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Nonlinear Model Inversion-Based Output Tracking
Control for Battery Fast Charging

Yang Li, Senior Member, IEEE, Torsten Wik, Member, IEEE, Yicun Huang, and Changfu Zou, Senior
Member, IEEE

Abstract—We propose a novel nonlinear control approach for
fast charging of lithium-ion batteries, where health- and safety-
related variables, or their time derivatives, are expressed in
an input-polynomial form. By converting a constrained optimal
control problem into an output tracking problem with multiple
tracking references, the required control input, i.e., the charging
current, is obtained by computing a series of candidate currents
associated with different tracking references. Consequently, an
optimization-free nonlinear model inversion-based control algo-
rithm is derived for charging the batteries. We demonstrate the
efficacy of our method using a spatially discretized high-fidelity
pseudo-two-dimensional (P2D) model with thermal dynamics.
Conventional methods require computationally demanding op-
timization to solve the corresponding fast charging problem for
such a high-order system, leading to practical difficulties in
achieving low-cost implementation. Results from comparative s-
tudies show that the proposed controller can achieve performance
very close to nonlinear and linearized model predictive control
but with much lower computational costs and minimal parameter
tuning efforts.

Index Terms—Electrochemical-thermal model, fast charging,
inversion-based control, lithium plating (LiP), lithium-ion bat-
teries.

NOMENCLATURE

Symbol:

A Cross-sectional area (m2).
CT Battery thermal capacitance (J/K).
De, Ds Electrolyte and solid-phase diffusion coeffi-

cients (m2/s).
D Physical domain (D ∈ {pos, neg, sep}).
F Faraday constant (96, 487 C/mol).
Iapp Applied charging current (A).
Ie, Is Electrolyte and solid-phase currents (A).
In Current due to molar flux of intercalation (A).
M Order of solid-phase reduced-order model.
N tot Total number of control volumes.
Pbat Battery charging power (W).
Qmax Battery capacity (Ah).
QT Heat generation (W).
R Universal gas constant [8.314 J/(K ·mol)].
Rcol Current collector resistance (Ω).
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Rct Charge-transfer resistance (Ω).
Re, Rs Electrolyte and solid-phase resistances (Ω).
Rf Solid-electrolyte interphase film resistance (Ω).
RT Battery thermal resistance (K/W).
Rp Particle radius (m).
SOC State of charge.
T Battery temperature (K).
Tamb Ambient temperature (K).
Tref Reference temperature (298.15 K).
Ue Electrolyte diffusion overpotential (V).
Uss Equilibrium potential of an electrode (V).
Vbat Battery terminal voltage (V).
Φe, Φs Electrolyte and solid-phase potentials (V).
as Surface area per unit electrode volume (1/m).
ce, cs Electrolyte and solid-phase concentrations

(mol/m3).
c0e Average electrolyte concentration (mol/m3).
cs,avg Volume-averaged concentration in the solid

phase (mol/m3).
cs,max Maximum concentration in the solid phase

(mol/m3).
css Surface concentration in the solid phase

(mol/m3).
h[l] State-dependent coefficient.
i0 Exchange current density (A/m2).
jSEI SEI side-reaction molar flux [mol/(m2· s)].
jn Molar flux due to intercalation [mol/(m2· s)].
k Electrode reaction constant (A ·m2.5/mol1.5).
∆δ Width of a control volume (m).
rct Areal charge-transfer resistance (Ω ·m2).
rf Areal film resistance (Ω ·m2).
t0a Transference number.
u, x, y Input, state, output.
α, β Coefficients of solid-phase reduced-order dif-

fusion model.
ηLiP Lithium plating potential (V).
ηSEI SEI side-reaction potential (V).
εe, εs Electrolyte and solid-phase volume fractions.
κ, σ Electrolyte and solid-phase conductivities

(S/m).
τ Time constant (s).
∆t Sampling time (s).

Subscript:

i Control volume index. i ∈ {1, 2, · · · , N tot}.
i± 0.5 Variable at the edges of ith control volume. i ∈

{1, 2, · · · , N tot}.
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j Index of output tracking control mode.
m Index of state in the solid-phase reduced-order

model.
0% Value at SOC = 0%.
100% Value at SOC = 100%.
LiP Lithium plating.
SEI Solid-electrolyte interphase film.

Superscript:

eff Effective.
pos Positive electrode.
neg Negative electrode.
sep Separator.
sep/neg Separator/negative electrode interface.
neg/col Negative electrode/current collector interface.
ZIR Zero-input response.
ZSR Zero-state response.

I. INTRODUCTION

IN 2021, the median driving range of new conventional
fossil-fueled vehicles is 648 km, while that of the latest

Li-ion battery-powered electric vehicles (EVs) is only 376
km [1]. The resulting range anxiety experienced by EV
drivers can be alleviated by regular fast battery recharging,
especially for long-range excursions or emergency use. In
contrast to conventional fossil-fueled vehicles, EVs suffer
from the notorious issue of long charging time, which can
cause long queues at the charging station and serious road
congestion nearby as the penetration level of EVs increases.
Conservative low-to-medium charging rates are often applied
at present, including commercially-viable charging protocols
such as constant-current constant-voltage (CC-CV), constant-
power constant-voltage (CP-CV), CV-CC-CV [2], multistage
CC (MCC) [3], and boost charging [4]. These model-free
and heuristic methods are characterized by predefined profiles
with constant current, voltage, and/or power, while the internal
dynamics of the battery are completely ignored due to a lack of
relevant information. Under this condition, simply increasing
the charging current rates will unfavorably speed up the battery
aging, cause damage, and even pose serious hazards to EV
users [5].

The required internal information can be provided by
various battery models, with which model-based charging
strategies can be designed. Conventionally, lumped-parameter
equivalent circuit models (ECMs) with simple circuit struc-
tures are used. State-of-charge (SOC), state-of-health, and
internal temperature are used to design various charging s-
trategies based on frequency optimization [6], multi-objective
optimization, fuzzy control [7], and model predictive con-
trol (MPC) [8]. On the other hand, physics-based models
(PBMs) have recently been investigated for the design of fast
charging algorithms [9]. These mechanistic models describe
internal electrochemical phenomena, such as ion diffusion,
intercalation kinetics, and heat generation and transfer, and are
capable of reproducing battery dynamics with high fidelity.
More importantly, data-driven approaches, while receiving
extensive research attention in recent years [10], [11], may

struggle to uncover the kinds of health and safety-related
internal information that PBMs can provide. Based on PBMs,
optimization problems and open-loop optimal controls have
been formulated to minimize charging duration [12]. These
results can be regarded as the first step toward the design of
closed-loop controllers that are able to compensate for model
uncertainties and disturbances.

Recently, several charging algorithms with closed-loop con-
trol algorithms have been proposed. For instance, a fast-
charging strategy was developed by incorporating an isother-
mal electrochemical model and health-related constraints into
a nonlinear MPC (NMPC) algorithm [13]. A one-step NMPC
was proposed to optimize charging profiles by integrating ther-
mal dynamics into a multi-physics pseudo-two-dimensional
(P2D) model described by partial-differential-algebraic equa-
tions (PDAEs), [14]. However, the potential applications of
these strategies may be limited by their computationally in-
tensive nature, as they require handling nonlinear PDAEs and
performing real-time nonlinear optimization.

Similarly, in [15], dynamic programming was utilized to
obtain the global solution of the fast charging problem with
the P2D model. However, due to the curse of dimensionality,
the authors were forced to coarsely divide the time, resulting
in a five-step MCC that significantly deviates from the optimal
solution presented in [14]. To address the problem of low
computational efficiency, a novel approach was proposed in
[16] using a reduced-order model (ROM) of Li-ion battery and
a linear time-varying MPC (LTV-MPC). However, this method
has the limitation of ignoring the nonuniform effect over the
electrode thickness, which may lead to inaccurate results in
certain applications. The concept of using a ROM is also
employed in the design of a reference governor for achieving
a low-complexity fast charging strategy in [17] and further
enhanced and experimentally validated in [18]. To develop
the ROMs, most existing fast charging strategies make use
of the assumption that the battery behaviors are uniform over
each electrode. This allows for a significant reduction in both
modeling and computational complexity [9]. Recent efforts
have been directed at solving an optimization problem formu-
lated with a high-order electrochemical-thermal-aging model
using nonlinear programming [19]. The model considers an
extended SPM, an enhanced two-state thermal model, and an
SEI film growth model with solvent concentration evolution.
The algorithm shows excellent offline performance for the
optimization of the charging curves.

