
Accelerating Stream Processing Queries with Congestion-aware Scheduling
and Real-time Linux Threads

Downloaded from: https://research.chalmers.se, 2024-03-13 10:00 UTC

Citation for the original published paper (version of record):
Frasca, F., Gulisano, V., Mencagli, G. et al (2023). Accelerating Stream Processing Queries with
Congestion-aware Scheduling and Real-time Linux
Threads. Proceedings of the 20th ACM International Conference on Computing Frontiers 2023, CF
2023: 144-153. http://dx.doi.org/10.1145/3587135.3592202

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Accelerating Stream Processing Queries with Congestion-aware
Scheduling and Real-time Linux Threads

Fausto Frasca
University of Pisa

Pisa, Italy
f.frasca4@studenti.unipi.it

Vincenzo Gulisano
Chalmers University of Technology

Göteborg, Sweden
vincenzo.gulisano@chalmers.se

Gabriele Mencagli
University of Pisa

Pisa, Italy
gabriele.mencagli@unipi.it

Dimitris Palyvos-Giannas
Chalmers University of Technology

Göteborg, Sweden
palyvos@chalmers.se

Massimo Torquati
University of Pisa

Pisa, Italy
massimo.torquati@unipi.it

ABSTRACT
Stream Processing Engines (SPEs) have been used by companies
and industries to develop queries able to extract insights from data
streams. The Edge/IoT context poses additional challenges, since
streaming queries need to run closer to data producers to save
latency, i.e., on resource-constrained devices. Lachesis is a middle-
ware helping Linux to schedule more efficiently threads of the SPE,
which revealed useful especially for devices with limited CPU re-
sources. Lachesis does not require any architectural change to the
SPE implementation. It collects metrics from the SPE, and computes
high-level priorities that are converted into hints to the Operating
System to affect its actual scheduling of threads. This paper extends
the initial contribution of Lachesis in two main directions: i) we
optimize the policy assigning to threads a priority proportional
to their actual load by accurately studying the implementation
of Storm and Flink, two popular SPEs; ii) instead of restricting
the OS scheduling to traditional SCHED_OTHER threads as done pre-
viously by Lachesis, we leverage the real-time capability of the
modern Linux kernel. Our experimental evaluation shows that both
enhancements provide important benefits compared with the previ-
ous version of Lachesis: we get +9.75% (average) throughput (+19%
peak) with −27% latency on average (−40% peak).

CCS CONCEPTS
• Information systems → Online analytical processing en-
gines; • Software and its engineering→ Scheduling.

KEYWORDS
Data Stream Processing, Apache Storm, Apache Flink, Real-time
Threads, Linux Scheduler

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CF ’23, May 9–11, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0140-5/23/05. . . $15.00
https://doi.org/10.1145/3587135.3592202

ACM Reference Format:
Fausto Frasca, Vincenzo Gulisano, Gabriele Mencagli, Dimitris Palyvos-
Giannas, and Massimo Torquati. 2023. Accelerating Stream Processing
Queries with Congestion-aware Scheduling and Real-time Linux Threads.
In 20th ACM International Conference on Computing Frontiers (CF ’23), May
9–11, 2023, Bologna, Italy. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3587135.3592202

1 INTRODUCTION
Data has become one of the world’s most valuable commodities,
with many business activities taking advantage of data to extract
insights and hidden value driving decision-making processes. More-
over, with the proliferation of sensing devices, high-volume data is
often available in the form of streams, i.e., unbounded sequences of
data items produced with high speed. However, efficiently coping
with unbounded streams instead of static datasets poses challenges
both from the algorithmic perspective and regarding the imple-
mentation of data processing pipelines, which should be capable of
dealing with streams by exploiting parallel hardware.

To enable Data Stream Processing (DSP), first-generation Stream
Processing Engines (SPEs) like Aurora [3] extended DBMSs to sup-
port streams of structured records, which were modeled as par-
ticular kinds of unbounded relations queried with extensions of
the SQL query language and transformed by relational operators
(e.g., selection, aggregates, joins). The diffusion of parallel and dis-
tributed architectures such as clusters and Clouds, and the need to
analyze unstructured streams with arbitrary non-relational opera-
tors, have paved the way to more general scale-out SPEs such as
Apache Storm [2] and Flink [1].

When stream sources are geographically distributed, transferring
all streams to a Cloud requires high network provisions (in terms of
bandwidth and reliability), which makes low latency a challenge in
such contexts. To overcome this issue, the idea is to execute stream
analysis in resources closer to data sources, acknowledging though
that they are less computationally powerful than Clouds (e.g., IoT
devices with a small number of CPU cores, small memory capacity,
and energy constraints) and require to adapt or rethink the SPEs
originally designed for traditional servers or Clouds.

A relatively small amount of papers have tried to improve the
existing SPEs in order to better leverage edge resources. A work of
this kind, which inspired our research, is EdgeWise [11], a patched
version of Storm for edge resources. As stated by the authors, most

144

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587135.3592202&domain=pdf&date_stamp=2023-08-04

CF ’23, May 9–11, 2023, Bologna, Italy Frasca et al.

of the existing SPEs adopt the so-called One Worker Per Operator
Architecture (OWPOA), where each operator of the application is
run by a dedicated thread, and different operators mapped onto
distinct threads communicate by means of shared queues. Since
most of the streaming queries have many operators (and so many
threads are spawned by the SPE runtime system), the effective
scheduling of those threads onto the available CPU cores (especially
when cores are relatively scarce as in Edge/IoT platforms) plays a
relevant role in terms of overall performance. Nonetheless, existing
SPEs simply rely on the Operating System (OS) scheduler to choose
which operator to run next. EdgeWise changes this paradigm by
setting up a custom version of Stormwhere its OWPOA design has
been replaced with a user-space scheduler that dynamically assigns
operators (considered as logical tasks) to a fixed-size pool of threads,
so bypassing OS scheduling. This approach is intrusive, because
it requires deep changes to the official implementation of Storm,
and it is not portable to newer versions of this SPE. Lachesis [13]
is a new system that requires no modification to the SPE (and to
its OWPOA architecture) but instead steers the OS scheduling by
using the nice command to properly prioritize threads running
streaming queries (i.e., giving hints to the OS in order to customize
its scheduling instead or bypassing it with a user-space scheduler).

This paper extends this work by proposing a new version of
Lachesis having the following novel contributions:

• the congestion-aware policy assigns to each thread running
a query operator a priority related to its actual load, esti-
mated as the length of the queue of inputs to be read and
processed by the logical component of the SPE running that
operator. By conducting a more in-depth analysis of the
internal implementation of Storm and Flink, two popular
open-source SPEs, we identify different threads responsi-
ble to run several computing and communication steps of
stream processing applications, and we find more precise
approaches to schedule them according to their actual load;

• we study how to enforce the Linux real-time scheduling
features to promote the SPE threads running streaming ap-
plications as real-time threads, and deal with the assignment
of their priorities to bring better performance.

