

Thesis for The Degree of Doctor of Philosophy

Expression in Live Coding: Gestural
Interaction for Machine Musicianship

Georgios Diapoulis

Department of Computer Science and Engineering
Chalmers University of Technology | University of Gothenburg

Gothenburg, Sweden, 2023

Expression in Live Coding: Gestural Interaction for Machine Musi-
cianship

Georgios Diapoulis

© Georgios Diapoulis, 2023
except where otherwise stated.
All rights reserved.

ISBN 978-91-7905-926-2
Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 5392.
ISSN 0346-718X

Department of Computer Science and Engineering
Division of Interaction Design and Software Engineering
Chalmers University of Technology | University of Gothenburg
SE-412 96 Göteborg,
Sweden
Phone: +46(0)31 772 1000

Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2023.

To my parents

i

Expression in Live Coding: Gestural Interaction for
Machine Musicianship
Georgios Diapoulis

Department of Computer Science and Engineering
Chalmers University of Technology |University of Gothenburg

Abstract

This thesis is centered on the performance practice of musical live coding, which
can be described as on-the-fly decision-making for computer music performance
and blurs the lines between programming languages and computer interfaces.
I specifically focus on live coding as a human activity based on serial skilled
actions, and I discuss how we can interact gesturally with interfaces that are
modified dynamically. I develop a system to address how to live code using con-
tinuous gestural interactions, and examine an unusual strategy of information
processing which centers on a bottom-up approach. I then present a theoretical
account of sensorimotor control in live coding, which examines pre-reflective
processes during performance. Two more theoretical contributions address
bodily gestures in various performance systems by presenting a conceptual
framework, and an additional study presents a conceptual tool for developing
agent-based systems in live coding. Observations of performance practices
and systems are employed throughout the thesis to examine how different
practitioners may use the systems, and what conceptual abstractions can be
inferred. The question of how to facilitate creativity is discussed from both a
theoretical and a practical perspective, touching on how the resultant newly
produced knowledge may be transferred to practitioners. A particular focus is
on live performance, visualization, and both human and machine listening.

The thesis findings present (i) visual and conceptual representations of
live coding validated by cognitive mechanisms and cognitive paradigms, (ii)
extensive reflections on practice and systemic modes of knowing, (iii) technical
contributions for building of performance systems and performance structural
analysis and (iv) theoretical accounts that contribute to the live coding literat-
ure. This work address both human modalities – audition, motor skills – and
system modalities – notation, and the presence of software agents. I present a
conception of various kinds of interactivity variations, a term used to designate
various manners of gestural interaction that may arise in performance systems.
I argue that musical live coding should incorporate radical experimentation
with craft practices, pointing to a future practice wherein risk becomes clearly
apparent in our gestural expressions.

Keywords

live coding, live programming, expressive interaction, liveness, music interaction,
musical interfaces, music performance, music perception, gestural control, music
information retrieval

iii

List of Publications

Appended publications

This thesis is based on the following publications:

[Paper I] G. Diapoulis and P. Dahlstedt. “An analytical framework for
musical live coding systems based on gestural interactions in performance
practices.” Proceedings of the International Conference on Live Coding
(ICLC). Valdivia, Chile. (2021).

[Paper II] G. Diapoulis and P. Dahlstedt. “The creative act of live coding
practice in music performance.” Psychology of Programming Interest
Group (PPIG), Doctoral Consortium. York, UK. (2021).

[Paper III] G. Diapoulis, I. Zannos, K. Tatar and P. Dahlstedt. “Bottom-
up live coding: Analysis of continuous interactions towards predicting
programming behaviours.” Proceedings of the International Conference
on New Interfaces for Musical Expression (NIME). Auckland, New
Zealand. (2022).

[Paper IV] G. Diapoulis. “Livecode me: Live coding practice and mul-
timodal experience.” Proceedings of the 33rd Annual Workshop of the
Psychology of Programming Interest Group (PPIG). London, UK. (2022).

[Paper V] G. Diapoulis and M. Carlé. “Reproducible musical analysis of
live coding performances using information retrieval: A case study on the
Algorave 10th anniversary.” Proceedings of the International Conference
on Live Coding (ICLC). Utrecht, Netherlands. (2023).

[Paper VI] G. Diapoulis. “Liveness and machine listening in musical live
coding: A conceptual framework for designing agent-based systems.” Pro-
ceedings of the 4th Conference on AI Music Creativity (AIMC). Brighton,
UK. (2023).

[Paper VII] G. Diapoulis. “Musical live coding in relation to interactivity
variations.” Organised Sound 28.2. Cambridge University Press, UK.
(2023).

v

vi

Other publications

The following publications were published before or during my PhD studies.
However, they are not appended to this thesis because they were published
before my PhD studies [a-d], unrelated to the thesis, or overlapping with
the thesis content. An updated list of all my publications is available on my
website1, ORCID2 and Google Scholar3.

[a] G. Diapoulis and I. Zannos. “A minimal interface for live hardware
coding.” Live interfaces. York, UK. (2012).

[b] G. Diapoulis and I. Zannos. “Tangibility and low-level live coding.”
International Computer Music Conference. Athens, Greece. (2014).