However, neglecting the nonuniformity in Li-ion battery
electrodes can result in inaccurate prediction of battery degra-
dation, particularly in the context of fast charging. For ex-
ample, spatially uneven development of lithium plating and
solid-electrolyte interphase (SEI) film is commonly observed,
and under extremely high charging current conditions, this
phenomenon can be significantly amplified due to certain chain
effects [20]. The assumption of uniform electrode behavior
can cause significant modeling errors and result in overly
aggressive control algorithms, particularly for high-energy
battery cells with thick electrodes [21]. A ROM based on
frequency-response function and subspace-based identification
can achieve high computational efficiency by selecting local
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variables at critical spatial positions, but its effectiveness is
limited to cases where only two constraints are considered
[22]. The complexity and efficiency of this technique have
not been demonstrated for more constraints and more phys-
ical dynamics such as concentrations, SEI film growth, heat
generation and transfer.

To address the challenge of modeling nonuniformity in Li-
ion battery electrodes, well-established spatial discretization
methods, such as the finite volume method (FVM) [23]
and spectral methods [24], [25] can be applied to simplify
the multiphysics PDAE model, enabling accurate capture of
spatially distributed dynamics. For example, in [23], the model
is reformulated as a multiphysics distributed-parameter circuit
network, overcoming the limitations of the existing ad-hoc
ROMs. These high-dimensional models have been used to
develop initial NMPC-based fast charging strategies, demon-
strating their potential for future implementation [26].

Unfortunately, high-dimensional nonlinear systems pose
fundamental difficulties for control algorithms that require on-
line optimization, such as LTV-MPC and NMPC. Despite the
ever-increasing computational capability for modern onboard
controllers, alleviating computational burden remains desirable
for practical and cost-effective implementation. In our previous
work, we have shown that by considering the fact that the
charging current is limited by different operating constraints,
a physical-constraint-triggered proportional-integral (PCT-PI)
controller can be designed without the need of computational-
ly demanding online optimization [27]. The constraints are
activated alternately and the PI controller’s internal states
are switched with bumpless transfer. The algorithm achieves
comparable computational efficiency to a simple PI controller
and a near-optimal charging profile compared to the NMPC
with a short prediction horizon. However, for either NMPC
or PI control, performance is significantly affected by control
parameters. Due to the complexity of the model, it is difficult
to adjust the control parameters according to an analytical
method, so only a labor-extensive trial-and-error method can
be used. The tuning of the control parameters has to be carried
out individually for different batteries with different charac-
teristics, and the parameters need to be re-tuned as the aging-
affected parameters change over time. Inappropriately selected
control parameters can cause system instability problems, and
even under the optimal controller settings, some overshoots
cannot be avoided.

To sidestep the computational problems in optimization-
based methods and to simplify the parameter tuning in many
feedback control strategies, in this work, we propose a nonlin-
ear battery charging control method based on model inversion
techniques. An electrochemical-thermal P2D model of the Li-
ion batteries is used to demonstrate the design procedure.
The novelty and contributions of this method are described
as follows. First, we show that by applying the FVM on
the electrode scale and reducing the model using a moment-
matching method on the particle scale, many variables for
control interest, or their first-order time derivatives, can be
expressed as an input-affine or an input-quadratic form. This
fact motivates us to derive analytical solutions to a series of
output tracking problems so that the required input charging

current can be computed using the high-fidelity battery model.
Consequently, the original constrained optimal control prob-
lem is converted to a multiple-output tracking problem that
can be solved without optimization. By ensuring the charging
current meets all constraints in the outputs, the proposed
optimization-free nonlinear inversion-based output tracking
control strategy requires almost ignorable parameter tuning
efforts. It is shown that the proposed algorithm can achieve
comparable numerical accuracy to MPC-based solutions but
largely outperforms them in terms of computational efficiency.
Due to the high computational efficiency, the proposed algo-
rithm is also very useful for control-oriented identification of
PBM parameters where massive simulations with closed-loop
control are needed.

The rest of the paper is organized as follows. In Section
II, we first present a spatially discretized representation of the
P2D model and typical health- and safety-related constraints
of fast charging. In Section III, a general fast charging control
problem is formulated, and we describe the proposed nonlinear
model inversion-based control approach for solving such a
problem in Section IV. In Section V, we show that the
discretized P2D model is suitable for the proposed inversion-
based control and corresponding state-dependent coefficients
are derived. Illustrative examples are given to examine the
effectiveness of the proposed fast-charging method in Section
VI, followed by the concluding remarks in Section VII.

II. ELECTROCHEMICAL-THERMAL OF MODEL AND
CONSTRAINTS FOR BATTERY CHARGING

A. Physics-Based Modeling

A typical Li-ion battery features a sandwich-like structure
that includes the positive electrode, the separator, the negative
electrode, as well as the current collectors attached to the ends
of the electrodes [28]. To reflect the multi-physics nature of
the Li-ion battery during fast charging, a P2D model with
thermal dynamics is considered the very precise mathematical
description under wide regimes of applied current rates and
temperatures, exhibiting many internal health- and safety-
related behaviors [29]. More details of the P2D model can
be founded in [9], [23], [30], [31]. To facilitate the charging
algorithm development, the P2D model is spatially discretized
using the FVM and can be explained with the aid of the
equivalent circuit network in Fig. 1.

Notation: We use the superscripts D ∈ {pos, neg, sep} to in-
dicate whether physical quantities are in the positive electrode,
the negative electrode, or the separator domains, respectively.
A subscript i is attached to indicate the local value in the
ith control volume of a spatiotemporal quantity. The subscript
i + 0.5 represents a component connecting two elements in
the ith and the (i + 1)th control volumes. Furthermore, the
following index sets are defined. Ipos := {1, 2, · · · , N pos},
Isep := {N pos+1, N pos+2, · · · , N pos+N sep}, Ineg := {N pos+
N sep + 1, N pos +N sep + 2, · · · , N pos +N sep +N neg} where N
represents the number of control volumes in the corresponding
domain. We also denote N tot := N pos+N sep+N neg as the total
number of control volumes and N sep/neg := N pos + N sep + 1
as the index of the control volume at the separator/negative
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Fig. 1. Equivalent circuit network for Li-ion batteries. The voltage sources
are controlled by battery temperature and concentrations, governed by heat
and mass transfer equations, respectively.

electrode interface. Furthermore, I ′ := {1, 2, . . . , N pos− 1}∪
{N pos+N sep+1, · · · , N tot−1} is used to represent all currents
or resistances on the horizontal branches (i.e., with an index
i+ 0.5) in the electrodes, as shown in Fig. 1. The width and
cross-sectional area of the ith control volume are denoted by
∆δi and A, respectively.

1) An Equivalent Circuit Network: The equivalent circuit
network in Fig. 1 consists of elements including the input
current source Iapp, voltage sources (Uss,i and Ue,i, ∀i ∈ Ipos∪
Ineg), and various resistors. The circuit represents the algebraic
equations (AEs) in the P2D model. The voltage sources and
resistances are not constant. As shown in Appendix A, these
elements are functions of system states, i.e., solid-phase sur-
face concentration (css,i), electrolyte concentrations (ce,i), and
battery temperature T , and thus they can be regarded as state-
dependent variables. According to the circuit theory, given the
input current, the voltage sources, and the resistances, one can
solve the AEs for all the branch currents, i.e., the intercalation
currents In,i, the electrolyte currents Ie,i+0.5, and the solid-
phase currents Is,i+0.5. The close-form solution to In,i can be
expressed in the form of [see eqs. (C.1) and (C.2) in [23]]

In,i = IZIR
n,i (x) +KZSR

n,i (x)Iapp ∀i ∈ Ipos ∪ Ineg. (1)

Similarly, Ie,i+0.5 and Is,i+0.5 can be expressed as

Ie,i+0.5 = IZIR
e,i+0.5(x) +KZSR

e,i+0.5(x)Iapp ∀i ∈ I ′, (2)

Is,i+0.5 = IZIR
s,i+0.5(x) +KZSR

s,i+0.5(x)Iapp ∀i ∈ I ′. (3)