The experimental evaluation will analyze these optimizations
of Lachesis using applications belonging to different benchmark
suites (the LinearRoad benchmark [6] and the RiotBench [16]),
running on Odroid boards. Furthermore, we consider two different
SPEs, Storm and Flink, so confirming the effectiveness of Lachesis
owing to the generality of its design principles, which can be applied
to all systems respecting the OWPOA design, which is currently
adopted by all major open-source SPEs.

In the next part, we introduce the background of this paper.
Then, we review what Lachesis is and its architecture. Next, we
describe our enhancements in § 4 and we provide the experimental
evaluation in § 5. Finally, we provide a description of related works
in § 6, and we draw the conclusion of the paper in § 7.

2 BACKGROUND
In this section, we review the basic concepts related to DSP, and
the runtime system of two popular SPEs: Storm and Flink. Fur-
thermore, we provide a brief overview of the Linux scheduler.

2.1 Stream Processing Engines
DSP applications are data-flow graphs whose vertices represent
operators and edges model streams [5]. Operators perform interme-
diate transformation stages working on inputs from other operators
and are able to produce outputs directed to other vertices of the
graph. Streams convey inputs represented as tuples of attributes
in a structured manner, although unstructured data can also be
represented and computed by modern streaming systems.

DSP popularity has improved with the advent of scale-out dis-
tributed SPEs providing a user-friendly manner to develop stream-
ing applications and to transparently run them on a cluster of
distributed machines or in the Cloud. As hinted in the Introduction,
the standard architecture of such modern SPEs follows the so-called
OWPOA-based paradigm, which is depicted in Fig. 1. While stream-
ing applications are dataflows of operators, the SPE runtime system
runs each operator by a dedicated thread. Threads, connected in
a pipeline manner through shared queues implementing data ex-
change between corresponding operators, are eventually run by
the OS scheduler on top of the available cores of the machine.

Streaming
Dataflow

SPE
runtime
system

(OWPOA)

thread thread

thread

thread
queue

queue queue

Operating
System

(OS) available cores

OP

OP

OS Scheduler

Source

Sink

from
external
systems

from
external
systems

Figure 1: Streaming dataflows, generic OWPOA-based SPE,
and OS scheduler.

Some deviations might be possible w.r.t the previous general
picture. Notably, more threads can be used for each operator: for ex-
ample, one thread is devoted to reading new inputs from the input
queue and computing the user-specified transformation logic asso-
ciated with the operator, while a so-called helper thread is in charge
of transmitting the produced output results to the input queue of
the right destination operator. Furthermore, the dataflow can be
partitioned among different machines. In that case, the SPE runtime
system consists of more processes (within and across machines),
each spawning threads for the operators of the local partition while
communications crossing the process boundaries are implemented
through TCP/IP connections across the network.

We provide next an in-depth view of the runtime system of two
popular SPEs, Storm and Flink, showing the mapping between the
abstract concepts in Fig. 1 with the specific terminology adopted
by those SPEs. However, we note that Lachesis’s contribution also
applies to other OWPOA-based SPEs, as shown in [13].

145

Accelerating Stream Processing Queries with Congestion-aware Scheduling and Real-time Linux Threads CF ’23, May 9–11, 2023, Bologna, Italy

2.1.1 Apache Storm. Storm is a distributed SPE. A Storm cluster
is composed of a primary node named Nimbus and secondary nodes,
each running a Supervisor daemon process. An application, in the
form of a jar compiled file, is distributed by the primary node across
the secondary nodes by spawning properWorker JVM processes on
eachmachine. EachWorker executes a subset of the operators of the
application, by running separate Executor threads. The programmer
can instrument the code to decide how many Executors to run per
operator, so replicating them to increase throughput. A more in-
depth view of the Storm runtime system is sketched in Figure 2.

Worker JVM
Executor

INC
queue

OUT
queue

RX
queue

Worker
Receive
Thread

TX
queue

Worker
Send

Thread

User-
logic

Thread
Send

Thread

Executor
INC

queue
OUT
queue

User-
logic

Thread
Send

Thread

.

.

.

Figure 2: In-depth view of the Storm runtime system.

Each Worker has a RX queue containing serialized tuples com-
ing from other Workers. A Worker receive thread is in charge of
extracting inputs from this queue, deserializing and copying them
into the INC queue of the right destination Executor. According to
the abstract SPE picture in Fig. 1, each Executor is composed of
two threads: the first is in charge of running the user-defined logic
of the corresponding operator, to transform inputs into outputs
pushed to its OUT queue; the second, called send thread, is a helper
thread that pops results from the OUT queue and copies them either
into the INC queue of another Executor or to the TX queue of the
Worker process, if results must be delivered (by the Worker send
thread) to operators run by other JVMs.

2.1.2 Apache Flink. Flink architecture has a primary node (Job-
Manager) and secondary nodes (TaskManagers). Flink is able to
chain a sequence of operators connected in a pipeline. Each chained
sequence of operators is called a Subtask (which can contain also
one operator only if chaining cannot be applied), and each Subtask
is executed by a dedicated thread within the TaskManager JVM
process. Figure 3 shows the TaskManager architecture.

Data transferring between Subtasks of different TaskManagers
is performed using dedicated TCP connections managed by Netty.
Each Subtask has a main thread that performs the data deserializa-
tion from input buffers, the computation of its chained operators,
and pushes results (after serializing them) into proper output buffers.
As soon as an output buffer is full, it is given to the Netty client
whose threads (not part of Flink) consume results in the buffer
and send them to other TaskManagers. To avoid notifying Netty
only when buffers are full, an output flusher thread (a sort of helper
thread according to our previous abstract terminology) is in charge
of notifying Netty as soon as a timer expires to reduce latency.

TaskManager JVM
Subtask

Main
Thread

Output
Flusher
Thread

Subtask
Main

Thread

Output
Flusher
Thread

.

.

.

N
et

ty
 C

lie
nt

N
et

ty
 S

er
ve

r

notification

notification

input
buffers

input
buffers

output
buffers

output
buffers

Figure 3: In-depth view of the Flink runtime system.

2.2 Linux Scheduler
Linux is a popular OS. The Linux scheduler is the kernel component
that selects which process or thread to run next on the available
cores of the machine. As process and thread are not differentiated in-
side the kernel for scheduling purposes, we refer in the following to
tasks as schedulable entities. The scheduler distinguishes between
different classes of tasks. SCHED_NORMAL is the class of normal tasks
whose scheduling is implemented by the Completely Fair Scheduler
(CFS) component. The classes SCHED_RR and SCHED_FIFO are the
ones handled by the Real-time Scheduler (RTS).

