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A B S T R A C T

Time-consuming and costly computational analysis expresses the need for new methods for generalizing
multiscale analysis of composite materials. Combining neural networks and multiscale modeling is favorable
for bypassing expensive lower-scale material modeling, and accelerating coupled multi-scale analyses (FE2). In
this work, neural networks are used to replace the time-consuming micromechanical finite element analysis
of unidirectional composites, representing the local material properties of yarns in woven fabric composites
in a multiscale framework. Leveraging the fast multiscale data generation procedure, we presented a second
neural networks model to estimate the elastic engineering coefficients of a particular weave architecture based
on a broad range of dry resin and fiber properties and yarn fiber volume fraction. As an outcome, this paper
provides the user with a generalized, neural network-based approach to tackle the balance of computational
efficiency and accuracy in the multiscale analysis of elastic woven composites.
1. Introduction

Efficient, simulation-driven design of woven fabric composites re-
quires a model capable of considering different fiber types and matrix
systems such that one can tailor materials and find the optimized
trade-off between the properties and cost. An absolute requirement for
such a model is that it should efficiently and accurately predict the
elastic behavior from constituent properties and microscale informa-
tion. Multiscale computational methods, often based on computational
homogenization, have therefore been established to address the com-
plexity of modeling woven composites (Ivanov and Lomov, 2020).
Nevertheless, a generic model with low computational cost is needed
to observe the possible combination of microscopic features based on
different loading cases and mesoscale weave architectures.

The elastic behavior of woven composites has been successfully
assessed using both analytical procedures, cf. Shokrieh et al. (2017)
and Adumitroaie and Barbero (2011) and numerical methods, such
as mesh-free methods (Wen and Aliabadi, 2009) and finite element
analysis (Melro et al., 2012; Varandas et al., 2020). In all cases, it is
assumed that a material unit cell, representing the repetitive pattern
of the reinforcement weave, can represent the overall behavior of the
composite. For this unit cell, the yarns properties are usually computed
based on a micromechanical analysis of an equivalent unidirectional
(UD) composite at each local point. In this regard, governing microme-
chanical features, including fiber volume fraction, fiber dimension and
orientation distribution, constitutive properties of the matrix and fiber
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are considered. On the one hand, analytical micromechanical models
have been developed for fast estimation through applying some sim-
plifying assumptions and accepting a rather high level of error with
respect to the actual physics (Heidari-Rarani et al., 2018; Aboudi et al.,
2013). On the other hand, high-fidelity models based on the finite-
element method (Melro et al., 2012; Varandas et al., 2020; Bai et al.,
2015) provide higher accuracy, although at the expense of a higher
computational cost.

Data-driven computational analysis is beneficial for exploring a
multiscale, high-dimensional design space taking advantage of data
to find the best design. Among different data-driven analyses, ma-
chine learning-enhanced frameworks utilize large data sets to find
optimal designs or constitutive relations based on microscale quan-
tities (Thomas et al., 2022). Among others, the model-free approach
solves the boundary value problem directly using data, instead of
relying on constitutive relations for the lower scale constituents in a
multiscale framework (Karapiperis et al., 2021; Wu et al., 2021; Peng
et al., 2020).

Artificial neural networks (ANN), as a category of machine learning
algorithms, have recently shown the promising capability to integrate
multiscale mechanical features and predict mechanical behavior (Liu
et al., 2021) by minimizing a loss (cost) function which essentially is the
difference between experimental observations and network predictions.
Recently, physics-informed neural networks have been introduced to
avoid the nonphysical behavior of the networks, e.g. models that
violate thermodynamic principles (Bischof and Kraus, 2021). In this
vailable online 21 August 2023
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approach an ANN is trained with an extended cost function that also
includes physical balance laws (Linka et al., 2021; Vlassis and Sun,
2021; Haghighat et al., 2021). However, Problems arise from multi-
phase materials like composites when the differentiation of variables
is direction-dependent, making physics-informed neural networks de-
manding for anisotropic materials. Instead, surrogate modeling with
ANNs is demonstrated for multiscale, inhomogeneous, or anisotropic
applications (Mozaffar et al., 2018). The motivation is to use good gen-
eralization properties of neural networks for unseen data. In addition to
the experimental data available, different developed techniques in com-
putational mechanics can generate the necessary data set for training a
neural network. For example, mean-field models can be applied to short
fiber composites (Friemann et al., 2023), and full-field finite elements
or Fast Fourier Transform models for crystal plasticity (Bonatti et al.,
2022).

