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ABSTRACT
TheVEDLIoTproject aims todevelopenergy-efficientDeepLearning
methodologies for distributedArtificial Intelligence of Things (AIoT)
applications. During our project, we propose a holistic approach
that focuses on optimizing algorithms while addressing safety and
security challenges inherent to AIoT systems. The foundation of
this approach lies in a modular and scalable cognitive IoT hardware
platform,which leveragesmicroserver technology to enable users to
configure the hardware to meet the requirements of a diverse array
of applications. Heterogeneous computing is used to boost perfor-
mance and energy efficiency. In addition, the full spectrum of hard-
ware accelerators is integrated, providing specialized ASICs as well
as FPGAs for reconfigurable computing. The project’s contributions
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span across trusted computing, remote attestation, and secure execu-
tion environments, with the ultimate goal of facilitating the design
and deployment of robust and efficient AIoT systems. The overall ar-
chitecture is validated on use-cases ranging from Smart Home to Au-
tomotive and Industrial IoT appliances. Ten additional use cases are
integrated via an open call, broadening the range of application areas.
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1 INTRODUCTION
Deep Learning (DL) has become a strong driver in IoT applications.
Such applications usually have challenging computational andmem-
ory requirements, coupled with a low energy budget. VEDLIoT aims
at enabling the use of DL algorithms in IoT by accelerating and opti-
mizing applications with energy efficiency in mind. An overview of
the projectwas given in a previous publication [16], providing a basis
for this one. Here, we givemore insights regarding the outcomes and
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Figure 1: VEDLIoT architecture overview
advances of VEDLIoT aspects from bottom to top (Figure 1), starting
with the newly developed u.RECS microserver hardware platform
to the toolchains and use cases. Security aspects and requirements
engineering accompany throughout the development.

2 ACCELERATEDAIOTHARDWARE
PLATFORM

In this section, the VEDLIoT cognitive AIoT hardware platform as
well as benchmarking results regarding YoloV4 of the different mi-
croservers are presented in a compressed manner. A more in-depth
presentation of the architecture, with performance measurements
for many different accelerators (CPU, GPU, ASCI, FPGA) can be
found in a previous publication [7].

2.1 Heterogeneous hardware platform
RECS represents a heterogeneous hardware platform that has been
usedandrefined invariousEU-projects.RECSisaflexiblemicroserver
architecture that can accommodate a range of computing elements,
including x86, 64-bit ARMmobile/embedded processors, 64-bit ARM
server processors, FPGAs, GPUs, andASICs. Due to this nature it can
be upgraded and altered to fit the use case specific requirements [9,
28]. Unlike traditional microserver platforms which support only
homogeneous devices, RECS allows for the seamless integration of
diverse technologies, enabling fine-tuning of the platform towards
specific applications, providing a comprehensive cloud-to-edge plat-
form.

This results in a densely-coupled, highly-integrated heteroge-
neous microserver, with a high-speed, low-latency communication
infrastructure. Figure 2 gives an overview over the RECS system,
with the RECS|Box on top and the u.RECS at the bottom, also a
selection of fitting microservers is pictured.

The RECS family includes several systems, supporting efficient
computing from cloud to edge, with the most powerful being the
RECS|Box, an HPC and cloud system, capable of hosting up to 27
COM Express microservers, 144 Nvidia Jetson microservers, or a
custommix of these components. It is a 19” microserver system for
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Figure 2: Overview of RECS and the differentmicroservers

heterogeneousCPU,GPUand FPGAcomputing, featuring PCIewith
high-speed, low-latency communication infrastructure [23].

Foredgeapplicationssuchas5Gbasestationsor similar the t.RECS
is available. It boasts various advanced features, including three
COM-HPCmodule slots, switched 10 Gbps Ethernet, and integrated
i-KVM for remote management. Additionally, the t.RECS features
an integrated PCIe switch that enables fast, low-latency communica-
tion between host and target devices. One of the key design features
of the t.RECS is its ability to accommodate up to three COM-HPC
microservers, divided into two client slots and one server slot.