2.2.1 CFS. This scheduler approximates perfect multitasking, i.e.,
if there are 𝑁 tasks runnable, they should receive 1/𝑁 of the total
compute power each. For each task, CFS maintains a set of informa-
tion. One meta-data field is named vruntime, and represents the
total amount of time the task has run so far weighted by a proper
load factor. CFS implements the run queue of schedulable tasks as
a red-black self-balancing tree indexed by the vruntime parameter,
in such a way that tree nodes (representing tasks) having the small-
est vruntime are placed in the left-most part. As a task advances
its execution, its vruntime parameter is updated, and every time
the scheduler needs to pick up the next schedulable task, it extracts
the one having the smallest vruntime. Linux users can influence
CFS decisions through the nice command. This command accepts
an integer between −20 and 19 (the higher the number, the lower
the priority), and changes the load parameter used to compute the
vruntime. Increasing/decreasing the nice level of one unit yields
about a ±10% variation in the vruntime value of the task [12].

2.2.2 RTS. Real-time tasks are always prioritized over normal
tasks. This means that as soon as there is a runnable real-time
task to execute, it will be given access to the processor even if nor-
mal tasks are waiting to run for a long time. Each real-time task is
assigned to a static priority between 1 and 99 (the higher the number,
the higher the priority), and the kernel keeps a separate list for each
of these priorities. The priority is not changed by the kernel dynam-
ically, but it is under user control and can be modified at runtime via
the chrt command. The kernel differentiates tasks belonging to the
SCHED_RR and SCHED_FIFO classes. In both cases, a running task
can be preempted by another runnable task having a higher priority.
However, SCHED_RR tasks are executed for a maximum time-slice in
a circular manner among other tasks having the same priority. The

146

CF ’23, May 9–11, 2023, Bologna, Italy Frasca et al.

time-slice can be controlled with the sched_rr_timeslice_ms pa-
rameter located at /proc/sys/kernel/ (default is 25 ms). Instead,
the SCHED_FIFO class is represented by real-time tasks that are exe-
cuted until they explicitly yield the processor or they are preempted
by a task with higher priority.

3 LACHESIS ARCHITECTURE
We want to help Linux to schedule threads of streaming queries in
a more effective manner. Instead of balancing the CPU time as done
by the Linux CFS, our goal is to continuously acquire measurements
from the running queries to tune the kernel parameters that affect
how Linux performs their scheduling. This has been investigated
in the previous version of Lachesis [13] by relying on the nice
command. The value of the nice parameter for each thread within
the SPE is periodically updated on the basis of measurements ex-
posed by the SPE monitoring API, which represent the actual load
of the threads that run streaming queries in the SPE. Lachesis has
a component-based architecture depicted in Figure 4.

Translator

Translator

SPE Driver

SPE Driver
entities raw

measurements

metrics

Policy
Manager

schedule

LACHESIS

Metric
Provider

LINUX
OS

Figure 4: Architecture and components of Lachesis.

SPEDrivers. Lachesis incorporates a set of drivers, one for each
supported OWPOA-based SPE, acting as a bridge between Lachesis
and the SPE. They provide two types of information to Lachesis:
i) identifiers of the entities of the SPE runtime system that are of
interest to Lachesis (Worker and TaskManager PIDs, identifiers of
threads within Executors in Storm or Subtasks in Flink, see § 2.1);
ii) raw metrics from the SPE (e.g., number of input tuples currently
present in the INC queues of the Executors in Storm, number of
outputs produced per input, and so forth). The driver retrieves such
metrics, without requiring any change to the SPE implementation,
through the public metric API exposed by the specific SPE directly
or through external tools like Graphite.

Metric Provider. It receives raw measurements from the drivers.
It converts raw measurements into (aggregated) metrics that can
be used by Lachesis to drive the scheduling. For example, if the
scheduling policy adopted by Lachesis needs to be aware of the
selectivity of operators in the query graph (i.e., the average amount
of outputs produced per input by the operator), this metric might
be not directly available from the driver (and from the metric API
of the SPE), but can be derived by knowing the number of inputs
consumed and outputs produced per operator at each time instant.

PolicyManager. It computes, at execution intervals called sched-
uling rounds, the high-level priorities for all threads running stream-
ing queries within the controlled SPEs. We call a schedule an as-
signment of high-level priorities to threads. The built-in policy of
Lachesis is the congestion-aware policy adopted (and theoretically

demonstrated) in EdgeWise [11] for its user-level scheduler, and
now used to help the OS. The goal of the policy is to prioritize
threads whose operators have more input tuples in their queues, so
balancing the size of the queues to achieve higher throughput and
lower latency. We show that this policy reveals effective without
introducing a user-space scheduler, but steering the OS scheduler
to reflect the policy behavior by controlling the way in which Linux
performs the assignment of priorities to threads.

Translators. They convert high-level priorities into commands
that tune the Linux scheduler. The translator used by Lachesis
is based on the nice command. Since nice values are integers in
a limited range (see § 2.2.1), this translator performs a min-max
normalization to convert high-level priorities into admissible nice
values. When used with control groups (cgroups), a Linux feature
used by containers, the nice prioritization assigned to threads in
the same group respects the CPU limit of the group (e.g., controlled
via the cpu.cfs_quota_us parameter). So Lachesis, together with
streaming queries and the SPE, can be deployed into containers,
which is a common scenario in the Edge/IoT context.

4 LACHESIS OPTIMIZATIONS
This paper presents and evaluates different enhancements to im-
prove Lachesis1.We extend how Lachesis implements the congestion-
aware scheduling policy by looking more deeply at the internal
structure of the SPE runtime system, and we extend the set of trans-
lators to go beyond the use of SCHED_NORMAL threads controlled by
nice, but focusing on the real-time capabilities of Linux.

4.1 Refining the Congestion-aware Policy
The policy assigns higher priorities to operators in the query that
represent bottlenecks, i.e., that have a longer queue of inputs to con-
sume. The general goal is to balance the length of the queues and
push the sustainable point of the SPE to a higher input rate. This
idea has been originally implemented in EdgeWise [11]. EdgeWise
changes the Storm runtime system intrusively by introducing a
user-level scheduler, so transforming operators into user-level tasks
whose scheduling on a fixed-size pool of kernel-level threads is
controlled by the SPE itself (and not by the OS). As demonstrated
in [13], Lachesis outperforms EdgeWise by applying the same pol-
icy without introducing a user-level scheduler, so without changing
the official OWPOA implementation of Storm. The policy is imple-
mented as follows (steps executed at each scheduling round):

• Lachesis gets the updated queue lengths of the operators in
the running query;

• for Storm, all the threads within each Executor are associ-
ated with the current length of the corresponding INC queue
(see Figure 2) received from theMetric Provider. Analogously
for Flink, all threads of each Subtask are associated with the
number of tuples currently in the input buffers (see Figure 3);

• these queue lengths represent the high-level priority values
of the policy, and so the schedule is given to a translator,
which applies a min-max normalization and converts the
priorities into nice values. The list of nice commands is
executed by Lachesis while the query is running.