[c] G. Diapoulis and M. Thompson. “Kinematics feature selection of
expressive intentions in dyadic violin performance.” 10th International
Conference of Students of Systematic Musicology (SysMus17). London,
UK. (2017).

[d] M. R. Thompson, G. Diapoulis, T. Himberg, and P. Toiviainen. “Inter-
personal coordination in dyadic performance.” Routledge Companion to
Embodied Music Interaction. (eds.) LeSaffre, Leman & Maes, Routledge.
(2017).

[e] G. Diapoulis, C. Rosas, K. Larsson and W. Kropp. “Person identifica-
tion from walking sound on wooden floor.” Proceedings of the Euronoise.
Heraklion, Greece. (2018).

[f] B. Briere de la Hosseraye, G. Diapoulis, F. Egner and H. Wang. “A
case study on workstation dependent acoustic characterization of open
plan offices.” EU Horizon report for the ACOUTECT project (grant
agreement 721536). (2021).

[g] G. Diapoulis. “Primary and secondary aspects of musical gestures in live
coding performance.” Proceedings of the 14th International Conference
of Students of Systematic Musicology (SysMus21). Aarhus, Denmark.
(2021).

[h] V. Agiomyrgianakis, I. Svoronos-Kanavas, I. Zannos and G. Diapoulis.
“Synerg(e)ia: A networked collaborative live coding environment.” Pro-
ceedings of the International Conference on Live Coding (ICLC). Valdivia,
Chile. (2021).

[i] K. Tatar, P. Ericson, K. Cotton, P. T. N. del Prado, R. Batlle-Roca,
B. Cabrero-Daniel, S. Ljungblad, G. Diapoulis and J. Hussain. “A
shift in artistic practices through artificial intelligence.” Submitted to
Leonardo. arXiv preprint arXiv:2306.10054. (2023).

1Georgios Diapoulis personal webpage, http://diapoulis.gitlab.io
2https://orcid.org/0000-0002-3101-1875
3https://scholar.google.com/citations?user=Lh4Oz9EAAAAJ

http://diapoulis.gitlab.io
https://orcid.org/0000-0002-3101-1875
https://scholar.google.com/citations?user=Lh4Oz9EAAAAJ

vii

Other dissemination (selection)

The following events are part of the research dissemination I did during the
second half of my doctoral studies. These are either musical performances or
public presentations in smaller research venues or for non-expert audiences.

[1] G. Diapoulis. “Perceptual and technical aspects of live coding music
performance using statistical learning.” Presentation at DCAC 2021 –
Digital Culture & AudioVisual Challenges, Cyberspace. Corfu, Greece.
May, 2021.

[2] G. Diapoulis. “Sonifying the collected rewritings of Click Nilson.”
Live performance at ICLC2021, Cyberspace. Valvidia, Chile. December,
2021.

[3] G. Diapoulis. “Musical live coding performance (dyadic agents).”
Lindblad Electronic Music Meet, Artisten. Gothenburg, Sweden. April,
2022.

[4] G. Diapoulis. “Musical live coding in relation to expressive interaction.”
Presentation at Nordic Summer University (NSU), summer school. Oslo,
Norway. August, 2022.

[5] G. Diapoulis. “Continuous gestural interactions in live coding.” Present-
ation at the Workshop Embodied Perspectives on Musical AI (EmAI), U.
of Oslo. Oslo, Norway. November, 2022.

[6] S. Kalonaris, I. Zannos and G. Diapoulis. “Duel Revisited.” Networked
live coding performance at XNPM22 Xenakis Networked Performance
Marathon, Athens Conservatoire. Athens, Greece. December, 2022.

[7] G. Diapoulis. “From ‘no-code’ to ‘slow-code’: A minimalistic approach
to musical live coding.” Presentation, Nordic Summer University (NSU)
winter school, Au JUS artist run space. Brussels, Belgium. March, 2023.

[8] G. Diapoulis and Viktor Kudryashov. “Collaborative live coding
performance with music and visualizations.” Nordic Summer University
(NSU) winter school, Au JUS artist run space. Brussels, Belgium. March,
2023.

[9] G. Strautmane and G. Diapoulis. “Codifications of Musical Code.”
Exhibition at Cesvaine Palace. Cesvaine, Latvia. July, 2023.

Acknowledgment

I particularly want to thank Palle Dahlstedt for the supervision. His influence
on this work and my journey as a doctoral student is hard to express in words.
I genuinely thank you! I also thank Staffan Björk for his kindness in being
my examiner; his minimalistic pieces of advice impact the work presented
here, either directly or indirectly. I am also grateful to my second and third
supervisors, Mohammad Obaid and Kivanç Tatar, for their support and advice.
Mohammad, I also thank you for being an excellent manager. Kivanç, thank
you for all the reviews and expert feedback. I particularly thank my former
supervisor from the Division of Applied Acoustics Jens Forssén, and my former
examiner, Jens Ahrens, for facilitating my transfer to Interaction Design. I
am also thankful to Monica Billger, for helping me with the move between the
departments.

