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Abstract

The accuracy of transient tyre models may be largely improved by considering the flexibility of
the tyre carcass. Several formulations, whereby the unsteady behaviour of the tyre is approximated
using linear or nonlinear systems of ordinary differential equations (ODEs), are already available in
the literature. However, when the tread behaviour is described using a distributed representation,
that is, in terms of partial differential equations (PDEs), the inclusion of even the simplest model
to represent the deformation of the tyre carcass leads to rather involved PDE or interconnected
PDE-ODE systems, with nonlocal and boundary terms. Such descriptions require detailed analyses
that have not been attempted so far. Therefore, this paper investigates the salient properties of
the classic brush and LuGre-brush models considering the effect of a flexible carcass. For both
formulations, the existence and uniqueness of the solution are discussed. For the standard version
of the brush models, a closed-form solution is provided under the assumption of vanishing sliding,
whereas the case of limited friction is explored only qualitatively. Concerning the LuGre-brush variant,
the preliminary intuition gained from the analysis of the distributed representation is effectively used
to develop approximated lumped formulations to be used in control-oriented applications.

Keywords

Tyre modelling; distributed tyre models; brush model; LuGre-brush model; transient tyre dynamics; tyre
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1 Introduction

The transient dynamics of the tyre is a rather intriguing and elusive phenomenon [1–3], involving several
interconnected aspects. Amongst the external stimuli that may excite nonstationary behaviours in the
tyre-wheel assembly there are, for example, time-varying slip and spin inputs [4, 5], unsteady effects due
to the compliance of the tyre tread and carcass, and even abrupt discontinuities in the available friction
at the tyre-road interface. In order to synthesise and implement ad-hoc algorithms and strategies for
vehicle state estimation and control [6–21], it is crucial to rely on simple and plausible physical models,
capable of explaining at least qualitatively all the above-mentioned processes, and their influence upon
the transient generation of tyre forces and moments [2, 22, 23].

In the dedicated literature, there is an abundance of pragmatic models that approximate the transient
dynamics of the tyre using a system of ordinary differential equations (ODEs), describing the time-
evolution of the forces and moment depending upon the slip and spin inputs. Such representations
include primarily the single contact point models [24–32], the two-regime formulation [4, 33, 34], and
the lumped approximation of the LuGre-brush models [35–41]. In this context, the single contact point
models constitute a standard approach when it comes to full vehicle dynamics simulations, since they
can be easily integrated with Pacejka’s Magic Formula (MF) [1, 42] or other empirical steady-state tyre
formulae. The basic assumption of the single contact point formulation is that the tyre dynamics may be
approximated as that of a linear system, whose main parameter is the so-called relaxation length. This
is identified as the distance that the tyre needs to travel to develop 63% of the steady-state forces. In
the single contact point approximation, nonstationary effects connected with the deformation of tread
particles are systematically neglected, and the carcass element is completely responsible for the transient
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process of generation of tyre forces and moment. This pragmatic approach leads to a very straightforward
model, which generally shows a good agreement with experimental evidence and – combined with MF,
which is currently able to take into account physical phenomena connected to tyre inflation pressure,
temperature and wear [43–46] – can also handle the presence of large camber angles and steering speeds.
On the same lines, the two-regime [33] formulation consists of a relatively novel description that mimics
the dual nature of the tyre by a series system behaving as a spring at low rolling speed and as a damper
at high speeds [4, 33, 34]. However, as opposed to the single contact point formulation, the two-regime
models describe the tyre dynamics by means of a nonlinear system of ODEs directly in terms of forces and
moment, and also take explicitly into account transient effects connected with the deformation of the tyre
tread. Finally, the lumped LuGre-brush models [35–41], based on the LuGre friction theory proposed by
Canudas-de-Wit and Åström [47], condense the distributed dynamics of the tyre tread using an averaged
or global frictional state, which is able to accurately capture nonstationary phenomena. However, this
formulation does not include the contribution of a compliant carcass.

On the other hand, three main formulations may be identified in the existing literature concerning
distributed representations of the tyre, that is, modelled in terms of partial differential equations (PDEs).
The first analytical description consists of the stretched string models and their derivations, which were
first developed by Schlippe and Segel [48, 49] to investigate the lateral response of the tyre when subjected
to small slip inputs. In these descriptions, the tyre carcass is assimilated to an undamped string of infinite
length, undergoing elastic deformation during the rolling at constant velocity. Whilst the original variant
of the stretched string model did not account for the deformation of the tyre tread, and was limited to
the linear case, both Pacejka and Higuchi enhanced the model by integrating the description with tread
elements [50] and limited friction available inside the contact patch [24, 25]. However, such extensions were
mainly restricted to the condition of steady-state rolling. Other improved versions consider the compliance
of the tyre in the longitudinal direction [51–53], the exact coupled nonlinear kinematics of the rubber
particles contacting the ground and the vehicle motion [54–60], and the presence of limited friction inside
the tyre contact patch even in transient conditions [61–63], according to the classic Coulomb-Amontons
assumption [64–73]. A simpler description, the brush models [1, 2, 74] approximate the continuum of
the tyre tread by means of infinitesimal bristles attached to the tyre-wheel systems, assumed infinitely
rigid. The resulting mathematical formalisation consists of two linear transport equations [1], which
model the time-varying deformation of the bristles according to the Eulerian approach. The brush models
have only been recently adopted to investigate the transient dynamics of the tyres in some works by
the authors [4, 34, 75, 76] and by Guiggiani [2], where numerous extensions have been introduced. For
example, the effect of large spin slips has been considered in [34, 75–78], where the analysis has permitted
to identify and exhaustively explain the separate contributions of the camber and turn spin. On the other
hand, in his authoritative and elegant book, Guiggiani [2] has firstly attempted a rigorous analysis of the
nonstationary phenomena connected with the presence of a flexible carcass. A major drawback of the
brush theory is that a simple structure for its governing PDEs is only retained under the assumption of
vanishing sliding, which corresponds to infinite friction available inside the contact patch. This aspect
is intimately connected with the Coulomb-Amontons friction model, which discriminates between stick
and slip behaviours. In this context, the technical difficulties encountered when attempting a rigorous
analysis of the model make the formulation unsuitable for control purposes. These limitations are instead
overcome by the LuGre-brush description, which postulates a different friciton model, especially conceived
to facilitate the design and synthesis of controllers and estimators for automotive applications.

Excluding some isolated contributions [2, 34], the mathematical analysis of both the standard and
modified LuGre-based versions of the brush models has been so far restricted to the case of rigid
carcass. Indeed, when considering a compliant carcass element (traditionally modelled as a linear spring),
additional quantities – involving nonlocal and boundary terms – appear in the governing PDEs of these
models, which make the investigation substantially more complicated. However, in most applications,
the transient effects connected with the distortion of the tyre carcass are a preponderant over those
induced by the tread particles, and hence cannot be disregarded. Therefore, the aim of this paper is
to analyse the transient dynamics of the distributed brush and LuGre-brush tyre models when taking
into account the flexibility of the tyre carcass. In this context, it should be clarified that the carcass
model considered in the present investigation is the simplest possible, that is, a linear spring that only
undergoes tangential deformations, whereas twisting and bending effects are systematically neglected.
Inertial contributions and damping phenomena are also disregarded. This choice is legitimated by the
complexity of the mathematical analysis conducted in the paper. Moreover, spring-like approximations
are also incorporated into more sophisticated descriptions, like the famous rigid-ring model [79].

The remainder of the manuscript is organised as follows. Section 2 introduces the governing equations
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of the brush and LuGre-brush tyre models, recapitulates their essential assumptions and simplifications,
and states the corresponding boundary (BCs) and initial conditions (ICs). Section 3 is dedicated to
the unsteady version of the classic brush theory. The salient results concerning the model with rigid
carcass are first summarised. Then, the effect of a compliant carcass is discussed quantitatively and
qualitatively for the cases of vanishing sliding (for which a closed-form solution is also derived) and limited
friction. In Sect. 4, the unsteady dynamics of the tyre is explored within the theoretical framework of
the LuGre-brush models. Two different systems of ODEs and interconnected PDE-ODEs are derived,
depending on some specific conditions satisfied by the model parameters. Additionally, approximated
lumped descriptions, representing the tyre dynamics using simpler systems of ODEs, are derived starting
from the distributed formulations. Finally, Sect. 5 summarises the main findings of the paper, and
outlines future directions for research.

2 Theories of transient tyre dynamics

The present section introduces the two formulations that are dealt with in this paper: the classic and the
LuGre-brush models.

2.1 The brush model

In the brush models, the rolling contact between the tyre and the road takes place inside a small area, called
contact patch, and denoted here with P. In this paper, it is assumed that P = {ξ ∈ R | 0 ≤ ξ ≤ 2a} is
a compact, convex subset of R. Moreover, P is also supposed to be fixed in time or, equivalently, over
travelled distance. In particular, assuming that the rolling speed of the tyre satisfies Vr(s) > 0, when
the camber angle and the turning spin are sufficiently small [1, 75, 76], the governing PDEs of the brush

model may be formulated as follows using the travelled distance s ≜
∫ t

0
Vr(t

′) dt′ as independent variable:

v̄s(ξ, s) = −σ′(s)−Aφ(s)

[
a− ξ
0

]
+

∂ut(ξ, s)

∂s
+

∂ut(ξ, s)

∂ξ
, (ξ, s) ∈ P̊ × R>0. (1)

In Eq. (1), v̄s(ξ, s) = [v̄sx(ξ, s) v̄sy(ξ, s)]
T represents the so-called micro-sliding velocity, ut(ξ, s) =

[ux(ξ, s) uy(ξ, s)]
T is the tangential displacement of the bristle inside the contact patch P, the vector

σ′(s) = [σ′
x(s) σ

′
y(s)]

T ≜ −V ′
s (s)/Vr(s) denotes the transient translational slip, V ′

s (s) = [V ′
sx(s) V

′
sy(s)]

T

represents the transient sliding velocity, and Aφ(s) is the spin tensor, defined as [76]

Aφ(s) =

[
0 −φ(s)

φ(s) 0

]
, (2)

being φ(s) is the spin variable. In turn, the transient slip σ′(s) may be expressed as a function of the
rigid translational slip σ(s) = [σx(s) σy(s)]

T ≜ −Vs(s)/Vr(s) (where Vs(s) = [Vsx(s) Vsy(s)]
T denotes the

sliding velocity) and the tangential deformation of the tyre carcass δt(s) = [δx(s) δy(s)]
T:

σ′(s) = σ(s)− dδt(s)

ds
. (3)

It is worth observing the relationship V ′
s (s) = Vs(s) + δ̇(s) between the transient sliding velocity and the

coventional one. The situation is illustrated schematically in Fig. 1.
The above PDEs (1) also come equipped with a boundary (BC) and initial condition (IC):

BC: ut(0, s) = 0, s ∈ R>0, (4a)

IC: ut(ξ, 0) = ut0(ξ), ξ ∈ P̊, (4b)

ideally with ut0 ∈ C1(P̊;R2), and the IC satisfying the so-called compatibility condition ut0(0) = 0.
Physically, the compatibility condition is motivated by frictional considerations. In this paper, ICs of the
type ut0 ∈ C0(P̊) are more generally considered, but the compatibility condition is always supposed to
be fulfilled.

Equation (1) is moreover accompanied by two algebraic conditions, which differentiate between the
local stick and slip behaviour, according to the simplest Amontons-Coulomb friction friction model:

v̄s(ξ, s) = 0 =⇒ qt(ξ, s) ≤ µqz(ξ), (5a)
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Figure 1: Schematic illustration of the tyre with a flexible carcass. The centre of the contact patch
in the undeformed configuration is denoted by C and travels with sliding velocity Vs(s). After the
displacement of the tyre carcass, the centre moves to point O and travels with transient sliding velocity
V ′
s (s) = Vs(s) + δ̇(s). Note that, in this paper, the lateral dimension of the contact patch is neglected.

v̄s(ξ, s) ̸= 0 ⇐⇒ qt(ξ, s) = µqz(ξ)ŝt(ξ, s), (5b)

where the sliding direction ŝt(ξ, s) is defined as

ŝt(ξ, s) ≜ − v̄s(ξ, s)

v̄s(ξ, s)
. (6)

In Eqs. (5) and (6), v̄s(ξ, s) =
∥∥v̄s(ξ, s)

∥∥ denotes the total mico-sliding velocity, qt(ξ, s) =
∥∥qt(ξ, s)∥∥, with

qt(ξ, s) = [qx(ξ, s) qy(ξ, s)]
T, represents the total tangential stress acting locally upon the bristles, qz(ξ)

is the vertical pressure distribution, and µ is the friction coefficient. Generally speaking, the latter may
exhibit strong dependencies upon other local quantities, such as temperature and position inside the
contact patch [64, 65, 68–70, 72]. However, for the sake of simplicity, this paper restricts to consider a
constant value for the friction coefficient when dealing with the standard version of the brush models1.