1This version of Lachesis is available at https://github.com/ParaGroup/Lachesis-RT

147

Accelerating Stream Processing Queries with Congestion-aware Scheduling and Real-time Linux Threads CF ’23, May 9–11, 2023, Bologna, Italy

To improve this strategy, we look at two important optimizations
described in the following.

4.1.1 Distinguishing threads within the SPE. In Storm an Executor
is composed of two threads, the one running the user logic on
each input, and the second responsible to read the OUT queue and
delivering results either to the TX queue of the Worker process
or to the INC queue of another Executor of the same Worker (see
Figure 2). The INC and the OUT queues of the same Executor might
have completely different lengths. Think about an operator with
high selectivity, i.e., capable of producing many outputs per input.
In that case, even if the INC queue length might be small, the OUT
queue length might be significantly large. The consequence is that
the user-logic thread and the send thread of the same Executor
should be prioritized in a different manner, a possibility that is not
supported by the Lachesis version presented in [13], where all
threads of the same Executor received a priority proportional to the
length of the INC queue only. The same concept applies to Flink
with the main thread and the output flusher thread of Subtasks.

To change the policy, several components of Lachesis need to
be modified. The first modification is related to the way Lachesis
uses to retrieve the metrics from the SPE. Essentially, metrics are
collected by the SPE Driver through Graphite, which is used as a
hub for all metrics generated by the SPE. With a default interval of
one second, Lachesis sends a request to Graphite to get the last
10-second values of a specific metric (e.g., the length of a specific
queue). Once the answer has been collected, Lachesis computes
the average value, which is used to apply the policy. We modify the
GraphiteDataFetcher class to ask Graphite for a list of metrics
with a single multi-query request. To provide those metric values
to the Policy Manager, we modified the meta-data used to identify
the metrics in order to discern whether they refer to INC or OUT
queues of Executors (Storm) or Subtasks (Flink).

A further effort was made to make more homogeneous the way
in which queue lengths are measured in Storm. In the default
configuration, the capacity of INC and OUT queues are fixed to
the same value of 1024 entries. However, while the elements of
OUT queues are single tuples, the ones of INC queues are lists
(batches) of several contiguous tuples (by default, 100). Therefore,
Lachesis has been modified to standardize the capacity of these
queues before running any query. This has been done by prop-
erly setting the topology.executor.send.buffer.size configu-
ration parameter of the OUT queue capacity to reflect the same
capacity of INC queues in terms of individual tuples.

4.1.2 Dealing with source operators. Another limitation relates to
how source operators are considered. These operators do not re-
ceive inputs from other operators, but rather from external systems.
In Storm, the length of the INC queue of Executors running source
operators will always return zero, although such sources can be
highly loaded. Indeed, their actual input queue is invisible to Storm,
and so not accessible with the available built-in metrics. Therefore,
source operators might receive a priority generally lower than the
rest of the operators in the graph, which does not reflect their load.

To solve this issue, we extend Lachesis to collect metrics re-
ceived from a new set of source operators that we implemented
in Storm and Flink. They report to Graphite, as custom metrics,
the actual size of the queue(s) that such operators actually use in

their code to buffer incoming data from external systems before
delivering them to the rest of the DAG. We consider two kinds of
operators although the approach can be extended to others too:

• FileSource: it extends the unbounded file source of Flink
(analogously the FileReadSpout in Storm). It reads raw in-
put data from a given file (or set of files), parses the entries,
and delivers tuples to the DAG. This source uses a bounded
queue to store raw entries that need to be parsed and deliv-
ered, and periodically report such a metric to Graphite;

• KafkaSource: since streaming queries usually receive data
from publish-subscribe systems like Apache Kafka, we ex-
tend the KafkaSource and KafkaSpout that allow Flink
and Storm to subscribe to Kafka topics respectively. Again,
these sources report to Graphite the actual size of their
internal queues as a new custom metric.

4.2 Scheduling Real-time Threads
The second optimization is to use the real-time scheduler of Linux.
As explained in § 2.2.2, SCHED_RR and SCHED_FIFO tasks always
receive a higher priority than SCHED_NORMAL tasks, and can be
controlled through a set of system calls to manipulate the real-
time attributes (through the chrt shell command). To exploit such
a feature, we add a new translator that converts the high-level
priorities computed by the Policy Manager into a list of real-time
priorities (each an integer between 1 and 99), which are then applied
to the underlying OS. The translator uses SCHED_RR tasks, which
allow fairer scheduling among tasks with the same priority.

Reliable use of this translator is made possible by the real-time
group scheduling feature of Linux kernels, since otherwise real-
time threads could starve the machine and were often limited to
privileged processes. With such a feature, both the SPE with the
running queries and Lachesis can be placed in a container, which
can receive a specific amount of real-time CPU time through the
cpu.rt_runtime_us parameter of cgroups. Doing so, threads of
the query (even if they are promoted as real-time threads) cannot
spend more time than this limit per one period of time. There-
fore, this new translator represents an alternative still usable way
Lachesis can adopt to control thread scheduling in Linux.

5 EXPERIMENTAL EVALUATION
This section is devoted to assessing the effectiveness of the re-
finement of the congestion-aware policy and the use of the new
real-time translator. In order to evaluate each optimization on its
own, and then highlight the joint contribution of both, we evaluate
in § 5.2 the impact of the refinement of the congestion-aware pol-
icy with standard CFS scheduling of SCHED_OTHER threads. Then,
in § 5.3, we present the further improvement gained by exploiting
the real-time scheduling features of the Linux kernel.

5.1 Experimental Setup
Queries. We consider a set of queries presented in the literature

and available in independent repositories. The first (LR) is taken
from the LinearRoad benchmark [6]. It is a tolling system for motor
vehicle expressways with nine operators. The query is provided for
both Storm and Flink. The query has a realistic setup where input
streams are generated by reading from a Kafka broker. We also

148

CF ’23, May 9–11, 2023, Bologna, Italy Frasca et al.

use two queries from the RIoTBench suite [16]. ETL is an extract-
load-transform pipeline of ten operators that processes IoT sensor
streams. STATS consists of ten operators that apply different kinds
of statistical analytics to the input stream. For both ETL and STATS
we use the official code-base in GitHub2, where the two applications
are available in Storm and raw tuples are read from dataset files.

Hardware. Since Lachesis aims at enhancing streaming queries
on low-end devices, we use an Odroid-XU4 board with four ARM
Cortex-A15 2GHz and four Cortex-A7 1.4GHz. Storm and Flink
are executed on the four high-performance cores, while Graphite
and Lachesis have been pinned on the four high-efficiency cores.
For the LR query, the Kafka broker is executed on a machine in the
same LAN.We have replicated our experimental results on different
versions of the Linux kernel (i.e., 5.4.167-240 and 4.14.180-178).
For the sake of space, this section will discuss the results obtained
on the more recent kernel version.

Baselines. Weevaluate the new implementation of the congestion-
aware policy with the nice translator (Lachesis-Mod) and with the
new real-time translator (Lachesis-Mod-RT). Both are compared
against the prior version of Lachesis [13], so without the policy
optimizations and based on the nice translator, which we refer to
as Lachesis. We report also the results with EdgeWise, which is
available in Storm for the ETL and STATS queries only [11].