The u.RECS, the smallest RECS family member, is designed for
far-edge scenarios, such as autonomous vehicles or production facil-
ities, facilitating local AI workload computation. It comprises three
module slots: an NVIDIA NX slot for embedded GPUs (e.g., NVIDIA
Orin NX), a SMARC 2.1 slot for diverse modules (e.g., FPGAs, x86
or ARM processors), and anM.2 slot for dedicated AI accelerators
(e.g., Hailo-8 or Intel Myriad). Adapters enable compatibility with
Raspberry Pi CM4 or Xilinx Kria, while an mPCIe slot supports 5G,
Wi-Fi, or similar extensions. Configurable PCIe connections allow
for adaptable topologies, with 1Gbps Ethernet connectivity between
modules, exposed via two PoE-enabled RJ45 ports, that can be used,
e.g., to connect Ethernet cameras. A 1 Gbps single-pair Ethernet
connection is available for automation and automotive use cases.

2.2 Accelerators andmicroservers
In VEDLIoT, performance and energy efficiency assessments are crit-
ical in selecting DL accelerators for RECS integration, ensuring cus-
tomization for distinct use cases. The project examines various archi-
tectures, includingGPUs, FPGAs, andASICs, as a burgeoningmarket
offersdiverseDLhardwareaccelerators forvariousapplications.This
evaluation helps hardware selection within and beyond the project.
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Figure 3: YoloV4 performance evaluation of DL accelerators
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To assess performance, YoloV4modelswere employed to compare
availableaccelerators.Testsused INT8,FP16,orFP32datatypesbased
on hardware quantization support, with optimal tools chosen per
manufacturer recommendations (e.g., TensorRT for NVIDIA). Batch
sizes from 1 to 8 (B1, B4, B8) optimized performance and utilization.
Figure 3 displays YoloV4 performance (in GOPS) and power con-
sumption (inWatt) across platforms, including x86 CPUs (Epic3451,
Xeon D1577), GPUs (A100, V100, GTX1660), eGPUs (Xavier AGX,
Orin AGX, Xavier NX, Jetson TX2, Jetson Nano), FPGAs/ACAPs
(Zynq ZU15, ZU3, Versal VC1902), and ASICs (Hailo-8, Myriad). The
results show the full spectrum of different processing architectures
from CPUs to modern ASIC accelerators like the Hailo-8 (here mea-
sured including Xavier NX as host system), providing an average
efficiency of around 100 GOPS

Watt with up to 1250
GOPS
Watt for Hailo-8.

3 OPTIMIZING TOOLCHAIN FOR
HETEROGENEOUSHARDWARE

3.1 Optimization of DLmodels
Efficiency is paramountwhendeployingDLsolutions in IoTcontexts.
DL systems must fit within memory constraints while maintaining
performance in accuracy metrics. VEDLIoT addresses this through
hardware-aware pruning and quantization, accelerating DL mod-
els and reducing memory footprint without significant accuracy
loss. Model compression also enhances energy efficiency, crucial for
battery-powered IoT devices.

Hardware speedup is achieved via structured pruning [22], as op-
posed to unstructured (sparse) pruning, since embedded hardware
often lacks support for acceleration via sparsity. Pruning methods
vary based on targeted hardware, as efficient operations or archi-
tectures may differ across devices. Embedl’s Model Optimization
SDK [6] is utilized for hardware-aware pruning.

3.2 Hardware software co-design
The co-design process examines architectural techniques for effi-
cient DL algorithm deployment [11], utilizing reconfigurable FPGAs
to accommodate evolvingCNNmodels. Three primary directions are
explored: (1) developing an FPGA base design to support the RECS
platform, facilitating integration of FPGA-based accelerators [16]; (2)
enabling partial dynamic reconfiguration for scenarios necessitating
DL accelerator switching or power budgets changes; and (3) creating
custom and model-specific accelerator designs to enhance targeted
CNN efficiency [25].