The interpretation of Eq. (5a) is basically as follows: a bristle travelling inside the contact patch
adheres to the ground only if the magnitude of the shear stress acting upon it is lower than the product
µqz(ξ), traditionally referred to as traction bound. When the shear stress exceeds the available friction,
the bristle starts sliding and the nondimensional micro-sliding velocity suddenly increases, i.e., v̄s(ξ, s) > 0.
In view of these considerations, the contact patch may be partitioned into an adhesion region P(a) and a
sliding one P(s) defined by

P(a) ≜
{
ξ ∈ P

∣∣ Eq. (5a) holds}, (7a)

P(s) ≜
{
ξ ∈ P

∣∣ Eq. (5b) holds}. (7b)

The closure relationships to Eqs. (1), (5) and (6) are finally provided by the constitutive and
equilibrium equations. The first set of equations relates the shear stresses qt(ξ, s) = [qx(ξ, s) qy(ξ, s)]

T

acting at the contact patch to the deformation of the bristles, and the global tyre forces to the deflection of
the tyre carcass, respectively. In particular, concerning the bristle displacement, a local linear constitutive
relationship is traditionally postulated:

qt(ξ, s) = Ktut(ξ, s), (8)

1It may be understood that the assumption of constant friction coefficient ensures the initial conditions to be at least
C0(P̊0).
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where the operator Kt ∈ R2×2 represents a diagonal matrix2, i.e.,

Kt =

[
kxx kxy
kyx kyy

]
=

[
kx 0
0 ky

]
. (9)

Similarly, the tyre carcass is assumed to behave as a linear translational spring, according to

Ft(s) = C′δt(s), (10)

being C′ ∈ R2×2 a diagonal matrix of the type

C′ =

[
C ′

xx C ′
xy

C ′
yx C ′

yy

]
=

[
C ′

x 0
0 C ′

y

]
. (11)

Its inverse is denoted in this paper by S′ ≜ C′−1:

S′ =

[
S′
xx S′

xy

S′
yx S′

yy

]
=

[
S′
x 0
0 S′

y

]
≡


1

C ′
x

0

0
1

C ′
y

 . (12)

Lastly, the equilibrium equations allow expressing the tyre forces Ft(s) = [Fx(s) Fy(s)]
T and moment

Mz(s) as integral functions of the tangential shear stresses. Integrating the shear stresses over the contact
patch provides the following formulae:

Ft(s) =

∫
P

qt(ξ, s) dξ, (13a)

Mz(s) =

∫
P

(2a− ξ)qy
(
ξ, s) dξ. (13b)

2.2 The LuGre-brush model

The LuGre-brush formulation, developed originally by Deur [35–38] and Velenis and Tsiotras [39–41],
qualifies as a control-oriented model, and builds upon the friction theory proposed by Canudas-de-Wit
and Åström in their seminal paper [47]. In the LuGre variant of the brush models, the main variable is
represented by an internal frictional state z(ξ, s) = [zx(ξ, s) zy(ξ, s)]

T, which may eventually be interpreted
as the deformation of a bristle travelling inside the contact patch. Accordingly, the governing PDEs of
the model replicate the structure of Eqs. (1), but introduce an additional damping term, often referred
to as dissipative term, that accounts for pre-sliding and Stribeck-induced effects. When considering a
dynamic tyre carcass, the governing equations of the LuGre-brush model may be formulated as follows:

∂z(ξ, s)

∂s
+

∂z(ξ, s)

∂ξ
= σ′(s) +Aφ(s)

[
a− ξ
0

]
− v̂µ(s)

Vr(s)g
(
v̂µ(s)

)C0z(ξ, s), (ξ, s) ∈ P̊ × R>0, (14)

where Vr(s) > 0 is the rolling velocity of the tyre, the term v̂µ(s) =
∥∥v̂µ(s)

∥∥, with v̂µ(s) = [v̂µx(s) v̂µy(s)]
T,

is an approximated expression for the total sliding velocity of the tyre, usually averaged over the contact
patch and assumed to be dependent only upon the rolling velocity and on the slip inputs [38], and the
matrix

C0 =

[
c0xx c0xy
c0yx c0yy

]
=

[
c0x 0
0 c0y

]
(15)

is a diagonal matrix, whose entries have the dimension of a curvature. The spin tensor Aφ(s) and
the transient slip vector σ′(s) appearing in Eq. (14) are defined as for the standard variant of the
brush models, i.e., according to Eqs. (2) and (3), respectively. Finally, the sliding function g(·) is a
monothonically decreasing function of its argument, usually postulated in the form

g
(
v̂µ(s)

)
= µd + (µs − µd) e

−(v̂µ(s)/vδ)
δ

, (16)

2In this paper, the mathematical exposition is carried out under the assumption of diagonal matrices, also for the
LuGre-brush model. This is done not only to lighten the equations and the proofs in Appendices A.1 and A.2, but also
because in practice the assumption is actually standard, and there is generally no need to account for cross elements.
However, most of the proofs and results presented in the paper may be extended in a straightforwad way to account for
nondiagonal matrices.
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where µs and µd are the static and dynamic friction coefficients, with µd ≤ µs, vδ is the Stribeck velocity,
and δ is the Stribeck exponent. It should be observed that µd and µs are global quantities in the LuGre
friction model, meaning that they are not function of the position inside the contact patch P.

The vector-valued transport PDE (14) comes equipped with similar BC and IC to those in Eqs. (4),
that is,

BC: z(0, s) = 0, s ∈ R>0, (17a)

IC: z(ξ, 0) = z0(ξ), ξ ∈ P̊, (17b)

possibly with z0 ∈ C1(P̊;R2) (more generally z0 ∈ C0(P̊;R2) assuming weaker regularity), and the BC
fulfilling again the compatibility condition z0(0) = 0.

Concerning the constitutive equations, the relationship between the tangential forces and the deflection
of the tyre carcass is assumed to be linear elastic, and given again by Eq. (10). However, as opposed to
the standard version of the brush models, in the LuGre formulation, the shear stresses are not determined
directly from the frictional state z(ξ, s). Instead, the latter is used to calculate a shear contribution
coefficient µ(ξ, s) = [µx(ξ, s) µy(ξ, s)]

T varying inside the contact patch, according to the following
relationship:

µ(ξ, s) = C0z(ξ, s) + Vr(s)C1
∂z(ξ, s)

∂s
+ Vr(s)C2

(
σ′(s) +Aφ(s)

[
a− ξ
0

])
, (18)

where C1, C2 ∈ R2×2 are two positive semidefinite, diagonal matrices of constant parameters:

C1 =

[
c1xx c1xy
c1yx c1yy

]
=

[
c1x 0
0 c1y

]
, and C2 =

[
c2xx c2xy
c2yx c2yy

]
=

[
c2x 0
0 c2y

]
. (19a)

Their entries3 are expressed in sm−1.
The tangential forces and moment exerted at the tyre-road interface are then computed by multiplying

the shear contribution coefficient µ(ξ, s) for the vertical pressure distribution qz(ξ), expressed in Nm−1.
Accordingly, integrating over the contact patch P yields the following expressions:

Ft(s) =

∫
P

µ(ξ, s)qz(ξ) dξ, (20a)

Mz(s) =

∫
P

(a− ξ)µy(ξ, s)qz(ξ) dξ. (20b)

Equations (20) represent the LuGre counterpart of the equilibrium equations (13).

3 Transient brush model

Whilst the transient dynamics of the tyre has traditionally been studied by resorting to more sophisticated
formulations – including primarily the so-called stretched string models – the simplest variant of the brush
theory still provides an adequate framework to rigorously analyse nonstationary phenomena connected
with time-varying slip inputs. Therefore, the present section introduces the unsteady-state formulation
of the brush models. In particular, Sect. 3.1 first recapitulates the classic results obtained neglecting
the dynamics of the tyre carcass, owing to the assumption of vanishing sliding. Then, Sects. 3.2 and 3.3
extend the investigation by considering the effect of a compliant carcass under vanishing sliding conditions
and for the case of limited friction, respectively.

3Concerning the LuGre-brush model, three matrices C0, C1 and C2 are often used. According to the original paper
written by Canudas-de-Wit, Åström and Olsson, who developed the corresponding lumped formulation [47], such matrices
have the meaning of stiffness, damping, and viscous friction, respectively. Since the development of the distributed
formulation carried out in parallel by Deur et al. [35–38] and Velenis and Tsiotras [39–41], the units for the entries of these
matrices have changed to be consistent with the definition of the shear contribution coefficient µ according to Eq. (18).
However, the interpretation is more or less the same: the first matrix C0 accounts for a stiffness effect, whereas C1 and C2

for damping and viscous friction phenomena.
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3.1 Brush model with rigid carcass

Assuming a rigid carcass, i.e., σ′(s) ≡ σ(s), together with vanishing sliding conditions (P(a) ≡ P), Eq.
(1) becomes

∂ut(ξ, s)

∂s
+

∂ut(ξ, s)

∂ξ
= σ(s) +Aφ(s)

[
a− ξ
0

]
, (ξ, s) ∈ P̊ × R>0. (21)

The above Eq. (21) consists of two linear, uncoupled transport PDEs involving only two partial derivatives:
one taken with respect to the longitudinal coordinate ξ and one with respect to the travelled distance s.

Enforcing the BC (4a) and IC (4b), in turn, provides two different solutions to the PDE (21). These
solutions are uniquely defined on P, and may be sought using the method of the characteristic lines
[80–83], which yields [34]

u−
t (ξ, s) =

∫ ξ

0

σ
(
ξ′ − ξ + s

)
+Aφ

(
ξ′ − ξ + s

) [a− ξ′

0

]
dξ′, (ξ, s) ∈ P− × R≥0, (22a)

u+
t (ξ, s) =

∫ s

0

σ
(
s′
)
+Aφ

(
s′
) [a− s′ + s− ξ

0

]
ds′ + ut0(ξ − s), (ξ, s) ∈ P+ × R≥0. (22b)

In Eqs. (22), the deflections u−
t (ξ, s) = [u−

x (ξ, s) u
−
y (ξ, s)]

T and u+
t (ξ, s) = [u+

x (ξ, s) u
+
y (ξ, s)]

T result from
the application of the BC and IC in turn, respectively. The corresponding subdomains P− and P+ of the
contact patch may be defined by setting P− ≜ {ξ ∈ P | 0 ≤ ξ < s}, and P+ ≜ {ξ ∈ P | s ≤ ξ ≤ 2a}.
Accordingly, the global solution ut(ξ, s) over P may then be constructed as

ut(ξ, s) =

{
u−
t (ξ, s), (ξ, s) ∈ P− × R≥0,

u+
t (ξ, s), (ξ, s) ∈ P+ × R≥0,

(23)

since P = P− ∪ P+. It may be easily observed that, owing to the compatibility assumption, ut ∈
C0(P ×R≥0;R2), the deflections u−

t (ξ, s) and u+
t (ξ, s) are continuous for ξ = s, i.e., u−

t (s, s) ≡ u+
t (s, s).

Unfortunately, the continuity at ξ = s is the only requirement that the global solution may be expected to
fulfil. This consideration holds also true for the solution u+

t (ξ, s), which is often only C0(P+ ×R≥0;R2),
unless ut0 ∈ C1(P;R2). Actually, this only happens if the initial condition itself corresponds to a
distribution which results already from a stationary configuration in vanishing sliding conditions4.

This aspect is perhaps better understood by observing that the expressions u−
t (ξ, s) and u+

t (ξ, s) in
Eqs. (22) may be interpreted as the stationary and the transient solutions to the PDEs (21), respectively.
Indeed, it may be easily inferred from the definition of P− and P+ that the transient extinguishes
after a value of the travelled distance equal to s = 2a, where 2a is the maximum length of the contact
patch. After that the tyre has travelled a distance equal to s = 2a, the solution u−

t (ξ, s) extends all over
P. It is, however, still time-varying, and depends upon the specific expressions of the translational slip
and spin parameters. The observations above may be formalised mathematically considering the notion
of input-to-state stability, which has been recently extended to systems of PDEs and interconnected
PDE-ODEs [84]. In this paper, the notion of input-to-state stability is mainly used to highlight some
essential aspects connected to the presence (or absence) of a dynamic tyre carcass model. More specifically,
departing from the closed-form solutions in Eqs. (22), the following estimates may be derived, as asserted
by Proposition 3.1.

