], scMVAE
[27], scIAE [28] or VASC [29], have been used to analyze single-
cell transcriptomic data and identify cellular and gene signatures.
Likewise, AEs have also been used to determine disease progres-
sion [30, 31], to cluster cancer subtypes [32, 33], to investigate
protein variants [34] or to integrate spatial modalities in tissue
samples [35]. More recently, the interpretation of the internal
embeddings of deep gene expression AE models has revealed that
biologically functional modules can be captured in their encoding,
either by incorporating an orthogonality constraint on a single-
cell transcriptomic AE [36] or autonomously within an uncon-
strained bulk transcriptomic AE [37]. Generative frameworks such
as MethylNet [38] or siVAE [39] have further demonstrated the
potential of interpretable feature embeddings in methylation and
genomic research. Altogether, this capacity of AEs to capture such
biological patterns suggests a partial understanding of the under-
lying functional and regulatory omic context, including pathway-
level interactions and functional gene sets. Among AE types, deep
undercomplete models are highly efficient at pattern learning and
relatively simple to implement and train. In addition, their hidden
representations are deterministic, with inputs being clustered into
discrete vectors within a compressed space that is in principle not
constrained into a prior distribution. Another benefit of deep AE
generic representations is that they are transferable across tasks,
meaning that task-specific features can be extracted on demand
for any given purpose. These properties make deep AEs partic-
ularly attractive for scenarios where large amounts of labeled
data may not be available, as the AE can be first pre-trained on
a much larger and diverse sample collection, and then fine-tuned
for particular purposes.

Here, we present a novel data-driven approach for the
functional analysis of DNAm data, in which we introduce the
concept of ‘network-coherent autoencoders’ (NCAEs). NCAEs are
deep AEs with biologically relevant embeddings that prioritize
genes involved in co-localized regions of the human interactome
within their latent representation, which we refer to as ‘network
coherence’. By capturing and preserving functional relationships
among genes, akin to PPI modules, in an interpretable latent
space, NCAEs offer a comprehensive understanding of multi-
tissue DNAm data. We present a robust pipeline for training and
leveraging NCAEs, showcasing the potential of their network-
coherent latent representation in mitigating knowledge biases
and discovering novel DNAm signatures. Notably, supervised
neural network models can be efficiently trained using these
NCAE embeddings in disease and risk factor modeling tasks,
exhibiting a superior performance that often surpasses other

DNAm-based estimators. Our versatile workflow facilitates the
identification of data-driven epigenetic signatures and can be
applied to any task involving DNA methylation data and a
supervised training objective.

MATERIALS AND METHODS
Data pre-processing
Human DNA methylation profiles and metadata (n = 75 326)
were downloaded from the EWAS (Epigenome-Wide Association
Study) Data Hub public repository (https://ngdc.cncb.ac.cn/ewas/
datahub, accessed on 25 January 2021). Sources for this database
include Gene Expression Omnibus, ArrayExpress, The Cancer
Genome Atlas and Encyclopedia of DNA Elements. Methylation
profiles from EWAS Data Hub were generated by Illumina
Infinium HumanMethylation450 or MethylationEPIC arrays and
were normalized and corrected for batch effects using Gaussian
Mixture Quantile Normalization [40]. After sample quality control,
75 272 samples were left (50 623 non-cancer and 24 649 cancer
profiles). Additional filtering was performed using the ChAMP
package (version 2.26.0) for the R programming environment
(version 4.2.1). Non-CpG probes, probes related to SNPs, multi-
hit probes and probes located on the X or Y chromosomes were
filtered out. Missing beta (β) values for probes were imputed
using the k-nearest neighbors method (k = 10) from the bnstruct
R package (version 1.0.12). After filtering and excluding probes
that are not shared by both Illumina 450K and MethylationEPIC
arrays, a total of 384 629 CpG sites were left. The pre-processed
methylation data consisted in a beta-value matrix of 75 272
methylation profiles (Table S1 available online at http://bib.
oxfordjournals.org/) by 384 629 CpG sites.

Design and training of AE models
Artificial neural network models were trained using Keras 2.4.3
library with TensorFlow 2.4.0 and TensorFlow-GPU 2.2.0 back-
end, implemented for Python 3.8.10. Normalized DNAm samples
were used to train and evaluate constant-width and hourglass
deep methylation AEs (DMAEs), sparse deep AE (spDMAEs) and
methylation variational AE (MVAE) models, with a training/vali-
dation/test split ratio of 64:16:20, balanced for tissue and sam-
ple group proportions using multivariate stratified sampling. To
inspect the impact of the number of hidden nodes on reconstruc-
tion performance, we chose to use constant-width AE models,
following the rationale of Dwivedi et al. [37]. We benchmarked
their performance against classical hourglass-shaped AEs with
either 2 or 16 hidden nodes in the narrowest layer of three, and 32
to 1024 hidden nodes in the others. Prior to training, hyperparam-
eter fine-tuning was performed using balanced sample subsets
of 10–20% of the original population. We conducted learning
rate range tests on a three-layered AE of 256 hidden nodes to
identify the learning rate (between 1 and 10e−6) and optimizer
(Adam, Adadelta, Adagrad, Adamax, RMSprop, stochastic gradi-
ent descent) combination that yielded the best balance between
convergence speed and reconstruction. The optimal configura-
tion used the Adam optimizer to minimize the mean squared
error, with learning rate = 9.0e−5, β1 = 0.9, β2 = 0.999, ε = 1e−8 and
decay = 1e−6. We selected the leaky rectified linear unit (leaky
ReLU, α = 0.3) function as hidden layer activation function and the
sigmoid function for the output layer. Dropout regularization did
not improve performance and was therefore not applied in the
final model. To avoid overfitting, models were trained using early
stopping, with a patience of 10 epochs. The batch size for training
was 128. The architecture and hyperparameters of the spDMAE,
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MVAE and NCAE-like models trained on cancer sets or on sets
with different proportions of whole blood samples were matched
to that of the network-coherent AE (3 hidden layers, 128 hidden
nodes per layer). The MVAE had 3 dense encoding layers of 128
nodes per layer and a latent Gaussian space of size 2, plus a dense
decoding layer. The spDMAE included an L1 activity regularizer
constraint = 1e−3 to induce sparsity in each hidden layer. Warm-
start training for the pre-trained NCAE on cancer samples was
conducted with a reduced learning rate = 9.0e−6.