Resource-efficient CNNs, also known as heterogeneous, compact,
or edge CNNs [4, 30], minimize computational and memory require-
ments while maintaining accuracy. VEDLIoT also targets compact
CNNs such asMobileNetV3 [14], asmonolithic accelerators prove in-
efficient for these models [4, 30]. Hence, we developed FiBHA (Fixed
Budget Hybrid CNN accelerator) that improves over the existing
customaccelerators by capturing the heterogeneity of these compact
CNNs using a reasonable resource budget [25]. FiBHA employes
dedicated engines for heterogeneity-rich layers andminimal engines
for less heterogeneous layers. FiBHA outperforms state-of-the-art
FPGA-basedCNNaccelerators like FINN[3], achievingup to1.7x and
4.1x throughput improvements. Additionally, VEDLIoT developed
FPGA-based accelerators for reinforcement learning [27] and the
STANN framework for designing FPGA-based DNN accelerators.

3.3 Model verification
After training, deep neural network models can be subjected to
various optimizations for runtime purposes. Firstly, various model
compression techniques can be employed to reducemodels’ resource
and computational demands through e.g. (1) quantization (reduction
of weights’ and activations’ precision to 16-bit or 8-bit values), (2)
pruning (removing insignificant weights, filters and activations),
(3) encoding weights to more compact form (e.g. via clustering). By
combining the above techniques it is possible to significantly reduce
themodel size and inference time,with negligible decrease in quality
[10]. The above compression techniques are often paired with low-
level optimizations specific to given hardware platforms, including
usage of dedicated accelerators.

Having somany levels of possible optimizations (bothon software
and hardware level), it is crucial to have a reproducible and empirical
flow verifying the correctness of processing, as well as the overall
quality of the deployed model. The correctness verification can be
easily achieved by using the same evaluation methods that are used
during the training process.

Kenning [17] is an open-source framework offering tools for inte-
grating existing frameworks to load, optimize, deploy, and evaluate
deep neural networks on target hardware in a traceable and repro-
ducible manner. Once models are optimized and deployed, Kenning
automatically evaluates them using test datasets, collecting per-
formance (inference time, memory usage) and quality (accuracy,
precision) metrics. Summary reports can be generated for individual
or multiple models, including textual and visual comparisons.

3.4 Simulation
An FPGA-based ML accelerator using the CFU (Custom Function
Unit) RISC-V extension [1] was developed, employing the open-
source Renode simulation framework [26] for implementation, test-
ing, and debugging. Renode simulates complex, multi-node sce-
narios, running unmodified software on various architectures (e.g.,
Arm, RISC-V). To co-simulate Verilog-implemented CFU accelera-
tors, Renode was enhanced to support the CFU interface. CFU code
is compiled using Verilator [29] and connected to Renode for mixed
functional and cycle-accurate simulation. Additional improvements
to bus implementations were made and published alongside usage
examples [2].

4 SAFETY, SECURITYANDREQUIREMENTS
FORDISTRIBUTEDAIOT SYSTEMS

4.1 Requirements concepts for AIoT
The requirement concept is built upon an architecture framework,
providing a reusable knowledge structure for VEDLIoT system de-
sign. Architecture frameworks organize architectural descriptions
and associated requirements into distinct architectural views [24].
These different views are necessary to describe the diverse use cases
and concerns associated with the VEDLIoT platform. An architec-
tural view expresses “the architecture of a system from the per-
spective of specific system concern” [15] and can be viewed at dif-
ferent abstraction levels. A hierarchical design process allows the
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co-evolution of requirements and architecture [5]. We employ com-
positional thinking by establishing abstraction levels for architec-
tural views, corresponding requirements, and their classification
into clusters of concern. Architectural views within each cluster
can be sorted by their represented abstraction level. A conceptual
model of the compositional architecture framework approach for
VEDLIoT is depicted in Figure 4. Four abstraction levels are used
for VEDLIoT use cases: Knowledge and Analytical level, Conceptual
level, Design level, and Run time level. Required clusters of concern
are determined through identified use cases based on the operational
context, and high-level goals for the AI system. For example, privacy
might not be of concern for an AI-based diagnostic system detecting
faults of a welding robot, but safety could be of paramount concern.
Relevant clusters of concerns for quality aspects of an AI system
in the IoT are Safety, Security, Privacy and Ethical Aspects such as
Fairness and Transparency. Additionally, Energy Efficiency can be
considered as an explicit quality aspect for embedded systems. Com-
positional thinking through the proposed architecture framework
enables co-designing the system to fulfil identified quality concerns.
Early in the development process, correspondences between views
regarding quality concerns and other views in the architecture de-
scription are established, resulting in a system that is safe, secure,
efficient, or fair by design. A comprehensive list of relevant clusters
of concerns and architecture views for VEDLIoT can be found in [13].
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concerns
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Figure 4: Conceptualmodel of the compositional architecture
framework for VEDLIoT [13]