Proposition 3.1. Equations (22) satisfy the following input-to-state stability estimates:∥∥ux(·, s)
∥∥
∞ ≤

∥∥ux0(·)
∥∥
∞ e−ρ(s−2a) + max

s′∈[0,s]
2a
∣∣∣σx

(
s′
)∣∣∣ , s ∈ R≥0, (24a)

∥∥uy(·, s)
∥∥
∞ ≤

∥∥uy0(·)
∥∥
∞ e−ρ(s−2a) + max

s′∈[0,s]

(
2a
∣∣∣σy

(
s′
)∣∣∣+ a2

2

∣∣∣φ(s′)∣∣∣), s ∈ R≥0, (24b)

for some ρ ∈ R>0.

Proof. See Appendix A.1

4Therefore, the transient brush theory may be seen as a weak one, in the sense that the solutions are always C0(P ×
R≥0;R2), but higher regularity cannot be required.
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The interpretation of the inequalities (24) is rather straightforward: the longitudinal and lateral
components of the maximum deflection of the bristles are upper-bounded by an exponentially-decreasing
term involving the initial conditions, plus an additional contribution that relates to the slip inputs. This
is in agreement with what discussed previously, since the initial conditions are completely shoved out
from the contact patch after travelling a distance equal to the contact length.

3.2 Brush model with flexible carcass (linear full contact patch)

When considering the compliance of the tyre carcass under vanishing sliding conditions, the conventional
translational slip variables σ(s) in Eq. (21) may be replaced by the transient slip σ′(s), yielding

∂ut(ξ, s)

∂s
+

∂ut(ξ, s)

∂ξ
= σ′(s) +Aφ(s)

[
a− ξ
0

]
, (ξ, s) ∈ P̊ × (0, S). (25)

The resulting problem is rather involved compared to that described by Eq. (21), since the transient slip
σ′(s) depends upon the deformation of the bristles through integration over the contact patch. In fact, it
may be recast more conveniently as

σ′(s) = σ(s)− dδt(s)

ds
= σ(s)− S′Kt

∫
P

∂ut(ξ, s)

∂s
dξ. (26)

Combining Eq. (1) together with (26) and integrating by parts yields, after some manipulations [34],

σ′(s) =
(
I+ 2aS′Kt

)−1[
σ(s) + S′Ktut(2a, s)

]
. (27)

Inserting Eq. (41) into (1) finally gives

∂ut(ξ, s)

∂s
+

∂ut(ξ, s)

∂ξ
=
(
I+ 2aS′Kt

)−1[
σ(s) + S′Ktut(2a, s)

]
+ Ĩ

[
a− ξ
0

]
φ(s), (ξ, s) ∈ P̊ × (0, S),

(28)

where

Ĩ ≜

[
0 −1
1 0

]
. (29)

Equation (39) allows expressing the transient deflection of the bristles as a function of the original slip
and spin variables (σ, φ), and the boundary term (trace term) ut(2a, s) at the trailing edge. In this
paper, the formulation derived above is renamed linear full contact patch.

3.2.1 Analytical solution

Concerning the classic formulation of the brush models with flexible carcass, the first result derived in
this paper consists of the following Theorem 3.1. The proof is similar to those of Theorems 2.6 and 9.1 in
[84], altough with minor differences, and is detailed in Appendix A.1.

Theorem 3.1 (Existence and uniqueness of the solution for the linear full contact patch model). Under
the assumption (σ, φ) ∈ C0([0, S];R3) and ut0 ∈ C0(P;R2), Eq. (25) equipped with BC and IC (4a)
and (4b) admits a unique solution C0(P × [0, S];R2) in the form of Eq. (23), with u−

t (ξ, s) and u+
t (ξ, s)

satisfying

u−
t (ξ, s) =

∫ ξ

0

(
I+ 2aS′Kt

)−1
S′Ktut

(
2a, ξ′ − ξ + s

)
dξ′ +

∫ ξ

0

(
I+ 2aS′Kt

)−1
σ
(
ξ′ − ξ + s

)
dξ′

+

∫ ξ

0

Ĩ

[
a− ξ′

0

]
φ
(
ξ′ − ξ + s

)
dξ′, (ξ, s) ∈ P− × [0, S],

(30a)

u+
t (ξ, s) =

∫ s

0

(
I+ 2aS′Kt

)−1
S′Ktut

(
2a, s′

)
ds′ +

∫ s

0

(
I+ 2aS′Kt

)−1
σ
(
s′
)
ds′

+

∫ s

0

Ĩ

[
a− s′ + s− ξ

0

]
φ
(
s′
)
ds′ + ut0(ξ − s), (ξ, s) ∈ P+ × [0, S].

(30b)

Proof. See Appendix A.1
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In vanishing sliding conditions, Theorem 3.1 asserts the existence and the uniqueness of a weak or
generalised solution to the governing PDEs of the brush models with flexible carcass. At first glance, the
result appears to be merely qualitative in nature, since the solution derived in Eq. (30) is still expressed
in integral form, and is therefore implicit. In reality, an analytical formula for the trace term ut(2a, ·)
appearing in Eqs. (30) may be sought amongst the functions satisfying the following delay differential
equations (DDEs):

∂ut(2a, s)

∂s
=
(
I+ 2aS′Kt

)−1
S′Ktut(2a, s) +

(
I+ 2aS′Kt

)−1
σ(s)

− Ĩ

[
a
0

]
φ(s) +

∫ s

0

Ĩ

[
1
0

]
φ
(
s′
)
ds′ +

∂ut0(2a− s)

∂s
, s ∈ [0, 2a),

(31)

and

∂ut(2a, s)

∂s
=
(
I+ 2aS′Kt

)−1
S′Kt

[
ut(2a, s)− ut(2a, s− 2a)

]
+
(
I+ 2aS′Kt

)−1[
σ(s)− σ(s− 2a)

]
− Ĩ

[
a
0

] [
φ(s) + φ(s− 2a)

]
+

∫ 2a

0

Ĩ

[
1
0

]
φ
(
ξ′ − 2a+ s

)
dξ′, s ∈ [2a, S],

(32)

It is worth mentioning that the solutions of Eq. (30) may not solve (31) and (31), since these generally
require higher regularity. However, after some straightforward but tedious manipulations, the solutions
to the above Eqs. (31) and (32) may be recovered explicitly as

ut(2a, s) = ut0(2a− s) +

∫ s

0

Φσ′
(
s, s′

)[(
I+ 2aS′Kt

)−1
σ
(
s′
)
− Ĩ

[
a
0

]
φ
(
s′
)]

ds′

+

∫ s

0

Φσ′
(
s, s′

) ∫ s′

0

Ĩ

[
1
0

]
φ(s̃) ds̃ds′ −

∫ s

0

∂Φσ′
(
s, s′

)
∂s′

ut0

(
2a− s′

)
ds′, s ∈ [0, 2a),

(33)

and

ut(2a, s) = Φσ′
(
s, 2na

)
ut(2a, 2na)−

∫ s

2na

Φσ′
(
s, s′

)(
I+ 2aS′Kt

)−1
S′Ktut

(
2a, s′ − 2a

)
ds′

+

∫ s

2na

Φσ′
(
s, s′

)(
I+ 2aS′Kt

)−1
[
σ
(
s′
)
− σ

(
s′ − 2a

)]
ds′

−
∫ s

2na

Φσ′
(
s, s′

)
Ĩ

[
a
0

] [
φ
(
s′
)
+ φ

(
s′ − 2a

)]
ds′

+

∫ s

2na

Φσ′
(
s, s′

) ∫ 2a

0

Ĩ

[
1
0

]
φ
(
ξ′ − 2a+ s′

)
dξ′ ds′, s ∈ [2na, 2(n+ 1)a),

(34)

for n ∈ N. The transient slip transition matrix appearing in Eqs. (33) and (34) reads

Φσ′(s, s̃) = e(I+2aS′Kt)
−1

S′Kt(s−s̃). (35)

The explicit solution to the problem under consideration, consisting of Eqs. (30), (33) and (34), appears
to be novel. It is worth noticing that, as opposed to (31) and (32), Eqs. (33) and (34) do not involve any
partial derivative with respect to the slip inputs and initial conditions, and therefore are well defined
even if these are only continuous functions of the travelled distance s.

In this context, Fig. 2 illustrates qualitatively the transient evolution of the longitudinal and lateral
shear stresses, plotted versus the nondimensional coordinate ξ̄ = ξ/(2a), for a tyre subjected to pure
translational slip inputs σx = σy = 0.3, starting from an inital undeformed configuration ut0(ξ) = 0, and
for different values of the nondimensional travelled distance s̄ = s/(2a). In Fig. 2, the analytical solution
(solid line) is also compared to a numerical approximation obtained using Euler’s forward scheme. In
particular, it may be noticed that, whilst the numerical solution appears to be sufficiently smooth even
for s̄ < 1, the analytical one is only continuous with the longitudinal coordinate. This is in line with the
results previously obtained in Sect. 3.1, and may be explained recalling that, according to Eqs. (30),
two different expressions for the bristle deflection are valid in the stationary and transient regions of
the contact patch P− and P+, respectively. However, as opposed to the case of rigid tyre carcass, the
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(a) σx = 0.07.

(b) σy = 0.07.

Figure 2: Transient evolution of the shear stresses for pure longitudinal and lateral slip inputs, for
different values of the nondimensional travelled distance s̄ = s/(2a). The solid and dashed lines refer to
the analytical and numerical solutions, respectively. Tyre parameters: kx = ky = k = 2.67 · 106 Nm−2,
C ′

x = 6 · 105, C ′
y = 2.4 · 105 Nm−1, a = 0.075 m.

transient does not extinguish immediately after travelling a distance equal to the contact length. Indeed,
the shear stresses increase relatively slower compared to the case of a rigid carcass, mainly due to the
fact that the dynamics of the trace term ut(2a, s) obeys a set of DDEs. In fact, with the values used
to generate Fig. 2, steady-state conditions are reached after travelling approximately twice and thrice
the contact length for the longitudinal and lateral cases, respectively (whereas, for the brush models
with rigid carcass, steady-state conditions take place immediately after travelling a distance equal to
the contact length). This phenomenon is traditionally referred to as relaxation behaviour of the tyre.
In general, dynamic effects related to the compliance of the carcass are predominant over those of the
bristles, especially in conjunction with instantaneous variations in the lateral slip input. However, there
are several situations in which the transient deformation of the tyre tread should not be neglected [2]. The
qualitative behaviour is anyway similar to that obtained when disregarding the compliance of the tyre
carcass, as confirmed by the comparison with previous results advocated, e.g., in [34, 76]. Additionally,
Fig. 2 shows that the dynamics of the tyre in the longitudinal direction is faster than that in the lateral
one: this should be ascribed to the fact that the carcass is generally much stiffer longitudinally.

For completeness, the effect of small spin slips φ = ±0.07 m−1 upon the transient generation of the
lateral shear stresses is instead depicted in Fig. 3. Also in this case, the conclusions that may be drawn
are analogous to those already discussed when considering a pure translational slip input.

3.2.2 Input-to-state stability

Similarly to what done for the brush model with rigid carcass in Sect. 3.1, input-to-state stability
estimates may be derived directly from the integral solutions in Eqs. (30), and read specifically as in the
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(a) σy = 0.07, φ = 0.07.

(b) σy = 0.07, φ = −0.7.

Figure 3: Transient evolution of the lateral shear stresses for combined lateral slip and spin inputs, for
different values of the nondimensional travelled distance s̄ = s/(2a). The solid and dashed lines refer to
the analytical and numerical solutions, respectively. Tyre parameters: kx = ky = k = 2.67 · 106 Nm−2,
C ′

x = 6 · 105, C ′
y = 2.4 · 105 Nm−1, a = 0.075 m.
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following Lemma 3.1.

Lemma 3.1 (Input-to-state stability of the linear full contact patch model). Equations (30) satisfy the
following input-to-state stability estimates:

∥∥ux(·, s)
∥∥
∞ ≤ e2ρa

(
C ′

x + 2akx
C ′

x − 2εakx

)∥∥ux0(·)
∥∥
∞ e−ηs + max

s′∈[0,s]

2aC ′
x

C ′
x − 2εakx

∣∣∣σx

(
s′
)∣∣∣ , s ∈ R≥0, (36a)

∥∥uy(·, s)
∥∥
∞ ≤ e2ρa

(
C ′

y + 2aky

C ′
y − 2εaky

)∥∥uy0(·)
∥∥
∞ e−ηs + max

s′∈[0,s]

2aC ′
y

C ′
y − 2εaky

∣∣∣σy

(
s′
)∣∣∣

+ max
s′∈[0,s]

a2

2

(
C ′

y + 2aky

C ′
y − 2εaky

)∣∣∣φ(s′)∣∣∣ , s ∈ R≥0,

(36b)

where ρ ∈ R>0, and η ∈ (0, ρ) is a given constant for every ε ∈ R>0.