Design and training of supervised neural
network models
Supervised deep neural network (DNN) models trained on the
NCAE latent representations were designed to be feed-forward,
fully connected neural networks with an input layer of the same
dimension as the feature embeddings from the NCAE (k = 128).
We utilized the NCAE to compress the high-dimensional DNAm
sample sets into lower-dimensional latent embeddings of 128
dimensions, extracted from the third hidden layer. These embed-
dings are then used for training, validating and testing the super-
vised DNNs in each case. To better take advantage of the number
of available samples, the DNN training strategy applied was as
follows: (i) split the NCAE embeddings into training, validation
and held-out test sets (64:16:20); (ii) use grid searches to explore
model depths (one to three layers), widths (16 to 128 hidden
nodes) and regularization options (L1, L2, L1/L2) until an optimal
configuration that minimizes the respective objective function in
each case is found; (iii) train a DNN with identical architecture and
hyperparameters on the full training and validation sets (80:20).
We used the Adam optimizer with the same hyperparameters as
previously to minimize the mean squared error (MSE) (NCAE-Age),
categorical cross-entropy (NCAE-Smoke) or binary cross-entropy
(NCAE-SLE, SLE principal component analysis (PCA)-based DNN).
The multi-tissue and whole blood NCAE-Age models used ReLU as
hidden layer activation function and leaky ReLU as output layer
function. For NCAE-SLE, SLE PCA-based DNN and NCAE-Smoke,
we opted for leaky ReLU in the hidden layers, and sigmoid or
softmax function in the output layer, respectively. In all cases,
L1 kernel regularization was applied on the third hidden layer
to prevent overfitting, with a scale factor λ = 0.01. NCAE-DNNs
were trained with early stopping (patience = 1e3). The batch sizes
used were 1024 for NCAE-Age and 256 for NCAE-Smoke, NCAE-
SLE and SLE PCA-based DNN. To determine whether sample age
and gender could be relevant DNN covariates for smoking status
prediction, we trained three additional NCAE-Smoke models using
the sample embeddings plus each covariate or both as inputs
of the DNN. However, we did not observe an increase in clas-
sification recall. Thus, age and gender were not used as DNN
covariates.

Performance evaluation
Reconstruction, regression and classification performance of
ANN models were assessed using metrics from the Python
library scikit-learn 0.24.2. Test set local (CpG-wise) reconstruction
performance for AEs was measured using the coefficient of
determination (R2) computed as

R2
pi = 1 −

(
wiMSEpi

)
(
wiσ

2
pi

)

where p, i, wi and σ i
2 correspond to the pth CpG probe, the ith data

set, the weight (number of samples divided by the total number

of samples in the test set) of the ith data set and the variance of
the pth CpG probe of the ith dataset.

Light-up analysis from hidden nodes
To determine the association of AE hidden layers with input CpGs,
we retrieved the output layer activations computed from the
recursive light-up activation of each hidden node in every layer
[37]. That is, we forward-propagated an activation vector xa con-
sisting of the maximum activation value for a single hidden node
h of a hidden layer k, while keeping the rest of the nodes at the
minimum activation. Maximum (1) and minimum (α) activation
values used corresponded to the derivative of the AE hidden layer
activation function (i.e. leaky ReLU). The following Equation (1)
defines the activations xk of the kth layer from the activations xk−1

at the (k−1)th layer with the initial activation vector xa, for a node
h in the pth hidden layer:

xk =
{

f k
(
Wkx(k−1) + bk

)
if p < k ≤ L

xa if p = k

}

where fk, Wk and bk correspond to the kth layer activation func-
tion, weight matrix and bias term, respectively. The activations at
the output layer xL have the same dimensions as the model input
and are then used to rank the CpGs in terms of their association
with the maximally activated hidden node at layer k − 1. The
process is then repeated for every hidden node and layer.

Light-up analysis from inputs
To prioritize CpGs in supervised NCAE-DNN models by their con-
tribution to the output, we applied a perturbation-based forward
propagation analysis for feature importance ranking. Since both
hyper- and hypomethylation are viable states for a CpG site, we
first recursively altered input CpG values to either a complete
hyper- (β = 1) or hypomethylation (β = 0) level before forward-
propagating them through the trained NCAE and DNN. Then, we
compared the output of the concatenated models to that of an
average methylation profile (mean beta value across samples)
representative of a specific tissue and condition, e.g. CD4+ T
cells from SLE patients. After the signal propagation was iter-
ated through every input feature (CpG), their contribution to the
regression or classification objective of the DNN can be measured
by the observed changes in the model outcome, i.e. estimated age
or predicted disease classification probability.

Age estimation using DNAm clocks
We used the getAgeR() function from the R package cgageR to
obtain age estimates from Horvath and Hannum DNAm clocks
for samples in the multi-tissue (n = 24 676) and the whole blood
(n = 13 647) sets. Evaluation metrics were calculated using the
functions provided by the R package Metrics. Biologically mean-
ingful age bins were established based on the classification of age
categories by the Medical Subject Headings controlled vocabulary
thesaurus of the U.S. National Library of Medicine (http://www.
ncbi.nlm.nih.gov/mesh).

