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Two-dimensional (2D) materials have attracted a significant amount of attention in the last two decades, primarily due to their
fascinating electronic and optical properties and their ability to be made extremely thin, down to a single atomic layer. 2D ma-
terials encompass a wide range of subgroups, including the graphene family, Xenes, transitional metal dichalcogenides (TMDC),
insulators and oxides, and provide access to a vast range ofmaterials properties. The inherent confinement of the physics to within
the layers of these materials leads to remarkable changes of their properties, opening their potential use in applications such as
catalysis, energy storage, nanoelectronics and optoelectronics. It is possible to deliberately tune their properties by carefully modi-
fying the atomic structure through control of attributes such as composition, phase, thickness, and strain. For many applications,
it is attractive to control these structural attributes, as the length scales decrease, within the layers to localize the interesting physics
and resulting property changes. To verify and more completely understand this localization, it is important to be able to charac-
terize the atomic structure of 2D materials with high spatial resolution and differentiate structural modifications.
Position-averaged convergent beam electron diffraction (PACBED) patterns hold awealth of structural information about crys-

talline samples [1, 2]. PACBED patterns are traditionally acquired by averaging the position dependent CBED patterns while
scanning an atomic resolution probe in a scanning transmission electronmicroscope (STEM) over at least one unit cell of the sam-
ple. The spatial averaging can be done by acquiring a single exposure diffraction pattern while quickly scanning the sample area,
or by collecting a 4D STEM data set and performing post-process averaging. Extracting information from PACBED patterns is
commonly done by finding the best match between an experimental pattern and a library of simulated patterns, either by visual
inspection [1] or by using a quantitative metric through least squares fitting [3, 4]. These methods have several shortcomings,
including comparison by eye being prone to user-bias, both methods being slow, and the fitting approach requiring the experi-
mental and simulated patterns to be directly comparable on a pixel-by-pixel basis. Recently, it has been demonstrated that ma-
chine learning and specifically convolutional neural networks (CNNs) can use PACBED patterns to determine sample
information such as sample thickness [5, 6].
In this work, we develop CNNmodels specifically for analyzing PACBED patterns of TMDC 2Dmaterials with the purpose of

determining various structural attributes. Simulated PACBED libraries are calculated using the frozen phonon multislice algo-
rithm implemented in the software Prismatic 2.0 [7] for samples up to 100 nm thick in monolayer (ML) thickness steps. The
CNNmodels are trained and implemented in Tensorflow. To create realistic training data sets like what would result from experi-
ments, we perform random rotations, translations, small field of view changes, and other geometric transforms to the simulated
patterns, and add noise according to a noise model calibrated using experimental data. These augmentations are performed on the
fly during the CNN training and may easily be extended to cover other realistic variations in experimental data, eliminating the
need to generate very large files with training data and enabling a larger number of training patterns.
Figure 1 shows simulated PACBED patterns from 2H MoS2, 3R MoS2 and 2H WS2 with thicknesses ranging from 10 to 165

MLs (∼100 nm). These patterns show distinct differences for a single phase at different thicknesses, for the same composition and
thickness but for different phases (i.e. 2HMoS2 vs. 3RMoS2), and for the same phase and thickness but for different compositions
(i.e. 2H MoS2 vs. 2H WS2). This highlights the possibility of determining thickness, phase, and composition using the features
within PACBED patterns of TMDCmaterials. To demonstrate that CNNs can use PACBED patterns to determine structural in-
formation about 2Dmaterials, we start with training a regressionCNNmodel to determine the thickness of 2HMoS2. Figure 2a-b
shows the relative and absolute error of this CNNmodel as a function of thickness. This initial result predicts that there could be
<1 ML thickness error in the CNN prediction at all thicknesses between 1 ML and 165 MLs. In this study we also train classi-
ficationCNNs to distinguish TMDCphase and composition, and train regressionCNNs to determine the tilt between the electron
probe and the sample’s c-axis. Additionally, to help design PACBED experiments and optimize CNN accuracy and precision, we
explore how the prediction performance is affected by various experimental parameters, including probe convergence angle and
diffraction camera length (CL) (Figure 3), as well as the effect of noise levels. Figure 3(a-c) show experimental energy-filtered
PACBED patterns from 2H MoS2 at an unknown thickness acquired using three different convergence angles. Figure 3(d-g)
show simulated PACBED patterns from 2H MoS2 with a 165 ML thickness acquired using four different convergence angles
and five different CLs. Figure 3 illustrates that significantly different information is present in PACBED patterns acquired with
different convergence angles and CLs, and therefore, these parameters could influence the CNN performance. This work
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demonstrates a method that can help characterize 2Dmaterial structure more completely andmore accurately with a spatial reso-
lution down to 1 unit cell. In some situations, this method could help identify structural details that are ambiguous or difficult to
resolve using other methods, such as imaging, as well as possibly require a smaller total electron dose which may open measure-
ments on beam sensitive 2D materials [8].

Fig. 1. Simulated PACBED patterns from (a-e) 3R MoS2, (f-j) 2HMoS2 and (k-o) 2HWS2 with thicknesses ranging from 10MLs to 165 MLs along [0001].
These simulations used a convergence semi-angle of 26.69 mrad. The ML thicknesses are 6.13, 6.15, and 6.17 Å for 3R MoS2, 2H MoS2 and 2H WS2,
respectively. For all structures, 165MLs is approximately equivalent to 100 nm thickness. All the patterns are displayed on the same square root intensity
scale. The inset patterns are cropped versions with modified intensity ranges to enhance high intensity visibility. The inset intensity ranges are the same
for the patterns of the same thickness. The scale bar in (a) is 25 mrad and is true for (a-o).

Fig. 2. (a) Absolute and (b) relative error in thickness determination by the regression CNN model using unseen test data.

Fig. 3. (a-c) Experimental PACBEDpatterns of 2HMoS2 using a convergence semi-angle of (a) 6.85, (b) 19.08 and (c) 26.69mrad. (d-g) Simulated PACBED
patterns of 2HMoS2with a thickness of 165MLs (∼100 nm) using a probe convergence semi-angle of (d) 6.85mrad, (e) 13.32mrad, (f) 19.08mrad and (g)
26.69 mrad, and five different camera lengths (CL 1-5). Each column is a separate CL. CL 1 is similar to the one used for the experiments in (a-c). The
sample thickness of the experiment and simulation are similar. Patterns are displayed on a square root intensity scale. The scale bars in the first row are all
25 mrad and are true for all the patterns of the same CL in the same column.
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