First, I would like to thank Mohammad, Morten, Josef and Jasmina, who
trusted me to teach during my 2.5 years. I also thank Thommy for his kindness
and unconditional willingness to help with everything related to the IxD studio
and electronic equipment. I am grateful to Jasmina Maric for the unique
experience of the Creative Coding course for adolescent girls. A special thanks
to Kelsey for co-teaching with me, and all people involved, Lekshmi, Pauline,
Natasha, Razan and Christie.

Special thanks go to Pawe l Woźniak and Sara Ljundblad, as they both
influence my academic work – regardless of our minimal academic interactions.
I thank you both. Particularly Pawe l for his sharpness and capacity to advise
me in less than a 5-minute discussion on how to present my work (which had
an influence on the very title of this manuscript). Special thanks go to all
fellow doctoral students of IxD, Mafalda, Sjoerd, Kelsey, Ziming, and Yuchong.
Mafalda, I thank you for your reviews and to-the-point feedback. I am also
grateful to have such beloved officemates Linda, Joel, Handy, Razan, Peter,
Ranim and Ann-Sophie. A more special thanks to all administrators and staff,
especially to IxD people Cecilia, Lotta and Lasse, all colleagues on the 3rd
floor of Kuggen, and the GU staff for their kind presence.

Needless to say, without the PhD support of Chalmers/GU it would have
been impossible to complete this work. I warmly thank the head of PhD
education Agneta Nilsson and all study directors of CSE. Also, the PhD
administrators and particularly Clara Oders for making my life easier.

A special and genuine thank I own to Moyra. Without your support this

ix

x

journey would have been incomplete.
During my studies in acoustics, I traveled as part of the ACOUTECT

research network. I thank all the people in Eindhoven for hosting me, especially
Maarten Hornikx. I also thank Jacques Cuenca for hosting my secondments in
Leuven. I am grateful to Antonio, Alessia, Augusto, Julie and Felix for our
time together somewhere in Europe.

I am also thankful to the Nordic Summer University (NSU) people, especially
Circle 2, for their support and trust. I feel lucky I have had the opportunity to
attend such a unique nomadic organization, and I genuinely thank you for our
discussions, laborious discord, and fun time somewhere in the Nordic/Baltic
region. The opportunity to get exposed to experts in STS, law and other
research fields is a unique opportunity for me.

I want to thank my former supervisors during my master’s studies in Finland,
Marc Thompson, Pasi Saari and Petri Toivianen. I am truly grateful for the
education you offered and feel lucky to have had this opportunity. Marc, I
warmly thank you for the opportunities you unconditionally offered me. Most
importantly, thank you for your kindness in supporting and advising me when
I needed it! Your influence made a change.

Furthermore, I want to thank Nick Collins for his kindness in advice me on
postgraduate studies and his suggestion to attend the masters program Music,
Mind and Technology in the U. of Jyväskylä. I am also grateful for the interest
he showed in my early works. I am also grateful to Dan Stowell for his kind,
invisible support via the SC3 mailing list and his trust in accepting my work at
the SuperCollider Symposium in London. Given our minimal interactions, it is
truly remarkable how much influence Nick and Dan have had on my academic
development. I warmly thank you both.

A special thanks goes to Ioannis Zannos for his continuous support through-
out the years. It is out of the question that without his support, I would
not have been able to start a master’s program, not to say a PhD. Ianni,
I genuinely thank you for all the discussions, writings, journeys, teachings,
and performances I participated in. I also thank Martin Carlé for all our
philosophical discussions, academic collaborations, and rigorous discourse.

Last but not least, I want to thank my Greek academic friends Symeon
Delikaris-Manias, Vassilis Papadourakis, Xenophon Zabulis and Danae Theodos-
opoulou for their support during my studies. I thank you for all this time on
some video call. I also thank my Greek acoustician friends Georgios Zachos and
Nikos Roubakis. I also thank all my Göteborgsvänner, Athenian and Cretan
friends for their support. My love goes to my family, especially my parents and
my sister, for their unconditional support.

To conclude, I am truly grateful to Tim Perkis for proofreading this manu-
script. No words can express my gratitude, I warmly thank you. I also thank
Babak Ahteshamipour for taking care of the magnificent front cover artwork.

Göteborg
September 10, 2023

Foreword

This thesis corresponds to the second half of my doctoral studies at Chalmers
University of Technology and University of Gothenburg. I did 50% of my
doctoral studies in Applied Acoustics, Department of Architecture and Civil
Engineering as part of the EU project ACOUTECT (Marie Sklodowska-Curie
grant agreement number 721536). The following thesis shows my work in the
second half of my studies, since May 2021, at the Division of Interaction Design
and Software Engineering, Unit of Interaction Design, Department of Computer
Science and Engineering.