Gene annotation and enrichment analyses
Genome-wide annotation of CpG probes was performed using
Infinium HumanMethylation450 BeadChip probe annotation files
and the R package org.Hs.eg.db (version 3.15.0). Pathway and
gene ontology enrichment analyses were performed using the
respective functions from the R package clusterProfiler (version
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4.4.4). Enrichments in disease-associated genes of the top light-
up CpG-associated genes per tissue were calculated using a
Kolmogorov–Smirnov-like statistic, similar to the enrichment
score in gene set enrichment analysis [41]. First, we computed
one-sided Fisher’s exact tests for overlap with disease-associated
genes retrieved from DisGeNET v7.0 (accessed on 2 June 2022)
over the cumulative ranked gene lists until the position 1000.
To increase the stringency of the outcome, we avoided the
overestimation of the maximal enrichment scores (minimum
P) of the light-up ranked gene lists by limiting the minimum
cumulative set size to 101 genes. Then, we generated a null
distribution of P-values by performing enrichment testing in the
same interval across gene lists obtained by randomly assigning
gene labels from all CpG-associated genes included in the model
input. The procedure was repeated for 1e4 permutations. Finally,
we calculated the permutation test P-value by dividing the
number of cases in which the null distribution P-values are more
extreme than the light-up ranked gene list P-value between the
number of permutations. Average permutation P-values were
obtained using the function hmp.stat() of the R package harmon-
icmeanp to compute the harmonic mean P-value for dependent
tests.

RESULTS
Deep AEs can accurately reconstruct
low-dimensional embeddings of methylation
data
We searched in an unsupervised manner for a functional data
representation that could encompass and learn the complete
feature space, while simultaneously being dimensionally reduced
to facilitate predictive modeling and decrease noise. For this aim,
we downloaded and pre-processed a multi-tissue compendium
of 75 272 human DNAm profiles and metadata from the EWAS
Data Hub repository [42] from Illumina 450K or EPIC arrays. Case–
control samples from 315 diseases and 471 tissues or cell types
are represented in the collection (Figure 1). Non-cancer samples
(n = 50 623) were included in the model training, while cancer
samples (n = 24 649) were kept as an independent test set to
avoid introducing bias. DNAm profiles were randomly split into
training, validation and test sets balanced for tissue and disease
proportions (Methods). We trained and evaluated 24 different
undercomplete AE architectures with depths of one to four hid-
den layers, and constant widths ranging from 32 to 1024 hid-
den nodes per layer. We benchmarked their performance against
classical hourglass-shaped three-layered AE architectures with
either 2 or 16 hidden nodes in the narrowest layer, and 32 to
1024 hidden nodes in the others. Reconstruction performance
was measured by the coefficient of determination (R2) calcu-
lated over the global and local (CpG-specific) variances on the
test set.

We observed global R2 values between 0.978 and 0.993 for
constant-width models, with decreasing reconstruction error pri-
marily associated with an increase in model width, not depth,
until our maximum tested 1024 nodes per layer (Figure 2A). Since
some CpGs are prone to have stable methylation levels, we ana-
lyzed the proportion of explained variance per CpG (Figure 2B),
which showed a similar pattern. AE models of 32 nodes per layer
achieved median local R2 values between 0.767 and 0.749, while
wider configurations such as 512 and 1024 nodes per layer per-
formed better (median local R2 values between 0.901 and 0.891).
Specifically, we observed that 85.9% of the variance could be
explained already for models with 128 nodes, corresponding to

a 3000-fold dimensionality reduction (Table S2 available online
at http://bib.oxfordjournals.org/). Models with limited width (2
nodes) in the narrowest layer struggled to compress DNAm data
accurately (median local R2 = 0.368 to 0.508), while models with 16
nodes demonstrated noticeably better reconstruction capabilities
(median local R2 = 0.748 to 0.871), which were close to but still
below their matched constant-width architectures.

We then investigated whether fractions of CpGs existed that
were consistently well or poorly predicted. Notably, we found that
4.7% of the probes (n = 18 118) were systematically predicted with
a local error below Q1 (R2 = 0.922) for every constant-width AE.
These CpGs were more variable than average (mean σ 2 = 4.63e−2,
average mean σ 2 = 1.65e−2, Wilcoxon P < 2.2e−16) and included
a higher proportion of hypermethylated probes (57.1% versus
50.5%, chi-square P < 2.2e−16) than expected. Conversely, 12.9%
of the CpGs (n = 49 465) were consistently reconstructed with a
local error above Q3 (R2 = 0.751). These probes were less vari-
able than average (mean σ 2 = 4.73e−3, Wilcoxon P < 2.2e−16) and
predominantly hypomethylated (74.0% versus 43.4%, chi-square
P < 2.2e−16).

CpGs from the third layer of a deep AE are
associated with highly co-localized genes
We then investigated the large-scale associations of the learned
representations to the human PPI network. Our hypothesis was
that a functional representation should cluster CpGs associated
with functionally related genes together, thus associating genes
close in the PPI to the same latent variable. We ranked CpGs by
their association with each hidden node using light-up analysis
[37], a type of perturbation-based forward propagation technique
that allows to interpret the non-linear embeddings of an ANN by
relating components of the internal layers to the model output
(Methods). The resulting activation signal can be used to rank fea-
tures, in this case CpG sites. We repeated the procedure for all hid-
den nodes and layers across AE architectures and inspected the
relationships between the top prioritized CpG-associated genes,
in terms of their co-localization and centrality.