Surrogate modeling is employed to accelerate multiscale modeling
and replace the finite-element-based lower-scale model with a data-
based surrogate model for a particular material system (Yan et al.,
2020; Furtado et al., 2021). Following the study by Mentges et al.
(2021) on short fiber reinforced composites, we herein present a
machine-learning framework to estimate elastic properties of woven
composites with the aim to replace the time-consuming multiscale FE
simulations. As a starting point, a series of statistical analyses have been
conducted to obtain the required representative volume element size.
Fiber volume fraction, fiber and matrix stiffness and Poisson’s ratios are
considered input parameters. Further, to develop the training set for
a micromechanical ANN, an automatic process is arranged to generate
3D unidirectional representative volume elements (RVE)s, then analyze
these FE simulations to obtain homogenized stiffness quantities. Ac-
cordingly, an ANN model is trained and validated for the microscopic
FE simulations. The micro-ANN model, which is a feed-forward multi-
layer perceptron neural network, is then used at the mesoscale level
to compute the elastic properties of a plain-weave fabric composite
in a high-fidelity mesoscale model. Based on mesoscale predictions, a
second feed-forward ANN is trained for a given weave architecture to
estimate the resulting elastic behavior of woven composite based on
the different combinations of fiber and matrix materials. The two ANN
models are applicable for a vast combination of fiber volume fractions
and constitutive properties. A schematic representation of the data flow
and the two micro- and meso-ANNs are presented in Fig. 1.

The remaining of the paper is structured as described in the fol-
lowing. Design of experiments is explained in Section 2. Computational
analysis of each design point through the automatic process of data gen-
eration and analysis is detailed in Section 3 for the micro-mechanical
and the mesoscale model. The artificial neural network model is ex-
plained thoroughly in Section 4. A comprehensive study is done in
Section 5 on the interpolated results and algorithms operation. Finally,
the concluding remarks are provided in Section 6.

2. Design of computational experiments

It is necessary to construct a large and reliable design set for training
an ANN model. One approach is to generate such a data set through
physical experiments. However, in many cases, it is infeasible or even
impossible to generate or have access to enough experimental data.
An example of such a case is the prediction of homogenized stiffness
properties of unidirectional composites for a very wide range of com-
binations of fibers and matrix materials at various volume fractions.
An alternative is then to generate data by conducting a large number
of micromechanical simulations based on a relevant range of input
features. In this study, homogenized elastic properties are obtained via
computational homogenization (3.1) of microscopic RVEs, subjected to
unit strains through periodic boundary conditions.
2

Table 1
Microstructural parameters space for micromechanical simulations (Barbero, 2011;
Herakovich, 1998).

Parameter Minimum Maximum

Matrix stiffness 𝐸𝑀 (MPa) 3500 10,000
Matrix Poisson’s ratio 𝜈𝑀 (−) 0.25 0.49
Fiber stiffness 𝐸𝐹 (MPa) 69,000 786,000
Fiber Poisson’s ratio 𝜈𝐹 (−) 0.20 0.40
Fiber volume fraction 𝑉𝑓 (%) 30 60

2.1. Input features

An important step is to do feature engineering to find out which
input features should be considered in the data set generation pro-
cess. Three different descriptors are considered: (I) micro-and/or meso-
structure geometry, which relates to the description of the represen-
tative volume element, (II) material properties of both matrix and
fibers, and (III) the state of applied deformation. Then, the follow-
ing properties are defined in order to characterize a unidirectional
composite micro-structure: elastic properties of matrix material (𝐸𝑚,
𝜈𝑚); elastic properties of fiber (𝐸𝑓 , 𝜈𝑓 ); fiber diameter (𝑑𝑓 ) and fiber
volume fraction (𝑉𝑓 ). These features are also considered as the input
variables in the mesoscale model representing the unit cell of the
woven composite. For this level, we only consider a constant mesoscale
geometry. Although more realistic material properties can easily be
employed in the framework, in this study, we have used isotropic
elasticity for both matrix and fibers (Sections 3.2 and 3.3). Considering
that the present study aims to determine only the elastic properties of
composites, no debonding between matrix and fibers is considered.