4.2 Safety Aspects
The VEDLIoT approach to Requirements Engineering facilitates
constructive design of safety critical systems. In the architectural
framework, a specific cluster of concern is reserved to safety argu-
mentation, enabling safety arguments to be directly connected to
architectural views, such as linking hardware design decisions with
data quality concerns to support desired safety levels.

Covering both design and run-time aspects of distributed ML in
IoT when discussing safety is essential but practically challenging
[12]. Challenges like unsuitable safety standards andmissing guide-
lines for data selection relate to both challenges of specifying training
data and runtime monitoring. These challenges are interdependent
and warrant a combined investigation. For instance, IP protection
causes the inability to access inner states and creating failure mod-
els for MLmodels. We recommend the following good practices for
safety argumentation in system development involving distributed

DL: (1) avoid restrictive IP protection; (2) relate confidencemeasures
to actual performance metrics; (3) overcome grown data selection
habits; and (4) balance hardware limitations in embedded systems.
The architectural framework introduced forVEDLIoT-based systems
facilitates the implementation of these recommendations.

4.3 Trusted execution for AIoT
Trusted computing in AIoT presents challenges due to the complexi-
ties of distributed architectures. However, secure execution environ-
ments for critical software components and intellectual property pro-
tection are necessary. VEDLIoT establishes a cross-platform secure
haven using Trusted Execution Environments (TEEs) and focuses
on securing server and small device infrastructures across the cloud-
edge continuum. Two secure runtimes have been developed for Intel
and ARM, providing comprehensive protection for AIoT systems.

Intel’s Software Guard eXtensions (SGX) and ARM’s TrustZone
create protected memory regions, segregating critical software com-
ponents from the system via hardware-based isolation. Despite their
advantages, developing and deploying trusted components for these
technologies is challengingdue toconstraintsanddivergent software
paradigms. VEDLIoT introduces two trusted runtimes, Twine [19]
for SGX andWaTZ [20] for TrustZone, which simplify software cre-
ation for secure environments by abstractingTEE complexities. Both
runtimes useWebAssembly, a versatile bytecode format suited for
constrained environments, and its modular system interface (WASI),
streamlining development and fostering efficient, unified solutions
for trusted computing in cloud and IoT environments [21].

Integrating deep learning frameworks, such as Tensorflow Lite,
into secure environments is crucial for bridging the gap between
TEEs and AIoT. WebAssembly enables this integration, facilitating
secure AIoT application development. In a smart mirror use-case,
voice data is processed within a TEE, ensuring robust protection
against eavesdropping and malicious software interference while
preserving the deep learningmodel’s confidentiality. This highlights
the potential to enhance security and privacy in AIoT applications
through the integration of TEEs andWebAssembly technology.

4.4 Inferring trust in AIoT
While TEEs address confidentiality and integrity concerns, verify-
ing the authenticity of executing software remains crucial. Remote
attestation (RA) ensures the trustworthiness of software, hardware,
and data on remote devices and facilitates secure communications
among distributed components [18]. VEDLIoT has contributed to
several RA-based solutions.

Integrating RA capabilities into trustedWebAssembly runtimes
enhances their security. For Intel, the system uses SGX features for
enclave generation and attestation. But TrustZone lacks inherent
attestation capabilities. We addressed this by leveraging protected
keyswithin the SoC die, exclusively accessible by the TEE, and devel-
oping a remote attestation protocol forWebAssembly applications
based on the Sigma protocol. This enables both platforms to provide
attested proof of application trustworthiness and facilitate secure
communication and confidential data exchange for remote parties.

