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ABSTRACT
Deep Learning (DL) applications are entering every part of our life
given their ability to solve complex problems. Nevertheless, energy
efficiency is still a major concern due to the large computational
and memory requirements. State-of-the-art accelerators strive to
address this issue by optimizing the architecture to the compute re-
quirements of DL algorithms. However, there is always a mismatch
between compute and memory requirements and what is offered by
a particular design. A way to close this gap is by providing run-time
adaptation or resource allocation to improve efficiency.

This paper proposes an adaptive resource allocation for deep
learning applications (ARADA) with the goal of improving energy
efficiency for deep learning accelerators. This is leveraged by hav-
ing a layer-by-layer resource allocation. The rationale is that each
layer in the DL model has a unique compute and memory band-
width requirement and allocating fixed resources to all layers leads
to inefficiencies. This can be achieved by means of resource alloca-
tion (e.g., voltage-frequency, memory bandwidth) to save energy
without sacrificing performance. Experimental results show that
applying ARADA to the execution of 9 state-of-the-art CNNmodels
results in an energy savings of 38% on average compared to race-
to-idle for an Edge TPU coupled with LPDDR4 off-chip memory.

CCS CONCEPTS
• Computing methodologies→Machine learning; Artificial
intelligence; • Hardware→ Power and energy; • Computer
systems organization → Embedded systems; Systolic arrays;
Multicore architectures; Neural networks; Heterogeneous (hybrid)
systems.
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1 INTRODUCTION
Deep Learning (DL) applications are entering every aspect of soci-
ety, given their popularity in solving complex problems. However,
these applications pose high computational and memory require-
ments at both ends of the compute continuum - edge to the cloud.
In this context, improving the energy efficiency of the underlined
computing systems is a major concern. One approach to address
this is to design dedicated domain-specific accelerators.

Several DL accelerators have emerged as both academic research
and commercial products [5, 10, 26]. The most efficient accelerator
designs are those where the architecture is custom designed to meet
the requirements of several DL models or algorithms. These accel-
erators are typically designed as application-specific integrated
circuits (ASIC) and would only be able to solve underlined models.
Consequently, they would have limited application and could not
evolve to new or different models. Alternatively, FPGA-based accel-
erator designs for a single model that can change over time could
help future proofing but are costly [4, 7].

Another popular approach is providing dedicated hardware mod-
ules for accelerating one or more of the dominant computational
kernels, such as the general matrix-matrix multiplication (GEMM)
and general matrix-vector multiplication (GEMV) operations. These
hardware modules are included in most of the current DL accelera-
tors, giving them the capability of accelerating current and future
models of different characteristics. Examples of such architectures
include Google’s Tensor Processing Units (TPUs) [12], Graphics Pro-
cessing Units (GPUs) [10], NVIDIA’s NVDLA [26] and several other
Neural Processing Units (NPUs) integrated with general-purpose
CPUs (e.g., Apple M1 [22]). At the core of most of these architec-
tures are several Multiply-and-Accumulate (MAC) (often termed as
Processing Elements - PEs) units grouped together in the required
form. For example, GEMM can be effectively accelerated by a sys-
tolic array (SA) of MAC units. SAs can also be used to accelerate
other kernels, such as convolution, by applying transformations
such as image to column (im2col), thus enhancing their applicabil-
ity [6]. Obviously, this flexibility comes with a tradeoff in terms of
efficiency for these more generic domain accelerators. This paper
addresses this efficiency gap by improving the resource allocation
at a finer grain during the execution of the DL algorithms.

DL models are composed of several layers of various sizes and
types (e.g., depth-wise convolution, point-wise convolution, fully
connected), resulting in a varying degree of computation and mem-
ory requirements over the course of the application’s execution.
The most common case, when using the domain-specific accel-
erators mentioned above, is for the execution to be performed
layer-by-layer due to data dependency between layers. As such,
the accelerator processes all operations for the first layer and then
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Figure 1: A scenario depicting interleaved loading and computation and inherent stalls.

proceeds to the second layer, and so forth. Furthermore, due to
the limited computational units and internal buffer space, the ex-
ecution granularity is further refined to smaller partitions of the
data into what is known as tiles. Such an execution pattern leads to
having two clear phases: data loading and computation. Whenever
possible, in order to hide the latency of data loading, double or
ping-pong buffers are used to overlap execution with the loading of
the data as shown in Figure 1. Nevertheless, given the diverse char-
acteristics of the different layers of a model, the data loading and
computation do not necessarily take the same time. For example,
in Figure 1, we depict the execution of two layers of a DL model
when using double buffering and observe that for the first layer,
the computation is smaller than the loading of the data for the next
layer. In contrast, for the second layer, the data loading for the third
layer is larger than the computation. This clearly illustrates the
mismatch between computation and memory. Thus, fine-grain (e.g.,
layer-by-layer) resource allocation can improve overall efficiency.

The impact of resource allocation (RA), (i.e., voltage-frequency
(VF), power gating, batch size, PE count) on the performance and
energy efficiency of DL application’s execution is extensively stud-
ied [27, 33], where the focus is mainly on finding the best RA setting
for the complete execution of a specific DLmodel on hardware (CPU
and GPU). Jiang et al. [17] have proposed the use of a power-down
state using Dynamic Voltage Frequency Scaling (DVFS) to save
energy while in an idle period after processing an input image
and waiting for the following image on the FPGA. Jiang et al. [16]
propose an accelerator design and VFS policy similar to power
gating (PG). Liu et al. [21] proposed a mechanism based on spar-
sity detection to control individual PEs by employing DVFS and
power gating to save energy. Nabavinejad et al. [24] have proposed
using batch size to enhance the DVFS capability and improve per-
formance under a power cap. Similarly, Yao et al. [35] proposes
a model for optimal batch size and frequency setting. Morteza et
al. [23] proposes a method for precision control and DVFS to reduce
power under QoS of response time in server-based CNN inference.
Yu et al. [36] proposes a heuristic to manage the frequency of the
inference server based on requests in the queue to satisfy response
time.