The RVE size plays an important role in the statistical representation
of heterogeneous material behavior. Different RVE sizes are suggested
for UD composites in the elastic domain (see, e.g. Melro et al., 2012; Bai
et al., 2015). In the present study, a rectangular cuboid RVE with equal
width and height is chosen. Then, RVE width is increased with respect
to fiber diameter until convergence in elastic properties is achieved.
Fig. 2 shows the convergence of homogenized engineering stiffness
components while the RVE width and height (perpendicular to fiber
direction) are seven times larger than the fiber diameter. Similarly,
the RVE length is studied. A constant value of 70 μm is adopted, as
in an earlier study (Melro et al., 2012) it has been determined to be
sufficient to ensure that the stiffness components are independent of
the RVE length. It should be mentioned that an RVE with a depth
of one element though the thickness (along the fiber) has the same
homogenized properties. CPU time is approximately seven times faster
for the one-element sample simulations.

For generating the training data, different approaches are available.
Here, we pick the high-fidelity 3D FE model to capture the properties
of RVE while assuming some simplification (e.g., ignoring the effect of
fiber misalignment on longitudinal compressive behavior) with the aim
of low computational cost. Table 1 summarizes the defined parameter
space. In Section 3 a detailed simulation process for both micromechan-
ical and mesoscale RVE analyses is discussed. The ranges of parameters
are extracted in a sense to embody composite components ranging from
carbon to glass to natural fibers (Barbero, 2011).

2.2. Sampling technique

Having uniformly distributed input features is a critical factor for
proper training of an ANN model (Géron, 2019). It is also important
to avoid a regular grid of sample points, since in that case there
would be multiple coincident point projections in the different hyper-
planes, which may very well deteriorate the machine learning process
on high-dimensional input features (Bessa et al., 2017). Effectively
exploring the design space requires a consistent data set to reach a good
correlation between regular grid and random distribution. Hence, a
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Fig. 1. A schematic representation of data flow and a summary of networks’ architectures for both the micro-ANN and meso-ANN models.

Fig. 2. Dependency study of engineering stiffness components to RVE dimensions: (a) longitudinal stiffness, (b) transverse stiffness, (c) through the thickness stiffness, and (d)
shear stiffness.



International Journal of Solids and Structures 282 (2023) 112452E. Ghane et al.
Fig. 3. Scatter plot for different pairs of parameters: (a) matrix and fiber Poisson’s ratio; (b) fiber and matrix Young’s modulus; (c) fiber stiffness and fiber volume fraction.
proper sampling technique facilitates achieving a random and uniform
distribution with a reduced amount of data, enabling us to decrease the
cost of simulations.

Random sampling and stratified sampling usually contains some
clusters and gaps (Burhenne et al., 2011). To address it, Latin hyper-
cube sampling is introduced to divide the design space dependently
between features and generate samples in the new sub-intervals. This
method can guarantee a uniform and random distribution if and only
if enough sample points exist. Nevertheless, such sampling encounters
difficulties with small amount of data. In this regard, Sobol sequence
sampling (Saltelli et al., 2010) belongs to the family of quasi-random
sampling (also known as low-discrepancy sequences) commonly used to
perform uncertainty and sensitivity analyses. Sobol sequence sampling
method is a class of Latin hypercube sampling with a key distin-
guishing point. The sample values are chosen under consideration of
the previously sampled points and thus avoiding the occurrence of
clusters and gaps even with a portion of the data (Burhenne et al.,
2011). It generates multiple parameters as uniformly as possible over
the multi-dimensional parameter space (Renardy et al., 2021; Saltelli
et al., 2010; Dige and Diwekar, 2018). In fact, Sobol sequence sampling
is the only one among other pseudo-random space-filling algorithms
which consider predetermined sample points in the design space. A
good distribution of parameters without clusters or gaps is obtained for
the micromechanical analysis, as explained in Fig. 3 for three pairs of
parameters. A convergence study has performed on the tasks’ required
data points, and 400 data points were found appropriate.

3. Data generation with finite element simulation

For generating the required data sets for both microscale and
mesoscale training, computational homogenization is used on both
scales. Thereby, it is considered that the homogenized results obtained
for a unidirectional composite locally characterize the homogenized
properties of the yarns. The large size of the modeling space (due
to the range of different microstructural parameters) and complexity
in mesoscale geometry make RVE generation an cumbersome process
if the aim is to cover the whole parameter space on both scales.
Therefore, in this work only micromechanical features are allowed to
vary, while the geometrical features on the mesoscale are constant. The
homogenized yarn properties are then considered as the input for the
mesoscale homogenization.
4

3.1. Computational homogenization

Full-field homogenization can be used to predict the macroscopic
response of micro-structurally heterogeneous materials by simulating
a numerical RVE of the material micro-structure (Geers et al., 2010).
Initially, a micro-structural RVE is defined, based on the assumption
that constituents have a known constitutive behavior. The macro-
scopic response is obtained by volume averaging of the response of
micro-structural points over the domain of the RVE (Geers et al., 2010).