Thus, we mapped the top CpGs to their associated genes and
analyzed their co-localization in the human PPI network defined
by STRING v11 [43] high-confidence interactions (combined
score > 0.7). We calculated the harmonic average distance (HAD)
between the gene lists and compared it with the average
HAD within the PPI network (HAD = 3.48). Gene sets with low
HAD cluster together in the interactome, i.e. they co-localize,
suggesting their participation in the same biological processes.
Our analysis revealed that top-ranked genes exhibited a higher
degree of co-localization than expected (Wilcoxon rank sum
P < 2.2e−16). This decrease in HAD was more pronounced as the
light-up signal propagated deeper into the AE layers, until the
third layer of AE models with up to four hidden layers (Figure 3
and Figure S1 available online at http://bib.oxfordjournals.org/).
Genes linked to the first and second layers showed a progressive
increase in co-localization with respect to the average HAD.
Notably, the third hidden layer of three-layered AEs exhibited
the lowest HAD between their top associated genes, while the
effect diminished at the fourth layer (Figure 3A–E). Differences in
average HAD across AE widths were highly significant (Kruskal–
Wallis adj. P < 2.2e−16) between every hidden layer except the
third and fourth (Figure 3F). Importantly, this co-localization
pattern was predominantly observed in the latent representation
of architectures with widths of 128, 256 and 512 hidden nodes
per layer, while it was less pronounced or absent in other AE
configurations. Likewise, it was more prominent for the top 100
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Figure 1. Schematic of the workflow for training and functionalization of network-coherent autoencoders (NCAEs). (A) Summary of DNAm datasets
included in the compendium, top represented non-cancer diseases, and tissue and cell types. (B) Pre-processing steps and description of probe set
genomic and CpG island (CGI) locations. (C) Training and selection of deep autoencoders based on the network coherence of their latent space. (D)
Functionalization of deep NCAE compressed representations for the identification of DNAm signatures using concatenated task-specific deep supervised
neural networks (DNNs).

to 400 ranked genes, gradually vanishing further in the gene
ranking (Figure 3A–E). To provide additional insights, we also
analyzed the betweenness centrality of the associated CpGs,
which showed a similar trend (Figure S2 available online at http://
bib.oxfordjournals.org/). Genes with high betweenness centrality
are frequently situated on shortest network paths between other
genes. Thus, they regulate the flow of information through their
regions of the interactome and usually correspond to proteins
involved in signaling pathways. Third-layer latent variables of
three-layered AEs with 128, 256 and 512 nodes were associated
with central genes, whereas the effect was not as pronounced for
other layers and depths.

In summary, we observed that latent variable representa-
tions differ substantially in terms of their relation to the PPI
network. CpGs associated with the third layer of the three-
layered deep AE of 128 hidden nodes showed the strongest co-
localization pattern (HAD = 2.9) and above-average centrality
(betweenness = 3.1e−4) within the human PPI network. Therefore,
we subsequently focused our analysis on the three-layered

deep AE of 128 nodes, which will henceforth be referred to as
network-coherent AE (NCAE). We replicated the analyses in sparse
AEs and variational AEs with architectures equivalent to the
NCAE (Methods), but we did not find a significant increase in
co-localization.

The deep NCAE reconstructed most common
non-cancer diseases and tissues as well as or
better than controls
Next, we tested if the high-level compression of the NCAE was
biased toward certain tissues or diseases. To do so, we calculated
the CpG-wise R2 across test set samples from the 10 most
frequent tissues or cell types, and non-cancer diseases and
healthy controls. Interestingly, well-explained tissues were related
to circulating blood cells, such as cord blood (R2 = 0.930), whole
blood (R2 = 0.918) and peripheral blood mononuclear cells (PBMCs)
(R2 = 0.917), whereas localized tissues, such as liver (R2 = 0.818),
brain (R2 = 0.884) or placenta (R2 = 0.918), showed relatively lower
but adequate performance (Figure 4A). We found a small but
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Figure 2. Performance evaluation of DNA methylation autoencoder architectures. Global (A) and local (B) reconstruction error, expressed as 1—
coefficient of determination (R2) on the test set data, across constant-width DNAm AEs of one to four hidden layers, from 32 to 1024 hidden nodes
per layer, and hourglass DNAm AEs of three hidden layers and 2 or 16 hidden nodes in the narrowest layer.

Figure 3. The latent representations from deep methylation AEs show increasing gene co-localization patterns in the human interactome until the third
hidden layer. Harmonic average distance (HAD) in the human PPI network of the top 100 to 1600 (A–E) ranked layer-associated genes from the first,
second, third and fourth hidden layers of deep methylation AEs with up to four hidden layers and 32 to 1024 hidden nodes per layer. (F) Average HAD
per deep AE hidden layer of the top 100 layer-associated genes.

non-significant correlation (Pearson r = 0.36, P = 0.304) between
the NCAE local performance on top represented tissues and their
training set sample sizes. To further address possible performance
biases with respect to tissue sample size in the training data,
we trained five new NCAE-like models (three hidden layers, 128
nodes per layer) using modified training and validation sets. We
held every tissue type constant, except for whole blood samples,
which were gradually removed until proportions of 1/4, 1/8, 1/16,
1/32 and 0 were left, with respect to the original sample size
(Figure S3A available online at http://bib.oxfordjournals.org/). The
reconstruction performance of these models on the whole blood
test set gradually decreased as the proportion of training whole
blood samples decreased, with R2 = 0.918 (original set), 0.892 (1/4),
0.883 (1/8), 0.873 (1/16), 0.855 (1/32) and 0.847 (0). This outcome

suggests that the learning of tissue-specific patterns is positively
influenced by available training sample sizes. Nevertheless, it is
worth noting that even when the training set contained no whole
blood samples, the performance of the NCAE-like model remained
relatively good.