There are twomain shortcomings in the above-mentioned works.
First, the proposed techniques try to find the optimal setting for

the complete model, failing to exploit the opportunity offered by
inter- and intra-layer type variations. Second, these works assume
a DL model and underlined hardware as black-box and don’t pro-
vide insights into the interplay of parameters (e.g., layer size and
type) and hardware architectural parameters (e.g., on-chip memory
size and bandwidth). In particular, the impact of a particular RA
knob depends if a particular layer is memory or compute-bound.
Resource provisioning can be reduced (or increased in the case of
compute-bound execution) depending on the relative distance from
the roofline performance [15, 34].

In this context, this paper argues to analyze each model at the
layer granularity and proposes resource allocation for each layer
with the objective of improving energy efficiency. This paper specif-
ically considers voltage-frequency (V-F) scaling and memory band-
width as resources to improve efficiency but the technique can be
applied to cases where new knobs, e.g., PE count, etc are control-
lable. We evaluated the proposed scheme using SCALE-Sim [30], a
DL accelerator simulator, and proposed an implementation frame-
work for a few commodity hardware platforms. We have evaluated
ARADA for two design points, namely Edge TPU and HPC TPU, for
nine state-of-the-art CNN models of different sizes and character-
istics. Simulations have shown that we improve energy efficiency
by 38% (for Edge TPU coupled with LPDDR4) and 26% (for HPC
TPU coupled with DDR5-4800) on average over race-to-idle (i.e.,
fixed maximum allocation of compute resources and memory band-
width) without any performance degradation. Moreover, we show
a memory bandwidth reduction potential of 6.5% for Edge TPU
coupled with DDR5-4800 and 9% for HPC TPU coupled with HBM2
that can translate into additional energy savings by applying DVFS
on memory.

The contributions of this paper are as follows:

• An analysis of computational and memory bandwidth re-
quirements of state-of-the-art CNNs to establish the inter-
and intra-layer variability
• An adaptive resource allocation techniqueARADA applicable
to a variety of hardware platforms
• A proof of concept implementation of ARADA for an SA-
based accelerator architecture and evaluation of energy effi-
ciency and bandwidth reduction
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Figure 2: A depiction of computation and memory slowdown to exploit the energy saving opportunities

2 BACKGROUND AND MOTIVATION
This paper targets SA-based accelerators executing inference of DL
models. However, the insights can be applied to other accelerator
engines, such as GPUs and vector accelerators. As discussed earlier,
the execution pattern in domain-specific accelerators with fixed
sizes consists of data loading and computation phases, as shown
earlier in Figure 1. Note that this simple depiction is only for illustra-
tion purposes; in reality, the loading of different components, such
as weights, input feature MAP (IFMAP), and output feature MAP
(OFMAP), differ significantly and are complex. Typically, the data
loading and computations are interleaved, parallel, or combined.
The exact behavior depends on the available on-chip buffer and
data size.

2.1 Execution Model and Approach
Given the diverse characteristics of the various layers in a model,
there exists a mismatch between the data loading and computation,
resulting in inefficiency. One key point here is that the interplay
of relative speeds of computation and data loading determines the
compute or memory boundedness of a specific DNN layer. Since
different DNN layers perform different types of computations (e.g.,
point-wise convolution (PW), and depth-wise convolution (DW))
and have different sizes, the compute and memory bandwidth re-
quirements change. Therefore, there will be stalls in cases of mis-
match between computation and data loading speed. In this con-
text, the stalling component operates faster than required, thus
consuming additional energy without providing extra performance.
Therefore, we propose to slow down the computation or mem-
ory, whichever is running faster, to improve energy efficiency as
shown in Figure 2. Here computational and data-loading phases
highlighted in "green" indicate slow execution or loading at lower
energy. Please note that this slowing down of a few sections of
the model’s execution will not affect the overall execution time
which remains the same. In short, the goal of this work is to reduce
energy while keeping the execution time the same as race-to-idle
execution.

2.2 Variability in Computational and
Bandwidth Requirement of DNN Layers

In order to apply the layer-wise resource allocation, we need to
establish a need based on the variability in execution in different
layers. This variability stems from inter- and intra-layer type het-
erogeneity, layer sizes, and parameters (e.g., strides, padding), and
manifests itself in the form of variation in compute-to-memory
ratio or arithmetic intensity.

To visualize the variability, we employed a roofline model [34].
We present roofline plots in Figure 3, where the x-axis shows the
arithmetic intensity (AI) and the y-axis shows the Giga opera-
tions per second (GOPS). The target architecture here is a SA of
64 × 64 MAC units coupled with an on-chip-memory buffer (e.g.,
SRAM) and an off-chip memory (e.g., DRAM and HBM) similar
to the Google TPU [12]. We considered two different accelerator
design points: one high-performance cluster (HPC) targeting a
high-performance cluster system and a high-efficiency targeting
edge system. The HPC system is modeled as 4 Tera operations
per second (TOPS) (i.e., same as Google Edge TPU) and 0.4 TOPS,
coupled with memory bandwidths of 122GB/sec, 71GB/sec, and
29GB/sec. The reason behind the combination of these TOPS and
bandwidth (BW) is to explore the design space close to TPU. In
this context, we computed the AI and GOPS using a custom-built
analytical model. Here, we assume that the on-chip-memory holds
all the weights and a single tile of IFMAP and OFMAP. The roofline
plots for SA with 0.4 TOPS and 4 TOPS are shown in Figure 3a
and Figure 3b, respectively. Different layer types are presented in
different colors and shapes, where DW, PW, convolution (Conv),
and fully connected (FC) layers are shown in blue, green, cyan,
and magenta colors, respectively. Looking at Figure 3a, one can
see the variability between different types of layers as they lie in
either compute- or memory-bound regions. Moreover, the degree
of compute- and memory-bounded behavior is different among the
layers of the same class owing to the size and AI of a layer.