In this study, computational homogenization is used to find the
constitutive relationship between the macroscopic strain (𝝐) and the
macroscopic stress (𝝈). Elastic material properties can be obtained from
the stiffness tensor (𝑪), where 𝝈 = 𝐂 ∶ 𝜺. To guarantee deforma-
tion equivalence across the scales, periodic boundary conditions are
imposed on the boundaries of the analyzed RVEs. For every coupled
node pair, constraints are used in the finite element simulation to link
the displacements of each pair of the opposite cube faces as

𝐮+ − 𝐮− = 𝜖 ⋅
(

𝐱+ − 𝐱−
)

. (1)

here, superscripts + and − indicate the image and mirror (opposite)
faces of the RVE, with node-pair coordinate 𝑥+ and 𝑥−. The homoge-
nized stress 𝜎̄𝑖𝑗 is then obtained as the volume-averaged microscopic
stress 𝜎𝑖𝑗

𝜎̄𝑖𝑗 =
1
𝑉 ∫𝑉

𝜎𝑖𝑗𝑑𝑉 (2)

The volume averaged strain (over the RVE domain) has to be equal
to the macro-strain Svenning et al. (2016). Elastic properties is then
obtained from the homogenized stiffness tensor (relating homogenized
stress to homogenized strain). In practice, all elastic properties can be
determined from the Voigt matrix representation of the elastic stiffness
tensor. This Voigt stiffness matrix is straightforwardly obtained by
subjecting the RVE to six individual load cases, with one non-zero strain
component per load case. The resulting stresses from each load case
then corresponds to the corresponding column in the Voigt stiffness
matrix.

3.2. Micromechanical analysis

In this work, Digimat-FE (2020) is used to create the geometry
and spatial discretization of UD RVEs for imposing periodic boundary
conditions, and for obtaining the homogenized properties. In the mi-
cromechanical model, prism elements with triangular cross-section are
used throughout the RVE. The geometry of a UD RVE and its mesh is
shown in Fig. 4.
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Fig. 4. Spatial discretization of a unidirectional representative volume element (RVE):
Reinforcements (red) are randomly distributed in the matrix (blue).

Compared to the diameter of the fiber, the element size is set as
six times smaller in micro-RVE samples. The effective element size can
be smaller in some locations (e.g., close to curved edges Digimat-FE,
2020.) No element smaller than 3% of the fiber diameter is allowed
to be generated (the minimum element size). The internal coarsening
algorithm in Digimat-FE mesher increases the element size inside the
volume away from the bounding faces and edges. Additionally, the
curvature control algorithm reduces the size of elements on curved
edges and faces (Digimat-FE, 2020). Furthermore, as a result of sharing
the nodes algorithm at interfaces, a continuous mesh will be maintained
across phase interfaces, resulting in a reduction in the number of nodes
required. As an example, for a volume fraction of 40%, the thick
and one-element thickness RVEs contain 2944 and 85 376 conforming
(hex-dominated) triangle elements with 3100 and 46 500 nodes, respec-
tively. The total CPU time required to evaluate all elastic parameters for
thin and thick microscale samples (mentioned in Section 2.1) is around
40 and 290 s.

To automate the data generation, a Python script is developed to run
Digimat in batch mode and thereby perform UD RVE generations and
simulations automatically (considering different fiber volume fractions
and different constitutive properties of the fibers and matrix). Simu-
lations are conducted with applied unit strains in normal and shear
directions to obtain all elastic properties. The script then reads the
simulation results and stores them in a file. Each data point refers to a
unidirectional RVE generation, meshing and finite-element simulation,
which takes on average 10 min in an Intel(R) Core(TM) i7-10610U CPU
system.

3.3. Mesoscale analyses

In the next step, a mesoscale plain woven RVE is generated using
the geometric textile modeling software package TexGen (Brown and
Long, 2021). A textile weave model is created with elliptical yarn cross-
sections and with a yarn spacing of 10 mm, a yarn width of 8 mm,
and a fabric thickness of 2 mm. Furthermore the reduced-order C3D8R
Abaqus hexahedral continuum element is used to mesh the mesoscale
RVE. A mesh sensitivity analysis is performed to ensure the output is
independent of the mesh size. There are 100*100 elements in the plane
and 50 elements along the thickness of the mesoscale RVE.