Performance Metrics. We focus on throughput, i.e., the average
number of input tuples that the SPE processes per second. We also
consider two definitions of latency. The first one is the end-to-end
(e2e) latency, which represents the full elapsed time from when an
input item has been produced (e.g., by an external software such
as a Publish-Subscribe system) to when the corresponding final
output has been received by a Sink operator. Since it incorporates
all components crossed from inputs to outputs, e2e latency is the
meaningful metric from the user’s perspective. However, for the
sake of understanding Lachesis behavior, we also consider the
intra-SPE latency (simply latency), which excludes the elapsed time
between the external system feeding the SPE and the SPE itself.

5.2 Lachesis-Mod with SCHED_NORMAL Threads
We first compare Lachesis-Mod against the old Lachesis version
in [13]. Furthermore, we compare against the OS and EdgeWise.
All plots in this paper show the effect of higher input rates (i.e., the
speed at which inputs are generated) on throughput and latency
and/or e2e latency. Both latencies are shown using a logarithmic
scale for the y-axis, in order to highlight their general trend over
the whole space of input rates used. The expected Lachesis-Mod
contribution is to achieve higher throughput and to sustain higher
input rates with lower (at least end-to-end) latency.

5.2.1 Storm results. Figure 5 shows the results with the ETL query
by reporting, as a function of the input rate, the throughput, latency,
e2e latency, and the policy goal. The latter is the coefficient of
variation of the length of all the queues in the SPE runtime system
(the lower, the better since queue lengths are more homogeneous).

Lachesis-Mod keeps the system stable up to a rate of 1, 875
tuple/sec, and then degrades more smoothly than Lachesis. At the
2RiotBench benchmark suite is available at https://github.com/dream-lab/riot-bench

1200

1400

1600

1800

Throughput (tuple/sec)

10−1

100

101

Latency (sec)

1200 1400 1600 1800 2000 2200
Input rate (tuple/sec)

100

102
End-to-End Latency (sec)

1200 1400 1600 1800 2000 2200
Input rate (tuple/sec)

1

2
Policy Goal

OS
LACHESIS

LACHESIS-MOD EDGEWISE

Figure 5: Results with the ETL query on Storm.

new saturation point, throughput is +4.5% higher than Lachesis
and +39% than OS, which is unstable with a rate greater than 1, 375
tuple/sec. In terms of latency and e2e latency, with a rate of 1, 875
tuple/sec Lachesis-Mod exhibits −95% lower latency (below the
second) compared with Lachesis, since it maintains the lengths
of the queues more homogeneous as reflected by the Policy Goal
plot. The e2e latency looks similar, with a decrease of −98% at
the new saturation point. EdgeWise provides better throughput
than OS. We experienced that with input rates higher than 2, 000
tuple/sec EdgeWise crashes. However, with lower rates we observe
that throughput and latency are much better with Lachesis and
Lachesis-Mod, confirming that the intrusive changes to introduce
a user-space scheduler by EdgeWise do not pay off.

The results of the STATS query are shown in Figure 6.OS reaches
the saturation point around 320 tuple/sec and its throughput stops
increasing at a rate higher than 330 tuple/sec. Lachesis improves
throughput up to a rate of 350 tuple/sec and beyond that limit it
degrades smoothly. Lachesis-Mod provides an increasing through-
put up to a rate of 400 tuple/sec, so showing a lower saturation.
With the maximum considered rate Lachesis-Mod achieves +22%
higher throughput, −9% lower e2e latency than Lachesis, while
OS performs poorly. With high input rates both throughput and
latency degrade very quickly with EdgeWise.

The LR query shows a different scenario, since the raw input
stream is read from Kafka. As shown in Figure 7, the throughput
improvement achieved by Lachesis-Mod is here marginal (+0.35%
better than Lachesis with 7, 500 tuple/sec) while the advantage
w.r.t the OS is still remarkable.

Since Figure 7 shows latencies in logarithmic scale, we provide
a more detailed view around the saturation point in Figure 8 . We
notice that Lachesis-Mod provides lower e2e latencies compared to
Lachesiswhile we experience the opposite behavior for the latency.
According to our latency definitions, we can say that 𝑒2𝑒_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =
𝑤𝑎𝑖𝑡𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑙𝑎𝑡𝑒𝑛𝑐𝑦, so the sum between the average waiting
time between the data producer and the SPE and the source-to-sink
internal latency spent within the SPE. In the case of Lachesis-Mod,
threads of the source receive a number of CPU cycles proportional
to their actual load (which in turn depends on the actual size of
the external queues/buffers), while in Lachesis the nice values

149

Accelerating Stream Processing Queries with Congestion-aware Scheduling and Real-time Linux Threads CF ’23, May 9–11, 2023, Bologna, Italy

300

350

400
Throughput (tuple/sec)

10−1

100

101

Latency (sec)

300 320 340 360 380 400
Input rate (tuple/sec)

100

102
End-to-End Latency (sec)

300 320 340 360 380 400
Input rate (tuple/sec)

1

2

3
Policy Goal

OS
LACHESIS

LACHESIS-MOD EDGEWISE

Figure 6: Results with the STATS query on Storm.

4000

5000

6000

7000
Throughput (tuple/sec)

10−1

100

101

Latency (sec)

4000 5000 6000 7000
Input rate (tuple/sec)

100

102
End-to-End Latency (sec)

4000 5000 6000 7000
Input rate (tuple/sec)

1

2

Policy Goal

OS LACHESIS LACHESIS-MOD

Figure 7: Results with the LR query on Storm.

of those threads were assigned by assuming a dummy queue of
one element, so receiving less priority. Since more CPU cycles
are assigned to source threads, a lower number of cycles remain
available to the threads of the other operators yielding higher intra-
SPE latencies. However, in all the considered cases, the reduction of
the𝑤𝑎𝑖𝑡𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 component dominates the slight intra-SPE latency
increase, so producing lower e2e latency results and a better user
experience. The e2e latency reduction is remarkable: −47% with a
rate of 7, 500 tuple/sec compared to the prior version of Lachesis.

5.2.2 Flink results. We run LR on Flink, see Figure 9. Lachesis-Mod
pushes the saturation point w.r.t Lachesis, moving it from about
5, 000 tuple/sec to 5, 500 tuple/sec. At the new saturation point, e2e
latency is −42% lower than the one with Lachesis while through-
put is +4% higher. OS still exhibits poor results with high rates,
while EdgeWise cannot be used since it does not support Flink.