Another important observation is that changes in accelerator
architecture, e.g., memory BW and peak compute performance,
affect the resource requirements for the layers because the layer
can shift from the compute to the memory-bound region and vice
versa. For example, when peak performance is changed from 0.4 to 4
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Figure 3: Per layer roofline plot for EfficientNetB0

TOPS, the layers in the compute-bound region shift to the memory-
bound region. Similarly, when the BW is reduced from 122 GB/sec
to 71 GB/sec and 29 GB/sec, as shown in Figure 3b, Figure 3c and
Figure 3d respectively, the layer in a compute-bound move to the
memory-bound region. Moreover, the extent of memory or compute
boundedness also changes with changing the above-mentioned
accelerator design parameters. These changes in memory BW can
be a design time consideration or run-time effect because of BW
sharing when co-executing applications. In short, it is important
to analyze the DL models in the context of the architecture and
run-time scenarios, and resources must be allocated accordingly to
improve efficiency.

3 ARADA: ADAPTIVE RESOURCE
ALLOCATION

3.1 Resource Allocation Proposal
The main theme of the ARADA proposal is that different layers in
a DL network executing on a particular hardware platform have
different memory and computing requirements. In order to improve
energy savings, the resource manager must make decisions to ex-
ploit this variation considering both the DL workload (e.g., the type
of layers and sizes) and the hardware platform parameters (e.g.,
on-chip buffer sizes and speeds, off-chip memory bandwidth).

There are two key takeaways. First, the RA decisions must be
taken at the granularity where compute and memory requirements
are changing. Second, the RA decision must consider the DL work-
load and hardware. These RA decisions are implemented at run-time
by the resource manager.

In the context of a SA architecture, two main resource alloca-
tion decisions are based on two scenarios. In the first scenario, we
consider that a layer is memory-bound. Then the compute engine
processes data faster than it is made available from the memory
subsystem (i.e., on-chip memory + off-chip memory). In this case,
the computation capability of the engine can be reduced to match
the data production rate of the memory system without any per-
formance loss. However, this reduced computational speed can
save considerable energy and improve energy efficiency. In this
case, energy reduction comes from power reduction. This reduc-
tion can be achieved by tuning various available knobs depending
on the hardware, for example, V-F scaling, PE count, Streaming
Multi-processors (SM) count (in the case of GPUs), etc.

In the second scenario, we consider layers that are compute-
bound. In this case, the memory subsystem is producing data at
a faster rate, and compute engine operates at a slower rate than
the data production rate of the memory. Therefore, there are two
possible avenues of energy reduction. First, slowing down the mem-
ory to match the computing speed and save energy without losing
performance. Recent research proposals [8] have shown promis-
ing results in saving energy by applying voltage frequency scaling
in memories, and modern memory architectures have started to
support various operating voltages [31]. The second option is to
increase the frequency above the nominal (e.g., turbo-boost) for a
short period of time [29], provided the chip is operating within the
thermal design power (TDP) limit.

In the context of this paper, as for the first scenario, we improve
energy efficiency by matching the speed of compute engine to the
speed of data loading. Thus operating at the optimal point for the
given performance target (same as race to idle). For the second
scenario, we propose to reduce memory bandwidth to match the
data consumption rate of compute engine. Again this allows the
accelerator to operate at optimal efficiency setting at the given per-
formance. Note that this resource allocation to match the compute
and data loading time will not affect performance compared to race
to idle.

3.2 System Overview
We envision the resource allocation for energy efficiency to be
done at the system level with a hybrid mechanism with offline and
online components. Figure 4 depicts the overall system design: the
hardware platform, Resource Allocation Analysis (RAA) phase, and
run-time system. The RAA takes the DL application and hardware
architecture as input and produces a resource allocation schedule.

The run-time system implements the resource allocation deci-
sions, and feedback from the hardware platform is fed back to the
run-time resource manager. This helps predict the application’s
behavior and assists RM in the next decision-making point, i.e.,
after every layer.

3.3 Resource Allocation Analysis
The resource allocation analysis uses the DL workload and hard-
ware specifications to generate a resource allocation schedule, which
run-time resource managers can use to allocate resources. Such an
analysis is only done once for each combination of DL workload
and hardware platform. Therefore, at run-time, resource managers
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Algorithm 1 Resource allocation analysis for the ARADA
1: Notations:
2: CNN : Per layer specification of CNN
3: ARCH : Compute and memory specification of hardware platform
4: Fmax : maximum frequency for compute engine
5: Vmax : maximum voltage for compute engine
6: BWmax : maximum bandwidth for off-chip memory
7:
8: function ARADA_Analysis(CNN,ARCH)
9: Resource_Allocation← []
10: TTotal, TStall ← Estimate_Compute_Memory_Reqirement(CNN,ARCH)
11: for all layer ∈ CNN do
12: if ( TStall [layer] > 0 ) then
13: [VRA, FRA ] ← Compute_Reqirement(layer,ARCH, TTotal, TStall )
14: BWRA ← BWmax
15: else
16: VRA ← Vmax
17: FRA ← Fmax
18: BWRA ← Bandwidth_Reqirement(layer,ARCH, TTotal, TStall )
19: end if
20: Resource_Allocation[layer] ← [FRA,VRA, BWRA, TTotal, TStall]
21: end for
22: return Resource_Allocation
23: end function