As mentioned above, the homogenized micromechanical properties
from the micromechanical analysis are used as the equivalent material
properties of yarns in the mesoscale analyses. As the unit cell of a
plain woven composite is in-plane periodic, the same homogenization
technique as that discussed in Section 3.1 is applicable also to these
5

Fig. 5. Equivalent strain distribution in yarns of the woven composite RVE.

Fig. 6. Micro-ANN RMSE of the validation set vs. the number of training parameters
for different numbers of hidden layers.

mesoscale simulations. For the implementation, TexGen has the ca-
pability to automatically define periodic boundary conditions and the
finite element discretization, thereby creating a ready-to-run simulation
model. We used this option in TexGen to create a model including PBCs,
which was thereafter exported to an Abaqus FE solver format.

Simulations are conducted with applied unit strains periodic bound-
ary conditions to obtain all elastic properties. The total CPU time
for the mesoscale sample is 2930 s in an Intel(R) Core(TM) i5-6500
CPU @ 3.20 GHz system. A sample of the von Mises equivalent strain
distribution

(

√

2
3 𝜖

𝑑𝑒𝑣 ∶ 𝜖𝑑𝑒𝑣
)

where 𝜖𝑑𝑒𝑣 is the deviatoric strain tensor,
on the mesoscale yarns is shown in Fig. 5.

4. ANN model

The micro- and meso-scale databases prepare the ground to use su-
pervised learning to train two feed-forward neural networks to predict
both yarn and composite ply properties. The motivation to spend extra
efforts to use somewhat complex neural network models rather than
more straightforward machine learning methods, like logistic regres-
sion, is that the number of input and outputs in material engineering
studies can expand considerably. A simple regression would not be able
to handle a large number of features (Géron, 2019), while no matter
how many features govern the problem, ANN can draw reasonable
relations between them. The critical steps of pre-processing the data,
training, and utilizing the network are presented in what follows.



International Journal of Solids and Structures 282 (2023) 112452E. Ghane et al.

4

n
n
a
c
c
o
t
o
T

𝑏

T
i
a
r
i

R

A
l

𝑉

T
t
t

Fig. 7. The effect of extending the data set on the RMSE convergence of micro-ANN.
𝑛

𝐶

T
s
i
a
d
o
h

T

𝛿

T
b
(
r

𝛿

𝛿

v
i

.1. Feed forward neural networks

Feed-forward neural networks are the most common ANNs in which
eurons in one particular layer are connected in one direction to all
eurons in the next layer. The connection strengths between layers 𝑙−1
nd 𝑙 are collected in a connectivity matrix 𝐖(𝑙), where 𝑊 (𝑙)

𝑖𝑗 is the
onnection from neuron 𝑗 in the preceding layer to neuron 𝑖 in the
urrent layer. The total input to neuron 𝑖 is the weighted sum of the
utput 𝑉 (𝑙−1)

𝑗 from all 𝑁 neurons in the previous layer. The input is
hen subtracted by a threshold value 𝜃(𝑙)𝑖 , which models the threshold
f real neurons that the input signal must exceed for the neuron to fire.
he input to the neuron is thus given by

(𝑙)
𝑖 =

𝑁
∑

𝑗=1
𝑊 (𝑙)

𝑖𝑗 𝑉 (𝑙−1)
𝑗 − 𝜃(𝑙)𝑖 . (3)

his quantity is referred to as the local field of neuron 𝑖 in layer 𝑙. The
nput is then passed through a nonlinear function 𝑔(⋅) referred to as the
ctivation function, which models the response the neuron has to the
eceived input. To tackle over-fitting problem the rectified linear unit
s chosen as activation functions (Mehlig, 2021):

eLU(𝑥) =

{

𝑥 if 𝑥 > 0
0 otherwise.

(4)

pplying the activation function, we obtain the output of neuron 𝑖 in
ayer 𝑙 as
(𝑙)
𝑖 = 𝑔(𝑏(𝑙)𝑖 ) where 𝑙 = 1, 2,… , 𝐿. (5)

he training process is basically a minimization problem of cost func-
ion 𝐶, where (𝑡𝑖 − 𝑉 (𝐿)

𝑖 )2 is the mean square error of target values and
6

he neurons of the network’s last layer. The summation is over all the |
sample points in the test set.