Top represented non-cancer diseases showed median R2

values between 0.951 and 0.898, whereas controls were predicted
with R2 = 0.865 (Figure 4B), likely due to a higher variability
across healthy individuals. The NCAE performance and the
proportion of training samples per disease were not significantly
correlated (Pearson r = −0.01, P = 0.978). Lastly, we analyzed the
NCAE performance on samples from common cancer types
and their respective test set adjacent normal tissue samples
(Figure 4C). Cancer samples (n = 24 649) were explained poorly,
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Figure 4. Local reconstruction error of the NCAE of three hidden layers and 128 hidden nodes per layer on the top represented tissues or cell types (A),
top represented non-cancer diseases and controls (B), and common cancer types and adjacent normal tissue samples (C). Test set sample sizes of the
evaluated categories are shown on the top barplot.

achieving only R2 = 0.471, compared to R2 = 0.769 for adjacent
normal tissue. Certain cancer types, such as prostate and kidney,
were accurately predicted, with R2 = 0.836 and 0.815, respectively,
while others such as lymphoma were especially difficult to
reconstruct (R2 = 0.203). To test whether the NCAE performance
on cancer samples would improve if included in the training
set, we warm-start trained the non-cancer NCAE on cancer
samples, and we compared it with NCAE-like models with the
same architecture as our selected NCAE, but trained exclusively
in cancer (Figure S3B available online at http://bib.oxfordjournals.
org/). The results revealed an improvement in the reconstruction
accuracy on cancer in both cases, with R2 values increasing from
0.471 (non-cancer NCAE) to 0.742 (cancer NCAE) and 0.735 (warm-
start NCAE). However, neither model surpassed the performance
of the non-cancer NCAE on non-cancer samples (R2 = 0.857).
Simultaneously, we observed a decrease in the performance of
these cancer-trained models on the non-cancer set, with R2 = 0.487
(cancer NCAE) and 0.417 (warm-start NCAE). These outcomes
could be attributed to the aberrant methylation features unique to
cancer DNAm profiles [44], which may form independent clusters
within the NCAE latent space and compromise the model’s
ability to learn fainter biological signals. Overall, these results
indicate that the NCAE latent representation can capture disease
DNAm patterns with low error while achieving a proficient
reconstruction of key cell types for biomarker identification.
This led us to examine how well the latent variables could be
re-purposed for phenotypic predictions associated with known
epigenetic signatures.

An NCAE-age model accurately estimates
chronological age and identifies relevant aging
DNAm signatures
A highly suitable task for DNAm data modeling is the estima-
tion of age using DNAm clocks. Two of the most popular are
the hallmark clocks of Horvath [11] and Hannum [12], which
can predict chronological age with high accuracy (reported test
R2 = 0.922, R2 = 0.963, respectively). Remarkably, they use only 353
and 71 CpGs, respectively, although aging-related processes are

likely spread across many more DNA regions. Thus, a broader
and more robust DNAm clock could potentially serve better to
understand aging. For this purpose, we utilized the NCAE to com-
press DNAm data into their low-dimensional representations of
128 features, which we then used to train a deep supervised neural
network (NCAE-Age) to predict chronological age, comparing its
performance with Horvath and Hannum clocks.

First, we fed the NCAE a total of 13 647 whole-blood DNAm
samples from healthy individuals with ages between 0 and
112 years (mean = 40.5 ± 23.6 years, Table S1 available online at
http://bib.oxfordjournals.org/) to extract the latent embeddings
and train the NCAE-Age model. Notably, the NCAE-Age achieved
highly accurate results on the test set (n = 2729, R2 = 0.965),
followed by Horvath (R2 = 0.936) and Hannum clocks (R2 = 0.929)
(Figure 5A and B). Restricting the analysis to test samples in the
age range of 19–101 years to match Hannum’s training set did
not improve its performance (R2 = 0.859). The NCAE-Age model
was also better than the DNAm clocks in terms of MAE and
RMSE (Figure 5B). To better assess performance across age ranges,
we binned the test samples into four biologically meaningful
age groups (Newborn-Adolescent: 0–18 years, n = 746; Adult: 19–
44 years, n = 638; Middle-age: 45–64 years, n = 901; and Aged:
≥65 years, n = 444). NCAE-Age estimates were more accurate than
DNAm clocks in the four groups (Figure 5C). All models performed
well on Newborn-Adolescent and Adult groups, with a subsequent
decrease in accuracy, especially for Horvath clock. In general, the
performance of the NCAE-Age model was comparable or superior
to the DNAm clocks.

To assess the leverage of particular CpG sites on the NCAE-
Age and determine its capacity to prioritize CpGs associated
with aging mechanisms, we applied a light-up analysis from the
NCAE-Age input. Then, we tested whether the resulting CpG-
associated genes were enriched in genes linked to nine chrono-
logical and five biological DNAm clocks (n = 1328, Table S3 avail-
able online at http://bib.oxfordjournals.org/) [45]. We found that
genes associated with the top 1000 CpGs identified by hyper-
or hypo-perturbation significantly overlapped the combined age
clock gene list (P = 3.49e−13, OR = 2.23, 95% CI [1.83, 2.72]; and
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Figure 5. A non-linear DNAm age estimator (NCAE-Age) trained on whole blood NCAE-compressed inputs can predict age more accurately than hallmark
DNAm clocks. (A) Comparison of true and predicted ages of test set samples (n = 2729) as estimated by NCAE-Age, Horvath and Hannum DNAm clocks.
Prediction performance of the DNAm estimators on the full test set (B) and on the binned samples by age group (0–18: Newborn-Adolescent, 19–44:
Adult, 45–64: Middle-age, 65–101: Aged) (C). (D) Top significantly overrepresented KEGG pathways and GO terms for the top-ranked CpG-associated genes
after the light-up analysis.

P = 2.27e−5, OR = 1.59, 95% CI [1.29, 1.96], respectively). In par-
ticular, top genes obtained by hypermethylation light-up were
significantly enriched in every DNAm clock gene list containing
more than four genes (P = 1.71e−8 to 0.04, OR = 1.59 to 80.02, 95%
CI [1.00, 2.54] to [21.44, 298.60]) (Table S3 available online at http://
bib.oxfordjournals.org/). We also investigated if the NCAE-Age
signatures (Table S6 available online at http://bib.oxfordjournals.
org/) were associated with biological pathways linked to aging in
humans. The Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses revealed a significant overrepresentation
of phosphoinositide 3-kinase (PI3K)-Akt, mitogen-activated pro-
tein kinase (MAPK), adenosine monophosphate-activated protein
kinase (AMPK) and Ras signaling (adjusted P = 1.19e−3 to 0.049,
OR = 2.08 to 2.27, 95% CI [1.30, 3.33] to [1.41, 2.85]), and cancer-
related pathways (adj. P = 1.19e−3 to 2.82e−3, OR = 2.19 to 3.78,
95% CI [1.37, 3.47] to [2.17, 6.58]), among others. Interestingly, both
lists were highly enriched in Gene Ontology (GO) terms associated
with responses to transforming growth factor (TGF) beta (adj.
P = 2.52e−5 to 3.78e−2, OR = 2.48 to 3.02, 95% CI [1.42, 4.33] to [2.08,
4.37]) and positive regulation of the Wnt signaling pathway (adj.
P = 3.73e−3 to 1.93e−2, OR = 2.56 to 3.58, 95% CI [1.52, 4.31] to [2.23,
5.75]) (Figure 5D).