Table 1: Specification of frequency and bandwidth allocation
for MobileNet
Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14
F (MHz) 500 300 500 250 500 200 500 350 500 300 500 500 500 500
BW (GB/sec) 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Layer 15 16 17 18 19 20 21 22 23 24 25 26 27
F (MHz) 300 500 300 500 300 500 300 500 300 500 500 500 500
BW (GB/sec) 20 20 20 20 20 20 20 20 20 20 20 8 20

only have to implement the decisions resulting in low overheads
at run time. In essence, by means of this analysis, we would like
to identify the different types of layers and whether a layer is in
compute or memory-bound region. To elaborate on the process, we
present a pseudo-algorithm in Algorithm 1. First, we estimate the
compute and memory BW requirements of all layers in a CNN us-
ing Estimate_Compute_Memory_Reqirement() (line-10). This
step ascertains if a layer is compute-bound or memory-bound. This
can be accomplished by any state-of-the-art ML simulator (e.g.,
SCALE-Sim [30]). Then the algorithm loops over all the layers in

the given model and estimates if the layer is compute or memory-
bound (lines 11-21) and estimates appropriate resource allocations.
In this context, if stall time is greater than zero, then the layer is
memory-bound, and if it’s less than zero, then the layer is compute-
bound. If the layer is memory-bound, then we predict the compute
requirements to save energy while keeping the performance un-
affected as depicted by Compute_Reqirement(). Details of this
function are listed in Section 3.3.1. Similarly, in the case of the
compute-bound layer, the memory bandwidth can be adjusted to
the demand to save energy, i.e., Bandwidth_Reqirement(). This
analysis is presented in Section 3.3.2. It is important to note that we
do not increase the execution latency or decrease the throughput
of the DL model.

3.3.1 Compute Speed Prediction. The resource allocation can be
estimated in terms of new frequency by using eq. (1), where the FRA,
Fmax, TTotal and TStall are predicted frequency, maximum frequency,
total time and stall time respectively. We assumed that voltage and
frequency changes are proportional; a similar model can estimate
the voltage reduction. Typically, voltage-frequency (V-F) space is
quantized, and thus an additional step can be applied to adjust the
frequency and voltage to the nearest higher legal value so that the
overall execution time is not increased.

FRA = Fmax × TTotal − TStall
TTotal

(1)

3.3.2 Memory Bandwidth Prediction. The possible reduction in
memory bandwidth in the case of a compute-bound layer (i.e.,
TStall = 0 ) can be found using eq. (2). Again, the estimate must
adjust to the available V-F levels in memory.

BWRA = BWmax ×
BWmax − BWrequired

BWmax
(2)

The estimated voltage frequency and BW reduction estimates
for each layer are compiled in a table for run-time use. An example
table depicting the first ten layers of the MobileNet model [14]
for the Google Edge TPU (as described in Section 4.1.1) is shown
in Table 1. Here, we used a specified maximum frequency, i.e.,
500 MHz, for the Edge TPU. Furthermore, we assumed a memory
bandwidth of 20 GB/sec as peak bandwidth. As can be seen, for each
layer, a frequency is specified for SA, and the required bandwidth
is provided. The runtime can use these values to allocate resources.

4 EXPERIMENTAL SETUP
4.1 Target Architecture
The evaluation of ARADA in this paper focuses on a systolic array
(SA) architecture with two design points targeting the two ends of
the computing continuum: Edge TPU and HPC TPU. We further
investigated each accelerator with a range of appropriate off-chip
memory bandwidth specifications.

4.1.1 Edge TPU. In this system, wemodeled an architecture similar
to Google’s Edge TPU [12], details of which are depicted in Table 2.
We refer to this as Edge TPU in the rest of this paper. We have
coupled the Edge TPU with five different types of off-chip memory,
each with a diverse memory bandwidth range as listed in the table
leading to five hardware configurations of Edge TPU.
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Table 2: Edge TPU [12]

SA size 64 × 64
On-chip Buffer 4 MB
Dataflow Output Stationary
Clock Frequency 500 MHz
Memory LPDDR, LPDDR5, DDR4_4000, DDR4_4400, DDR5_4800

4.1.2 HPC TPU. In this system, wemodeled an architecture similar
to the Google TPUv3 [11], where four matrix multiplication units
(MXU) (two per core and a total of two cores) share the on-chip
buffer of 32 MB and the available bandwidth. In this context, we
model HPC TPU as SA coupled with 8 MB on-chip memory. Com-
plete architectural details that we assumed are depicted in Table 3.
We refer to this as HPC TPU in the rest of this paper. We evaluated
the accelerators with six different types of off-chip memories suit-
able for high-performance requirements. Overall the bandwidth of
memories coupled with HPC TPU is on the higher side compared
to the Edge TPU. Thus we have six hardware configurations of HPC
TPU.

Table 3: HPC TPU

SA size 256 × 256
On-chip Buffer 8 MB
Dataflow Output Stationary
Clock Frequency 940 MHz
Memory DDR4_4400, DDR5_4800, DDR5_6800, DDR5_7800, HBM1, HBM2

4.2 Workloads
The workloads used in this study are depicted in Table 4 along with
layer count. In this study, we only considered the convolution and
fully connected layers of a model as they constitute the majority of
the computational load. These workloads include CNNs of various
types. For example, MobileNet, MobileNetV2, and EfficientNetB0
employ heterogeneous convolutions (having layers of different
types), while ResNet-18 and GoogLeNet are homogeneous (i.e.,
standard convolution layers). Lastly, YOLOv4-tiny, FaceRecogni-
tionID, FasterRCNN, and SpeakerID belong to the object detection,
object recognition, and voice recognition categories.

Table 4: DL models used in the evaluation.

DL Model MobileNet MobileNetV2 EfficientNetB0 ResNet-18 GoogLeNet
Layer Count 28 54 82 21 54
DL Model YOLOv4-tiny FaceRecognitionID FasterRCNN SpeakerID
Layer Count 28 54 82 21

4.3 Techniques Evaluated
We evaluated ARADA in the following scenarios to provide poten-
tial energy savings and to accommodate technological limitations.

4.3.1 RTI: Race to Idle (Baseline) . In the Race to Idle scheme,
the workloads are executed at fixed maximum resource allocation,
i.e., maximum V-F setting and maximum memory bandwidth. This
scheme serves as the baseline for our evaluation. All energy savings
and bandwidth reduction results are presented in comparison with
the baseline.