xi

xii

Abbreviations

• ACM: Association for Computing Machinery

• AI: Artificial Intelligence

• AR: Augmented Reality

• CHI: ACM Conference on Human Factors in Computing Systems

• CPU: Central Processing Unit

• DM: Direct Manipulation

• DMI: Digital Musical Instrument

• GUI: Graphical User Interface

• HCI: Human-Computer Interaction

• ICLC: International Conference on Live Coding

• ICMC: International Computer Music Conference

• IDE: Integrated Development Environment

• ISMIR: International Society for Music Information Retrieval

• LLM: Large Language Model

• MIR: Music Information Retrieval

• NIME: International Conference on New Interfaces for Musical Expres-
sion

• PD: Pure Data visual programming language

• SC3: SuperCollider programming environment

• SE: Software Engineering

• SMC: Sound and Music Computing Conference

• TEI: ACM Conference on Tangible, Embedded and Embodied Interaction

xiii

Contents

Abstract iii

List of Publications v

Acknowledgement ix

1 Introduction 1

1.1 Machine musicianship . 2

1.2 New interfaces for musical expression 3

1.3 Musical live coding . 3

1.4 Research approach . 4

1.4.1 Personal statement/background 4

1.4.2 Research approach and methods 4

1.5 Contributions . 5

1.5.1 Conceptual . 6

1.5.2 Methodological . 6

1.5.3 Applied . 6

1.6 Challenges in musical live coding 6

1.7 Research questions . 7

1.8 Structure of the thesis . 8

2 Theoretical background 9

2.1 Live coding 101 . 9

2.2 Historical accounts of programming during a performance . . . 11

2.3 From mnemonic devices, to interactive intefaces and on-the-fly
algorithms . 12

2.3.1 The first era of interactive music systems and on-the-fly
algorithms . 13

2.3.2 Towards creative modifications of algorithms 14

2.3.3 The early days of live coding 15

2.4 Live coding as a musical activity 16

2.4.1 Live coding practice . 16

2.4.2 Agency in live coding 18

2.4.3 Live coding systems . 18

xv

xvi CONTENTS

3 Study A: On-the-fly algorithms for machine musicianship 21
3.1 Live coding in machine musicianship and software engineering . 21

3.1.1 In machine musicianship 21
3.1.2 In software engineering 22

3.2 Two approaches to live code . 23
3.2.1 The case of bottom-up systems 23
3.2.2 A bottom-up methodology 25

3.2.2.1 Bottom-up practices in software engineering . 25
3.2.2.2 Misconceptions between bottom-up and low-

level processes 25
3.2.2.3 Live writing as a bottom-up practice 26

3.3 Bottom-up systems for live coding 26
3.4 Contributions . 30

3.4.1 User Interaction . 30
3.4.2 Systems . 33
3.4.3 Mapping . 34
3.4.4 A simple example of a musical improvisation system . . 35

3.5 Implications . 37
3.6 Publications in relation to Study A 38

4 Study B: Embodiment and musical gestures in machine musi-
cianship 41
4.1 Enaction with musical interfaces 42
4.2 Embodiment and gesture in live coding systems and practices . 43

4.2.1 Performance systems: Musical gestures in practice . . . 43
4.2.2 Recognition and retrieval with gestural interactions . . . 45

4.3 How embodiment is expressed in live coding 46
4.3.1 Gestural interaction and musical gestures 47
4.3.2 The role of pre-reflective processes 48

4.4 Contributions . 48
4.4.1 A framework for live coding systems on gestural interactions 48
4.4.2 Gestures in bottom-up live coding 53
4.4.3 Pre-reflective processes in live coding 54

4.5 Implications . 54
4.6 Publications in relation to Study B 56

5 Study C: Creativity support technologies for live coding 57
5.1 Interactive music systems and machine agents in improvisation 57
5.2 From liveness and musical agents to machine learning ecosystems 58

5.2.1 On liveness . 59
5.2.2 On musical agents . 60
5.2.3 On machine learning ecosystems 61

5.3 Contributions . 62
5.3.1 Visualization technologies for creativity support 62

5.3.1.1 Live coding practice with a visual helper and
sound visualizations 62

5.3.1.2 Circular representation of musical structure . . 64

CONTENTS xvii

5.3.2 Conceptual framework for designing agent-based systems 65
5.3.3 On liveness in bottom-up systems 66

5.4 Implications . 67
5.4.1 Sound . 67
5.4.2 Visualization . 68
5.4.3 Text . 69

5.5 Publications in relation to Study C 69

6 Study D: Reproducibility, transparency and risk 71
6.1 From the general to the specifics of reproducibility, transparency

and risk . 71
6.2 Reproducibility, transparency and risk in live coding 72

6.2.1 Reproducibility in live coding 72
6.2.2 Transparency in live coding 72
6.2.3 Risk in live coding . 73

6.3 Contributions . 75
6.3.1 Reproducible musical analysis: Algorave case study . . . 75
6.3.2 Transparency . 77
6.3.3 Risk . 78

6.4 Implications . 79
6.4.1 Visual representation of sound 79
6.4.2 Live coding is risky . 80

6.4.2.1 Risk of reproducibility and transparency . . . 80
6.4.2.2 Risk and gestural interactions 80

6.5 Publications in relation to Study D 80

7 Discussion 81
7.1 Review of contributions . 81

7.1.1 Making bridges: Theory making for live coding 81
7.1.1.1 Music perception and cognition 81
7.1.1.2 Gestural control and the meaning of bodily

gestures . 83
7.1.2 Bottom-up live coding 83

7.1.2.1 Predicting programming behaviours: A tech-
nical view on liveness 84

7.1.2.2 The significance of pre-reflective processes . . . 85
7.1.3 Recognition and retrieval processes in interfaces and

gestural control . 85
7.1.3.1 Open-loop motor program and spatiotemporality 86
7.1.3.2 Musical memory in live coding 86