An NCAE-Smoke model determines smoking
status and defines associated smoking DNAm
signatures
Besides aging, another DNAm research application concerns
the modeling of alterations due to tobacco smoking. Smoking
DNAm signatures can be identified even long after cessation.
We hypothesized that these long-lasting changes in the DNAm
landscape may be imprinted on the NCAE representations,
thus being able to derive epigenetic signatures for smoking
from them. We retrieved 1021 whole blood DNAm samples
from individuals enrolled as controls in five studies with
self-reported smoking status information (Table S1 available
online at http://bib.oxfordjournals.org/). We obtained their NCAE
embeddings and trained a supervised DNN (NCAE-Smoke) for
multi-class classification of ‘current’ (n = 408), ‘former’ (n = 185)
and ‘never smokers’ (n = 428), where 20% of samples in each
group were used as test set. We observed the best performance
in an NCAE-Smoke with leaky ReLU activation [area under the
curve (AUC)current = 0.87, AUCformer = 0.91, AUCnever = 0.69, average
AUC = 0.80, Figure 6A].

To evaluate the classification performance of the NCAE-Smoke,
we compared it with another available DNAm-based smoking
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Figure 6. A non-linear DNAm smoking status classifier (NCAE-Smoke) trained on NCAE-compressed inputs accurately separates current, former and
never smokers. (A) Area under the receiver operating characteristic curves for NCAE-Smoke classification performance of smoking status classes. (B)
Comparison between NCAE-Smoke and EpiSmokEr reported average per class specificity and sensitivity on the test set, and weighted average by sample
size across classes. (C) Significance of the enrichment of top-ranked CpG-associated genes from the NCAE-Smoke, for ‘current’ versus ‘never smokers’,
in reported DNAm signatures for smoking status. The consensus signature includes all genes appearing in at least two of these studies. (D) Most
significantly overrepresented KEGG pathways and GO terms for the top-ranked NCAE-Smoke CpGs for ‘current’ versus ‘never smokers’.

status predictor trained on whole blood data. EpiSmokEr [46] uses
121 CpGs identified via a Least Absolute Shrinkage and Selection
Operator (LASSO)-penalized generalized linear model, plus a sex
and an intercept coefficient, to determine smoking status. In com-
parison with the reported performance of EpiSmokEr on its test
set data (Figure 6B), NCAE-Smoke was able to correctly catego-
rize ‘current smokers’ (EpiSmokEr Spec = 85%, Sens = 81%; NCAE-
Smoke Spec = 77%, Sens = 80%), as well as reliably rule out sam-
ples that are not ‘former smokers’ (EpiSmokEr Spec = 96%, NCAE-
Smoke Spec = 87%). However, NCAE-Smoke achieved a higher true
positive rate for ‘former smokers’ (Sens = 69%) than EpiSmokEr
(Sens = 18%). Regarding ‘never smokers’, NCAE-Smoke had better
specificity (77% versus 57% for EpiSmokEr), whereas EpiSmokEr
had higher sensitivity (94% versus 48% for NCAE-Smoke). On
average, NCAE-Smoke performed similar to or above EpiSmokEr
(NCAE-Smoke Spec = 79%, EpiSmokEr Spec = 79%; NCAE-Smoke
Sens = 65%, EpiSmokEr Sens = 60%).

We next retrieved a list of CpGs prioritized by differences
between the ‘never smoker’ and ‘current smoker’ classes using
light-up, selecting the genes associated with the top 1000 CpGs
as the NCAE-Smoke signature (Table S6 available online at http://
bib.oxfordjournals.org/). We evaluated the significance of their
overlap with 10 available smoking status DNAm signatures
(n = 95 to 3978 CpGs, associated with 43 to 1632 unique genes,
Table S4 available online at http://bib.oxfordjournals.org/). We
observed that CpG-associated genes from 8 out of 10 signatures
were significantly overrepresented (Fisher’s exact P = 6.60e−9 to
2.48e−3, OR = 1.69 to 2.31, 95% CI [1.32, 2.17] to [1.62, 3.30]) in the
NCAE-Smoke signature (Figure 6C). Moreover, the consensus list
of reported DNAm signatures (genes appearing at least twice
across the signatures, n = 1462) showed the most significant
overlap (Fisher’s exact P = 1.87e−12, OR = 2.09, 95% CI [1.73,
2.53]). Examining the biological context of the multi-tissue
NCAE-Smoke signature (Figure 6D), we found that it was enriched
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in KEGG pathways associated with cancer, such as myeloid
leukemia (adj. P = 1.57e−3 to 2.11e−2, OR = 3.35 to 4.13, 95%
CI [1.71, 6.56] to [2.32, 7.38]), non-small cell lung cancer (adj.
P = 5.22e−3, OR = 3.74, 95% CI [2.01, 6.95]), p53 signaling pathway
(adj. P = 2.38e−2, OR = 3.07, 95% CI [1.57, 6.00]) and chemical
carcinogenesis receptor activation (adj. P = 2.11e−2, OR = 2.22, 95%
CI = [1.40, 3.52]). Furthermore, it was also enriched in GO terms
such as signal transduction in response to DNA damage (adj.
P = 3.03e−4, OR = 3.30, 95% CI [2.12, 5.13]), signal transduction
by p53 class mediator (adj. P = 1.55e−3 to 2.85e−2, OR = 2.35 to
4.51, 95% CI [1.40, 3.94] to [2.49, 8.17]) and mitotic DNA damage
checkpoint signaling (adj. P = 2.47e−2, OR = 3.39, 95% CI [1.80,
6.39]).