4.3.2 ARADA-IDEAL: Ideal Resource Allocation . In this case, we
assumed a continuous V-F scaling and no overheads induced by V-F
switching. This represents the highest achievable energy savings.
We refer to this as ARADA-IDEAL.

4.3.3 ARADA-VF-OH: Resource Allocation with DVFS Overhead .
In this scheme, the resource allocation is applied, considering the
V-F switching overhead into account and refer it as ARADA-VF-OH.
Thus the energy savings are less than ideal. We consider a moderate
DVFS switching overhead of 10 microseconds [28]. In this context,
it is important to note that higher DVFS reduces the exploitation
of energy saving and vice versa.

4.3.4 ARADA-VF-OH-Q: Resource Allocation with DVFS Over-
head and Quantized V-F. A continuous V-F scaling is often not
possible in existing hardware therefore, we present the energy
savings with a quantized space of 50 MHz steps referred to as
ARADA-VF-OH-Q. The reason is two-fold, first, a typical embedded
CPU typically provides frequency at a resolution of 100 MHz [20].
Second, in modern GPUs, the frequency can be changed at a res-
olution of 15 MHz [10]. Therefore, considering the evolution of
technology, we considered moderate value. Voltage is also assumed
to scale linearly proportional to the frequency step. Please note that
a higher resolution of frequency switching enables more energy
savings with ideal resource allocation corresponding to continuous
frequency scaling.

4.4 Simulation Methodology
We used SCALE-Sim [30] to estimate compute and memory require-
ments of each layer for all the workloads while executing them
on all hardware configurations. Considering the above-mentioned
hardware descriptions, we have a total of 11 hardware configura-
tions. The results are fed into the custom-built simulator, which
performs the offline analysis and predicts the resource allocations.

4.4.1 Energy Reduction Estimation. In the scope of this study, we
derived an analytical model to estimate the dynamic energy re-
duction as shown in eq. (6). Dynamic energy for a computational
engine can be given by eq. (3), where Edynamic, 𝛼 , C, V, F, Texecution
represent the dynamic energy, activity factor, capacitance, voltage,
clock frequency and execution time for a layer.

Edynamic = 𝛼 × C × V2 × F × Texecution (3)

Edynamic(RA) = 𝛼 × C × V2
RA × FRA × (Texecution + TStall) (4)

The activity factor (𝛼) (depends on input data) and circuit capaci-
tance (C) are constant for a specific architecture executing the same
DNN on two different resource allocations. Moreover, the total exe-
cution time of the DNN layer is the same before and after resource
allocation. However, the execution time of the computational part
increases by the stall time as we slow the compute engine to match
the memory load latency. In our proposal, V-F will change with
resource allocation resulting in eq. (4) that represents the energy at
the particular allocation of voltage and frequency. Dividing eq. (3)
and eq. (4) will result in eq. (5) that shows the relationship between
the energy before and after RA based on V-F reduction. We can
further apply normalization by assuming Edynamic as unity to get

68



ARADA: Adaptive Resource Allocation for Improving Energy Efficiency in Deep Learning Accelerators CF ’23, May 9–11, 2023, Bologna, Italy

(a) EdgeTPU : 64 × 64 SA with 4MB on-chip buffer (b) HPC TPU : 256 × 256 SA with 8MB on-chip buffer
Figure 5: Potential Energy Savings and BW Reduction for Edge and HPC TPU architectures

eq. (6), where energy reduction can be estimated without the need
for absolute energy values.

Edynamic(RA)
Edynamic

= (VRA
V )

2 × FRA
F ×

(Texecution + TStall)
Texecution

(5)

Edynamic(RA) (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) = (VRA
V )

2 × FRA
F × (1+

TStall
Texecution

) (6)

5 EVALUATION
In the context of this paper, we evaluated energy savings and band-
width reduction using an analytical model employing the results
from a state-of-the-art simulator. Bandwidth reduction can be fur-
ther used to apply V-F scaling on off-chip memory and save addi-
tional energy, but we leave the energy reduction study in off-chip
memory for future work.

5.1 Average Energy and Bandwidth Reduction
In this section, we evaluate the potential energy savings and mem-
ory bandwidth reduction of the two architectures as mentioned
earlier in Section 4.1 with a range of off-chip memory types in
Figure 5 compared to fixed allocation as in case of Race-to-Idle
scheme. Both energy savings and memory bandwidth reduction
are presented in normalized form along the y-axis, and the x-axis
shows various memory types. Here we provide the energy savings
for ARADA-IDEAL, ARADA-DVFS, and ARADA-DVFS-Q with re-
spect to RTI. There are a couple of key takeaways here. First, as
off-chip bandwidth increases, potential energy savings decrease,
and possible BW reduction increases. For example, the energy sav-
ings for the Edge TPU decline from 38% to 31% for LPDDR4 to
DDR5-4800, respectively for the ARADA-DVFS-Q scheme. And the
bandwidth reduction possibility increases from 0.7% to 6.5% for the
same range of memory types. The same pattern can be observed
for the HPC TPU as well. This is because as the BW increases, more
layers are shifted from the memory-bound to the compute-bound
region and vice versa. The second important insight is that the ideal
balance between the compute and memory capability (both size
and bandwidth) is difficult to achieve in the context of efficiency.
This fact is further enhanced by the changing workload scenarios,
as we will observe in the next section. In short, it is fair to say that

a specific resource allocation is required for each layer of individual
DL workloads.