Here, each solution in (1)–(3) consists of a zero-input-
response (ZIR) component and a zero-state-response (ZSR)
component. The ZIR component IZIR is the solution when the
input current is zero (u = Iapp = 0), and thus it has only
dependency on the model state x but is not directly affected
by the input u. On the other hand, the ZSR component is the
solution when the voltage sources are all zero, and it has a
linear relationship with the input current while the gain KZSR

is state-dependent.
The battery voltage and power can then be calculated by

Vbat =(Uss,i + Ue,i +RΣ,iIn,i)|i=1−
(Uss,i + Ue,i +RΣ,iIn,i)|i=N tot+∑
i∈I′

(Re,i+0.5Ie,i+0.5) +Rsep
e Iapp +RcolIapp, (4)

Pbat =VbatIapp. (5)

For health-aware charging control, we are particularly in-
terested in the side reaction potential of lithium plating (LiP)
(namely, the anode potential, as used in many existing works):

ηLiP,i = Φs,i − Φe,i = Uss,i +RΣ,iIn,i. (6)

The second side reaction is regarding the SEI, and its
governing equations are

ηSEI,i = Φs,i − Φe,i − USEI −Rf,iIn,i
= Uss,i +Rct,iIn,i − USEI. (7)

jSEI,i = − i0,SEI

F
exp (− F

2RT
ηSEI,i) (8)

where ηSEI is the SEI side-reaction overpotential, jSEI,i is the
molar flux of the SEI side reactions, i0,SEI is the side-reaction
exchange current density, USEI is the side reaction equilib-
rium potential. Furthermore, R, F , and T are the universal
gas constant, the Faraday constant, and battery temperature,
respectively.

2) Update of Solid-Phase Concentration States: The dy-
namics of the battery are governed by a set of ODEs, de-
scribing the evolution of the concentrations and temperature
over time. These ODEs are used to update the system’s
state and then the voltage sources and resistances of the
circuit in Fig. 1. The ODEs governing the concentrations can
be obtained by reducing the original PDE-based solid-phase
diffusion equations with various model reduction methods [9].
We apply a frequency-domain method proposed in [32] to
obtain a reduced-order diffusion submodel:

˙̃cs,i,m = −
αmD

eff
s,i

R2
p,i

c̃s,i,m −
βm
Rp,i

In,i
FA∆δias,i

, (9)

css,i =

M∑
m=1

c̃s,i,m, (10)

cs,avg,i = c̃s,i,1, (11)

∀i ∈ Ipos ∪ Ineg,∀m ∈ {1, 2, · · · ,M}. cs,avg,i is the volume-
averaged solid-phase concentration, Rp,i is the particle radius,
and Deff

s,i is the effective solid-phase diffusion coefficient, as,i
is the specific electrode area, and αm and βm are dimension-
less coefficients.

The SOC of the battery can be determined by considering
the bulk concentration, cs,avg,i, in either the negative electrode
[14], [26] or the positive one [19]. The former is more con-
venient since the bulk concentration in the negative electrode
is positively correlated to battery SOC. In the present model,
the SOC is expressed by

SOC =

1
δneg

∑
i∈Ineg

(∆δics,avg,i)− cneg
s,0%

cneg
s,100% − c

neg
s,0%

, (12)

where δneg is the thickness of the negative electrode. cneg
s,0%

and cneg
s,100% are concentrations when the battery is considered

to be fully discharged and charged, respectively. It is worth
noting that in practical scenarios, the capacity of the battery is
typically constrained by the capacity of the positive electrode.
This is because the negative electrode is often designed with a
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higher capacity to account for its faster degradation over time
[33].

3) Update of Electrolyte Concentration States: The elec-
trolyte concentration ce,i is solved via the FVM:

ċe,i =
1

∆δiεe,i

(
Deff
e,i+0.5

0.5

ce,i+1 − ce,i
∆δi+1 + ∆δi

−
Deff
e,i−0.5

0.5

ce,i − ce,i−1

∆δi−1 + ∆δi

)
+ λi, (13)

with ce,i = ce,i−1 for i = 1, ce,i+1 = ce,i for i = N tot, and

λi =

{
t0a
εe,i

In,i

FA∆δi
, i ∈ Ipos ∪ Ineg

0, i ∈ Isep

Deff
e,i±0.5 = (∆δi + ∆δi+1)/

(
∆δi
Deff
e,i

+
∆δi±1

Deff
e,i±1

)
,

where Deff
e,i is the effective electrolyte diffusion coefficient, t0a

is the transference number, and εe,i is the porosity.
4) Update of Temperature State: In addition, battery tem-

perature T is described by a lumped heat transfer model, i.e.,

Ṫ =
Tamb − T
RTCT

+
QT
CT

=
Tamb − T
RTCT

+
Qrxn +Qrev +Qohm

CT
,

(14)
where CT is the thermal capacitance, RT is the thermal
resistance, and Tamb is the ambient temperature. The heat
generation QT consists of the reaction heat Qrxn, reversible
heat Qrev, and ohmic heat Qohm, and it can be calculated as
the total power losses (including reversible heat generation) of
the equivalent circuit network in Fig. 1, given by [23]

Qrxn =
∑

i∈Ipos∪Ineg

RΣ,iI
2
n,i, (15)

Qrev =
∑

i∈Ipos∪Ineg

In,iT

(
∂U

∂T

)
i

, (16)

Qohm =
∑
i∈I′

(
Re,i+0.5I

2
e,i+0.5 +Rs,i+0.5I

2
s,i+0.5

)
+ (Rsep

e +Rcol)I
2
app +

∑
i∈Ipos∪Ineg

In,iUe,i. (17)

Plugging (1)–(3), (8), and (15)–(17) into (4)–(7) and (9)–
(14), we obtain a system of ordinary differential equations in
the form

ẋ = f(x, u) (18a)
y = g(x, u) (18b)

where x ∈ Rnx is the state vector containing all c̃s,i,m, ce,i,
and T , u = Iapp ∈ R is the input, and y ∈ Rny is the output
vector. f : Rnx × R → Rnx and g : Rnx × R → Rny

are two nonlinear operators on x and u. The output vector
is defined based on the selection of constraints on battery
charging, which will be discussed next.

B. Typical Constraints for Battery Fast Charging

The charging current rate of a Li-ion battery can be limited
by several factors. First, the terminal power, voltage, and cur-
rent of the battery are usually limited by the power rating, the

maximum voltage, and current rating of the power electronic
devices, i.e.,

Iapp ≤ Iapp (19a)

Vbat ≤ V bat (19b)

Pbat ≤ P bat, (19c)

where the overbar represents the upper limit.
Second, a large amount of heat generated during the fast

charging can cause high temperature rise and safety issues
such as thermal runaway can be triggered. Hence, it is neces-
sary to place an upper limit on temperature,

T ≤ T . (19d)

Third, during charging, the side reactions of LiP in the
negative electrode tend to accelerate the aging of the battery
under high current rates. To restrain the battery aging due to
LiP on the whole negative electrode, it is sufficient to impose
a constraint only to the negative electrode/separator interface
as follows [27]

− ηsep/neg
LiP ≤ −η

LiP
< 0, (19e)

where ηsep/neg
LiP is the lithium plating potential at the separa-

tor/negative electrode interface and the underline represents
the lower limit.

In some cases, we also hope to avoid rapid growth of the
SEI resistance by limiting its side-reaction molar flux:

0 < −jsep/neg
SEI ≤ −j

SEI
. (19f)

Next, we may hope to limit the solid-phase concentrations
in the negative electrode to avoid local overcharging. This can
be ensured by

csep/neg
ss ≤ cneg

ss < cneg
s,max, (19g)

where csep/neg
ss is the solid-phase surface concentration at the

separator/negative electrode interface.
Also, to avoid the depletion of lithium ions in the elec-

trolyte, we would apply

− cneg/col
e ≤ −ce < 0 ∀i ∈ Ipos ∪ Isep ∪ Ineg, (19h)

where cneg/col
e is the electrolyte concentration at the negative

electrode/current collector interface.
Last but not least, to avoid the overcharging in a bulk

manner,
SOC ≤ SOCf (19i)

must hold, where SOCf is the targeted final SOC.
We denote the above-mentioned constraint-related variables

by an output vector

y = [Iapp, Vbat, Pbat, T,− ηsep/neg
LiP ,−jsep/neg

SEI , csep/neg
ss ,

− cneg/col
e ,SOC]>, (20a)

and the corresponding upper bounds are defined as

y∗ = [Iapp, V bat, P bat, T ,−ηLiP
,−j

SEI
, cneg

ss − ce,SOCf , ]>

(20b)
Note that the bounds y∗ can be time-varying, depending on
the operating conditions and battery aging conditions. For
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example, the power rating P bat can be specified according
to vehicle-to-grid or smart charging requirements. For aged
batteries, we might impose a reduced temperature limit T to
reduce the increased risk of thermal runaway. Nevertheless,
the determination and discussion of y∗ is not the focus of the
present investigation and we assume they are constant in this
work.