5.3 Lachesis-Mod with Real-time Threads
We now focus on the combined effect of the new congestion-aware
policy implementation and the new real-time translator. Streaming
queries are placed into a control group having a real-time CPU
limit of 95% of the overall CPU time, so studying them in a scenario

0.14
0.17

0.20

0.26

0.30

0.46

0.0

0.2

0.4

0.6

6500 7000 7500

Input rate (tuple/sec)

L
a

te
n

c
y
 (

s
e

c
)

LACHESIS LACHESIS−MOD

Latency

1.00 0.83

2.55
2.14

10.39

5.48

0

5

10

6500 7000 7500

Input rate (tuple/sec)

L
a

te
n

c
y
 (

s
e

c
)

LACHESIS LACHESIS−MOD

End−to−End latency

Figure 8: Latency and end-to-end latency of LR on Storm.

3000

4000

5000

Throughput (tuple/sec)

100

Latency (sec)

3000 4000 5000 6000
Input rate (tuple/sec)

100

101

End-to-End Latency (sec)

3000 4000 5000 6000
Input rate (tuple/sec)

0.75

1.00

1.25

1.50
Policy Goal

OS LACHESIS LACHESIS-MOD

Figure 9: Results of the LR query on Flink.

where a limit, though high for performance reasons, is imposed
in the CPU demand of the streaming system (e.g., this might be
useful to still share computing resources with other running appli-
cations/containers in the same Edge/IoT platform).

5.3.1 Storm results. In this section we consider throughput and
e2e latency (we have already argued that the minimization of e2e la-
tency is of primary importance in real-world scenarios). For ETL the
use of real-time threads guarantees significantly better throughput,
see Figure 10. At the maximum considered rate of 2, 250 tuple/sec,
the improvement is of +28% compared with Lachesis-Mod. As far
as e2e latency is concerned, we observe that the real-time translator
allows maintaining the latency below the one of Lachesis-Mod in
all considered rates. Although the two curves appear quite close
to each other due to the logarithmic scale, the latency reduction
is often significant: Lachesis-Mod-RT provides −15% lower e2e
latency than Lachesis-Mod at the maximum considered input rate.

Figure 11 shows the results with the STATS query. Although with
the highest considered rate of 400 tuple/sec the average throughput
is lower with Lachesis-Mod-RT (although this with a higher vari-
ability), it performs generally better for all the other rates greater
than 350 tuple/sec. The use of the real-time translator produces
e2e latency values similar to the one of Lachesis-Mod, although
latencies are generally worse with lower input rates in this query.

The use of the real-time translator for the LR query is shown in
Figure 12. Lachesis-Mod-RT performs better than Lachesis-Mod

150

CF ’23, May 9–11, 2023, Bologna, Italy Frasca et al.

1200 1400 1600 1800 2000 2200
Input rate (tuple/sec)

1400

1600

1800

2000

2200

Throughput (tuple/sec)

1200 1400 1600 1800 2000 2200
Input rate (tuple/sec)

10−1

100

101

102
End-to-End Latency (sec)

OS
LACHESIS-MOD

LACHESIS-MOD-RT

Figure 10: Results of the ETL query on Storm with the real-
time translator.

300 320 340 360 380 400
Input rate (tuple/sec)

260
280
300
320
340
360
380
400

Throughput (tuple/sec)

300 320 340 360 380 400
Input rate (tuple/sec)

10−1

100

101

102
End-to-End Latency (sec)

OS
LACHESIS-MOD

LACHESIS-MOD-RT

Figure 11: Results of the STATS query on Storm with the real-
time translator.

by exhibiting higher throughput (+4% on average) with input rates
greater than 6, 000 tuple/sec. In the same range of input rates, e2e
latency values are generally lower (−36% on average).

4000 4500 5000 5500 6000 6500 7000 7500
Input rate (tuple/sec)

4000

4500

5000

5500

6000

6500

7000

7500
Throughput (tuple/sec)

4000 4500 5000 5500 6000 6500 7000 7500
Input rate (tuple/sec)

10−1

100

101

102
End-to-End Latency (sec)

OS
LACHESIS-MOD

LACHESIS-MOD-RT

Figure 12: Results of the LR query on Storm with the real-
time translator.

5.3.2 Flink results. To complete the analysis, we run the LR query
on Flink. Results are shown in Figure 13. In general, the use of
real-time threads brings considerable benefits in terms of e2e la-
tency while the improvement is often small in terms of throughput.
With the rate of 6, 000 tuple/sec the increase in throughput with
Lachesis-Mod-RT is small (few tens of inputs per second). As far
as e2e latency is concerned, Lachesis-Mod-RT provides smaller
values with all the considered rates compared with Lachesis-Mod.

5.4 Sensitivity Analysis
We analyze the behavior of Lachesis-Mod and Lachesis-Mod-RT
concerning the specific priorities applied to threads and the effect

3000 3500 4000 4500 5000 5500 6000
Input rate (tuple/sec)

3000

3500

4000

4500

5000

5500

Throughput (tuple/sec)

3000 3500 4000 4500 5000 5500 6000
Input rate (tuple/sec)

100

101

End-to-End Latency (sec)

OS
LACHESIS-MOD

LACHESIS-MOD-RT

Figure 13: Results of the LR query on Flink with the real-
time translator.

on the input queue sizes within the SPE. Furthermore, we study the
impact of the scheduling frequency chosen to recompute priorities.

5.4.1 Input queue sizes and chosen priorities. We consider for this
part the ETL query on Storm. We have ten operators connected in a
complex data-flow graph. Fig. 14 shows the average size of the input
queues of the operators within Storm during the whole execution
duration. Blue bars, corresponding to the defaultOS execution with-
out Lachesis support, clearly show that some operators are more
congested than others. Notably, the SenMlParser, which applies a
complex parsing of tuples from raw strings, is the bottleneck having
the largest average queue size (slightly less than 600 pending items,
see the rightmost bar in the figure). Figure 14 also shows the effect
of Lachesis-Mod and Lachesis-Mod-RT. The general effect is that
bottleneck operators are more prioritized and receive more CPU
cycles for reading inputs from their queues and processing them.
Since more congested operator receive more CPU cycles, fewer cy-
cles remain available to other operators whose queue size slightly
increases. So, the consequence of applying the congestion-aware
policy is that the queues have a more homogeneous size, and this
yields better throughput and e2e latency. The better performance
exhibited by Lachesis-Mod-RT with real-time priorities in§ 5.3 is
justified by the better balancing between queue sizes compared
with the use of nice with Lachesis-Mod, as Fig. 14 shows.

0

200

400

600

Ann
ot

at
io
n

Azu
re

In
se

rt

Blo
om

Filt
er

C
sv

To
Sen

M
L

In
te

rp
ol
at

io
n

Jo
in

Pub
lis

he
r

Pub
lis

he
r_

2

R
an

ge
Filt

er

Sen
M

lP
ar

se
r

Operator names

In
p

u
t
q

u
e

u
e

 s
iz

e

lachesis_mod lachesis_mod_rt os

Average size of input queues (ETL on STORM)

Figure 14: Average size of input queues: ETL query on Storm
with input rate of 2, 250 tuple/sec.