5.1.1 Edge TPU . Next, we analyze each workload in detail, exe-
cuting on Edge TPU for a range of off-chip memory types as shown
in Figure 6. As a first observation, as we increase the BW starting
from LPDDR4 in Figure 6a to DDR5 4800 in Figure 6b, the poten-
tial energy savings decrease and potential BW reduction increases
as expected. Moreover, each workload has its own distinct behav-
ior, and BW changes have a specific effect. However, the extent
of change concerning memory technology is workload-dependent.
Thus, it is important to estimate and apply resource allocation to
each workload at per layer level. Another important point is the
effect of DVFS overhead and V-F quantization. As bandwidth is
increased the potential energy savings decrease because of smaller
stall times. This also results in further reduction when considering
ARADA-DVFS and ADARA-VF-OH-Q schemes as if stall time is less
than DVFS overhead, reduction in V-F is not feasible. Stall times
depend on the total execution time of layer or layer size in other
words. Therefore the effect is different for various workloads. For
example, the reduction in energy savings from ARADA-IDEAL to
ARADA-VF-OH-Q is different for YOLOv4-tiny and GoogLeNet for
LPPDDR4 and DDR5 4800 cases.

5.1.2 HPC TPU. Results for the HPC TPU are presented in Figure 7,
with a different range of memory types, i.e., DDR4 4400 Figure 7a
and HBM2 Figure 7b. Again as we increase the BW, more layers
shift from the memory-bound region to the compute-bound region.
Different workloads behave differently owing to the fact that they
have a unique mixture of compute and memory-bounded layers.
Furthermore, the extent a particular layer is compute- or memory-
bound is different, resulting in unique behavior. Accounting for
DVFS overhead and quantization again reduces the energy savings.
However, as can be seen in the case of Figure 7b, this reduction is
significant. The reason is that HBM2 has very high bandwidth and
this significantly reduces that stall times. If stall times are less than
DVFS overheads then resource allocation is not applied. Therefore
there is a significant difference between the DDR4-4400 and HBM2.
Thus it is extremely important to analyze each workload in con-
nection with the underlined architecture and allocate resources
accordingly at runtime.
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(a) LPDDR4 (b) DDR5 4800

Figure 6: Energy Savings for Edge TPU with 4MB on-chip buffer and various off-chip memory types

(a) DDR4 4400 (b) HBM2

Figure 7: Energy Savings for various DL workloads for HPC TPU with 8MB on-chip buffer for different off-chip memory types

(a) DDR5-4800 (b) HBM2

Figure 8: Layer-wise compute and bandwidth reductions for MobileNet executing on 256 × 256 SA with 8 MB on-chip buffer
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On the other hand, in the case of HBM2, there is a considerable
amount of extra bandwidth. This fact is evident from the Figure 7b
where for example the bandwidth reduction for EfficientNetB0 and
MobilNetV2 increase to 27% and 9.2% for HBM2 from 7% and 0%
for DDR4-4400. Another way to analyze is to say that the compute
stalls (in the case of DDR4 4000) are replaced with memory stalls (in
the case of HBM2). In short, we can ascertain that per-layer resource
allocation is important for both ends of the compute continuum to
get optimal efficiency out of underlined hardware.

5.1.3 Layer-by-Layer Analysis. To further investigate the detailed,
intricate behavior, we present a per-layer analysis, showing the
potential reduction in the TOPS and BW. In this context, we present
results for MobileNet for executing on HPC TPU with DDR5 4800
and HBM2 in Figure 8a and Figure 8b respectively. There are several
interesting observations here. First, as discussed earlier, most layers
within a DL application are either compute-bound or memory-
bound. However, some are not, indicating they are at an efficient
execution point. This is the case, for example, for layer 10-24 for
HPC TPU with DDR5-4800 as shown in Figure 8a. As the mem-
ory BW increases in HPC TPU with HBM2, some of these layers
shift to compute-bound regions. For example, layers 13, 15, and
17 are shifted to the compute-bound region. The second impor-
tant conjuncture is that the various layers have different degrees
of compute-bounded or memory-bounded behavior resulting in
different potential reductions in energy and bandwidth. In this
context, it is important to note that this phenomenon is affected
by the hardware platform, as can be seen by comparing the two
figures. For example, layer 13 has approximately 25% BW reduction
in the case of HBM2 and none in the case of DDR5-4800. Similarly,
looking at layer 5, one can observe a TOPS reduction of 90% for
DDR5-4800 and 60% for HBM2. Switching the off-chip memory
from DDR5-4800 to HBM2 allows data to be moved faster reducing
the memory-bounded behavior of the layer. In other words, the
stall time waiting for data is decreased, as expected.

6 RELATEDWORK
The problem of energy efficiency is one of the primary concerns
in computer system design and gained significant attention re-
cently [1–3, 9, 13, 19, 25, 32]. In the context of DL application
execution, it is even more critical because of the high compute
and memory requirements. Therefore, it has gained considerable
attention. In the context of this paper, there are several categories
of works.

The first category includes investigation and impact studies,
where the impact of resource allocation on energy efficiency is
studied. For example, Tang et al. [33] presented an experimental
study where the impact of DVFS in GPUs on the performance and
energy for inference and training is studied. The authors conclude
that the optimal setting for performance and energy is not the
highest or lowest. Similarly, Oh et al. [27] present an experimental
study comparing energy and performance on CPU and GPU.

The second category includes works that propose adaptive tech-
niques to employ resource allocation to improve energy efficiency.
For example, Nabavinejad et al. [24] have proposed using batch size
to enhance the DVFS capability and improve performance under
a power cap. Yao et al. [35] offer a so-called "revenue" model that

computes the optimal batch size and frequency setting. This scheme
employs the curve-fitting on the exhaustive sampled data.

Jiang et al. [17] have proposed to use a power-down state using
DVFS to save energy while in an idle period after processing an
input image and waiting for the following image on FPGA. Liu
et al. [21] proposed a mechanism based on sparsity detection to
control individual PEs by employing DVFS and power gating to
save energy. Nabavinejad et al. [23] offer a method for precision
control and DVFS to reduce power under QoS of response time
in server-based CNN inference. Yu et al. [36] proposes a heuristic
to manage the frequency of inference servers based on requests
in the queue to satisfy response time. Jiang et al. [16] propose an
accelerator design and V-F scaling policy similar to power gating.