It should also be noted that in the FVM, the boundary val-
ues, including ηsep/neg

LiP , jsep/neg
SEI , csep/neg

ss , and cneg/col
e , are usually

interpolated as a linear combination of the calculated local
values near the boundary. For simplicity, we use the two-point
interpolation as follows

ηsep/neg
LiP =

3

2
ηLiP,i|i=N sep/neg − 1

2
ηLiP,i|i=N sep/neg+1 (21a)

jsep/neg
SEI =

3

2
jSEI,i|i=N sep/neg − 1

2
jSEI,i|i=N sep/neg+1 (21b)

csep/neg
ss =

3

2
css,i|i=N sep/neg − 1

2
css,i|i=N sep/neg+1 (21c)

cneg/col
e =

3

2
ce,i|i=N tot − 1

2
ce,i|i=N tot−1. (21d)

III. GENERAL OPTIMAL CONTROL PROBLEM FOR
BATTERY FAST CHARGING

The problem of optimally fast charging a battery has been
well-discussed in [14]. A general time-optimal control problem
can be formulated as follows. Suppose the battery is charging
from a given initial state x0 at time t0. The charging process
will end at time tf when the charge level has reached the
target final state of charge SOCf . The optimal fast charging
profile is obtained by solving

Problem 1 (General Fast Charging Problem):

min
u(t),t∈[t0,tf ]

∫ tf

t0

1 dt (22a)

s.t. state equation ẋ(t) = f(x(t), u(t)), (22b)
output equation y(t) = g(x(t), u(t)), (22c)
initial state x(t0) = x0, (22d)
final SOC SOC(tf ) = SOCf , (22e)
inequality constraints y(t) ≤ y∗, (22f)

where x, u, y, f , g, and t are system state, input, output,
state function, output function, and continuous time instant,
respectively. We use yj , y∗j , and gj to denote the jth element
of y, y∗, and g, respectively, where j ∈ {1, 2, · · · , ny}. Note
that in contrast to the common formulation in the literature,
we also treat the input u as an output and it is defined as the
first element in y. This gives y1 = u and y∗1 = u, where u is
the upper limit of the input (i.e., Iapp).

Unfortunately, as discussed in [14], this general fast charg-
ing problem is difficult to solve analytically as a battery model
is usually highly nonlinear and subject to many state/output
constraints. However, based on a numerically obtained ap-
proximate global solution, it is shown in [14] that Problem
1 can be well addressed via NMPC, i.e., at each control
instance t ∈ [0,∆t, 2∆t, · · · , tf −∆t] the following nonlinear
optimization problem with a reduced optimization horizon
[t, t+H] is solved:

Problem 2 (NMPC-Based Fast Charging):

u?(t) = arg min
u(t),t∈[tk,tk+H]

−
∫ tk+H

tk

u(t)dt (23)

s.t. the same constraints as (22b)–(22f),

and only a part of the solution u?(t), t ∈ [tk, tk + ∆t] is
applied.

For the fast charging problem under the conditions of
extremely high current and wide temperature ranges, consid-
erable nonuniform battery dynamics can be excited so that
a high-dimensional nonlinear model is essential to guarantee
the prediction accuracy [30]. For short prediction horizons, the
fast charging problem (23) can also be solved via the LTV-
MPC. However, in the presence of hundreds of battery cells
in a battery pack, the cell inconsistency problem needs also to
be properly addressed when designing the control algorithm.
In this condition, the complexity and computational burden of
an MPC solver for battery systems may increase dramatically.

IV. NONLINEAR INVERSION-BASED OUTPUT TRACKING
CONTROL FOR BATTERY FAST CHARGING

A. Output Tracking with Multiple References

To cope with the challenge of high computation of MPC-
based solution, we first consider a relaxed problem similar to
Problem 2, but with only the first (regarding the input) and the
jth inequality constraints imposed. We denote this problem as
Problem 3.j. For Problem 3.1 where only the input constraint
is imposed, we have

Problem 3.1 (Input-Bounded Fast Charging):

u?(t) = arg min
u(t),t∈[tk,tk+H]

−
∫ tk+H

tk

u(t)dt (24a)

s.t. the same constraints as (22b)–(22e),
u(t) ≤ u (24b)

We can immediately obtain the solution as u(t) ≡ u.
The corresponding charging time can be approximated as
3600Qmax(SOCf − SOC0)/(ηu) given by coulomb counting

˙SOC = ηIapp/(3600Qmax), (25)

where η is the coulombic efficiency and Qmax is the battery
capacity in ampere-hour (Ah).

Next, consider Problem j where j ∈ {2, 3, · · · , ny}, i.e.,
Problem 3.j (Input-Output-Bounded Fast Charging):

u?(t) = arg min
u(t),t∈[tk,tk+H]

−
∫ tk+H

tk

u(t)dt (26a)

s.t. the same constraints as (22b)–(22e),
u(t) ≤ u (26b)
yj(t) ≤ y∗j (26c)

In this case, one more constraint is imposed along with the
input constraint and thus the corresponding optimal current is
always less or equal to that of Problem 3.1. In other words,
the optimal solution to Problem 3.j should always be in the
feasible domain of Problem 3.1. In this condition, to guarantee
the compliance with the inequality constraints, the optimal
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output should always track one of the upper bounds y∗j . We
thus propose to design a simple control strategy as

I∗app(t) = u∗(x(t), y∗)

≡ min {u∗j (x(t), y∗j ) : j = 1, 2, · · · , ny}, (27)

where u∗j is the solution for the output yj to track its reference
(constraint) y∗j . This general control strategy converts an
optimal control problem to an output tracking problem with
multiple tracking objectives y∗j , where we should apply the
lowest current to charge the battery. We notice that this result
is in agreement with that in [34], where the authors proved that
based on an SPM, the optimal fast charging protocol follows
a “bang-ride” control law where the control trajectory always
sits on a constraint.

Inversion-based techniques [35] will next be used to solve
the output tracking problem. We notice that for the battery
model under investigation, all the output variables yj , or their
first time-derivatives ẏj , can be expressed in a low-degree
input-polynomial form, as will be shown in Section V. Based
on this fact, we will first analyze and derive a control strategy
based on whether or not the input u has direct feedthrough to
the output yj or not. For brevity, the time argument t will be
dropped henceforth.

B. Inversion Law: Input With Direct Feedthrough to the Out-
put

When the input u has a direct feedthrough to an output yj ,
we express yj in the following input-polynomial form (either
through analytical derivation or through approximation):

yj =gj(x, u) =

Lj∑
l=0

h
[l]
j (x)ul

=h
[0]
j (x) + h

[1]
j (x)u+ · · ·+ h

[Lj ]
j (x)uLj , (28)

where h[l]
j : Rnx → R represents the lth polynomial coefficient

(function) for the jth output variable and Lj ∈ {1, 2, 3, · · · }
represents the degree of the polynomial. We note that h[l]

j is
a state-dependent coefficient (SDC).

Given the reference output yj = y∗j , we seek the solution
u = u∗j = g−1

j (x, y∗j ), based on (28), by inversion. Analytical
solutions exist and are easy to obtain for a low-degree polyno-
mial. For example, when Lj = 1, (28) becomes input-affine,
and the required control input u∗j is

u∗j =
y∗j − h

[0]
j (x)

h
[1]
j (x)

. (29)

where h[1]
j (x) 6= 0.