To bolster remote attestation robustness, VEDLIoT decentralizes
attestation logic, enhancing resilience to Byzantine attacks. We de-
veloped SIRE, a Byzantine fault-tolerant infrastructure supporting
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remote attestation, extensible coordination, application member-
ship management, and auditable integrity-protected logging. SIRE
combines multiple functionalities to address IoT challenges like
heterogeneity, untrustworthiness, and high dynamism. Combin-
ing remote attestation with Byzantine fault tolerance strengthens
the attestation process, providing more robust security guarantees.
Furthermore, SIRE’s additional functionalities, such as coordination
primitives, facilitate complex task executionand simplify application
management and deployment.

5 VEDLIOTAPPLICATIONS
5.1 Automotive
The Automotive use case aims to optimize processing speed, energy
efficiency and minimize on-car energy consumption. Pedestrian
Automatic Emergency Breaking (P-AEB) is a well-defined safety
application in the Automotive space. Based on sensor information a
decision is taken to break the vehicle if a pedestrian is on or close to
the travel path of the vehicle. AI/DL has been used to solve the end-
to-end processing over the full detection-decision-actuation space.
Multiple differentAImodels have beenused for state-of-the-art prod-
uct implementations. In the current Veoneer use-case evaluation we
have implemented a version of EfficientNet.

The main challenge of this automotive use-case is the limited pro-
cessing power available in the vehicle, the communication resource
limits and the possible processing power available in the edge, in this
case a base station. In the VEDLIoT project we have evaluated ways
of distributing the DLmodel over multiple processing nodes, some
with minimal and some with high capabilities, to reduce the system
response time. We have optimized the partitioning of the DL model,
based on the total end-to-end latency, the available cellular commu-
nication capacity and the edge processing availability and speed. As
the vehicle is constantly moving, the communication and edge pro-
cessing resourceswill vary partly due to the number of other users of
the cellular system and partly due to the distance to the base-station
which potentially may lower the communication throughput.

We have used the Architecture and Requirement Frameworks to
identify the necessary system components. Based on this we have
designed a prototype/demo system based on a u.RECS platform to
mimic the sensor (in this case an RGB camera) processing part plus
the vehicle central compute unit (CCU). The u.RECS is hosting both
a SMARC device (= sensor processing unit) and an NVIDIA Jetson (=
CCU). The CCU is connected, through a standard 4g connection, to
a base station which will be equipped with a tRECS hardware unit.

Veoneer has done data collection with a camera system based
on the performance requirements identified with the Requirements
Framework. This data set was then used for the DL model learn-
ing and testing phases. The DLmodel optimization tool, developed
within VEDLIoT, was then used to distribute the DL model over
all of the processing nodes described above. Multiple optimization
scenarios, depending on the dynamically changing vehicle environ-
ment, was designed and will be used to adapt and re-configure the
processing system as the vehicle drives through the traffic scene.

Since both data andDLmodels are sent over open communication
links, security, robustness, trust and safety have been investigated
within the VEDLIoT project focusing on the extremely high func-
tional safety requirements set by critical automotive applications.

Comparisons of different hardware setups using either only the
sensor processing unit, the sensor processing unit and the central
compute unit and finally both vehicle processing units and an edge
unit, connectedbyawireless link, havebeenperformed showing that
the latency may be lowered using all available processing devices
while stillmaintaining the sameAI/DLprocessingaccuracy.Thenext
step is to do comparisons of the total energy consumption for the
different setups, including the communication power consumption.

5.2 Industrial IoT
Industrial use cases can also benefit from the integration of DL algo-
rithms. The two use cases supported by VEDLIoT, Motor Condition
Classification and SeriesArc FaultDetection (AFD) in low-voltage di-
rect current (LVDC) systems, represent two categories of industrial
problems: predictive maintenance and anomaly detection. Chal-
lenges of industrial use cases and especially AI-based solutions are
of various aspects: limited data of fault condition under real sce-
narios due to finance and safety considerations, and the lack of
framework for software development with DL. VEDLIoT addresses
these challenges and accelerates the development of both industrial
use cases. Both use cases are first investigated with the requirement
and security analysis framework from VEDLIoT. This determines
the potential risks in implementingAI-based solutions and the speci-
fication for data andmodel, which guide the system design for better
performance.