7.1.4 Visualizations . 87
7.1.4.1 Musical form 87
7.1.4.2 Creativity tools 87

7.1.5 Structured datasets . 88
7.1.5.1 Observational datasets 88
7.1.5.2 MIR structured dataset 90
7.1.5.3 Musical practice: Scripts and diaries 90

xviii CONTENTS

7.2 Implications and reflections . 90
7.2.1 Cross-disciplinary boundaries 90
7.2.2 Gestural interactions . 91

7.2.2.1 Open-loop and closed-loop live coding 91
7.2.2.2 The transparency of embodiment 91

7.2.3 Liveness and code-preview 92
7.2.4 Agency: Relational, shared and influential 92

8 Conclusions 95
8.1 Open problems in live coding 96
8.2 Research outcomes . 97

8.2.1 Answers to the research questions 97
8.2.2 Limitations . 100

8.3 Future directions in musical live coding 101

Bibliography 103

Appended Papers 119

Paper I - An analytical framework for musical live coding systems
based on gestural interactions in performance practices

Paper II - The creative act of live coding practice in music per-
formance

Paper III - Bottom-up live coding: Analysis of continuous inter-
actions towards predicting programming behaviours

Paper IV - Livecode me: Live coding practice and multimodal
experience

Paper V - Reproducible musical analysis of live coding perform-
ances using information retrieval: A case study on the Algorave
10th anniversary

Paper VI - Liveness and machine listening in musical live coding:
A conceptual framework for designing agent-based systems

Paper VII - Musical live coding in relation to interactivity vari-
ations

Chapter 1

Introduction

Everyone has daily exposure to numerous hours in front of a computer or
a mobile phone. However, we do not know how to interact with computers
in a “human-friendly” manner. Computers have been designed based on the
principles of logic, so every step we take in an algorithmic process has to “make
sense” for the computer language and interface. Consequently, users can be
unclear about how to interact without putting in logical and conscious effort.

This thesis investigates how users can interact with generative algorithms
in an intuitive manner without making conscious effort while using creative
applications, particularly for music-making. The focus of the work presented
here is on live coding, which blurs the line between programming languages
and computer interfaces. This manuscript is primarily concerned with an
embodied perspective on music psychology and perception, exploring how
humans who are engaged with these cybernetic systems express themselves
through musical code. The main interest is pre-reflective processes during a
live coding performance; that is, sub-conscious or fast processes. This work
also presents practical implementations and conceptual frameworks of such
interactive systems, focusing on both the human physical movements and
the systemic characteristics of the machine. Finally, an approach to live
coding is discussed, exemplifying how one may write bottom-up programs by
progressively constructing programmable levels of abstraction. This bottom-up
approach presents unique characteristics that can seamlessly integrate the
human and machine aspects of the cybernetic system, creating a significant
shift that enables pre-reflective processes during live coding.

What makes music so different? Practical experience suggests that music
offers an ideal ground for conducting research where mind and body are coordin-
ated in a way similar to the meditative states found in eastern philosophical
thought. This is a unique opportunity for phenomenological studies, that is,
the philosophy of human experience and philosophy as theoretical reflection.

The work presented here is influenced by generative arts, systems and
process art, where the artist is engaged in a bricolage of modern technologies.
A particular focus is on minimalistic expressions of art and programming
constructs. I start with a brief introduction to interactive music systems and

1

2 CHAPTER 1. INTRODUCTION

proceed to musical live coding. Following this, I move to the specifics of
the thesis by introducing the contributions and research questions, and by
explaining how to read this manuscript.

1.1 Machine musicianship

Machine musicianship combines algorithmic music and human cognition [1].
The main quest is to develop novel software and hardware for making interactive
music systems [2] to be used for musical performance. Interactive music systems
are designed to recognize and generate music that plausibly meets our cognitive
abilities, sensory capabilities, and musical preferences and aesthetics. There
is a fine line between what we perceive as musical and what we perceive as
random sounds, and this varies across individuals and also depends on levels
of musicianship. Musicians using interactive music systems have to decode
and adapt to the meta-instruments they develop for real-time performance and
improvisation, and this certainly is not something that has been taught during
their traditional musical training.

This thesis centers on an embodied perspective for machine musicianship,
not using embodied agents as in robotics, but on how theories of embodied
cognition may inform the systems we develop. Thus, there is herein a distinct
focus on motor theories of perception. Musicians are known to be experts in
sensorimotor control, which makes the task of crafting and developing software
and hardware interfaces a significant challenge. Today there is certainly no
problem providing low enough latency in response times between the “sensing”
and “acting” of computer programs. Even though this has been the case for
the last two decades or so, the computational load may still be challenging,
even when heavy computational resources are available. Expert musicians can
perceive any unwanted time delays more than 5-10ms, the lower threshold of a
typical sound card operating at 48kHz with 512 samples buffer size.