If Lj = 2, (28) becomes an input-quadratic form. For the
charging process, given yj = y∗j , the required input is the
nonnegative solution to a quadratic equation, i.e.,

u∗j =
−h[1]

j (x) +
√

(h
[1]
j (x))2 − 4h

[2]
j (x)(h

[0]
j (x)− y∗j )

2h
[2]
j (x)

.

(30)
where h[2]

j (x) 6= 0.

For Lj = 3, the analytical solution exists, although the
expression is rather complex. When Lj > 3, there is no general
analytical solutions [36]. Fortunately, we will show that input-
polynomial forms with Lj ≥ 3 are not needed in the present
study on battery charging control.

C. Inversion Law: Input Without Direct Feedthrough to the
Output

Note that if Lj = 0 in (28) for an output, the input has
no direct feedthrough to it, and the output will be a function
of the states x only. In this condition, instead of investigating
(28), we consider the first time-derivative of yj . Similarly to
(28), we assume ẏj can be expressed in an input-polynomial
form:

ẏj = ġj(x, u) =

L′j∑
l=0

h
[l]
j (x)ul, (31)

where L′j ∈ {1, 2, 3, · · · } is the degree of the polynomial
function.

Clearly, to achieve yj = y∗j at all times, a direct inver-
sion of the input-output relationship (31) requires unfavorable
differential operation for practical implementation. To avoid
the differential operation and achieve zero-offset control, we
propose to shape the relationship between y∗j and yj as a first-
order system with a unit gain, i.e.,

τj ẏj = −yj + y∗j (32)

where the time constant τj is a tuning parameter. In this way,
the output variable can exponentially approach its upper bound
in a monotonic manner without generating an overshoot.
Substituting (31) into (32) yields

y∗j − yj(x)

τj
=

L′j∑
l=0

h
[l]
j (x)ul. (33)

We can then solve (33) for u based on the polynomial
degree L′j , and similar results to (29) and (30) can be obtained.
Specifically, if L′j = 1, (31) possesses an input-affine form,
and the required control input is

u∗j =

y∗j−yj(x)

τj
− h[0]

j (x)

h
[1]
j (x)

. (34)

If L′j = 2, (31) has an input-quadratic form, and the required
nonnegative control input for battery charging is

u∗j =
−h[1]

j (x) +
√

(h
[1]
j (x))2 − 4h

[2]
j (x)(h

[0]
j (x)− y∗j−yj(x)

τj
)

2h
[2]
j (x)

.

(35)

D. Overall Control Framework and Some Remarks

The proposed charging control algorithm based on nonlinear
model inversion is summarized as Alg. 1. Note that the
inversion-based control generally assumes that exact model
parameters are known [37], which can be identified using
online or offline methods. In order to improve the robustness
of the algorithm to model errors, as shown in Fig. 2, a PI



8

Algorithm 1 Nonlinear Inversion-Based Output Tracking Con-
trol for Battery Fast Charging

1: At t = t0, initialize the ensemble-based state estimator.
2: while t > t0 and SOC < SOCf do
3: Obtain measurements.
4: Estimate the state x using a state estimator.
5: Set j = 1.
6: while j ≤ ny do
7: Specify y∗j .
8: Calculate the SDCs h[0]

j (x), h[1]
j (x), and h[2]

j (x).
9: Calculate u∗j using (29), (30), (34), or (35).

10: Set j = j + 1.
11: end while
12: Calculate the charging current I∗app with (27).
13: Forward t.
14: end while

(29), (30), 

(34), or 

(35)

hj  (x)
uj

*
(27)

State-

Dependent 

Coefficients
x

Inversion Law for Constraint 2

Inversion Law for Constraint ny

...
...

un 
*y

u2
*

...
...

u(x, y )*

State Estimator

Σ 

PI

+
+

 Iapp = u

x

y

Inversion Law for Constraint j

x

x

y2
*

yj
*

yn *
y

Li-Ion 

Battery
[0]

hj  (x)
[1]

hj  (x)
[2] u~

y *

Meas.

Σ 
+ ‒ 

*

Nonlinear Model 

Inversion-Based 

Output Tracking

Constraint 1 (Input Constraint)
u1 = y1 = u**

Fig. 2. Block diagram of the proposed nonlinear inversion-based output
tracking (Algorithm 1) with a PI-based feedback control for fast charging of
Li-ion batteries.

controller (such as PCT-PI [27]) can be integrated. As shown
in Fig. 2, the inversion-based control essentially computes the
nominal tracking control command u∗, which can be viewed
as a feedforward (FF) component. On the other hand, the PI
controller generates a fraction ũ. Compared to the scheme with
PI control only, the tuning of PI parameters with FF is less
performance-wise, as the PI control only needs to address the
perturbation due to model mismatch (i.e., the PI output ũ = 0
if the model is perfect). For single-input and single-output
cases, such a combination of PI and FF controls is generally
superior to either the pure FF or pure PI control [37].

Note that since the nominal input u∗ is a nonlinear function
of state x, parameterized by the reference y∗, the proposed
inversion-based control can also be viewed as nonlinear state
feedback control. Hence, the state x must be fully observable
and a state observer/estimator is needed. However, for the
sake of brevity, state estimation is not further elaborated in
the present work, and we assume direct access to x during the
analysis. The effect of state estimation on control performance
will be examined in Section VI-E.

Next, we will show that all the output variables in (20a) can

be tracked using the proposed inversion method.

V. STATE-DEPENDENT COEFFICIENTS FOR
INVERSION-BASED OUTPUT TRACKING

In Section II-A and Appendix A, we show that the following
quantities are state-dependent variables: Resistances (Re,i+0.5,
Rs,i+0.5, Rsep

e ), voltage sources (Uss,i and Ue,i), the ZIR com-
ponents in branch currents (IZIR

n,i , IZIR
e,i+0.5, IZIR

s,i+0.5), the gain of
the ZSR components in the branch currents (KZSR

n,i , KZSR
e,i+0.5,

KZSR
s,i+0.5), concentrations (css,i, cs,avg,i, ce,i, c

sep/neg
ss , cneg/col

e ),
temperature T , and SOC. Parameters such as Deff

s,i and/or
Deff
e,i are also functions of concentrations and temperature (see

Table A1 in Appendix. To this end, our task is to derive the
SDC expressions h[l]

j (x) for each output yj in (20a).

A. Constant Current Control (j = 1)
Since the current is the model input, it is a special case for

(28), with L1 = 1, h[0]
1 (x) ≡ 0 and h[1]

1 (x) ≡ 1. The control
signal is simply the maximum current, i.e., u∗1 = y∗1 = Īapp.
This is thus an open-loop control.

B. Constant Voltage Control (j = 2)
Substituting (1) and (2) into (4), the battery voltage can

be expressed in the form of (28) with L2 = 1. Considering
y∗2 = V bat in (29), we obtain the control signal to achieve CV
tracking:

u∗2 =
V bat − h[0]

2 (x)

h
[1]
2 (x)

(36)

where

h
[0]
2 (x) = (Uss,1 + Ue,1 +RΣ,1I

ZIR
n,1 )−

(Uss,N tot + Ue,N tot +RΣ,N totIZIR
n,N tot)+

+
∑
i∈I′

Re,i+0.5I
ZIR
e,i+0.5

h
[1]
2 (x) = KZSR

n,1 RΣ,1 −KZSR
n,N totRΣ,N tot

+
∑
i∈I′

KZSR
e,i+0.5Re,i+0.5 +Rsep

e .