= 1
𝑛

𝑛
∑

𝑖=1
(𝑡𝑖 − 𝑉 (𝐿)

𝑖 )2 (6)

he output of last layer V(𝐿) is given by activation functions. For the
ake of notation simplicity, the neurons indices, (𝑖, 𝑗), are not written
n the following. Backpropagation is used in ANN to update weights
nd thresholds in forward direction and errors in backward direction
uring the training process. The network first computes the gradients
f neurons in output layer with respect to all neurons in all preceding
idden layers as in Eq. (7).

𝜕𝑉 (𝐿)

𝜕𝑉 (𝑙)
=

𝑙+1
∏

𝑘=𝐿
[𝑤(𝑘)𝑔′(𝑏(𝑘))] (7)

hen the network computes the error 𝛿(𝑙)𝑖 using Eq. (8) as

(𝑙) = [𝑡 − 𝑉 (𝐿)(𝑥)]𝑔′(𝑏(𝐿))
𝑙+1
∏

𝑘=𝐿
[𝑤(𝑘)𝑔′(𝑏(𝑘−1))]. (8)

he error in each layer (𝑙) is used to update weights and thresholds
etween each neurons by adding 𝛿𝑤(𝑙) and 𝛿𝜃(𝑙), defined in Eqs. (9) and
10), to the previous weights and thresholds considering the learning
ate (𝜇):

𝑤(𝑙) = 𝜇𝛿(𝑙)𝑉 (𝑙−1), (9)

𝜃(𝑙) = 𝜇𝛿(𝑙). (10)

Weights and thresholds are usually initialized as Gaussian random
ariables with mean zero and variance one over the number of neurons
n the preceding layer (Mehlig, 2021), that give rise to large local field

𝑏| at the beginning of training. Large local fields and the form of
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Fig. 8. Micro-ANN prediction on unseen data vs. (ground truth) expected UD RVE engineering stiffness coefficients.
activation functions cause exponentially small derivation of activation
function 𝑔′(𝑏). Therefore, the error 𝛿(𝑙) in Eq. (8) or gradients (𝛿𝑤(𝑙) and
𝛿𝜃(𝑙)) vanishes quickly for earliest hidden layers (as 𝑙 decreases). The
result will be a slow training known as vanishing gradients decent. To
address this issue, one needs to feed the network with the whole train-
ing data-set several times, called an epoch each time, and exploit the
data set. On the other hand, more epochs may cause over-fitting prob-
lem for the network. The difficulty of designing and training an ANN
is usually related to minimization of the cost function (corresponding
to convergence in the cost function) without facing over-fitting.

4.2. Scaling

Differences in the magnitudes across input variables may increase
the difficulty of the modeled problem. Large input values may lead
to an ANN model with large weight values. The larger the weights
are, the more unstable the model is, resulting in a worse training
performance (Géron, 2019). Large input values also causes higher error
values and weak convergence. Therefore, it is essential to scale the
input parameters. The two most used methods are normalization and
standardization. Normalization maps data within the range of 0 to 1,
based on each feature’s minimum and maximum values. Standardiza-
tion re-scales the distribution of values so that the mean of observed
values is 0 and the standard deviation is 1 (Géron, 2019). Without
normalization, the objective function gives a higher priority to higher
values. So with Young’s moduli being several orders of magnitude
7

larger than other quantities, the Poisson’s ratios are probably neglected
in the ANN learning process.

In this work, Scikit-learn (Buitinck et al., 2013), an ML library for
the Python programming language, is used to normalize both input
and output data. All the features were transformed using the respective
mean and variance from the training set. Furthermore, the test set is
scaled with the mean and variance of the training set, since we aim to
hide the exact feature of the test set from the model and estimate the
model performance on the test (unseen) data. Finally, each parameter
in the training data set is normalized based on its own range of values.
So the highest value is then equal to 1, and the lowest is equivalent to
0.