Proof. See Appendix A.1

Compared to Eqs. (24), the terms involving the initial conditions and the spin slip in the estimates
(36) are amplified respectively by a factor of(

C ′
x + 2akx

C ′
x − 2εakx

)
≃

λ′
σx

a
, and

(
C ′

y + 2aky

C ′
y − 2εaky

)
≃

λ′
σy

a
, (37)

for an arbitrary choice of sufficiently small ε, where λ′
σx

and λ′
σy

denote the enhanced longitudinal and
lateral relaxation lengths according to the two-regime formulation, i.e.,

λ′
σx

≜
aC ′

x + Cσx

C ′
x

, and λ′
σx

≜
aC ′

y + Cσy

C ′
y

, (38)

being Cσx ≜ 2a2kx and Cσy ≜ 2a2ky the conventional slip stiffnesses. Moreover, since η ∈ (0, ρ) is strictly
smaller than ρ, Eqs. (36) state that the terms involving the initial conditions decrease less rapidly than
those in Eqs. (24).

In this context, the fact that the deformation of the bristles – and hence the tyre forces – might
be amplified during transients is not extraneous to the two-regime tyre models, as testified by the
input-to-state stability analysis conducted in [33]. The intriguing analogy between the exact formulation
of the brush models with flexible carcass and the two-regime approximation seems therefore to confirm
the presence of unstable dynamics (in the physical sense, since the tangential tyre forces may eventually
exploit all the available friction). It should be also observed that the notion of enhanced relaxation
lengths λ′

σx
and λ′

σy
defined as in Eq. (38) is completely absent in any other pragmatic model other than

the two-regime.

3.3 Effect of limited friction (nonlinear full contact patch)

A preliminary investigation concerning the effect of limited friction may be attempted within the
theoretical framework provided by the standard variant of the brush models. In this case, recalling that
the nondimensional sliding velocity only vanishes in the adhesion region P(a) of the contact patch, the
governing PDEs of the model may be introduced in the following form:

∂u
(a)
t (ξ, s)

∂s
+

∂u
(a)
t (ξ, s)

∂ξ
= σ′(s) +Aφ(s)

[
a− ξ
0

]
, (ξ, s) ∈ P̊(a) × (0, S), (39)

where the superscript (·)(a) has been adopted to indicate that the quantities relate to the adhesion
condition. The BC and IC are given again by Eqs. (4a) and (4b), respectively.

The problem described by the PDEs (39) is much more involved than the corresponding counterpart
obtained under the assumption of vanishing sliding. Indeed, the presence of a time-varying sliding edge
(commonly known as breakaway point) modifies the definition of the transient slip variable σ′(s) as
follows:

σ′(s) = σ(s)− dδt(s)

ds
= σ(s)− S′Kt

∫
P(a)(s)

∂u
(a)
t (ξ, s)

∂s
dξ. (40)
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Combining Eq. (39) together with (40) and integrating by parts yields, after some manipulations [34],

σ′(s) =
(
I+ S′KtξS (s)

)−1

(
σ(s)− 1

2
S′KtĨξS (s)

[
2a− ξS (s)

0

]
φ(s) + S′Ktut

(
ξS (s), s

))
, (41)

being ξS (s) the explicit coordinate of the sliding edge. This formulation of the problem, introduced by
Guiggiani [2], is called nonlinear full contact patch.

The next Sects. 3.3.1 and 3.3.2 discuss qualitatively the transient behaviour of a tyre with flexible
carcass when accounting for limited friction. In this context, it is essential to clarify that the derivation
of the model described by Eqs. (39) and (41) builds upon some rather strong assumptions, including
the existence of a unique breakaway point in transient conditions. Such condition is obviously violated
for non-concave vertical pressure distributions, even in steady-state. The very nature of the underliying
hypotheses, together with the technical difficulties encountered when approaching the problem in a
mathematically rigorous way, substantially limit the applicability of the nonlinear full contact patch
formulation, which should definitely be employed only to reveal important aspects of the nonlinear
transient behaviour. Alternatively, nonstationary phenomena connected with time-varying slip inputs
may be better investigated by resorting to simplified pragamatic models, such as the single contact point
and the two-regime [33, 34].

3.3.1 Pure translational slip

For a step slip input σ, the problem described by Eqs. (39) and (41) may be solved by assuming initial
conditions that are oriented as the new slip value, or in isolation. Figure 4 shows the trend of the transient
shear stresses qx(ξ, s) and qy(ξ, s) for the relatively high values of the longitudinal and lateral slip σx

and σy = 0.14, which force the tyre to work in the nonlinear region of the steady-state characteristics.
In Fig. 4, the vertical pressure distribution is assumed to follow a parabolic trend, as customarily done
in the literature. Qualitatively, the transient evolution of the shear stresses is similar to that obtained
analytically in Sect. 3.2 when assuming vanishing sliding conditions. However, the stresses are limited in
magnitude by the traction bound µqz(ξ). Again, since the longitudinal and lateral slip inputs have the
same value in Fig. 4 and the tyre tread is assumed to be isotropic with kx = ky = k, the steady-state
distribution of shear stress coincide for both cases. On the other hand, the response to a lateral slip input
is slower compared to the longitudinal case, due to the anisotropy of the tyre carcass.

It should be noticed that, in solving the transient problem, the sliding solutions may be assumed to
have sign equal or opposite to the transient slips. For example, considering the pure lateral problem, the
following conditions need to be satisfied:

u(s)
y (ξ, s) =

µ

k
qz(ξ) sgnσ

′
y(s) if σyu

(a)
y

(
ξS (s), s

)
≥ 0, k

∣∣∣σ′
y(s)

∣∣∣ > µ
∂qz(ξ)

∂ξ
, (42a)

u(s)
y (ξ, s) = −µ

k
qz(ξ) sgnσ

′
y(s) if σyu

(a)
y

(
ξS (s), s

)
< 0, k

∣∣∣σ′
y(s)

∣∣∣ < −µ
∂qz(ξ)

∂ξ
, (42b)

Often, the last inequalities on the right-hand side of Eqs. (42) need to be checked numerically at each
iteration.

3.3.2 Lateral slip and spin

Figure 5 illustrates the transient trend of the lateral shear stress in combined lateral and spin slips
conditions starting from undeformed initial configurations, and assuming a parabolic pressure distribution.
The two plots refer to the situations of concordant and discordant spin slip φ = ±0.07. In both cases, the
constant lateral slip input is fixed to σy = 0.14. The values of the tyre parameters used to produce Fig. 5
are the same as previously. The situation is again very similar to that investigated analytically in Sect.
3.2. Moreover, the corresponding conditions of Eqs. (42) become

u(s)
y (ξ) =

µ

k
qz(ξ) sgnσ

′
y(s) if σ′

y(s)u
(a)
y

(
ξS (s), s

)
≥ 0,

∣∣∣σ′
y(s)

∣∣∣ > (φcr −|φ| sgn
(
σ′
y(s)φ

))
(a− ξ),

(43a)

u(s)
y (ξ) = −µ

k
qz(ξ) sgnσ

′
y(s) if σ′

y(s)u
(a)
y

(
ξS (s), s

)
< 0,

∣∣∣σ′
y(s)

∣∣∣ < (φcr +|φ| sgn
(
σ′
y(s)φ

))
(ξ − a),

(43b)

and need to be checked iteratively.
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(a) σx = 0.14.

(b) σy = 0.14.

Figure 4: Transient evolution of the shear stresses for pure longitudinal and lateral slip inputs with
limited friction, for different values of the nondimensional travelled distance s̄ = s/(2a). The solid and
dashed lines refer to the analytical and numerical solutions, respectively. Tyre parameters: Fz = 3000 N,
kx = ky = k = 2.67 · 106 Nm−2, C ′

x = 6 · 105, C ′
y = 2.4 · 105 Nm−1, a = 0.075 m, µ = 1.
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(a) σy = 0.14, φ = 0.07.

(b) σy = 0.14, φ = −0.07.

Figure 5: Transient evolution of the lateral shear stresses for combined lateral slip and spin inputs with
limited friction, for different values of the nondimensional travelled distance s̄ = s/(2a). The solid and
dashed lines refer to the analytical and numerical solutions, respectively. Tyre parameters: Fz = 3000 N,
kx = ky = k = 2.67 · 106 Nm−2, C ′

x = 6 · 105, C ′
y = 2.4 · 105 Nm−1, a = 0.075 m, µ = 1.
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4 Transient LuGre-brush model

The LuGre-brush formulation provides the ideal theoretical framework to explore the more common
situation of limited friction since, in contrast to the standard version of the brush models, the resulting
equations governing the deflection of the bristles inside the contact patch do not differentiate between
stick and slip conditions. Hence, the present section explores transient phenomena within the theoretical
framework of the LuGre-brush models. First, Sect. 4.1 introduces the formulation with rigid carcass,
for which some new analytical results are established. Then, Sect. 4.2 is dedicated to the more complex
variant that accounts for the contribution of a flexible carcass. Finally, Sect. 4.3 is devoted to the
derivation of lumped approximations to be used for vehicle control applications.

4.1 LuGre-brush model with rigid carcass

As for the standard version of the brush models, the analysis carried out in the present section is
propaedeutic to the more complex situation of a flexible carcass. Moreover, general solutions that account
for time-varying slip and spin inputs have not been reported in the literature. In particular, in the case
of rigid tyre carcass, i.e., σ′(s) ≡ σ(s), the governing PDEs of the model simplify clearly to

∂z(ξ, s)

∂s
+

∂z(ξ, s)

∂ξ
= σ(s) +Aφ(s)

[
a− ξ
0

]
− v̂µ(s)

Vr(s)g
(
v̂µ(s)

)C0z(ξ, s), (ξ, s) ∈ P̊ × R>0, (44)

with BC and IC reading as in Eqs. (17a) and (17b). Similarly as for the solution derived in Sect. 3.1,
imposing the BC and IC yields two different expressions for the internal frictional state:

z−(ξ, s) =
∫ ξ

0

Φµ

(
ξ, ξ′, s

)[
σ
(
ξ′ − ξ + s

)
+Aφ

(
ξ′ − ξ + s

) [a− ξ′

0

]]
dξ′, (ξ, s) ∈ P− × R≥0, (45a)

z+(ξ, s) =

∫ s

0

Φµ

(
s, s′

)[
σ
(
s′
)
+Aφ

(
s′
) [a− s′ + s− ξ

0

]]
ds′ +Φµ(s, 0)z0(ξ − s), (ξ, s) ∈ P+ × R≥0,

(45b)

in which the Stribeck transition matrix may be easily computed using matrix exponentiation as follows:

Φµ(ξ, ξ̃, s) = e
−C0

∫ ξ

ξ̃

v̂µ(ξ′−ξ+s)

Vr(ξ′−ξ+s)g(v̂µ(ξ′−ξ+s))
dξ′

=

exp
(
−
∫ ξ

ξ̃
φx

(
ξ′ − ξ + s

)
dξ′
)

0

0 exp
(
−
∫ ξ

ξ̃
φy

(
ξ′ − ξ + s

)
dξ′
)
 ,

(46a)

Φµ(s, s̃) = e
−C0

∫ s
s̃

v̂µ(s′)
Vr(s′)g(v̂µ(s′))

ds′

=

exp
(
−
∫ s

s̃
φx

(
s′
)
ds′
)

0

0 exp
(
−
∫ s

s̃
φy

(
s′
)
ds′
)
 , (46b)

and the dissipative curvatures φx(s), φy(s) have been conveniently defined as

φx(s) ≜
c0xv̂µ(s)

Vr(s)g
(
v̂µ(s)

) , and φy(s) ≜
c0y v̂µ(s)

Vr(s)g
(
v̂µ(s)

) . (47)

The complete solution over the contact patch may be then constructed in the same spirit of Eq. (23) by
setting

z(ξ, s) =

{
z−(ξ, s), (ξ, s) ∈ P− × R≥0,

z+(ξ, s), (ξ, s) ∈ P+ × R≥0.
(48)

For the LuGre-brush model with rigid tyre carcass, the conclusions about the regularity of the weak
solution derived in Eqs. (45), (46), (47) and (48) are similar to those already drawn in Sect. 3.1.
Concerning the physical nature of the transient process of generation of tyre forces and moment, however,
the response predicted by the LuGre-brush formulation is substantially different from that described by
the standard version of the brush models. This should be ascribed to the presence of the dissipative
term in Eqs. (44), which acts as an additional damping effect. As a result, the contribution of the initial
conditions to the total deflection of the bristles decreases exponentially in time (or over travelled distance),
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determining a different rate of convergence to the steady-state behaviour. This may be also understood
by looking at the analytical expressions for the solution z+(ξ, s) derived for the case of constant slip
inputs, and reported in [77].

In any case, input-to-state stability estimates in the form of Eqs. (24) may be derived directly from
the closed-form expressions in (44), since the dissipative curvatures φx(s), φy(s) are, by definition, always
nonnegative.