C. Constant Power Control (j = 3)
Since the battery power is the product of the terminal

voltage and the applied current, it can be derived that

Pbat ≡ y3 = [h
[0]
2 (x) + h

[1]
2 (x)u]u

= h
[0]
3 (x) + h

[1]
3 (x)u+ h

[2]
3 (x)u2. (37)

Hence, considering y∗3 = P bat in (30), we can obtain the
CP control law

u∗3 =
−h[1]

4 (x) +

√
[h

[1]
3 (x)]2 − 4h

[2]
3 (x)[h

[0]
3 (x)− P bat]

2h
[2]
3 (x)

(38)
where

h
[0]
3 (x) = 0

h
[1]
3 (x) = h

[0]
2 (x)

h
[2]
3 (x) = h

[1]
2 (x).
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D. Constant Temperature Control (j = 4)

In contrast to the output variables described in Section V-A
to Section V-C, the battery temperature T is a state variable.
First, by substituting the expressions of the branch currents
(1)–(3) into (15)–(17), the heat generation QT can be ex-
pressed in a quadratic form w.r.t. the input u = Iapp:

QT = QQ(x) + VQ(x)Iapp +RQ(x)I2
app (39)

where the coefficients QQ(x), VQ(x), and RQ(x) are state-
dependent functions in the units of power, voltage, and re-
sistance, respectively, and their expressions are provided in
Appendix B. Substituting (39) into (14), letting y4 = T and
y∗4 = T , and considering (35), the constant temperature (CT)
control is achieved by

u∗4 =
−h[1]

4 (x) +
√

[h
[1]
4 (x)]2 − 4h

[2]
4 (x)[h

[0]
4 (x)− T−T

τ4
]

2h
[2]
4 (x)

(40)
where the time constant τ4 is control parameter and

h
[0]
4 (x) =

Tamb − T
RTCT

+
QQ(x)

CT
,

h
[1]
4 (x) =

VQ(x)

CT
, h

[2]
4 (x) =

RQ(x)

CT
.

E. Constant Lithium-Plating Potential Control (j = 5)

As mentioned in Section II-B, it is sufficient to limit the LiP
at the separator/negative electrode interface. By substituting
(1) into (6) and considering y∗5 = −η

LiP
in (29), we can obtain

the control signal to achieve constant LiP (CηLiP ) control:

u∗5 =
−η

LiP
− h[0]

5 (x)

h
[1]
5 (x)

, (41)

where

h
[0]
5,i(x) = −Uss,i − IZIR

n,i RΣ,i

h
[1]
5,i(x) = −KZSR

n,i RΣ,i

h
[0]
5 (x) =

3

2
h

[0]
5,i|i=N sep/neg − 1

2
h

[0]
5,i|i=N sep/neg+1

h
[1]
5 (x) =

3

2
h

[1]
5,i|i=N sep/neg − 1

2
h

[1]
5,i|i=N sep/neg+1.

F. Constant SEI Reaction Rate Control (j = 6)

Recall that the SEI side reactions are described by (7) and
(8). To limit the SEI film growth, an additional step is needed
for deriving the inversion law. According to (8), instead of
treating jSEI,i as the output y6 as in Section II-B, we define
y6 as follows:

y6 := ln (
−jSEI,i

Fi0,SEI
) = − F

2RT
ηSEI,i. (42)

Substituting (7) and (1) into the above equation yields

y6 = − F
2RT

[Uss,i +Rct,i(I
ZIR
n,i +KZSR

n,i Iapp)− USEI]. (43)

Thus, the input has direct feedthrough to y6. According to
(29), we have the following constant SEI reaction rate (CjSEI )
control:

u∗6 =
y6 − h

[0]
6 (x)

h
[1]
6 (x)

, (44)

where the coefficients are

h
[0]
6 (x) = − F

2RT
(Uss,i +Rct,iI

ZIR
n,i − USEI),

h
[1]
6 (x) = − F

2RT
(Rct,iK

ZSR
n,i ),

and the reference y9 = ln (
−j

SEI
Fi0,SEI

) is related to the allowable
maximum SEI side reaction rates −j

SEI
.

G. Constant Solid-Phase Surface Concentration Control (j =
7)

The solid-phase concentration css,i is a state-dependent
variable. The time derivatives of css,i and csep/neg

ss can be derived
using (1), (9), and (10), i.e.,

ċss,i =

M∑
m=1

˙̃cs,i,m = −
Deff
s,i

R2
p,i

M∑
m=1

(αmc̃s,i,m)

Considering y∗7 = cneg
ss , y7 = csep/neg

ss , and using (34)
and (21c), we have constant solid-phase surface concentration
(Ccss) control

u∗7 =

cneg
ss −c

sep/neg
ss (x)
τ7

− h[0]
7 (x)

h
[1]
7 (x)

, (45)

where the time constant τ7 is a control parameter and

h
[0]
7,i(x) = −

Deff
s,i

R2
p,i

M∑
m=1

(αmc̃s,i,m)− 1

Rp,i

IZIR
n,i

FA∆δias,i

M∑
m=1

βm

h
[1]
7,i(x) = − 1

Rp,i

KZSR
n,i

FA∆δias,i

M∑
m=1

βm

h
[0]
7 (x) =

3

2
h

[0]
7,i|i=N sep/neg − 1

2
h

[0]
7,i|i=N sep/neg+1

h
[1]
7 (x) =

3

2
h

[1]
7,i|i=N sep/neg − 1

2
h

[1]
7,i|i=N sep/neg+1.

H. Constant Electrolyte Concentration Control (j = 8)

The electrolyte concentration cneg/col
e is state-dependent. We

can therefore use (34), (1), (10), (13), and (21d) to obtain
its inversion law for constant electrolyte concentration (Cce)
control:

u∗8 =

−ce+cneg/col
e (x)
τ8

− h[0]
8 (x)

h
[1]
8 (x)

(46)
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where τ8 is a control parameter and

h
[0]
8,i = − 1

∆δiεe,i

(
Deff
e,i+0.5

0.5

ce,i+1 − ce,i
∆δi+1 + ∆δi

−

Deff
e,i−0.5

0.5

ce,i − ce,i−1

∆δi−1 + ∆δi

)
− t0a
εe,i

IZIR
n,i

FA∆δi

h
[1]
8,i = − t0a

εe,i

KZSR
n,i

FA∆δi
,

h
[0]
8 (x) =

3

2
h

[0]
8,i|i=N tot − 1

2
h

[0]
8,i|i=N tot−1

h
[1]
8 (x) =

3

2
h

[1]
8,i|i=N tot − 1

2
h

[1]
8,i|i=N tot−1.

I. Constant SOC Control (j = 9)

According to (11) and (12), the battery SOC is a state-
dependent variable. By defining the capacity Qmax =∑
i∈Ineg [(c

neg
s,100% − c

neg
s,0%)FA∆δiεs,i]/(3600η) where εs,i =

as,iRp,i/3, one can use (9), (12), and the fact
∑
i∈Ineg In,i =

−Iapp, to derive (25).
From (25) and (34) and considering y∗9 = SOCf and y9 =

SOC, we then have constant SOC (CSOC) control

u∗9 =

SOCf−SOC(x)
τ9

− h[0]
9 (x)

h
[1]
9 (x)

(47)

where the time constant τ9 is a control parameter and

h
[0]
9 (x) = 0

h
[1]
9 (x) = 1/(3600Qmax).

VI. ILLUSTRATIVE EXAMPLES

A. System Configuration

In this section, results from simulation studies will be pre-
sented to verify the efficacy of the proposed control strategy.
The battery model and controller are both implemented in
MATLAB R2016a, and the simulated results were obtained
on a 64-bit Windows 10 on a PC with Intel Core 2 Q9400
@ 2.67GHz processor and 8GB RAM. We consider evenly
divided control volumes in each domain, and the numbers
of control volumes of the battery model are selected to
be high to guarantee the model fidelity under high-current
and high-temperature conditions, i.e., N pos = N neg = 10
and N sep = 3. For the solid-phase diffusion equations (9)–
(11), a 2nd-order model (M = 2) is adopted, which gives
α1 = 0, β1 = 3, α2 = 35, and β2 = 7. The parameters of
the battery model are described in Appendix C. To simulate
the battery process, the battery model is solved using the
continuous-time solver ode23ts with guaranteed numerical
stability for such a stiff system. For the controller, under the
assumption of perfect state estimation, the plant state x is
sampled at ∆t = 1 s.

B. Performance of the Inversion-Based Output Tracking for
Battery Charging

Three examples of the simulated current profile based on the
proposed inversion-based fast charging strategy are shown in
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Fig. 3. Examples of candidate and applied charging current profiles. (a) All
nine physical constraints are imposed. (b) CC-CT-CηLiP control. (c) CC-
CηLiP -CjSEI control.