4.3. Neural networks design

Using the open source machine learning library, Keras (Chollet,
2021), a feed-forward neural network is considered sufficient due to the
problem linearity (Mentges et al., 2021). As discussed in Section 2.1,
both the microscopic and mesoscopic ANN models contain 5 inde-
pendent input variables, the fiber and matrix constitutive properties,
and fiber volume fraction. In the output layer, 6 and 8 independent
variables for the micro- and meso-ANN, respectively, are considered for
describing the composites’ engineering stiffness variables (see Fig. 1.)
The data set is then split randomly into 80% for training and the
rest for testing the ANN model. After each epoch (feeding once the
whole training set) the Root Mean Squared Error (RMSE) is calculated
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according to Eq. (11) between the output values in the database 𝑦data,𝑖
and the ANN model predictions 𝑦model,𝑖.

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑦data,𝑖 − 𝑦model,𝑖
)2. (11)

Using excessively complex configurations can adversely affect the
model’s efficiency due to vanishing and exploding gradients in the
back-propagation process (Mehlig, 2021; Zobeiry et al., 2020; Géron,
2019). Some tuning techniques, e.g. the grid-search hyper-parameter,
are suggested to find the optimal number of neurons and hidden
layers (Mentges et al., 2021). In this study, for the purpose of reaching
an accurate ANN model, a variety of architectures, from very simple
to rather complex networks, are examined. In all ANN architectures,
an equal number of hidden neurons are assumed for hidden layers.
Starting from networks consisting of 1 hidden layer and 16 neurons, we
systematically increased them to 5 hidden layers with 128 neurons until
the ANNs accurately captured the expected response at both scales.
Fig. 6 illustrates the effect of adding more hidden layers and neurons
to the micro-ANN model. As can be seen, there is a slight increase
in the generalization error (RMSE on the test set in this case) in the
network with five hidden layers and 128 hidden neurons in each layer
(when the number of training parameters is increased from 17 544 to
67 848). Thus, the networks with the lowest RMSE before observing
over-fitting are selected. In this regard, The microscopic and meso-
scopic ANN models consist of 4 and 3 densely connected layers, with
64 nodes using the max(0,x) (ReLu) activation function. Furthermore,
the Adam algorithm (Kingma and Lei, 2015) is adopted for parameters
update with the learning rate of 1e−5 for both the microscopic and
mesoscopic ANN models after comparing the convergence time and
minimum RMSE. The minimum RMSE on the validation set with this
approach is found as 0.043978 and 0.030215 for micro- and meso-ANN,
respectively.

5. Results and discussion

This section compares the obtained results from microscale and
mesoscale ANNs with finite element simulations. A further discussion
on the influence of hyperparameters and features is also provided.

5.1. Micro-ANN results

We utilize the Sobol sequence technique as an optimized way to
explore the design space with a limited number of training data.
Therefore, we started by generating a limited number of data points
and performed an initial training of the network. Checking the residual
errors, we performed more FE simulations and supplied the network
with additional data points. Finally, fine-tuning the hyperparameters
(i.e., the number of hidden layers and neurons) were performed. Fig. 7
shows the effect of extending the data set size from 100 to 400 samples
on the training convergence of the network.

Results show that around 300 data points are enough for the net-
work to converge in a reasonable number of epochs without over-fitting
(early-stopping technique guarantees that the loss value for the vali-
dation set is converged to a value close to zero and is not increasing
for a certain number of epochs) to predict elastic properties of the
UD composite. Moreover, The RMSE of the trained network on the
validation set is 0.041 using 300 data point. As it can be seen in Fig. 7
the curves of the training and validation intersect on graph (c). It is
not impossible that the RMSE of the test set will be slightly lower than
that of the training set. Small databases are particularly susceptible
to such a rare event. While the Sobol sampling technique avoids an
unbalanced data set, and there is no dropout or augmentation in the
training process (Mehlig, 2021), it is possible that with only 300 data
points the validation data points were selected by chance in such a way
8

that they are too easy to predict by the network. By performing k-fold
Fig. 9. Micro-ANN residuals of predictions vs. expected values of mesoscale properties
for the test (unseen data) set. The marginal graph also indicates that the distribution
of residuals is close to normal.

Fig. 10. Meso-ANN convergence on loss and root mean square error for both validation
and training sets.
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Fig. 11. Mesoscale ANN prediction vs. ground truth (expected) engineering stiffness coefficients for the test (unseen data) set.
cross-validation (Géron, 2019) in the training process, we ensured that
there was no systematic discrepancy in the loss or RMSE values. Graph
(a) with only 100 data points, however, is systematically observed to
have a lower RMSE on the test set, indicating an insufficient data set. To
reduce the deviation of predictions from the test set and reach smaller
RMSE on the validation set, 100 more data points are generated and fed
into the network. The validation RMSE of the trained micro-ANN on the
final data set with 400 data points is 0.034. The rest of the results are
provided by using 400 data points for training the micro- and mesoscale
neural networks.