All the above proposals do not consider the varying compute
and memory bandwidth requirements in the DL workloads during
execution at layer-by-layer granularity. Therefore, they fail to fully
exploit the available opportunity for improving energy efficiency.
In contrast, ARADA exploits these variations at the layer-by-layer
level and proposes heuristics to use them.

7 CONCLUSION AND FUTUREWORK
This paper investigates the problem of improving energy efficiency
in DL inference. In this context, we identify that the identical re-
source allocation (RA) for complete DL model execution leads to
inefficiency. Furthermore, RA decisions must be taken by consider-
ing both the DLworkload and the hardware platform. DLworkloads
have compute-bounded and memory-bounded execution phases
typically defined by the model’s layers. To achieve energy efficiency,
these phases must be handled differently. In short, the behavior
of each layer must be analyzed, and consequently, the resources
must be allocated according to the compute and memory band-
width requirements. To this end, we proposed a method to analyze
and allocate resources according to the needs of various phases of
execution. Our approach ARADA aims to identify the compute- and
memory-bounded layers within the DL application and allocate
resources based on fixed compute and memory bandwidth budget
specified in hardware specification.

Our investigation reveals significant potential energy savings
and bandwidth reduction for a set of DL applications for two archi-
tectures, an Edge TPU, and an HPC TPU. We repeated the experi-
ments using a range of memory types offering different bandwidths.
The results showed that ARADA can, for example, on average, save
38% energy and 0.7% memory bandwidth for the Edge TPU cou-
pled with LPDDR4 for the ADARA-VF-OH-Q scheme. As for future
extensions, we would like to explore the possibility of extending
ARADA for the GPUs and re-configurable DL accelerators such as
[7, 18] where additional resources, e.g., PEs can be allocated as per
compute requirement.

ACKNOWLEDGMENTS
This publication incorporates results from the VEDLIoT project,
which received funding from the European Union’s Horizon 2020
research and innovation program under grant agreement No 957197.
This work was also partly supported by the Swedish Foundation for
Strategic Research (contract number CHI19-0048) under the PRIDE
project.

71



CF ’23, May 9–11, 2023, Bologna, Italy Waqar, et al.

REFERENCES
[1] M. Waqar Azhar, Miquel Pericàs, and Per Stenström. 2019. SaC: Exploiting

Execution-Time Slack to Save Energy in Heterogeneous Multicore Systems. In
Proceedings of the 48th International Conference on Parallel Processing (Kyoto,
Japan) (ICPP 2019). ACM, Article 26, 12 pages. https://doi.org/10.1145/3337821.
3337865

[2] M. Waqar Azhar, Miquel Pericàs, and Per Stenström. 2022. Task-RM: A Resource
Manager for Energy Reduction in Task-Parallel Applications under Quality of
Service Constraints. ACM Trans. Archit. Code Optim. 19, 1, Article 11 (jan 2022),
26 pages. https://doi.org/10.1145/3494537

[3] M Waqar Azhar, Per Stenström, and Vassilis Papaefstathiou. 2017. SLOOP: QoS-
supervised loop execution to reduce energy on heterogeneous architectures.
ACM Transactions on Architecture and Code Optimization (TACO) 14, 4 (2017),
1–25.

[4] Lin Bai, Yiming Zhao, and Xinming Huang. 2018. A CNN Accelerator on FPGA
Using Depthwise Separable Convolution. IEEE Transactions on Circuits and
Systems II: Express Briefs 65, 10 (2018), 1415–1419. https://doi.org/10.1109/TCSII.
2018.2865896

[5] Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Ger-
aldo F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu. 2021. Google Neural
Network Models for Edge Devices: Analyzing and Mitigating Machine Learning
Inference Bottlenecks. In 2021 30th International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT). 159–172. https://doi.org/10.1109/
PACT52795.2021.00019

[6] Kumar Chellapilla, Sidd Puri, and Patrice Simard. 2006. High performance convo-
lutional neural networks for document processing. In Tenth international work-
shop on frontiers in handwriting recognition. Suvisoft.

[7] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architec-
ture for Energy-Efficient Dataflow for Convolutional Neural Networks. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).
367–379. https://doi.org/10.1109/ISCA.2016.40

[8] Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, and Onur Mutlu.
2011. Memory Power Management via Dynamic Voltage/Frequency Scaling. In
Proceedings of the 8th ACM International Conference on Autonomic Computing
(Karlsruhe, Germany) (ICAC ’11). Association for Computing Machinery, New
York, NY, USA, 31–40. https://doi.org/10.1145/1998582.1998590

[9] Sai Santosh Dayapule, Fan Yao, and Guru Venkataramani. 2019. PowerStar:
Improving Power Efficiency in Heterogenous Processors for Bursty Workloads
with Approximate Computing. In 2019 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom). 175–182. https://doi.org/10.1109/
CloudCom.2019.00035

[10] Michael Ditty. 2022. NVIDIA ORIN System-On-Chip. In 2022 IEEE Hot Chips 34
Symposium (HCS). 1–17. https://doi.org/10.1109/HCS55958.2022.9895609

[11] Google. [n. d.]. Google TPU System Architecture. https://cloud.google.com/tpu/
docs/system-architecture-tpu-vm accessed: 10.02.2023.

[12] Google. 2023. Google debuted Edge TPU. https://cloud.google.com/edge-tpu
accessed: 10.02.2023.