The main technique for developing software that can co-perform with
humans in real-time involves “divide-and-conquer”: that is, the development
of specialized components for different tasks. For instance, when sensing the
acoustic environment, a signal is captured using a microphone and read by
the computer, and specialized software extracts various musical characteristics.
Pitch estimation, envelope following, beat-tracking, and music segmentation
are some of the important steps needing to be carried out during machine
listening. Likewise, various strategies can be followed in music generation to
generate musical material with diverse qualities. All these components can
act autonomously using software agents on different levels to handle temporal,
structural, harmonic and timbral parameters.

This characteristic machine autonomy means that musicians must acquire
new skills as we augment human musicianship with meta-composition tools.
Traditional musical instruments are largely agnostic with regards to autonomy,
as there will be no sound produced when there is no human action. The
question of agency arises in electronic and computer music where there are
autonomous systems involved, as it becomes non-obvious which entity is acting

1.2. NEW INTERFACES FOR MUSICAL EXPRESSION 3

to produce a particular musical outcome, the machine or a human performer?

1.2 New interfaces for musical expression

The new millennium started with emerging forms of musical expression. A new
spin-off conference of the ACM Conference on Human Factors in Computing
Systems (CHI), called New Interfaces for Musical Expression, or NIME, began
in 2001 from a small CHI workshop. It is an annually recurring and established
venue producing high-quality research in what we can broadly call music-making
with computers. The focus is on interfaces and instruments that generate music,
and the abbreviation NIME can have multiple meanings. In 2017, a NIME
Reader, [3] was published with a selected collection of articles from 2001 to 2015.
This collection of articles demonstrates the research output of the community,
which has contributions on sensors [4]–[7], communication protocols [8], [9],
theoretical studies including instrument and interface designs [10]–[14] and new
musical interfaces and manners for musical expression[15]–[21].

Various seminal articles have been published at NIME with significant
influence in music technology in general, such as the OSC protocol [8], on-
the-fly programming [18], the reacTable [16], the use of the web browser as
a synthesizer [21] and more. Indicatively, the OSC protocol has become a
standard for sending and receiving sound data, and is used in most advanced
music-making and multimedia software, for instance, when making 3D graphics
and wanting to synchronize the sound with the moving images. On-the-fly
programming is an equivalent term that corresponds to live coding. The
reacTable is perhaps the first musical interface that has reached a broader
audience, most notably used by the famous Icelandic singer-songwriter Björk1

in her performances, and the web browser today is getting more and more
attention as a platform for real-time audio. Indicatively, CSound, which has
long been one of the most influential platforms for real-time sound synthesis,
now has a web IDE2.

1.3 Musical live coding

Live coding [22], also known as on-the-fly programming [18], or just-in-time
programming [23], is a form of interactive or conversational programming [24]
wherein the user converses “with the computer in its own native language” [25,
p. 2]. From a technical standpoint, the precursors of live coding are similar to
hot-swapping practices used in hardware, which is the case where a modular
hardware component is “hot-plugged” into a system without shutting down
the running system.

From a theoretical perspective, live coding is a situation where practitioners
are “thinking-in-action” [26]. Everyday actions like grasping a glass of water
do not require conscious awareness. However, live coding is known to be
a highly demanding cognitive task where automatic and fast processes are

1https://en.wikipedia.org/wiki/Reactable (accessed 2023-08-23)
2https://ide.csound.com/

https://en.wikipedia.org/wiki/Reactable
https://ide.csound.com/

4 CHAPTER 1. INTRODUCTION

perhaps not in the picture. In live coding, Emma Cocker [26, p. 111] discussed
this “dual principle of slowness and speed.” She seized the opportunity to
discuss the kairotic3 dimension of live coding, exemplifying the timely nature
of decision-making during a performance.

In everyday life, the live coder confronts the activity of coding in a radically
different manner than a software engineer. Live coding is programming for
fun [27], a “non-productive” approach that does not emphasize innovation and
robustness [28]. Failure is engraved in the live coding culture, exemplified in
the exploratory nature of the logical processes during a performance, where
instead of the if/then/else procedural logic, a live coder speculates what
if I run this code chunk. All in all, in live coding, “code is a process to be
experienced” [25, p.217].

1.4 Research approach

1.4.1 Personal statement/background

The work presented here is highly interdisciplinary. It builds upon my formal
training as a music psychologist, alongside my background in materials science,
acoustics and computer science. As a music practitioner, I have been involved
in algorithmic composition and interface development since 2008, and as a
hobbyist computer music enthusiast since 1999.

I have been involved in academic teaching for more than 10 years, conducting
artistic installations and musical performances, participating and organising
expert user focus groups, cultural events, academic seminars, and collaborating
in interdisciplinary research projects. As a student, employee or visitor/intern, I
have worked in five different European countries across seven different academic
institutions. My undergraduate studies began in the school of pure sciences,
then I moved to humanities and, finally, to engineering.