Based on the analysis and system design, test-benches are built
andgradually improved forconditionsimulationanddatageneration.
AI accelerators are integrated in the systems, and the first models
are trained and validated on the test-benches. The test-benches pro-
vide not only the environment for validation and demonstration,
including hardware efficiency, model accuracy, and effectiveness
of analysis framework, but also a playground for AIoT technolo-
gies and protocols such as secure communication and integration
of augmented reality (AR).

The focus of Motor Condition Classification use case is energy
efficiency. It aims to build an easy-to-mount, battery-powered DL-
driven sensor box for on-site data processing, to monitor thermal,
operational, and mechanical conditions of motors. With the insight
in accelerator architecture from VEDLIoT [8], the AI accelerator
MAX78000 is selected and integrated in the sensor box with tem-
perature, vibration, and magnetic flux sensors on our customized
hardware. The sensor box is capable of data collection, processing
with DL model, and transmission within secure network environ-
ment. The data is then visualized in HMI (humanmachine interface)
with AR technology. The goal of the other use case AFD in LVDC
systems is to develop DL-based solution for fast arc detection with
high accuracy. Based on the analysis, this use case is more time and
accuracy critical compared to the motor use case. Therefore, a more
powerful AI accelerator NVIDIA Jetson Xavier NX is implemented
for theprototype. For thearcdetection, current signal fromthecircuit
in the arc test-bench is collected by an ADC (analogue digital con-
verter) with 16kHz sampling rate and transmitted to the accelerator
for model inference. The time interval between the data generation
and the delivery of classification result is on average 10ms. The
model can also reach over 95% accuracy based on the collected data.
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5.3 Smart home
In VEDLIoT, as part of the smart home use case, a smart mirror was
developed with a focus on data protection through local processing.
The mirror provides an intuitive user interface and displays person-
alized information aswell as the status of the smart home.While user
identification is performed by facial recognition and tracking using
depth imaging cameras, hand gestures are recognized and used to
control themirror. Furthermore, a voice assistant, supported by natu-
ral language processing (NLP) allows the user to control key features
through voice commands. All computations of the smart mirror are
executed locally on the device using open-source software, ensuring
maximum privacy. To achieve the necessary detections, the project
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Figure 5: Data flowwithin the smartmirror demonstrator
combines multiple machine learning techniques. Currently, the soft-
ware architecture is deployed on one NVIDIA Orin AGX, combined
with an M.2-based Hailo-8 DL accelerator for gesture detection. The
addition of the Hailo-8 ASIC accelerator significantly improves the
system performance, such that it ensures stable 30 FPS and decreases
overall powerconsumption toonly49Watts.The local voiceassistant
is implemented on the far edge computing platform u.RECS. Spoken
keywords are recognized by a hot word detection, which triggers an
encrypted audio-stream towards the local edge-server, ensuring the
highest level of user privacy. The next steps in the development will
be the deployment of all smart mirror components onto the newly
developed u.RECS platform. The goal is to execute the language
and vision processing pipelines on a single system, e.g., through the
combination of an NVIDIA Orin NX and a Hailo-8 accelerator.

6 SUMMARY
VEDLIoT tackles the issue of integrating Deep Learning into IoT de-
vices with restricted computing capabilities andminimal power con-
sumptionrequirements, raising theneed forenergy-efficient comput-
ing. The VEDLIoT AIoT hardware platform offers tailored hardware
components and supplementary accelerators for AIoT applications,
ranging from embedded systems to edge computing and cloud plat-
forms. An efficient middleware simplifies neural network program-
ming, testing, and deployment to this diverse hardware ecosystem.
Innovativeapproaches for requirements engineering, combinedwith
safety and security principles, address the challenges posed by imple-
mentingDeepLearning techniques throughout theentire framework.
These concepts are validated through rigorous use cases in vital in-
dustry sectors such as automotive, automation, and smart home.
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