[13] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant
Agarwal, and Martin Rinard. 2011. Dynamic Knobs for Responsive Power-Aware
Computing. In Proceedings of the Sixteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Newport
Beach, California, USA) (ASPLOS XVI). Association for Computing Machinery,
New York, NY, USA, 199–212. https://doi.org/10.1145/1950365.1950390

[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[15] Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. 2014. Cache-aware Roofline
model: Upgrading the loft. IEEE Computer Architecture Letters 13, 1 (2014), 21–24.
https://doi.org/10.1109/L-CA.2013.6

[16] Weixiong Jiang, Heng Yu, Xinzhe Liu, and Yajun Ha. 2019. Energy Efficiency
Optimization of FPGA-based CNN Accelerators with Full Data Reuse and VFS.
In 2019 26th IEEE International Conference on Electronics, Circuits and Systems
(ICECS). 446–449. https://doi.org/10.1109/ICECS46596.2019.8964717

[17] Weixiong Jiang, Heng Yu, Jiale Zhang, Jiaxuan Wu, Shaobo Luo, and Yajun Ha.
2020. Optimizing energy efficiency of CNN-based object detection with dynamic
voltage and frequency scaling. Journal of Semiconductors 41, 2 (feb 2020), 022406.
https://doi.org/10.1088/1674-4926/41/2/022406

[18] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. MAERI: Enabling
Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable Intercon-
nects. SIGPLAN Not. 53, 2 (mar 2018), 461–475. https://doi.org/10.1145/3296957.
3173176

[19] J. Li and J. F. Martinez. 2006. Dynamic power-performance adaptation of parallel
computation on chip multiprocessors. In The Twelfth International Symposium on
High-Performance Computer Architecture, 2006. 77–87. https://doi.org/10.1109/
HPCA.2006.1598114

[20] I. Lin, B. Jeff, and I. Rickard. 2016. ARM platform for performance and power effi-
ciency—Hardware and software perspectives. In 2016 International Symposium on
VLSI Design, Automation and Test (VLSI-DAT). 1–5. https://doi.org/10.1109/VLSI-
DAT.2016.7482541

[21] Siqin Liu and Avinash Karanth. 2021. Dynamic Voltage and Frequency Scaling
to Improve Energy-Efficiency of Hardware Accelerators. In 2021 IEEE 28th Inter-
national Conference on High Performance Computing, Data, and Analytics (HiPC).
232–241. https://doi.org/10.1109/HiPC53243.2021.00037

[22] Michael Mattioli. 2022. Meet the FaM1ly. IEEE Micro 42, 3 (2022), 78–84. https:
//doi.org/10.1109/MM.2022.3169245

[23] SeyedMorteza Nabavinejad, HassanHafez-Kolahi, and Sherief Reda. 2019. Coordi-
nated DVFS and Precision Control for Deep Neural Networks. IEEE Computer Ar-
chitecture Letters 18, 2 (2019), 136–140. https://doi.org/10.1109/LCA.2019.2942020

[24] Seyed Morteza Nabavinejad, Sherief Reda, and Masoumeh Ebrahimi. 2022. Co-
ordinated Batching and DVFS for DNN Inference on GPU Accelerators. IEEE
Transactions on Parallel and Distributed Systems 33, 10 (2022), 2496–2508.

[25] Mehrzad Nejat, Miquel Pericas, and Per Stenstrom. 2019. QoS-Driven Coordinated
Management of Resources to Save Energy in Multi-core Systems. In 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 303–313.
https://doi.org/10.1109/IPDPS.2019.00040

[26] Nvidia. [n. d.]. NVDLA. http://nvdla.org/
[27] Sangyoon Oh, Minsub Kim, Donghoon Kim, Minjoong Jeong, and Minsu Lee.

2017. Investigation on performance and energy efficiency of CNN-based object
detection on embedded device. In 2017 4th International Conference on Computer
Applications and Information Processing Technology (CAIPT). 1–4. https://doi.org/
10.1109/CAIPT.2017.8320657

[28] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang. 2013. Accurate
Modeling of the Delay and Energy Overhead of Dynamic Voltage and Frequency
Scaling in Modern Microprocessors. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 32, 5 (May 2013), 695–708. https://doi.org/10.
1109/TCAD.2012.2235126

[29] A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou, K. P. Pipe, T. F.Wenisch, and
M. M. K. Martin. 2013. Utilizing Dark Silicon to Save Energy with Computational
Sprinting. IEEE Micro 33, 5 (Sep. 2013), 20–28. https://doi.org/10.1109/MM.2013.
76

[30] Ananda Samajdar, Jan Moritz Joseph, Yuhao Zhu, Paul Whatmough, Matthew
Mattina, and Tushar Krishna. 2020. A Systematic Methodology for Characterizing
Scalability of DNN Accelerators using SCALE-Sim. In 2020 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 58–68.
https://doi.org/10.1109/ISPASS48437.2020.00016

[31] Samsung. [n. d.]. LPDDR5X-K3KL2L20DM-JGCT Product Brief. https:
//semiconductor.samsung.com/us/dram/lpddr/lpddr5x/k3kl2l20dm-jgct accessed:
10.02.2023.

[32] Jinho Suh, Chieh-Ting Huang, and Michel Dubois. 2015. Dynamic MIPS Rate
Stabilization for Complex Processors. ACM Trans. Archit. Code Optim. 12, 1,
Article 4 (April 2015), 25 pages. https://doi.org/10.1145/2714575

[33] Zhenheng Tang, Yuxin Wang, Qiang Wang, and Xiaowen Chu. 2019. The impact
of GPU DVFS on the energy and performance of deep learning: An empirical
study. In Proceedings of the Tenth ACM International Conference on Future Energy
Systems. 315–325.

[34] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (2009), 65–76.

[35] Chunrong Yao, Wantao Liu, Weiqing Tang, Jinrong Guo, Songlin Hu, Yijun Lu,
and Wei Jiang. 2021. Evaluating and analyzing the energy efficiency of CNN
inference on high-performance GPU. Concurrency and Computation: Practice and
Experience 33, 6 (2021), e6064.

[36] Junyeol Yu, Jongseok Kim, and Euiseong Seo. 2021. A DNN Inference Latency-
aware GPU Power Management Scheme. In 2021 IEEE 3rd Eurasia Conference on
IOT, Communication and Engineering (ECICE). 551–554. https://doi.org/10.1109/
ECICE52819.2021.9645654

72