4.2 LuGre-brush model with flexible carcass

When considering a compliant carcass, the structure of the model changes depending on the specific
assumption made about the matrices C1 and C2 appearing in Eq. (18). As a result, the two different
conditions C1 + C2 = 0 and C1 + C2 ̸= 0 require dedicated investigations, and must be addressed
separately.

In what follows, results about existence and uniqueness of the solution are derived for both cases. On
the other hand, a proper stability analysis similar to that presented in Sect. 3.2.2 is not attempted for the
LuGre-brush model, the fundamental reason being that the dissipative term – which depends upon the
slip and spin inputs – does not admit any constant upper bound which is independent of the interval [0, S],
and moreover makes it inherently difficult to establish input-to-state estimate inequalities in standard
form [84]. Instead, the notion of well-posedness is promptly exploited to validate the simplified lumped
formulations developed in the subsequent Sect. 4.3.

4.2.1 Case I: C1 +C2 = 0

The first variant of the LuGre-brush model with flexible carcass assumes that all the entries of the matrices
C1 and C2 are constantly equal to zero, and therefore also C1 +C2 = 0. In this case, differentiating
Eq. (20a) with respect to the travelled distance s, and substituting Eqs. (18) and (14) into the resulting
expression yields the following vector-valued ODE for the time-varying tangential forces:

dFt(s)

ds
= F̂ I

t

(
z(·, s), s

)
≜
(
I+C0S

′Fz

)−1
C0

(
Fzσ(s) +

∫ 2a

0

Aφ(s)

[
a− ξ
0

]
qz(ξ) dξ

)

−
(
I+C0S

′Fz

)−1 v̂µ(s)

Vr(s)g
(
v̂µ(s)

)C0C0

∫ 2a

0

z(ξ, s)qz(ξ) dξ

−
(
I+C0S

′Fz

)−1
C0z(2a, s)qz(2a)

+
(
I+C0S

′Fz

)−1
C0

∫ 2a

0

z(ξ, s)
dqz(ξ)

dξ
dξ, s ∈ (0, S).

(49)

Inserting Eq. (49) into the original PDEs (14) then gives

∂z(ξ, s)

∂s
+

∂z(ξ, s)

∂ξ
= σ(s) +Aφ(s)

[
a− ξ
0

]
− v̂µ(s)

Vr(s)g
(
v̂µ(s)

)C0z(ξ, s)

− S′F̂ I
t

(
z(·, s), s

)
, (ξ, s) ∈ P̊ × (0, S),

(50)

with BC and IC given by Eqs. (17a) and (17b). It should be observed that, assuming C1 +C2 = 0, the
transient dynamics of the tyre with compliant carcass is entirely described by a system of two PDEs with
nonlocal terms. Clearly, the expression for the function F̂ I

t (·, ·) appearing in Eqs. (49) and (50) simplifies
if the vertical pressure distribution is supposed to be constant over the contact patch, or alternatively
qz ∈ C1([0, 2a];R) with qz(0) = qz(2a) = 0. Both assumptions are standard in the literature.

The following Theorem 4.1 establishes the main result for the well-posedness of the problem described
by Eq. (50).

Theorem 4.1 (Existence and uniqueness of the solution for the LuGre-brush model with flexible
carcass (Case I)). Under the assumption (σ, φ) ∈ C0([0, S];R3), Vr ∈ C0([0, S];R>0), v̂µ ∈ C0([0, S];R),
and z0 ∈ C0(P;R2), Eq. (50) equipped with BC (17a) and IC (17b) admits a unique solution z ∈
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C0(P × [0, S];R2) in the form of Eq. (48), with z−(ξ, s) and z+(ξ, s) satisfying

z−(ξ, s) =
∫ ξ

0

Φµ

(
ξ, ξ′, s

)[
σ
(
ξ′ − ξ + s

)
+Aφ

(
ξ′ − ξ + s

) [a− ξ′

0

]]
dξ′

−
∫ ξ

0

Φµ

(
ξ, ξ′, s

)
S′F̂ I

t

(
Ft

(
ξ′ − ξ + s

)
, z
(
·, ξ′ − ξ + s

)
, ξ′ − ξ + s

)
dξ′, (ξ, s) ∈ P− × [0, S],

(51a)

z+(ξ, s) =

∫ s

0

Φµ

(
s, s′

)[
σ
(
s′
)
+Aφ

(
s′
) [a− s′ + s− ξ

0

]]
ds′

−
∫ s

0

Φµ

(
s, s′

)
S′F̂ I

t

(
Ft

(
s′
)
, z
(
·, s′
)
, s′
)
ds′ +Φµ(s, 0)z0(ξ − s), (ξ, s) ∈ P+ × [0, S],

(51b)

in which the Stribeck transition matrix reads as in Eq. (46).

Proof. The proof is similar to those of Theorems 3.1 and 4.2, and hence omitted for brevity.

4.2.2 Case II: C1 +C2 ̸= 0

If at least one of the matrices C1 and C1 is positive definite, the derivative of the tyre forces may be
expressed directly as a function of the internal frictional state z(ξ, s) by combining Eqs. (18) and(20a)
with (14), i.e., without the need for deriving Eq. (20a). Similar manipulations as those performed in Sect.
4.2.1 then provide the following PDE-ODE loop:

dFt(s)

ds
= F̂ II

t

(
Ft(s), z(·, s), s

)
, s ∈ (0, S), (52a)

∂z(ξ, s)

∂s
+

∂z(ξ, s)

∂ξ
= σ(s) +Aφ(s)

[
a− ξ
0

]
− v̂µ(s)

Vr(s)g
(
v̂µ(s)

)C0z(ξ, s)

− S′F̂ II
t

(
Ft(s), z(·, s), s

)
, (ξ, s) ∈ P̊ × (0, S),

(52b)

where

F̂ II
t

(
Ft(s), z(·, s), s

)
≜ − C′

Vr(s)Fz
(C1 +C2)

−1Ft(s) +C′σ(s) +
C′

Fz

∫ 2a

0

Aφ(s)

[
a− ξ
0

]
qz(ξ) dξ

+
C′

Vr(s)Fz
(C1 +C2)

−1

(
I− v̂µ(s)

g
(
v̂µ(s)

)C1

)
C0

∫ 2a

0

z(ξ, s)qz(ξ) dξ

− C′

Fz
(C1 +C2)

−1C1

(
z(2a, s)qz(2a)−

∫ 2a

0

z(ξ, s)
dqz(ξ)

dξ
dξ

)
.

(53)

As opposed to the model derived previously in Sect. 4.2.1 for the case C1 +C2 = 0, Eqs. (52) describe
the transient dynamics of the tyre by means of a system of interconnected PDE-ODEs. Accordingly,
whilst the BC and IC for Eq. (52b) read again as in (17a) and (17b), Eq. (52a) should be supplemented
by an appropriate IC. In particular, the compatibility condition between the initial value Ft0 for the
tangential tyre forces and the initial distribution z0(ξ) for the internal frictional variable yields

IC: Ft(0) = Ft0 =

∫
P

(
C0z0(ξ) +C2v̂µ(0)

)
qz(ξ) dξ. (54)

The correspinding existence and uniqueness result for the system described by Eqs. (52) and (53),
and equipped with BC (17a) and ICs (17b), (54) is asserted in the following Theorem (4.2).

Theorem 4.2 (Existence and uniqueness of the solution for the LuGre-brush model with flexible
carcass (Case II)). Under the assumption (σ, φ) ∈ C0([0, S];R3), Vr ∈ C0([0, S];R>0), v̂µ ∈ C0([0, S];R),
and z0 ∈ C0(P;R2), Eqs. equipped with BC (17a) and ICs (17b), (54) admit unique solutions Ft ∈
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C1([0, S];R2) and z ∈ C0(P × [0, S];R2) in the form of Eq. (48), with z−(ξ, s) and z+(ξ, s) satisfying

z−(ξ, s) =
∫ ξ

0

Φµ

(
ξ, ξ′, s

)[
σ
(
ξ′ − ξ + s

)
+Aφ

(
ξ′ − ξ + s

) [a− ξ′

0

]]
dξ′

−
∫ ξ

0

Φµ

(
ξ, ξ′, s

)
S′F̂ II

t

(
Ft

(
ξ′ − ξ + s

)
, z
(
·, ξ′ − ξ + s

)
, ξ′ − ξ + s

)
dξ′, (ξ, s) ∈ P− × [0, S],

(55a)

z+(ξ, s) =

∫ s

0

Φµ

(
s, s′

)[
σ
(
s′
)
+Aφ

(
s′
) [a− s′ + s− ξ

0

]]
ds′

−
∫ s

0

Φµ

(
s, s′

)
S′F̂ II

t

(
Ft

(
s′
)
, z
(
·, s′
)
, s′
)
ds′ +Φµ(s, 0)z0(ξ − s), (ξ, s) ∈ P+ × [0, S],

(55b)

in which the Stribeck transition matrix reads as in Eq. (46).

Proof. See Appendix A.2.

The transient response predicted by the two different variants of the LuGre-brush models are compared
in Fig. 6, where the distribution of the stresses µx(ξ, s)qz(ξ) and µy(ξ, s)qz(ξ) are plotted for a tyre
subjected to pure longitudinal and lateral slip inputs σx = σy = 0.14, departing from an initial undeformed
configuration z0(ξ) = 0, and for different values of the nondimensional travelled distance s̄ = s/(2a). In
Fig. 6, the vertical pressure distribution is modelled with a parabolic trend. Generally speaking, it may
be observed that the model derived for the case C1 +C2 ̸= 0 (dashed lines) predicts a slower response
for relatively small values of the nondimensional travelled distance. For a fixed value of s̄, the trend of
the distributions µx(ξ, s)qz(ξ) and µy(ξ, s)qz(ξ) are however similar between the two models.

Once again, it may also be noticed that the response of the tyre in the lateral direction is slower, due
to the fact that the carcass usually exhibits an anisotropic behaviour, and is more compliant laterally.
Moreover, compared to the standard version of the brush models detailed in Sect. 3, it may be observed
that, according to the LuGre-brush formulation, steady-state conditions are reached relatively faster,
approximately after travelling a distance equal to the contact length. The discrepancy between the two
predicted behaviours resides again in the presence of the dissipative term appearing in Eq. (14). The
effect of small spin slips may also be analysed as done in Sect. 3, but is not discussed extensively in the
present section for the sake of brevity.

4.3 Lumped LuGre-brush model with flexible carcass

The intuition preliminarly gained from the models derived and partially analysed in Sect. 4.2 may be used
to develop lumped approximations to be used in vehicle dynamics simulation and control applications.
This is a common approach in the dedicated literature [35–41], yielding a description of the transient
dynamics of the tyre in terms of simplified systems of ODEs. Moreover, since the distributed formulations
introduced in Sect. 4.2 have been proved to be well-posed, they may be used to validate the approximated
descriptions derived in the following.

Again, two variants are obtained depending on which between the conditions C1 + C2 = 0 or
C1 +C2 ̸= 0 is verified. Interestingly, a similar structure to that of the models presented in Sects. 4.2.1
and 4.2.2, respectively, appears to be inherited also by their lumped counterparts.

4.3.1 Case I: C1 +C2 = 0

If the condition C1 +C2 = 0 is fulfilled, a lumped approximation may be derived by first defining the
averaged state ẑ(s) = [ẑx(s) ẑy(s)]

T as

ẑ(s) ≜
1

Fz

∫ 2a

0

z(ξ, s)qz(s) dξ, (56)

which, owing to the assumption C1 = C2 = 0, also implies

Ft(s) = FzC0ẑ(s). (57)
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(a) σx = 0.14.

(b) σy = 0.14.

Figure 6: Transient evolution of the tangential shear stresses according to the LuGre-brush model with
flexible carcass for a tyre subjected to pure longitudinal and lateral slip inputs, for different values of the
nondimensional travelled distance s̄ = s/(2a). The solid lines represent the solution obtained for the case
C1 +C0 = 0, whereas the dotted lines to that obtained for the case C1 +C2 ̸= 0. Tyre parameters:
Fz = 3000 N, Vr = 20 m s−1, vδ = 3.49 m s−1, δ = 0.6, c0x = c0y = 133 m−1, c1x = c1y = 0.15 sm−1 (for
the model in Case II), c2x = c2y = 0 sm−1, C ′

x = 6 · 105, C ′
y = 2.4 · 105 Nm−1, a = 0.075 m, µs = 1,

µd = 0.7.
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Differentiating Eq. (56) with respect to the travelled distance gives

dẑ(s)

ds
=

1

Fz

∫ 2a

0

∂z(ξ, s)

∂s
qz(ξ) dξ = −

(
I+ FzS

′C0

)−1

(
v̂µ(s)

Vr(s)g
(
v̂µ(s)

)C0 +K(s)

)
ẑ(s)

+
(
I+ FzS

′C0

)−1

(
σ(s) +

1

Fz

∫ 2a

0

Aφ(s)

[
a− ξ
0

]
qz(ξ) dξ

)
, s ∈ R>0,

(58)

where the matrix K ∈ R2×2 is diagonal, i.e.,

K(s) =

[
κx(s) 0
0 κy(s)

]
, (59)

with

κx(s) ≜
1∫ 2a

0
zx(ξ, s)qz(ξ) dξ

(
zx(2a, s)qz(2a)−

∫ 2a

0

zx(ξ, s)
dqz(ξ)

dξ
dξ

)
, (60a)

κy(s) ≜
1∫ 2a

0
zy(ξ, s)qz(ξ) dξ

(
zy(2a, s)qz(2a)−

∫ 2a

0

zy(ξ, s)
dqz(ξ)

dξ
dξ

)
. (60b)

In Eq. (60), the coefficients κx(s) and κy(s) are usually approximated by considering the steady-state
expressions for the internal frictional state z(ξ, s), which guarantees that the lumped model yields the
same values for the tyre characteristics, at least in stationary conditions. Extensive discussion about
different methods to correctly choose the parameters κx(s) and κy(s) so as to preserve the dissipative
nature of the original distributed formulation are reported, for example, in [35–41].