Fig. 3, where the calculated input u∗j for each constraint is also
plotted and indicated by the output index j. In the first example
as shown in Fig. 3(a), all nine inequality constraints described
in Section V are imposed for demonstration purposes. The
constraints for the control are: Iapp/Qmax = 8C, V bat = 4.4 V,
P bat = 70 W, T = 323.15 K (50 ◦C), η

LiP
= 0 V, and

j
SEI

= −4.6 × 10−8 mol/(m2 · s), cneg
ss = 0.98cneg

s,max, and
ce = 0.25c0e. The battery is charged from the fully empty
state to the fully charged state, i.e., SOC0 = 0, SOCf = 1.
Furthermore, we select the time constants as τ4 = τ7 = τ8 =
τ9 = 1 s. In practice, only a subset of the constraints may be
needed. For example, in the second and third cases as shown
in Figs. 3(b) and (c), only part of the constraints are imposed,
leading to the CC-CT-CηLiP control and CC-CηLiP -CjSEI
control, respectively. It can be observed from Fig. 3 that all
the candidate currents and the final applied current profile are
affected by how the constraints are selected.

Fig. 4 shows the LiP potentials, solid-phase concentrations
at particle surfaces, electrolyte concentrations, temperature,
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Fig. 4. Outputs when all nine constraints are imposed. (a) Local LiP
potentials in the negative electrode. (b) Local SEI side-reaction molar flux. (c)
Local solid-phase surface concentrations in the negative electrode. (d) Local
electrolyte concentrations. (e) Battery temperature. (f) SOC. (g) Activated
control mode. The dashed lines indicate the corresponding bound or tracking
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SOC, and the control models based on the profile in Fig. 3(a).
In this example, the capability of the charging rate is limited
by the current and power (j = 1, 3) only at the very beginning
of the charging process (i.e., t ≤ 10 s), while most of the time
(10 s < t ≤ 915 s), it is limited by the internal variables such
as temperature, side reactions, and concentrations (j = 4−8).
At the end of the charging process, the terminal voltage and
SOC constraints play the limiting roles (j = 2, 9). This
result demonstrates the importance of considering the internal
electrochemical and thermal behaviors during fast charging,
while the conventionally considered factors only have impacts
at the very initial and late stages of the charging process.
Furthermore, from Figs. 4(a)–(d), we can see the significance
of considering the electrode nonuniformity in the electrode
when investigating the fast charging of Li-ion batteries.

C. Comparative Studies With NMPC and LTV-MPC

In this subsection, the inversion-based output tracking
charging strategy (Alg. 1) is compared with MPC-based

TABLE I
PERFORMANCE COMPARISON OF FAST-CHARGING STRATEGIES

Algorithm NMPC NMPC LTV-MPC Inv.
-Based

Prediction horizon 10 1 1 –
Charging Time 1005 s 1005 s 1005 s 1005 s
RMSE of Iapp – 0.003C 0.003C 0.02C
RMSE of SOC – 0.0001 0.0001 0.0002
MAX of SOC – 0.0003 0.0003 0.0008

CPU runtime per
sample (∆t = 1 s) 2.32 s 0.0555 s 0.0266 s 0.0024 s
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Fig. 5. Comparison of NMPC, LTV-MPC, and the proposed inversion-
based control for battery fast charging. The dashed lines represent different
bounds. (a) Battery power. (b) Battery temperature. (c) Battery voltage. (d)
LiP potential at the sep/neg boundary). (e) CPU runtime per sample time
(∆t = 1 s).

schemes. LTV-MPC and NMPC algorithms [38] are used to
design three charging strategies based on the same battery
model and constraints as in Section II: NMPC with a longer
prediction horizon of 10 steps, one-step NMPC, and one-step
LTV-MPC. Fig. 5 shows the battery power, temperature, volt-
age, LiP potential, and CPU runtime using the four strategies,
and Table I compares their numerical performances. It shows
that one-step NMPC, one-step LTV-MPC, and inversion-based
control have achieved the same charging time and very close
current/SOC profiles to the NMPC solution with a long
prediction horizon. However, the computational cost of the
proposed strategy is much lower than the MPCs: It is over 10
and 20 times faster than the one-step LTV-MPC and one-step
NMPC strategies, respectively. Furthermore, the inversion-
based control can achieve nearly the same results as the NMPC
in view of its small root-mean-square error (RMSE) and the
maximum absolute error (MAX).
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D. Comparative Studies With PI-Based Feedback Control

As mentioned earlier, the inversion-based control is a
model-based FF control and it is thus subject to the accuracy
of the model parameters. To enhance the robustness of the
control, the FF control can be combined with a PI controller.
In the case the output yj is measurable, the robustness of
the controller can be directly enhanced. To demonstrate this,
we investigate the CC-CT-CηLiP control as an example,
and assume that we have wrong knowledge on two model
parameters: the adopted negative electrode reaction constant
keff in (55) is doubled and the thermal resistance CT in (14)
is decreased to 1/3 of its nominal value. These parameters
are usually identified by fitting the experimental data, but can
change over time due to varying operating conditions and are
affected by aging. Note that the internal temperature T and
LiP potential ηsep/neg

LiP are not measured in existing commercial
battery systems, but they can be accessed in experimental
settings with an implanted thermocouple [39] and a reference
electrode [40], respectively.

From the first 300-s simulation results shown in Figs. 6(a)
and (b), it can be seen that if wrong parametric values are used,
the pure FF control fails to correctly predict the current to
keep LiP potential nonnegative between 10 s to 92 s, and this
can trigger lithium plating. Similarly, Figs. 6(a) and (c) show
that, although not very significant, a steady-state temperature
error exists caused by the model error. These problems can be
addressed by using PI feedback control, but the PI control
may create unfavorable overshoots during mode transitions
even after being fine-tuned. The scheme by integrating the
PI with the FF is advantageous over the pure PI scheme in
terms of the enhanced transient: The transient in the PI control
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Fig. 7. Performance of the model-inversion-based fast charging control with a
state estimator. (a) Voltage. (b) SOC. (c) Lithium plating potential. (d) Battery
internal temperature. (e) CPU runtime of the controller and the state estimator.

can be better dampened with the aid of the FF compensation,
and the corresponding overshoots are also lowered. However,
it is important to note that the promised improvement is
contingent upon the measurability of the controlled variable.
In the future, investigations will be directed to explore the
quantitative impact of model parameter uncertainty on the
performance of the inversion-based charging control.

E. Fast Charging Control With a State Estimator

The impact of state estimation on the performance of the
proposed control will be examined in this subsection. For a
high-dimensional nonlinear battery model used in this work,
the computationally efficient state estimation can be achieved
using ensemble-based methods, such as the ensemble Kalman
filter (EnKF) [29] and the ensemble transform Kalman filter
[27]. Here, we incorporate an EnKF-based state estimator
into the proposed inversion-based fast charging controller. The
EnKF is a sequential Monte Carlo implementation of the
Bayesian filter. Since the EnKF does not require updating
the state covariance matrix as in the conventional Kalman
filters and the statistics are represented using its low-rank
approximation, it is very computationally efficient for high-
dimensional systems such as the present PBM of batteries. In
the simulation, we set the number of the ensemble member to



13

0 500 1000

Time (s)

8

9

10
I a

p
p
(A

)

Exp. 1st cycle
Exp. 226th cycle
Sim. 1st cycle
Sim. 226th cycle

0 500 1000

Time (s)

3.6

3.8

4

4.2

V
b
a
t
(V

)

0 500 1000

Time (s)

0

0.05

0.1

0.15

2
se
p
=
n
eg

L
iP

(V
)

0 500 1000

Time (s)

0

0.2

0.4

0.6

0.8
S
O
C

(b)

(c) (d)

(a)

Fig. 8. Comparison of experimental and simulation results based on the CC-
CηLiP strategy. (a) Current rates. (b) Terminal voltage. (c) lithium plating
potential. (d) SOC.

5 and introduce a 20% error in the initial guess of SOC and
a 2-K error for the temperature to verify the convergency of
the inversion-based CC-CT-CηLiP control. The initial state en-
semble was set in a uniform manner as described in [29]. The
battery voltage is the single measurement, and the standard
deviation of the voltage sensor is assumed to be 20 mV.