Fig. 15 shows the applied priorities. Each bar shows the average
priority applied to the main thread of each operator (we omit the
priorities of helper threads for the sake of space). In the case of
Lachesis-Mod, threads are SCHED_OTHER and priorities are con-
trolled through nice (−20 is the better priority level), while with

151

Accelerating Stream Processing Queries with Congestion-aware Scheduling and Real-time Linux Threads CF ’23, May 9–11, 2023, Bologna, Italy

Lachesis-Mod-RT threads are promoted in the SCHED_RR class and
the highest real-time priority provided by Linux is 99. We can ob-
serve that priorities in Fig. 15 map quite easily with the queue sizes
in Fig. 14. Operators having larger queues are more prioritized
compared with less congested operators. This confirms the right
application of the congestion-aware scheduling policy.

−20

−10

0

10

20

P
ri

o
ri

ty
 (

n
ic

e
)

Average priorities (ETL on STORM)

0

25

50

75

100

Ann
ot

at
io
n

Azu
re

In
se

rt

Blo
om

Filt
er

C
sv

To
Sen

M
L

In
te

rp
ol
at

io
n

Jo
in

Pub
lis

he
r

Pub
lis

he
r_

2

R
an

ge
Filt

er

Sen
M

lP
ar

se
r

Operator names

P
ri

o
ri

ty
 (

re
a

l−
tim

e
)

Figure 15: Applied priorities by Lachesis-Mod (top) and
Lachesis-Mod-RT (bottom) with ETL query on Storm.

5.4.2 Scheduling frequency. In this part we answer the question
related to how frequently Lachesis should re-evaluate the metrics
from the SPE and re-compute the thread priorities. In fact, setting
a too-slow update of the priorities can impair the effectiveness
of our approach, since Lachesis would not be able to prioritize
correctly the operators based on their actual congestion. Fig. 16
shows an experiment with the LR query on Flink. We choose this
SPE because it provides a finer configuration of how frequently
built-in metrics are made available. We evaluate throughput and
e2e latency by considering input rates around the saturation limit
(see Fig. 13). The analysis considers Lachesis-Mod-RT only.

2000

3000

4000

5000

6000

5000 5500 6000

Input rate (tuple/sec)

T
h

ro
u

g
h

p
u

t
(t

u
p

le
/s

e
c
)

f=1000ms f=2000ms f=5000ms

Scheduling Frequency (LR on Flink)

0

5

10

15

20

5000 5500 6000

Input rate (tuple/sec)

L
a

te
n

c
y
 (

s
e

c
)

f=1000ms f=2000ms f=5000ms

Scheduling Frequency (LR on Flink)

Figure 16: Scheduling frequency (LR query on Flink).

We consider three scenarios, where the main loop of Lachesis
is repeated every second (default setting), two seconds and five
seconds. As depicted in the figure, throughput is stable and becomes

worse when priorities are recomputed every five seconds. This
correlates with the effect on e2e latency, which becomes higher in
the same conditions, reflecting the fact that with a low frequency
our system is not fast enough to assign the right priorities to threads.

In the above considerations, we have to consider that a frequent
execution of Lachesis increases the CPU utilization to run the main
loop gathering statistics from the SPE and applying priorities to
the OS through the chrt command. However, such an overhead
is in all cases extremely low: the Lachesis process consumes less
than 1% of CPU time with the main loop repeated every second.

5.5 Summary of Results
Tab. 1 highlights the improvements achieved by Lachesis-Mod-RT
over the prior version of Lachesis [13], and compared with the de-
fault execution with standard OS scheduling. So doing, we provide
a quantitative assessment of the significance of the optimizations
proposed in this paper: i) the refinement of the congestion-aware
policy in § 4.1, and the use of the new real-time translator in § 4.2.
All values in the table are reported in percentage by considering
the average improvement (throughput) and reduction (e2e latency)
over the input rates beyond the saturation limit.

ETL
(Storm)

STATS
(Storm)

LR
(Storm)

LR
(Flink)

Lachesis-Mod-RT
vs Lachesis-Mod

Throughput +7% +6.38% +2.49% +1.1%
E2E Latency −14% −5.49% −11% −27%

Lachesis-Mod-RT
vs Lachesis

Throughput +19% +11% +3.3% +2.8%
E2E Latency −31% −13% −25% −40%

Lachesis-Mod-RT
vs OS

Throughput +38% +29% +38% +5.7%
E2E Latency −71% −52% −93% −73%

Table 1: Improvements (percentage) achieved with the optimiza-
tion/enhancements of Lachesis presented in this paper.

ComparedwithOS, Lachesis-Mod-RT provides +34.7% through-
put and −72% e2e latency on average. Lachesis-Mod-RT exhibits
significant improvements w.r.t the already published version of
Lachesis in [13]: +9.75% throughput and −27% e2e latency.

6 RELATEDWORKS
Scheduling of streaming queries is a research topic born with the
first Data Stream Management Systems (DSMSs) more than 20 years
ago. DSMSs like Aurora [3] had an internal scheduler component
capable of running query operators on top of a pool of threads. So,
doing scheduling in user space with custom stream-aware policies.
Examples of such policies are the First-Come-First-Served (FCFS)
policy proposed in [8] to optimize for the maximum latency of
streams of continuous requests, the Rate-Based (RB) policy optimiz-
ing for the average latency of a single streaming query [17], which
has been extended to multiple-query contexts in [14]. A new metric
called mace (Maximum Cumulative Excess) has been introduced
in [10] to accurately estimate the latency of a stream processing
pipeline, and the same work proposes a policy based on that metric
to schedule operators. The chain policy in [7] tries to minimize
the runtime memory usage of multiple queries at the same time.
The Aurora DBMS has been extended with a two-level hierarchical

152

CF ’23, May 9–11, 2023, Bologna, Italy Frasca et al.

scheduling policy [9]. The first-level scheduler uses a round-robin
policy to schedule queries, while a second-level scheduler prior-
itizes operators of the query using different policies to optimize
throughput (Min-Cost) or average latency (Min-Latency).

Policies addressing the scheduling of multiple queries are de-
signed to take into account fairness. Different metrics have been
proposed such as the Longest Stretch First (LSF) metric [4]. Sched-
uling queries with different priority classes have been explored
in [15] with a hierarchical scheduler based on a weighted round-
robin query assignment and the Highest Rate policy to minimize
latency. These policies need detailed information about the query
processing, such as the earliest timestamp of the tuples pending in
input buffers of query operators. To extract this information, the
scheduler must be tightly coupled with the DSMS runtime system,
in order to acquire detailed information in an accurate manner.
For this reason, implementing the scheduler in user space, as an
internal component of the DSMS, was a promising direction.