1.4.2 Research approach and methods

The research approach is a blend of quantitative and, mostly, qualitative meth-
odology, using a broad spectrum of research methods and research designs from
information retrieval and digital design to observations and theory-making
based on ethnography and embodied cognition. I claim my worldview to be
a pragmatic approach with influences from constructivism. Systems thinking
is a large influence on this thesis. Thus, I do not intend to conduct measure-
ments and evaluations related to live coding, but to find emerging patterns by
mapping relationships between things [29]. Empirical evidence and subjective
percepts are central to my work, ranging from the theoretical frameworks I rely
upon, such as embodied music cognition [30], [31] and other phenomenological
perspectives on science [32], [33]. Finally, I have carried out meta-cognitive
learning processes, such as reflective diaries and systematic documentation of

3From the greek word kairós, which would be literally translated as weather, but has
multiple meanings related to time, period and opportunity. https://en.wiktionary.org/

wiki/%CE%BA%CE%B1%CE%B9%CF%81%CF%8C%CF%82 (accessed 2023-08-24).

https://en.wiktionary.org/wiki/%CE%BA%CE%B1%CE%B9%CF%81%CF%8C%CF%82
https://en.wiktionary.org/wiki/%CE%BA%CE%B1%CE%B9%CF%81%CF%8C%CF%82

1.5. CONTRIBUTIONS 5

the related literature by means of an extensive annotated bibliography. By
using a blend of induction, deduction, and abduction, I form theories on live
coding by conducting observations and I provide guidelines for making informed
decisions when designing, practicing, and studying live coding systems.

1.5 Contributions

In this thesis, I present four studies to support my contributions and strengthen
my work and the work of others. The contributions of this thesis are clustered
as conceptual, methodological, and applied contributions to support the reader’s
ability to navigate and comprehend this thesis, and is inspired by Sara Ljun-
gblad’s doctoral dissertation [34]. I have assigned one particular category
to each article, although, as is shown on the Venn diagram, these categories
overlap in some instances. The purpose of this mental map is to familiarize
the reader with the literature and provide a high-level understanding of the
different territories explored in this thesis (Figure 1.1). In the section 1.8
“Structure of the thesis”, I present a table of the studies, where I show the
influence of each article on each study.

CONTRIBUTIONS

Conceptual

Paper I

Paper II

Paper VII

Methodological

Paper IV

Paper VI

Applied

Paper III

Paper V III

V

I

II VII

VI

IV

Applied

Methodological

Conceptual

Figure 1.1: Visual map of contributions as a Venn diagram. The color coding
indicates whether the contributions are conceptual, methodological or applied.
The visual map indicates the affinity of each article for each other and relation
to the three clusters. For instance, Paper IV is a methodological contribution
but overlaps with the applied cluster, and is far away from the conceptual
cluster. Several of the papers blend between different categories.

6 CHAPTER 1. INTRODUCTION

1.5.1 Conceptual

• Paper I, Paper II, Paper VII

This thesis has strongly focused on conceptual and theoretical contributions
for musical live coding [35]–[37]. I aim to address the various qualities of
musical gestures in live coding by observing performance systems that are
notably different from one another. I introduce several terms to facilitate my
discussion on theories of embodied music cognition and live coding, which is a
powerful approach to communicating the novel properties of interactions that
arise in musical live coding.

1.5.2 Methodological

• Paper IV, Paper VI

The methodological contributions rely upon the live coding ethos, which
adheres to a free/open-source ethos. I present two studies, one exploring
multimodal percepts when practicing live coding [38], and one conceptual
framework for designing agent-based systems [39]. A central aim in both
contributions is to help practitioners unclear on how to practice live coding
and help them find their path by implementing advanced technologies in their
systems.

1.5.3 Applied

• Paper III, Paper V

The applied contributions of this study reflect on practice and deliver open-
source software to be used for creative and analysis purposes. In Paper III [40]
we presented a redesign of our previous work on low-level programming lan-
guages for live coding [41], [42], and explored how gestural interactions can be
used in a practical context. Novel technologies relatively unexplored in live
coding practices, like the technical dimension of liveness [43], are discussed
and connected to the creative potential of such technological advancements
by means of delivering a software prototype. Also, a reproducible framework
was developed for exploring musical form in live coding performances [44].
Practical implications for visualization technologies are presented, discussing
their potential to be used for interactive applications.

1.6 Challenges in musical live coding

Live coding is becoming a 20-year-old practice this year, in 2023, as the
first published article introducing the term appeared in 2003 [22]. There are
numerous advancements and challenges, ranging from significant efforts to
develop specialized programming languages for live coding, to novel systems
extending interactivity, and collaborative musical ensembles that perform
telematically. However, I mostly examine in this thesis several challenges which

1.7. RESEARCH QUESTIONS 7

are present today, addressing embodiment, creativity, risk as well as interactive
AI issues.

Embodiment of musical interfaces has been an issue in open discussion since
the early days of live coding [45]. This thesis strongly focuses on embodiment
and contributes a theoretical understanding based on sensorimotor control
and studies on embodied music cognition [30], [31]. Creativity also has been
given strong attention within the community of live coders, and numerous
interactions with other communities, such as CHI, Creativity and Cognition
and more, extend beyond the limits of musical live coding in particular.

Of course, many more challenges in live coding are not directly addressed
in this thesis. For example, collaborative live coding presents one of the
hard problems in the field, although there have been numerous efforts and
contributions since the early days of live coding, it is a field with technical,
musical and philosophical challenges. Furthermore, issues on gender and
accessibility in live coding are more topical than ever, as computing is largely
still known as a western male-dominated research field. This thesis lacks any
contributions to the topics of collaborative live coding and gender studies, and
only touches upon issues of accessibility.