An NCAE-SLE model for tissue-specific disease
biomarker discovery using latent space features
We further hypothesized that epigenetic disease biomarkers could
also be detected in the NCAE-compressed feature space. SLE, con-
sidered the prototypical autoimmune disorder, presents a charac-
teristic pattern of DNAm alterations in patients’ immune cells.
We compiled 834 DNAm profiles from six case–control studies
that included SLE patients (n = 476) and healthy controls (n = 358)
(Table S1 available online at http://bib.oxfordjournals.org/) across
11 tissues or cell types, and we trained a multi-tissue DNN (NCAE-
SLE) for SLE patient-control classification. We compressed these
DNAm profiles with the NCAE and used their latent embeddings
to train the NCAE-SLE DNN model to separate SLE cases from
healthy individuals. To benchmark this embedding-based model,
we also constructed a DNN with identical architecture and objec-
tive function using the principal components of the beta-value
matrix of the DNAm profiles. This PCA-based DNN was trained
on the first 128 PCs, aligning with the number of dimensions of
the NCAE embeddings.

The NCAE-SLE performed above the PCA-based DNN in the
complete multi-tissue set (AUCNCAE = 0.89, accNCAE = 0.78 versus
AUCPCA = 0.52, accPCA = 0.51) and in five out of seven single-
tissue sets (AUCNCAE = 0.70 to 0.95, accNCAE = 0.67 to 0.87 versus
AUCPCA = 0.33 to 0.65, accPCA = 0.43 to 0.55) (Figure 7A). The
NCAE-SLE showed the best results for DNAm embeddings from
T cells (AUCNCAE = 0.95, accNCAE = 0.87), PBMCs (AUCNCAE = 0.93,
accNCAE = 0.77) and monocytes (AUCNCAE = 0.85, accNCAE = 0.86).
The two single-tissue sets where the PCA-based model achieved
higher AUC than the NCAE-SLE model (granulocytes and
neutrophils, AUCPCA = 0.78 and 1 versus AUCNCAE = 0.67 for both,
accPCA = 0.83 and 0.43 versus accNCAE = 0.67 and 0.43, respectively)
had the lowest sample sizes, which may decrease the statistical
robustness compared to the rest of single-tissue sets with higher
number of individuals (Table S5 available online at http://bib.
oxfordjournals.org/).

Using the trained NCAE-SLE model, we performed a light-up
analysis to identify whether CpGs prioritized by the model are
linked to known SLE-associated genes retrieved from DisGeNET
v7.0 [47]. Since 11 tissues and cell types were present in the
SLE data set compilation, tissue- and condition-specific DNAm
profiles were recursively perturbed to obtain lists of CpGs ranked
by their association to SLE. The effect of CpG perturbations in
the output of the model was measured as the absolute change
in the predicted probability of a DNAm profile to be assigned
as a SLE case or control, depending on the profile. We com-
puted the cumulative enrichment in SLE-associated genes for
the genes associated with the top 1000 light-up ranked CpGs
per tissue (Table S6 available online at http://bib.oxfordjournals.
org/), assessing the significance of the observed enrichments

using a permutation test (n = 1e4 permutations). We found sta-
tistically significant enrichments in SLE-associated genes in the
hypermethylation light-up CpG lists for all the tissue-specific sets
(Figure 7B). The top tissue-specific signatures were obtained from
naive T cells (P = 1.75e−4, OR = 1.97, 95% CI [1.43, 2.72]) and whole
blood (P = 1.83e−4, OR = 1.52, 95% CI = [1.23, 1.89]). Furthermore,
we observed that a multi-tissue list containing the first 1000
genes by frequency across tissue-specific lists achieved the high-
est possible enrichment (P = 1e−4, OR = 1.96, 95% CI [1.43, 2.68]).
The subset of 184 genes appearing at least once in every single-
tissue NCAE-SLE signature was also highly enriched in SLE genes
(Fisher’s exact test P = 2.70e−4, OR = 2.00, 95% CI [1.41, 2.85]).

To identify the biological context of the NCAE-SLE signatures in
relation to known pathological mechanisms in SLE, we performed
pathway enrichment analyses. Considering the tissue-specific
signatures (Figure 7C), we found significant (adj. P < 0.05) enrich-
ments in KEGG pathways linked to transcriptional misregulation
in cancer, Epstein–Barr virus infection, Th17 cell differentiation,
antigen processing and presentation, and Hippo and FoxO sig-
naling pathways, among others. In like manner, they were highly
enriched in GO terms such as antigen processing and presenta-
tion, morphogenesis-related terms, and T-cell-mediated immu-
nity and differentiation. With regard to the multi-tissue signature,
we observed strong enrichments in GO terms linked with muscle
tissue development (adj. P = 1.50e−3 to 4.74e−2, OR = 4.56 to 6.89,
95% CI [2.70, 7.69] to [2.48, 19.11]) and morphogenetic processes
(adj. P = 4.41e−3 to 4.33e−2, OR = 11.16 to 15.18, 95% CI [3.38, 36.88]
to [5.90, 39.05]), adaptive immune response regulatory processes
(adj. P = 4.41e−3 to 1.68e−2, OR = 3.43 to 8.39, 95% CI = [1.85, 6.37]
to [4.03, 17.48]), TGF-beta (adj. P = 4.41e−3 to 3.76e−2, OR = 4.03
to 5.03, 95% CI [1.87, 8.71] to [2.70, 9.39]) and T-cell cytokine
production (adj. P = 4.41e−3 to 4.97e−2, OR = 6.78 to 15.18, 95% CI
[2.45, 18.82] to [5.90, 39.05]), and mesenchymal cell proliferation
(adj. P = 5.06e−3 to 3.94e−2, OR = 11.93 to 14.07, 95% CI [3.60, 39.56]
to [5.49, 36.05]) (Figure 7D).