The obtained engineering stiffness coefficients of the micromechani-
cal model together with the results obtained from the micro-ANN model
are shown in Fig. 8. Assuming ‘‘1’’ as the fiber direction and ‘‘2–3’’ as
two directions perpendicular to the fibers, longitudinal stiffness (𝐸11),
transverse (𝐸22), shear moduli (𝐺12 and 𝐺23), and Poisson’s ratios (𝜈12
and 𝜈23) are compared against the micromechanical FE predictions, for
the test set. It is seen that the ANN model provides good predictions
for the elastic modulus.

For the case with a single element through the thickness, the FEM
simulation of the microscopic RVE takes more than 40 s (approximately
7 s for each homogenized elastic parameter), compared to the trained
ANN model which predicts all engineering material properties simulta-
neously in less than a second. Although the FEM simulations depend on
many parameters but for our setup, we could observe approximately a
40-fold decrease in the computational time required to evaluate elastic
engineering properties at the microscale.

Errors scatter plot of residuals of the micro-ANN model with respect
to the ground-truth values are presented in Fig. 9. Less than 20% error
is observed with 95% confidence interval.
9

5.2. Meso-ANN results

The micro-ANN trained to predict the micromechanical behavior of
unidirectional composites has been used then to predict local material
properties of yarns in a woven composite. Following the microme-
chanical study, a total of 400 mesoscale data points are considered.
A second ANN is trained on 80% of the training data based on the
micromechanical features and the engineering elastic properties of
woven RVE computed from finite element analysis. Training results
for the most optimized meso-ANN model, with three hidden layers
including 64 hidden neurons each, is summarized in Fig. 10. Results
in Fig. 11 show a good agreement between the predicted values by
meso-ANN and the output of FE simulations of the mesoscale woven
RVE. Scatter plot of residuals with respect to true values are presented
in Fig. 12. There, it can be seen that the predictions have a maximum
error of less than 10% when compared to true values with a confidence
interval of 95%. Furthermore, it can be concluded that the residual
distribution is close to normal with a mean of less than 0.1 and standard
deviation presented in Table 2. The error distributions indicates that
the model captured the predictive information, and what left behind
(residuals) is stochastic (i.e., unpredictable).

6. Conclusions

In this study, artificial neural networks are employed for efficient
and accurate prediction of elastic properties of woven composites as
a function of varying fiber and matrix properties and micro- and
mesoscale characteristics, such as local fiber volume fraction and weav-
ing pattern (the latter is kept as fixed in the current paper). An
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Fig. 12. Meso-ANN residuals of predictions vs. expected values of mesoscale properties
or the test (unseen data) set. Marginal graph also indicates that the distribution of
esiduals is close to normal.

Table 2
Standard deviation of residuals for the meso-ANN.

Mesoscale properties STD [%]

𝐸11 6.70
𝜈12 6.94
𝐺12 4.70
𝐸33 11.48
𝜈23 2.19
𝐺23 3.88

automatic process has been developed to create the database for train-
ing and validating the micromechanical and mesoscale neural network
models based on finite element analysis. More specifically, both the
microscale and mesoscale data are generated via computational homog-
enization on two sets of 3D Representative Volume Elements represent-
ing each scale. Based on the data generated, two feed-forward neural
networks concerning micromechanical UD composites and mesoscale
woven composites were then trained and validated. 4 hidden layers
for micro-ANN and 3 for meso-ANN, both with 64 nodes in each layer
equipped with ReLu activation functions found proper.

The ANN model predictions compare well with microscale and
mesoscopic data, which demonstrates the predictive capability of the
models. Based on the current setup, the CPU time required to evaluate
10
all elastic parameters using the finite element method is approximately
40 (for samples with one element through the thickness) and 2390 s
per sample for the micro- and the mesoscale RVEs, respectively. The
developed multiscale neural network model is capable of predicting the
parameters in less than a second. Thus, the developed ANN models can
be used both for fast and accurate calculation of the elastic properties
of a wide range of UD composites with varying constituent and fiber
volume fractions, as well as for the prediction of similar properties for
woven fabric composites. Although we made the restriction to a single
weave type for demonstration purposes, a natural extension of the work
is to also consider different ranges of geometrical features of woven
RVEs.
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