A similar equation may be derived concerning the self-aligning moment, by introducing

ẑyx(s) ≜
1

aFz

∫ 2a

0

ξzy(ξ, s)qz(ξ) dξ, (61)

so that
Mz(s) = aFzc0y

(
ẑy(s)− ẑyx(s)

)
. (62)

Deriving Eq. (61) with respect to the travelled distance yields, in turn,

dẑyx(s)

ds
=

1

aFz

∫ 2a

0

ξ
∂zy(ξ, s)

∂s
qz(ξ) dξ = −

(
c0y v̂µ(s)

Vr(s)g
(
v̂µ(s)

) + κyx(s)

)
ẑyx(s)

+
1

aFz

(
σy(s)− S′

y

dFy(s)

ds

)∫ 2a

0

ξqz(ξ) dξ +
φ(s)

aFz

∫ 2a

0

(a− ξ)ξqz(ξ) dξ, s ∈ R>0,

(63)

where the coefficient κyx(s), reading

κyx(s) ≜
1∫ 2a

0
ξzy(ξ, s)qz(s) dξ

(
2azy(2a, s)qz(2a)−

∫ 2a

0

zy(ξ, s)

(
qz(ξ) + ξ

dqz(ξ)

dξ

)
dξ

)
, (64)

may be chosen following similar considerations as for the parameters κx(s) and κy(s).
The ICs for the linear ODEs (58) and (63) may be inferred immediately from those imposed on the

frictional variable. It is also interesting to notice that, according to Eq. (58), the transient dynamics of
the tyre is completely described by the lumped state, whereas the tangential tyre forces do not enter the
system of simplified ODEs. In this context, the structure of the approximated formulation resembles that
of the original distributed model discussed in Sect. 4.2.1.

Figure 7 compares the transient respose of the tyre according to the original distributed model and
the lumped approximation for the case C1 +C2 = 0, considering a parabolic pressure distribution, and
for different values of slip and spin inputs. Concerning both the tangential forces and the self-aligning
moment, it may be inferred that the simplified formulation captures quite well the exact trend. Different
combinations of slip inputs, possibly time-varying, may also be analysed using numerical methods.
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(a) σx = 0.14, σy = 0.07.

(b) σy = 0.14.

Figure 7: Transient evolution of the tangential tyre forces and moments for combined lateral slip and
spin inputs. The solid and dashed lines refer to the original distributed model and to the lumped
approximation, respectively. Tyre parameters: Fz = 3000 N, Vr = 20 m s−1, vδ = 3.49 m s−1, δ = 0.6,
c0x = c0y = 133 m−1, c1x = c1y = 0 sm−1, c2x = c2y = 0 sm−1, C ′

x = 6 · 105, C ′
y = 2.4 · 105 Nm−1,

a = 0.075 m, µs = 1, µd = 0.7.
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4.3.2 Case II: C1 +C2 ̸= 0

When the condition C1 +C2 ̸= 0 is verified, the lumped model may be derived by combining Eqs. (56)
and (58) directly with (20a). In this case, the following ODE loop is obtained5:
dFt(s)

ds
dẑ(s)

ds

 =

[
Vr(s)FzC2S

′ −Vr(s)FzC1

S′ I

]−1

−

I −FzC0

0
v̂µ(s)

Vr(s)g
(
v̂µ(s)

)C0 +K(s)

[Ft(s)
ẑ(s)

]
+

[
fFt(s)
fẑ(s)

],

s ∈ R>0,

(65)

where

fẑ(s) ≜ σ(s) +
1

Fz

∫ 2a

0

Aφ(s)

[
a− ξ
0

]
qz(ξ) dξ, (66a)

fFt(s) ≜ Vr(s)FzC2fẑ(s), (66b)

and the matrix K(s) reads as in Eq. (59), with κx(s) and κy(s) defined according to (60). Once again
the ICs for the linear system (65) may be deduced from those prescribed for the original formulation.
Similarly, in this case the transient dynamics of the tyre is approximated by an interconnection between
a first set of ODEs for the tangential tyre forces, and a second one for the lumped state, in an obvious
analogy to the model derived in Sect. 4.2.2.

The ODE for the variable ẑyx(s) is formally identical to that derived in Sect. (4.3.1), with the dyamics
of the lateral tyre force obeying instead the linear system (65). However, the self-aligning torque may be
expressed in this case as

Mz(s) = aFzc0y
(
ẑy(s)− ẑyx(s)

)
+ Vr(s)aFzc1y

(
dẑy(s)

ds
− dẑyx(s)

ds

)
+ Vr(s)c2y

(
σy(s)− S′

y

dFy(s)

ds

)∫ 2a

0

(a− ξ)qz(ξ) dξ + Vr(s)c2yφ(s)

∫ 2a

0

(a− ξ)2qz(ξ) dξ.

(67)

Again, a comparison between the original distributed model and the lumped approximation for the
case C1 +C2 ̸= 0 is illustrated in Fig. 8 for different combinations of translational slip and spin inputs,
and assuming a parabolic pressure distribution. Also in this case, the simplified formulation captures the
exact dynamics with sufficient accuracy. However, it should be noticed that imposing a discontinuous
spin input φ implies that the self-aligning moment is discontinuous over the travelled distance, according
to Eq. (67).

5 Conclusions

The present paper investigated the transient dynamics of distributed tyre models, i.e., described in
terms of partial differential equations (PDEs), with a compliant carcass. The analysis conducted in the
present work concerned the standard version of the brush theory, which is complemented by a simple
Coulomb-Amontons friction model, and the modified LuGre-brush formulation, which is more idoneous
for control-oriented applications. A rigorous analysis of such models had never been attempted in the
literature dealing with the subject, principally because of the rather involved structure of their governing
equations. Indeed, both variants describe the transient behaviour of the tyre through linear transport
equations with nonlocal and boundary terms, possibly interconnected with systems of ordinary differential
equations (ODEs) for the tangential tyre forces. Results about the existence and uniqueness of the
solution were advocated in this paper concerning both versions of the brush models; additionally, with
respect to the classic formulation, a closed-form solution for the transient deflection of the bristles was
recovered under the assumption of vanishing sliding. More specifically, it was shown that the complete
solution consists of an integral equation, involving only known functions, where the deformation at the
trailing edge obeys a set of delay differential equations (DDEs). Concerning the standard brush models,
an input-to-state stability analysis was also conducted, in order to highlight the interesting relationship
existing with the two-regime formulation already proposed by the authors in previous works [4, 33].

5It is worth to emphasise that the fulfilment of the condition C1 +C2 ̸= 0 ensures that the first matrix on the right-hand
side of Eq. (65) is never singular.
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(a) σx = 0.14, σy = 0.07.

(b) σy = 0.14.

Figure 8: Transient evolution of the tangential tyre forces and moments for combined lateral slip and
spin inputs. The solid and dashed lines refer to the original distributed model and to the lumped
approximation, respectively. Tyre parameters: Fz = 3000 N, Vr = 20 m s−1, vδ = 3.49 m s−1, δ = 0.6,
c0x = c0y = 133 m−1, c1x = c1y = 0.015 sm−1, c2x = c2y = 0 sm−1, C ′

x = 6 · 105, C ′
y = 2.4 · 105 Nm−1,

a = 0.075 m, µs = 1, µd = 0.7.
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While the case of limited friction was discussed only qualitatively within the theoretical framework
provided by the classic version of the brush models, the modified LuGre-brush formulation offered an
opportunity to explore such conditions in higher detail. In particular, it was shown that the mathematical
structure of the governing equations for the LuGre-brush models with flexible carcass depends on the
assumptions made on the matrices of curvatures C1 and C2. Accordingly, a first description may be
derived solely in terms of PDEs if the condition C1 + C2 = 0 is satisfied, whereas the fulfilment of
the criterion C1 +C2 ̸= 0 yields a more involved interconnected system of PDE-ODEs. Both models
may be effectively used to investigate the response of the tyre to time-varying slip input, to gain a
fundamental intuition about the main phenomena responsible for the transient process of generation of
forces and moment. Departing from these distributed representations, lumped approximations, consisting
of simpler systems of linear ODEs, were also derived to facilitate the design and synthesis of controllers
and estimators for vehicle dynamics application. The approximated models were validated against the
original formulations, showing an encouragingly good agreement.

Despite the analysis conducted in the paper, the novel distributed formulations still require validation.
In particular, the ability of the presented models to capture the transient behaviour of the tyre will need
to be evaluated by performing specifically designed experiments. This is deferred to future research.
Further efforts may be conveniently directed to exploring the potential of the new lumped formulation
for the development of ad-hoc control algorithms. Moreover, the original formulations may be employed
to conduct preliminary stability analysis of simplified vehicle models, e.g, single-track models, with
distributed tyre representations.
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Nomenclature

Forces Unit Description
and Moments
Ft N Tangential force vector
Ft0 N Initial conditions for the tangential force vector
Fx, Fy N Longitudinal and lateral tyre forces
Fx0, Fy0 N Initial conditions for the longitudinal and lateral tyre forces
Fz N Vertical force
Mz Nm Self-aligning moment
qt Nm−2 Tangential shear stress vector
qt Nm−2 Total tangential shear stress
qx, qy Nm−2 Longitudinal and lateral shear stress
qz Nm−2 Vertical pressure

Displacements Unit Description
ut m Vector of bristle deflections
ux, uy m Longitudinal and lateral deflection of the bristle
u−
t m Vector of steady-state bristle deflections

u−
x , u

−
y m Steady-state longitudinal and lateral deflection of the bristle

u+
t m Vector of transient bristle deflections

u+
x , u

+
y m Transient longitudinal and lateral deflection of the bristle

ut0 m Initial conditions for the bristle deflection (IC)
ux0, uy0 m Initial conditions for longitudinal and lateral displacement (IC)
δt m Tyre carcass tangential displacement vector
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δx, δy m Tyre carcass longitudinal and lateral displacements

Frictional states Unit Description
z m Internal frictional state vector
zx, zy m Longitudinal and lateral frictional states
z− m Steady-state frictional state vector
z−x , z−y m Steady-state longitudinal and lateral frictional states
z+ m Transient frictional state vector
z+x , z

+
y m Transient longitudinal and lateral frictional states

ẑ m Aggregate internal frictional state vector for tyre forces
ẑx, ẑy m Aggregate longitudinal and lateral frictional states for tyre forces
ẑyx m Aggregate frictional state for self-aligning moment

Coordinates Unit Description
s m Travelled distance
ξ m Longitudinal coordinate

Speeds Unit Description
Vs ms−1 Sliding velocity
Vsx, Vsy ms−1 Longitudinal and lateral sliding speeds
V ′
s ms−1 Transient sliding velocity

V ′
sx, V

′
sy ms−1 Transient longitudinal and lateral sliding speeds

v̄s - Nondimensional micro-sliding velocity
v̄sx, v̄sy - Nondimensional longitudinal and lateral micro-sliding speeds
vδ ms−1 Stribeck velocity
v̂µ ms−1 Average micro-sliding velocity
v̂µx, v̂µy - Average longitudinal and lateral micro-sliding speeds
v̂µ - Total average micro-sliding velocity
Vr ms−1 Tyre rolling speed

Slip Unit Description
Parameters
σ - Translational slip vector
σx, σy - Longitudinal and lateral slip
σ′ - Transient translational slip vector
σx, σy - Transient longitudinal and lateral slip
φ m−1 Rotational slip or spin parameter

Rotational Matrices Unit Description
and Transition Matrices
Aφ m−1 Spin tensor
φx, φy m−1 Dissipative curvatures
Φµ - Stribeck transition matrix
Φσ′ - Transient slip transition matrix

Geometric Unit Description
Parameters
a m Contact patch semilength
λ′
σx
, λ′

σy
m Longitudinal and lateral enhanced relaxation lengths

Curvature Unit Description
Matrices
C0 m−1 Zeroth-order frictional matrix
c0x, c0y m−1 Diagonal entries of the zeroth-order frictional matrix
C1 sm−1 First-order frictional matrix
c1x, c1y sm−1 Diagonal entries of the first-order frictional matrix
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C2 sm−1 First-order frictional matrix
c2x, c2y sm−1 Diagonal entries of the first-order frictional matrix
K m−1 Curvature functions matrix for lumped model for tyre forces
kx, ky m−1 Diagonal curvature functions matrix for tyre forces
kyx m−1 Curvature function for self-aligning moment

Stiffnesses Unit Description
and Compliances
Kt Nm−2 Matrix of tangential stiffnesses of the tread bristle
kx, ky Nm−2 Longitudinal and lateral stiffness of the tread bristle
C′ Nm−1 Matrix of tyre carcass stiffnesses
C ′

x, C
′
y Nm−1 Longitudinal and lateral stiffness of the tyre carcass

S′ mN−1 Matrix of tyre carcass compliances
S′
x, S

′
y mN−1 Longitudinal and lateral compliance of the tyre carcass

Frictional Unit Description
Parameters
µ - Friction coefficient
µ - Shear contribution coefficient vector
µx, µy - Longitudinal and lateral shear contribution coefficients
µd - Dynamic friction coefficient
µs - Static friction coefficient

Sets Unit Description
P m Contact patch
P− m Steady-state zone
P+ m Transient zone
P(a) m Adhesion zone
P(s) m Sliding zone

P̊ m Interior of P
R≥0 - Set of positive real numbers (including 0)
R>0 - Set of strictly positive real numbers (excluding 0)
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A Proofs

The mathematical proofs for the results advocated in the paper are given here.