DISCUSSION
Here, we introduced a deep learning workflow for the identifi-
cation of NCAEs, which encode a biologically meaningful latent
space that can be used for DNAm signature discovery. Assessing
the performance of an AE is a non-trivial task since simply com-
paring the reconstructed data to the original input may not be
sufficient to determine the usefulness of the learned representa-
tion. Our study aimed at demonstrating whether the interpretable
embeddings of a deep AE trained on large DNAm data can capture
complex, non-linear relationships of biological relevance that
could be used for selecting an NCAE, from which data-driven
epigenetic signatures can then be identified. We examined mul-
tiple architectures and hyperparameter configurations of deep
AEs trained on a multi-tissue DNAm compendium to determine
configurations that balanced reconstruction performance and co-
localization within the human protein interactome in its encod-
ing. Wider AE models explained DNAm data better than deeper
ones, with the slight decrease in performance for subsequent
layers probably due to the higher risks of information loss in
complex network architectures.

The latent space analysis of the trained AEs revealed that
CpGs associated with genes co-localizing in the PPI network were
increasingly prioritized alongside model depth, until the third
layer. The observed co-localization gradient suggests that differ-
ent hidden layers encode different biological signals, as shown
previously for a deep transcriptomic AE [37]. Furthermore, the
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Figure 7. A non-linear DNAm SLE case–control classifier (NCAE-SLE) trained on NCAE embeddings allows the identification of single- and multi-tissue
disease-associated methylation signatures. (A) Comparison of AUC values for embedding-based NCAE-SLE and PCA-based DNN test set case–control
classification performance across tissues or cell types. (B) Significance of the enrichment in SLE-associated genes from DisGeNET of top-ranked CpG-
associated genes by tissue and cell type from the trained NCAE-SLE. Multi-tissue refers to the top 1000 most frequent genes across the NCAE-SLE
rankings. (C) Overlap between NCAE-SLE CpG-associated genes from the top light-up ranked 1000 CpGs per tissue or cell type. (D) Top significantly
enriched GO terms for the multi-tissue SLE DNAm signature.

late emergence of the co-localization signal may indicate that
processes of a higher order are modeled before the association
to the PPI is decoded, particularly since an increase in central
genes was observed in parallel. We selected the deep AE with three
hidden layers and 128 hidden nodes per layer as our NCAE. We
showed that the latent embeddings of the pre-trained NCAE can
be functionalized for transfer-learning-based signature discovery,
by first mapping DNAm data to the biologically relevant com-
pressed space, before feeding the new feature set to a concate-
nated supervised deep ANN. Ranking CpGs by their association
to the training objective of this NCAE-DNN allows obtaining task-
specific epigenetic signatures.

We validated this approach on three use cases: age estima-
tion, smoking status and SLE patient-control classification. The
NCAE-Age performed as well or above Horvath and Hannum
DNAm clocks across age groups. Genes linked to CpGs from a
list of DNAm age estimators were significantly overrepresented
in the NCAE-Age DNAm signature, also associated with pathways

known to regulate key aging mechanisms [48–50]. Regarding the
NCAE-Smoke classifier, its performance was on par with the
smoking status predictor EpiSmokEr. The NCAE-Smoke signa-
ture was validated against other existing DNAm signatures for
smoking status, and was strongly enriched in pathways related
to smoking effects [51–53]. Thirdly, the NCAE-SLE classifier was
used to identify tissue-specific and multi-tissue SLE DNAm signa-
tures, validated using DisGeNET disease–gene associations, and
enriched in processes related to the course of autoimmune dis-
eases [54–56].

CONCLUSIONS
Overall, we have demonstrated the utility of a deep learning work-
flow based on NCAEs that encode a biologically meaningful latent
space, which can be used for DNAm signature discovery. Through
the evaluation of multiple architectures of AEs trained on a
large multi-tissue DNAm dataset compendium, we determined a
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configuration that balanced reconstruction performance and
coherence with the human protein interactome within its latent
space. Our findings indicate that this compressed representation
can be functionalized for efficient DNN training and CpG
prioritization, leading to the identification of task-specific
epigenetic signatures. We showcased the robustness of this
approach on three use cases, including age estimation, smoking
status and SLE patient-control classification, with NCAE-DNN
models outperforming or achieving similar performance as
alternative estimators or classifiers. Their DNAm signatures
were significantly enriched in biological processes related to
the respective condition of interest. In summary, we provide a
generally applicable data-driven biomarker discovery workflow
for DNAm data that can help pave the way for the development of
diagnostic and therapeutic opportunities for a variety of diseases
and conditions.

Key Points

• Our study introduces a novel deep learning workflow
based on network-coherent autoencoders (NCAEs) that
encode a biologically meaningful latent space for effi-
cient DNA methylation signature discovery.

• The latent space analysis of AEs trained in large DNA
methylation data reveals that different hidden layers
encode different biological signals. We identified the
optimal configuration that balances reconstruction per-
formance and coherence with the human protein inter-
actome within the autoencoder embeddings.

• We show that this approach can prioritize CpGs asso-
ciated with genes co-localizing in the protein–protein
interactome, leading to the identification of task-specific
epigenetic signatures.

• We validated the workflow on three use cases, including
age estimation, smoking status and SLE patient-control
classification, with NCAE-based classifiers outperform-
ing or achieving similar performance than available
methods.

• This data-driven biomarker discovery workflow presents
a promising opportunity for the development of diagnos-
tic and therapeutic applications in a range of diseases
and conditions.
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