In modern SPEs like Storm and Flink, thread scheduling is
left to the Operating System, which pursues global goals from
the system-wise perspective. Indeed, modern SPEs are designed for
large machines, with high availability of CPU cores. When executed
on resource-constrained devices such as at the Edge, the solution
proposed by EdgeWise [11] was to change the Storm runtime
system by adding a user-space scheduler, so proposing again the
idea of DSMSs schedulers by adding them to Storm. Lachesis [13]
criticizes this approach since it requires intrusive changes to the
Storm official code base, it is not portable to newer versions of
Storm nor extensible to other SPEs of the same kind (e.g., Flink).

7 CONCLUSIONS AND FUTUREWORKS
In this paper, we proposed different optimizations of Lachesis. We
optimized the congestion-aware policy by reflecting more accu-
rately the load of the threads in the SPE, and by assigning priorities
to Source operators more accurately. We also showed that the use
of the new real-time translator (Lachesis-Mod-RT) brings addi-
tional performance benefits. To the best of our knowledge, this was
the first attempt of using the real-time features provided by Linux
for scheduling streaming queries. These enhancements improve
the effectiveness of Lachesis, and demonstrate the effectiveness of
real-time Linux threads to accelerate open-source SPEs.

Our work can be further improved in the future. Other threads
used by Flink (e.g., the ones within Netty, see Fig. 3) can be con-
trolled through nice or chrt since they are currently outside the
Lachesis control. It would also be interesting to run Storm, Flink
and Lachesis with a Linux kernel compiled with the PREEMPT_RT
patch that minimizes the amount of non-preemptible kernel func-
tions, and so can bring additional performance benefits. In addition,
we highlight that the general approach fostered by Lachesis, so
to help the Linux scheduler with directives driven by application-
specific metrics not accessible by the OS otherwise, can be extended
with a broader application to parallel frameworks and task-based
parallel runtime systems.

ACKNOWLEDGMENTS
This research has been supported by the INTERCONNECT project
no. PRA 2022-2023 9, by the EuroHPC project “Adaptive multi-tier

intelligent data manager for Exascale” under grant 956748-ADMIRE-
H2020-JTI-EuroHPC-2019-1, and by the National Resilience and
Recovery Plan (PNRR) through the National Center for HPC, Big
Data and Quantum Computing.

REFERENCES
[1] 2020. Apache Flink. https://flink.apache.org/. [Online; accessed 26-Feb-2020].
[2] 2020. Apache Storm. http://storm.apache.org/. [Online; accessed 26-Feb-2020].
[3] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Con-

vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. 2003.
Aurora: A New Model and Architecture for Data Stream Management. The VLDB
Journal 12, 2 (aug 2003), 120–139. https://doi.org/10.1007/s00778-003-0095-z

[4] Swarup Acharya and S. Muthukrishnan. 1998. Scheduling On-Demand Broad-
casts: New Metrics and Algorithms. In Proceedings of the 4th Annual ACM/IEEE
International Conference on Mobile Computing and Networking (Dallas, Texas,
USA) (MobiCom ’98). Association for Computing Machinery, New York, NY, USA,
43–54. https://doi.org/10.1145/288235.288248

[5] Henrique C. M. Andrade, Bugra Gedik, and Deepak S. Turaga. 2014. Funda-
mentals of Stream Processing: Application Design, Systems, and Analytics (1st ed.).
Cambridge University Press, New York, NY, USA.

[6] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S. Maskey,
Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. 2004. Linear Road: A
StreamData Management Benchmark. In Proceedings of the Thirtieth International
Conference on Very Large Data Bases - Volume 30 (Toronto, Canada) (VLDB ’04).
VLDB Endowment, Toronto, Canada, 480–491. http://dl.acm.org/citation.cfm?
id=1316689.1316732

[7] Brian Babcock, Shivnath Babu, Rajeev Motwani, and Mayur Datar. 2003. Chain:
Operator Scheduling for Memory Minimization in Data Stream Systems. In
Proceedings of the 2003 ACM SIGMOD International Conference on Management of
Data (SanDiego, California) (SIGMOD ’03). Association for ComputingMachinery,
New York, NY, USA, 253–264. https://doi.org/10.1145/872757.872789

[8] Michael A. Bender, Soumen Chakrabarti, and S. Muthukrishnan. 1998. Flow
and Stretch Metrics for Scheduling Continuous Job Streams. In Proceedings of
the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco,
California, USA) (SODA ’98). Society for Industrial and Applied Mathematics,
USA, 270–279.

[9] Don Carney, Uğur Çetintemel, Alex Rasin, Stan Zdonik, Mitch Cherniack, and
Mike Stonebraker. 2003. Operator Scheduling in a Data Stream Manager. In
Proceedings of the 29th International Conference on Very Large Data Bases - Volume
29 (Berlin, Germany) (VLDB ’03). VLDB Endowment, 838–849.

[10] Badrish Chandramouli, Jonathan Goldstein, Roger Barga, Mirek Riedewald, and
Ivo Santos. 2011. Accurate latency estimation in a distributed event processing
system. In 2011 IEEE 27th International Conference on Data Engineering. 255–266.
https://doi.org/10.1109/ICDE.2011.5767926

[11] Xinwei Fu, Talha Ghaffar, James C. Davis, and Dongyoon Lee. 2019. EdgeWise: A
Better Stream Processing Engine for the Edge. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). USENIX Association, Renton, WA, 929–946. https:
//www.usenix.org/conference/atc19/presentation/fu

[12] Wolfgang Mauerer. 2008. Professional Linux Kernel Architecture. Wrox Press Ltd.,
GBR.

[13] Dimitris Palyvos-Giannas, Gabriele Mencagli, Marina Papatriantafilou, and Vin-
cenzo Gulisano. 2021. Lachesis: A Middleware for Customizing OS Scheduling of
Stream Processing Queries. In Proceedings of the 22nd International Middleware
Conference (Québec city, Canada) (Middleware ’21). Association for Comput-
ing Machinery, New York, NY, USA, 365–378. https://doi.org/10.1145/3464298.
3493407

[14] M.A. Sharaf, P.K. Chrysanthis, and A. Labrinidis. 2005. Preemptive rate-based
operator scheduling in a data stream management system. In The 3rd ACS/IEEE
International Conference onComputer Systems and Applications, 2005. 46–. https:
//doi.org/10.1109/AICCSA.2005.1387043

[15] Mohamed A. Sharaf, Panos K. Chrysanthis, Alexandros Labrinidis, and Kirk
Pruhs. 2008. Algorithms and Metrics for Processing Multiple Heterogeneous
Continuous Queries. ACM Trans. Database Syst. 33, 1, Article 5 (mar 2008),
44 pages. https://doi.org/10.1145/1331904.1331909

[16] Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan. 2017. RIoTBench: An
IoT Benchmark for Distributed Stream Processing Systems. Concurrency and
Computation: Practice and Experience 29, 21 (2017), e4257. https://doi.org/10.
1002/cpe.4257 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4257

[17] Tolga Urhan and Michael J. Franklin. 2001. Dynamic Pipeline Scheduling for
Improving Interactive Query Performance. In Proceedings of the 27th International
Conference on Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 501–510.

153