The simulation results, including the plant and estimated
voltage, SOC, lithium plating potential, internal temperature,
estimate errors, and CPU runtime, are shown in Fig. 7. In
Fig. 7(a), the noisy voltage measurement is also depicted. It
can be observed from Figs. 7(b) and (d) that the estimated
SOC and temperature can rapidly converge to the plant value,
which is in agreement with the performance of the EnKF as
demonstrated in [29]. The SOC estimation error is maintained
below 1%, and the internal temperature error is below 0.5
K most of the time. As seen in Fig. 7(b), the lithium plating
potential is also accurately estimated with an RMSE of 0.0012
V. However, the results indicate a slight underestimation of
the lithium plating potential, necessitating the introduction of
a small safety margin in the tracking reference (η

LiP
> 0) to

prevent triggering of lithium plating.
The computational burden of the state estimator is compared

with the controller in Fig. 7(d) in terms of the CPU runtime.
It can be seen that although the computation of the EnKF-
based state estimator is much higher than the controller, the
computational efficiency is still quite high: the average CPU
time per sample step considering the controller and the state
estimator is about 0.01 s, and this is even lower than the
LTV-MPC scheme without considering the state estimator as
shown in Table I. Since some recent studies have successfully
demonstrated the suitability of similar physics-based battery
model-based estimators [41], [42], we will investigate the
influence of state estimator’s computational efficiency and
accuracy on the control performance of the proposed method
in the real-time context in our future studies.

F. Experimental Validation

To validate the proposed inversion-based method, a charg-
ing/discharging cycling protocol was designed and implement-
ed for a laboratory three-electrode NMC coin cell with a
capacity of 5 mA. For demonstration purposes, a simple CC-
CηLiP strategy was used for battery charging then the cell
was discharged with constant current. After every 75 cycles,
a reference performance test was used for capacity calibration
and parameter identification. Initially, the unknown parameters
considered to be identified include the concentrations (cpos

s,0%,
cneg
s,0%, cpos

s,100%, and cneg
s,100%), solid-phase diffusion coefficients

(Dpos
s and Dneg

s ), thermal capacitance CT , thermal resistance
RT , and SEI film resistance rneg

f . The rest parameters are
assumed to be the same as those given in Table A1. In
subsequent cycles, only aging-affected parameters, such as
SEI film resistance, stoichiometries, and solid-phase diffusion
coefficients, are identified. To accomplish this, we employ
particle swarm optimization (PSO) as a global optimization
technique for parameter identification, where hyperparameters
of the optimization algorithm are fine-tuned to improve con-
vergence and optimality.

Since the LiP potential can be measured in this experimental
setting with the additional reference electrode, CηLiP control
was achieved by a PI controller without the need to use a
model. The reference LiP potential is set to 0.0013 V to
consider the effect of additional resistance in the separator and
electrode. The measured current, voltage, and LiP potential, as
well as the calculated SOC were used as benchmark. Based
on the identified parameters, we obtained the corresponding
CC-CηLiP charging current curves and applied them in com-
puter simulation according to the proposed inversion-based
approach, and the simulated results of current, voltage, LiP
potential, and SOC are compared with the experiment in Fig. 8.
The predictive RMSEs of the current and LiP potential are as
low as 0.01C and 0.02 V, respectively. It can be seen that
using the high-fidelity model, the proposed inversion-based
method can accurately predict the benchmark current profile
without the measurement of LiP potential, indicating that such
a method is well-suited for practical applications where such
a measurement of internal variables is not usually available.

VII. CONCLUSIONS

In this paper, we have shown that an internal or an external
variable, or their first-order time derivatives, of a PBM, can
be expressed in an input-affine or input-quadratic form. This
fact motivates us to develop an inversion-based multiple-output
tracking strategy for fast charging Li-ion batteries. Different
physical operating limits are considered as the tracking ref-
erences, and the charging current is bounded by complying
with the constraint requirement when a given tracking control
signal comes into action. Consequently, the charging current is
explicitly expressed as a state-dependent function. The input-
output control stability and performance are guaranteed by
shaping the input-output relationship as a first-order transfer
function, and the tuning effort of the control parameters is lim-
ited to decide the corresponding time constants. The inversion-
based control can function as feedforward compensation to
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a PI feedback control to improve the control robustness.
The results in the illustrative examples have exhibited the
computational superiority of the proposed inversion-based
nonlinear control algorithm to LTV-MPC and nonlinear MPC-
based control algorithms. The proposed control method can be
generalized to a class of battery models if the output variables,
or their time derivatives, can be expressed in a low-order input-
polynomial form.

APPENDIX

A. Expressions of Circuit Components

The voltage sources and resistances in Fig. 1 are given by

Uss,i = Uref,i +

(
∂U

∂T

)
i

(T − Tref) (48)

Ue,i =
2RTt0a
F

ln

(
ce,i
c0e

)
(49)

Re,i+0.5 =
1

2A

(
∆δi
κeff
i

+
∆δi+1

κeff
i+1

)
(50)

Rs,i+0.5 =
1

2A

(
∆δi
σeff
i

+
∆δi+1

σeff
i+1

)
(51)

Rsep
e =

N pos+N sep∑
i=N pos

Re,i+0.5 (52)

RΣ,i = Rct,i +Rf,i =
rct,i

A∆δias,i
+

reff
f,i

A∆δias,i
, (53)

where Uref,i and
(
∂U
∂T

)
i

are two nonlinear functions of css,i de-
termined by the characteristics of the corresponding electrode
(see e.g., Table A1). The voltage sources Uss,i and Ue,i, and the
resistances Re,i+0.5, Rs,i+0.5, and Rsep

e , are state-dependent
variables. In contrast, resistance RΣ,i depends not only on
the state but also on the input. This can be seen from the
expression of the areal charge-transfer resistance rct,i, given
by

rct,i =
RT
Fi0,i

sinh−1 (0.5Fjn,i/i0,i)
0.5Fjn,i/i0,i

(54)

where

i0,i = Fkeff
i

√
ce,icss,i(cs,max,i − css,i) (55)

jn,i = In,i/(FA∆δias,i) (56)

are the exchange current density and pore-wall molar flux,
respectively. The intercalation current In,i in (56) is a function
of state and input, as seen from (1). Since solving In,i based on
the circuit requires all circuit elements to be state-dependent, a
gradient-free method is adopted here to iteratively approximate
rct,i and In,i, described as follows.

Step 1: Give all state-dependent circuit components based
on the initial system states, input current Iapp, and an ini-
tial guess of In,i = Iapp/N

pos,∀i ∈ Ipos and In,i =
−Iapp/N

neg,∀i ∈ Ineg.
Step 2: Calculate rct,i and RΣ,i according to (54)–(56).
Step 3: Solve the circuit in Fig. 1 for a new In,i.
Repeat Step 2 and Step 3 until In,i has converged.

B. State-Dependent Coefficients of the Heat Generation

RQ, VQ, and QQ are three state-dependent coefficients in
the units of resistance, voltage, and power (heat transfer rate),
respectively. The expressions of the coefficients are

RQ = RQ,rev +RQ,rxn +RQ,ohm

VQ = VQ,rev + VQ,rxn + VQ,ohm

QQ = QQ,rev +QQ,rxn +QQ,ohm

where

RQ,rxn =
∑

i∈Ipos∪Ineg

(KZSR
n,i )2RΣ,i

VQ,rxn =
∑

i∈Ipos∪Ineg

2KZSR
n,i I

ZIR
n,i RΣ,i

QQ,rxn =
∑

i∈Ipos∪Ineg

(IZIR
n,i )2RΣ,i

RQ,rev = 0

VQ,rev =
∑

i∈Ipos∪Ineg

KZSR
n,i T

(
∂U

∂T

)
i

QQ,rev =
∑

i∈Ipos∪Ineg

IZIR
n,i T

(
∂U

∂T

)
i

RQ,ohm = Rcol +Rsep
e +

∑
i∈I′

(KZSR
e,i+0.5)2Re,i+0.5

VQ,ohm =
∑
i∈I′

2KZSR
e,i+0.5I

ZIR
e,i+0.5Re,i+0.5

+

N tot−1∑
i=1

KZSR
e,i+0.5(Ue,i+1 − Ue,i)

QQ,ohm =
∑
i∈I′

(IZIR
e,i+0.5)2Re,i+0.5

+

N tot−1∑
i=1

IZIR
e,i+0.5(Ue,i+1 − Ue,i)

C. Model Parameters

The fidelity of the P2D-T model has been verified in many
existing works (see, e.g., [27]) and the procedure will thus
not be repeated in the present investigation. Instead, the model
parameters are obtained from the software GT AutoLion for
a 2.4-Ah NMC-Graphite cell as given in Table A1.
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