A.1 Proofs for Sect. 3

This Appendix gives the proofs for Sect. 3. The first proof presented here is that of Theorem 3.1.

Proof of Theorem 3.1. The transformation ũt(ξ, s) = [ũx(ξ, s) ũy(ξ, s)]
T ≜ exp(−ρsI)ut(ξ, s), with

ρ ∈ R>0 to be defined, turns the original PDEs (39) into

∂ ũt(ξ, s)

∂s
+

∂ ũt(ξ, s)

∂ξ
= −ρũt(ξ, s) +

(
I+ 2aS′Kt

)−1[
exp(−ρs)σ(s) + S′Ktũt(2a, s)

]
+ exp(−ρs)Ĩ

[
a− ξ
0

]
φ(s), (ξ, s) ∈ P̊ × (0, S),

(68)

with BC and IC given respectively by

BC: ũt(0, s) = 0, s ∈ (0, S), (69a)

IC: ũt(ξ, 0) = ut0(ξ), ξ ∈ P̊. (69b)

Integrating Eq. (68) along the characteristic lines yields the following integral solution:

ũt(ξ, s) =
(
R(ũt)

)
(ξ, s) ≜

∫ ξ

max(ξ−s,0)

(
I+ 2aS′Kt

)−1
S′Kt exp

(
−ρ
(
ξ − ξ′

))
ũt

(
2a, ξ′ − ξ + s

)
dξ′

+

∫ ξ

max(ξ−s,0)

(
I+ 2aS′Kt

)−1
exp(−ρs)σ

(
ξ′ − ξ + s

)
dξ′

+

∫ ξ

max(ξ−s,0)

Ĩ

[
a− ξ′

0

]
exp(−ρs)φ

(
ξ′ − ξ + s

)
dξ′

+ ut0

(
max(ξ − s, 0)

)
exp
(
−ρ
(
ξ −max(ξ − s, 0)

))
, (ξ, s) ∈ P × [0, S],

(70)

or alternatively in components

ũx(ξ, s) =
(
Rx(ũx)

)
(ξ, s) ≜

∫ ξ

max(ξ−s,0)

kx
C ′

x + 2akx
exp
(
−ρ
(
ξ − ξ′

))
ũx

(
2a, ξ′ − ξ + s

)
dξ′

+

∫ ξ

max(ξ−s,0)

C ′
x

C ′
x + 2akx

exp(−ρs)σx

(
ξ′ − ξ + s

)
dξ′

+ ux0

(
max(ξ − s, 0)

)
exp
(
−ρ
(
ξ −max(ξ − s, 0)

))
, (ξ, s) ∈ P × [0, S],

(71a)
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ũy(ξ, s) =
(
Ry(ũy)

)
(ξ, s) ≜

∫ ξ

max(ξ−s,0)

ky
C ′

y + 2aky
exp
(
−ρ
(
ξ − ξ′

))
ũy

(
2a, ξ′ − ξ + s

)
dξ′

+

∫ ξ

max(ξ−s,0)

C ′
y

C ′
y + 2aky

exp(−ρs)σy

(
ξ′ − ξ + s

)
dξ′

+

∫ ξ

max(ξ−s,0)

exp(−ρs)
(
a− ξ′

)
φ
(
ξ′ − ξ + s

)
dξ′

+ uy0

(
max(ξ − s, 0)

)
exp
(
−ρ
(
ξ −max(ξ − s, 0)

))
, (ξ, s) ∈ P × [0, S].

(71b)

Consider the metric spaces (Mx, d), (My, d), with Mx and My defined respectively as

Mx ≜
{
ũx ∈ C0(P × [0, S];R), ũx(ξ, 0) = ux0(ξ)

}
, (72a)

My ≜
{
ũy ∈ C0(P × [0, S];R), ũy(ξ, 0) = uy0(ξ)

}
, (72b)

and metric d(·, ·) induced by uniform norm sups∈[0,S]∥·∥∞, where the norm ∥·∥∞ is defined as ∥·∥∞ ≜
supξ∈P |·|, being the supremum interpreted as the essential supremum. It follows from the compatibility
condition ut0(0) = 0 that the mappings ũx 7→ Rx(ũx), ũy 7→ Ry(ũy) are mappings from Mx and My onto
themselves, respectively. The uniqueness of the proposed solutions in Eqs. (70) and (71) follows from
Banach fixed point theorem [85], since ũx 7→ Rx(ũx), ũy 7→ Ry(ũy) are contractions for sufficiently large
ρ. Indeed, for any ũI

t(ξ, s) = [ũI
x(ξ, s) ũ

I
y(ξ, s)]

T and ũII
t (ξ, s) = [ũII

x (ξ, s) ũ
II
y (ξ, s)]

T,

max
ξ∈P

kx
C ′

x + 2akx

∣∣∣ũI
x(2a, s)− ũII

x (2a, s)
∣∣∣ ≤ Lx

∥∥∥ũI
x(·, s)− ũII

x (·, s)
∥∥∥
∞

, (73a)

max
ξ∈P

ky
C ′

y + 2aky

∣∣∣ũI
y(2a, s)− ũII

y (2a, s)
∣∣∣ ≤ Ly

∥∥∥ũI
y(·, s)− ũII

y (·, s)
∥∥∥
∞

, (73b)

which imply∣∣∣(Rx(ũ
I
x)
)
(ξ, s)−

(
Rx(ũ

II
x )
)
(ξ, s)

∣∣∣ ≤ Lx max
s′∈[0,s]

∥∥∥ũI
x

(
·, s′
)
− ũII

x

(
·, s′
)∥∥∥

∞

∫ ξ

max(ξ−s,0)

exp
(
−ρ
(
ξ − ξ′

))
dξ′

≤ Lx

ρ
max

s′∈[0,S]

∥∥∥ũI
x

(
·, s′
)
− ũII

x

(
·, s′
)∥∥∥

∞
, (ξ, s) ∈ P × [0, S],

(74a)∣∣∣(Ry(ũ
I
y)
)
(ξ, s)−

(
Ry(ũ

II
y )
)
(ξ, s)

∣∣∣ ≤ Lx max
s′∈[0,s]

∥∥∥ũI
y

(
·, s′
)
− ũII

y

(
·, s′
)∥∥∥

∞

∫ ξ

max(ξ−s,0)

exp
(
−ρ
(
ξ − ξ′

))
dξ′

≤ Ly

ρ
max

s′∈[0,S]

∥∥∥ũI
y

(
·, s′
)
− ũII

y

(
·, s′
)∥∥∥

∞
, (ξ, s) ∈ P × [0, S].

(74b)

Finally, recalling the substitution ũt(ξ, s) = exp(−ρsI)ut(ξ, s), splitting the integrals in Eq. (70), and
defining u−

t (ξ, s) and u+
t (ξ, s) as in Eq. (23) provides (30).

The second proof is that of Proposition 3.1.

Proof of Proposition 3.1. In scalar form, Eqs. (22) and (23) satisfy the estimates∥∥ux(·, s)
∥∥
∞ ≤ max

s′∈[s−ξ,s]
2a
∣∣∣σx

(
s′
)∣∣∣ ≤ max

s′∈[s−2a,s]
2a
∣∣∣σx

(
s′
)∣∣∣ , (75a)

∥∥uy(·, s)
∥∥
∞ ≤ max

s′∈[s−ξ,s]

(
2a
∣∣∣σy

(
s′
)∣∣∣+ a2

2

∣∣∣φ(s′)∣∣∣) ≤ max
s′∈[s−2a,s]

(
2a
∣∣∣σy

(
s′
)∣∣∣+ a2

2

∣∣∣φ(s′)∣∣∣), (75b)

for s > 2a, and ∥∥ux(·, s)
∥∥
∞ ≤ max

s′∈[0,s]
2a
∣∣∣σx

(
s′
)∣∣∣+∥∥ux0(·)

∥∥
∞ , (76a)
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∥∥uy(·, s)
∥∥
∞ ≤ max

s′∈[0,s]

(
2a
∣∣∣σy

(
s′
)∣∣∣+ a2

2

∣∣∣φ(s′)∣∣∣)+
∥∥uy0(·)

∥∥
∞ , (76b)

for s ≤ 2a. Combining (75) and (76), the result follows.

The third and last proof for Sect. 3 is that of Lemma 3.1.

Proof of Lemma 3.1. With similar arguments as in the Proof of Proposition 3.1, it may be deduced that∥∥ux(·, s)
∥∥
∞ ≤

∥∥ux0(·)
∥∥
∞ e−ρ(s−2a) + max

s′∈[0,s]

(
2akx

C ′
x + 2akx

∥∥∥ux

(
·, s′
)∥∥∥

∞
+

2aC ′
x

C ′
x + 2akx

∣∣∣σx

(
s′
)∣∣∣), s ∈ R≥0,

(77a)∥∥uy(·, s)
∥∥
∞ ≤

∥∥uy0(·)
∥∥
∞ e−ρ(s−2a)

+ max
s′∈[0,s]

(
2aky

C ′
y + 2aky

∥∥∥uy

(
·, s′
)∥∥∥

∞
+

2aC ′
y

C ′
y + 2aky

∣∣∣σy

(
s′
)∣∣∣+ a2

2

∣∣∣φ(s′)∣∣∣), s ∈ R≥0.
(77b)

Therefore, Lemma 7.1 in [84] ensures that for every ρ, a, and ε ∈ R>0 there exist η ∈ (0, ρ) such that∥∥ux(·, s)
∥∥
∞ eηs ≤

∥∥ux0(·)
∥∥
∞ e2ρa

+ (1 + ε) max
s′∈[0,s]

(
2akx

C ′
x + 2akx

∥∥∥ux

(
·, s′
)∥∥∥

∞
+

2aC ′
x

C ′
x + 2akx

∣∣∣σx

(
s′
)∣∣∣)eηs′ , s ∈ R≥0,

(78a)

∥∥uy(·, s)
∥∥
∞ eηs ≤

∥∥uy0(·)
∥∥
∞ e2ρa

+ (1 + ε) max
s′∈[0,s]

(
2aky

C ′
y + 2aky

∥∥∥uy

(
·, s′
)∥∥∥

∞
+

2aC ′
y

C ′
y + 2aky

∣∣∣σy

(
s′
)∣∣∣+ a2

2

∣∣∣φ(s′)∣∣∣)eηs′ ,
s ∈ R≥0,

(78b)

which in turn yield

max
s′∈[0,s]

∥∥∥ux

(
·, s′
)∥∥∥

∞
eηs

′
≤ C ′

x + 2akx
C ′

x − 2εakx

∥∥ux0(·)
∥∥
∞ e2ρa + (1 + ε) max

s′∈[0,s]

2aC ′
x

C ′
x − 2εakx

∣∣∣σx

(
s′
)∣∣∣ eηs′ , s ∈ R≥0,

(79a)

max
s′∈[0,s]

∥∥∥uy

(
·, s′
)∥∥∥

∞
eηs

′
≤

C ′
y + 2aky

C ′
y − 2εaky

∥∥uy0(·)
∥∥
∞ e2ρa

+ (1 + ε) max
s′∈[0,s]

(
2aC ′

y

C ′
y − 2εaky

∣∣∣σy

(
s′
)∣∣∣+ a2(C ′

y + 2aky)

2(C ′
y − 2εaky)

∣∣∣φ(s′)∣∣∣) eηs
′
, s ∈ R≥0.

(79b)

Combining Eqs. (79) and (79) yields the desired result.

A.2 Proofs for Sect. 4

The only proof given here is that for Theorem 4.2.

Proof of Theorem 4.2. The transformations F̃t = [F̃x(s) F̃y(s)]
T ≜ exp(−ρsI)Ft(s) and z̃ = [z̃x(ξ, s) z̃y(ξ, s)]

T ≜
exp(−ρsI)z(ξ, s), with ρ ∈ R>0 to be defined, turn the original ODEs and PDEs (52) into the following
system:

dF̃t(s)

ds
= −ρF̃t(s) + exp(−ρs)F̂ II

t

(
exp(ρs)F̃t(s), exp(ρs)z̃(·, s), s

)
, s ∈ (0, S), (80a)

∂ z̃(ξ, s)

∂s
+

∂ z̃(ξ, s)

∂ξ
= −

[
ρI+

v̂µ(s)

Vr(s)g
(
v̂µ(s)

)C0

]
z̃(ξ, s) + exp(−ρs)σ(s) + exp(−ρs)Ĩ

[
a− ξ
0

]
φ(s)

− exp(−ρs)S′F̂ II
t

(
exp(ρs)F̃t(s), exp(ρs)z̃(·, s), s

)
, (ξ, s) ∈ P̊ × (0, S),

(80b)
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with BC and IC given respectively by

BC: z̃(0, s) = 0, s ∈ (0, S), (81a)

IC: z̃(ξ, 0) = z0(ξ), ξ ∈ P̊, F̃t(0) = Ft0. (81b)

Integrating Eq. (80a) with respect to the travelled distance s and Eq. (80b) along the characteristic lines
yields, respectively

z̃x(ξ, s) =
(
R1x(z̃x, F̃x)

)
(ξ, s) ≜

∫ ξ

max(ξ−s,0)

exp

(
−ρs−

∫ ξ

ξ′
φx

(
ξ̃ − ξ + s

)
dξ̃

)
σx

(
ξ′ − ξ + s

)
dξ′

−
∫ ξ

max(ξ−s,0)

exp

(
−ρs−

∫ ξ

ξ′
φx

(
ξ̃ − ξ + s

)
dξ̃

)
S′
xĜx

(
F̃x, z̃x, ξ

′ − ξ + s
)
dξ′

+ zx0
(
max(ξ − s, 0)

)
exp

(
−
∫ ξ

max(ξ−s,0)

(
φx

(
ξ′ − ξ + s

)
+ ρ
)
dξ′
)
, (ξ, s) ∈ P × [0, S],

(82a)

z̃y(ξ, s) =
(
R1y(z̃y, F̃y)

)
(ξ, s) ≜

∫ ξ

max(ξ−s,0)

exp

(
−ρs−

∫ ξ

ξ′
φy

(
ξ̃ − ξ + s

)
dξ̃

)
σy

(
ξ′ − ξ + s

)
dξ′

∫ ξ

max(ξ−s,0)

exp

(
−ρs−

∫ ξ

ξ′
φy

(
ξ̃ − ξ + s

)
dξ̃

)(
a− ξ′

)
φ
(
ξ′ − ξ + s

)
dξ′

−
∫ ξ

max(ξ−s,0)

exp

(
−ρs−

∫ ξ

ξ′
φy

(
ξ̃ − ξ + s

)
dξ̃

)
S′
yĜy

(
F̃y, z̃y, ξ

′ − ξ + s
)
dξ′

+ zy0
(
max(ξ − s, 0)

)
exp

(
−
∫ ξ

max(ξ−s,0)

(
φy

(
ξ′ − ξ + s

)
+ ρ
)
dξ′
)
, (ξ, s) ∈ P × [0, S],

(82b)

and

F̃x(s) =
(
R2x(z̃x, F̃x)

)
(s) ≜ exp(−ρs)Fx0

+

∫ s

0

exp
(
−ρ
(
s− s′

))
exp
(
−ρs′

)
F̂ II
x

(
exp
(
ρs′
)
F̃x

(
s′
)
, exp

(
ρs′
)
z̃x
(
·, s′
)
, s′
)
ds′, s ∈ [0, S],

(83a)

F̃y(s) =
(
R2y(z̃y, F̃y)

)
(s) ≜ exp(−ρs)Fy0

+

∫ s

0

exp
(
−ρ
(
s− s′

))
exp
(
−ρs′

)
F̂ II
y

(
exp
(
ρs′
)
F̃y

(
s′
)
, exp

(
ρs′
)
z̃y
(
·, s′
)
, s′
)
ds′, s ∈ [0, S],

(83b)

where, for the sake of notation, the functions Ĝ(F̃t, z̃, s) = [Ĝx(F̃x, z̃x, s) Ĝy(F̃y, z̃y, s)]
T have been

introduced in components as

Ĝ
(
F̃t, z̃, s

)
≜ F̂ II

t

(
exp(ρs)F̃t(·, s), exp(ρs)z̃(·, s), s

)
, (ξ, s) ∈ P × [0, S]. (84)

Now consider the complete metric spaces (Mx, d) and (My, d), with Mx and My defined respectively as

Mx ≜
{
(z̃x, F̃x) ∈ C0(P × [0, S];R)× C0([0, S];R), ũx(ξ, 0) = zx0(ξ), F̃x(0) = Fx0

}
, (85a)

My ≜
{
(z̃y, F̃y) ∈ C0(P × [0, S];R)× C0([0, S];R), ũx(ξ, 0) = zy0(ξ), F̃y(0) = Fy0

}
, (85b)

and metric d(·, ·) induced by the uniform norm sups∈[0,S](∥·∥∞+|·|). It follows from the compatibility condi-

tion z̃0(0) = 0 that the mappings (z̃x, F̃x) 7→ (R1x(z̃x, F̃x), R2x(z̃x, F̃x)), (z̃y, F̃y) 7→ (R1y(z̃y, F̃y), R2y(z̃y, F̃y))
are mappings from Mx and My onto themselves, respectively. The uniqueness of the proposed solutions in

Eqs. (82) and (83) follows from Banach fixed point theorem [85], since (z̃x, F̃x) 7→ (R1x(z̃x, F̃x), R2x(z̃x, F̃x)),
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(z̃y, F̃y) 7→ (R1y(z̃y, F̃y), R2y(z̃y, F̃y)) are contractions for sufficiently large ρ. Indeed, for any zI(ξ, s) =
[zIx(ξ, s) z

I
y(ξ, s)]

T, zII(ξ, s) = [zIIx (ξ, s) z
II
y (ξ, s)]

T and F I
t (s) = [Fx(s)

I Fy(s)
I]T, F II

t (s) = [Fx(s)
II Fy(s)

II]T,

∣∣∣F̂x

(
F I
x(s), z

I
x(·, s), s

)
− F̂x

(
F II
x (s), zIIx (·, s), s

)∣∣∣ ≤ Lx

∥∥∥zIx(·, s)− zIIx (·, s)
∥∥∥
∞

+ Lx

∣∣∣F I
x(s)− F II

x (s)
∣∣∣ , (86a)∣∣∣F̂y

(
F I
y(s), z

I
y(·, s), s

)
− F̂y

(
F II
y (s), zIIy (·, s), s

)∣∣∣ ≤ Ly

∥∥∥zIy(·, s)− zIIy (·, s)
∥∥∥
∞

+ Ly

∣∣∣F I
y(s)− F II

y (s)
∣∣∣ , (86b)

with

Lx ≜
C ′

x

Fz
max

 max
s∈[0,S]

1

Vr(s)c̃x
, max
s∈[0,S]

c0x
Vr(s)c̃x

∣∣∣∣∣1− v̂µ(s)c1x

g
(
v̂µ(s)

) ∣∣∣∣∣Fz +
c1xqz(2a)

c̃x
+

c1x
c̃x

∫ 2a

0

∣∣∣∣dqz(ξ)dξ

∣∣∣∣dξ
,

(87a)

Ly ≜
C ′

y

Fz
max

 max
s∈[0,S]

1

Vr(s)c̃y
, max
s∈[0,S]

c0y
Vr(s)c̃y

∣∣∣∣∣1− v̂µ(s)c1y

g
(
v̂µ(s)

) ∣∣∣∣∣Fz +
c1yqz(2a)

c̃y
+

c1y
c̃y

∫ 2a

0

∣∣∣∣dqz(ξ)dξ

∣∣∣∣dξ
,

(87b)

where it has been defined c̃x ≜ c1x + c2x and c̃y ≜ c1y + c2y. This also implies∣∣∣(R1x(z̃
I
x, F̃

I
x)
)
(ξ, s)−

(
R1x(z̃

II
x , F̃

II
x )
)
(ξ, s)

∣∣∣
≤ S′

xLx max
s′∈[0,s]

(∥∥∥z̃Ix(·, s′)− z̃IIx
(
·, s′
)∥∥∥

∞
+
∣∣∣F̃ I

x

(
s′
)
− F̃ II

x

(
s′
)∣∣∣)

×
∫ ξ

max(ξ−s,0)

exp

(
−ρ
(
ξ − ξ′

)
−
∫ ξ

ξ′
φx

(
ξ̃ − ξ + s

)
dξ̃

)
dξ′

≤ S′
xLx

ρ
max

s′∈[0,S]

(∥∥∥z̃Ix(·, s′)− z̃IIx
(
·, s′
)∥∥∥

∞
+
∣∣∣F̃ I

x

(
s′
)
− F̃ II

x

(
s′
)∣∣∣), (ξ, s) ∈ P × [0, S],

(88a)

∣∣∣(R1y(z̃
I
y, F̃

I
y)
)
(ξ, s)−

(
R1y(z̃

II
y , F̃

II
y )
)
(ξ, s)

∣∣∣
≤ S′

yLy max
s′∈[0,s]

(∥∥∥z̃Iy(·, s′)− z̃IIy
(
·, s′
)∥∥∥

∞
+
∣∣∣F̃ I

y

(
s′
)
− F̃ II

y

(
s′
)∣∣∣)

×
∫ ξ

max(ξ−s,0)

exp

(
−ρ
(
ξ − ξ′

)
−
∫ ξ

ξ′
φy

(
ξ̃ − ξ + s

)
dξ̃

)
dξ′

≤
S′
yLy

ρ
max

s′∈[0,S]

(∥∥∥z̃Iy(·, s′)− z̃IIy
(
·, s′
)∥∥∥

∞
+
∣∣∣F̃ I

y

(
s′
)
− F̃ II

y

(
s′
)∣∣∣), (ξ, s) ∈ P × [0, S],

(88b)

and ∣∣∣(R2x(z̃
I
x, F̃

I
x)
)
(s)−

(
R2x(z̃

II
x , F̃

II
x )
)
(s)
∣∣∣

≤ Lx max
s′∈[0,s]

(∥∥∥z̃Ix(·, s′)− z̃IIx
(
·, s′
)∥∥∥

∞
+
∣∣∣F̃ I

x

(
s′
)
− F̃ II

x

(
s′
)∣∣∣) ∫ s

0

exp
(
−ρ
(
s− s′

))
ds′

≤ Lx

ρ
max

s′∈[0,S]

(∥∥∥z̃Ix(·, s′)− z̃IIx
(
·, s′
)∥∥∥

∞
+
∣∣∣F̃ I

x

(
s′
)
− F̃ II

x

(
s′
)∣∣∣), s ∈ [0, S],

(89a)

∣∣∣(R2y(z̃
I
y, F̃

I
y)
)
(s)−

(
R2y(z̃

II
y , F̃

II
y )
)
(s)
∣∣∣

≤ Ly max
s′∈[0,s]

(∥∥∥z̃Iy(·, s′)− z̃IIy
(
·, s′
)∥∥∥

∞
+
∣∣∣F̃ I

y

(
s′
)
− F̃ II

y

(
s′
)∣∣∣) ∫ s

0

exp
(
−ρ
(
s− s′

))
ds′

≤ Ly

ρ
max

s′∈[0,S]

(∥∥∥z̃Iy(·, s′)− z̃IIy
(
·, s′
)∥∥∥

∞
+
∣∣∣F̃ I

y

(
s′
)
− F̃ II

y

(
s′
)∣∣∣), s ∈ [0, S].

(89b)

Finally, recalling the substitutions F̃t(s) = exp(−ρsI)Ft(s) and z̃(ξ, s) = exp(−ρsI)z(ξ, s), and defining
z−(ξ, s) and z+(ξ, s) as in Eq. (48) provides (55).
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