1.7 Research questions

Some research questions correspond to a specific study or a specific article,
whereas others span across multiple studies and articles. In this thesis, a central
research question was crystallized out of several years of practice and research
on live coding. This is the first research question (RQ1) from the list below
and relates to how we can live code when at the limits of our perception. This
came out of experimentation while building musical interfaces for performance,
where it became obvious that there is a need in music interaction to overcome
received best practices used in human-computer interaction. The following
research questions were formulated during the process of doing this doctoral
research.

• RQ1: Are pre-reflective processes evident during a musical live coding
performance?

– What are the necessary conditions?

– In which cases do these conditions occur?

• RQ2: How can generative algorithms influence musical gestures used
during live coding performance?

– How is this evident in live coding, and how is its appearance similar
to or different from its appearance in work with digital musical
instruments and other interactive music systems?

• RQ3: What creativity support technologies are used in musical live
coding?

8 CHAPTER 1. INTRODUCTION

– What is the role of liveness, and how we can use the technological
advancements of liveness?

• RQ4: How do we practice musical live coding with assistive technologies?

– What is the role of multimodal experience in live coding practice?

• RQ5: How can and do we design agent-based systems for musical live
coding?

• RQ6: How is risk expressed in musical live coding?

The research questions are answered in conclusion, in the subsection “Re-
search outcomes” (section 8.2).

1.8 Structure of the thesis

The thesis is structured in four studies (Study A, Study B, Study C and
Study D). Each study is a synthesis of more than one of the appended papers,
and each paper contributes to one or more studies. Table 1.1 presents the
contribution of each paper on each study. A color-coding scheme based on the
above mentioned categorization of conceptual, methodological and applied
contributions is shown that aims to communicate the content of each study
visually. The table below is inspired by Alan Blackwell’s book Moral Codes4,
and aims to complement Figure 1.1.

Table 1.1: The table shows the contribution of the papers to each of the
four studies. The relevance of a paper to each of the studies is indicated as
low-relevance (x), mid-relevance (xx), or high-relevance (xxx), when relevant.
A color grading is applied based on the relevance of each paper to each study.

Articles/Studies Study A Study B Study C Study D
Paper I x xx

Paper II x xx

Paper III xxx x x

Paper IV xxx xx

Paper V xx xxx

Paper VI xxx

Paper VII xx xxx x

• Study A: On-the-fly algorithms for machine musicianship

• Study B: Embodiment and musical gestures in machine musicianship

• Study C: Creativity support technologies for live coding

• Study D: Reproducibility, transparency and risk

4Alan’s Blackwell book Moral Codes on PubPub: https://moralcodes.pubpub.org/, see
Chapter 1: “Are You Playing Attention?”

https://moralcodes.pubpub.org/

Chapter 2

Theoretical background

The theoretical background is based on a phenomenological approach to live
coding or unconventional programming practices. Phenomenology exploits
lived experience [46], and here the work I present is influenced by notable philo-
sophers such as Edmund Husserl, Maurice Merleau-Ponty, Jean-Paul Sartre,
Humberto Maturana and Francisco Varela. It represents a transcendental
phenomenological approach that focuses on understanding the practice of live
coding as the play of sensorimotor processes unfolding during a performance.

2.1 Live coding 101

Live coding is an unconventional programming practice, sometimes also called
on-the-fly, just-in-time, conversational programming or live programming. Un-
conventional programming practices range from amorphous and chemical com-
puting to bio-inspired, autonomic and generative programming [47, p. V].
Essentially, live coding is “on-the-fly decision-making” [48, p. 14], and it may
be necessary to make human-machine communication more fruitful and result-
ing in fewer unintentional outcomes. For instance, there has been more than
one incident wherein AI systems have exhibited unwelcomed behaviours, and
this could have been avoided if the systems were less rigid in their operation
(e.g., Microsoft’s Twitter bot1 in 2016).

This thesis examines musical live coding systems and practices, mostly
expressed as generative and autonomous processes. Generative processes may
be rule-based, random, or algorithms that involve learning, such as machine
learning and deep learning. The matter of autonomy in computer programs is
explored in research on agent-based systems. The idea of “agency” is related to
the role of the machine in live coding, or a sense of the machine’s “otherness” [49].
The result may not differ greatly from other forms of electronic music, such as
improvising with audio synthesizers, but live coding is also an improvisational
practice. The sense of “otherness” can be seen as equivalent to the existence
of co-creative processes, as a live coder co-creates the musical outcome along

1https://en.wikipedia.org/wiki/Tay_(chatbot) (accessed 29-08-2023)

9

https://en.wikipedia.org/wiki/Tay_(chatbot)

10 CHAPTER 2. THEORETICAL BACKGROUND

with the contribution of autonomous processes run by the written program. In
this thesis, co-creativity is explored from a phenomenological approach, which
implies a first-person perspective of the human agent and a second-person
perspective as an outcome of the relational role of the artificial agents that
can induce this sense of “otherness” in the human performers, or of a shared
agency.

It is widely acknowledged in the community of live coders that there is no
school for learning how to live code. Paradoxically, the impact of live coding in
education is already significant [50], [51] and more and more instructors employ
live coding practices in programming education [52]. Live coding transcends
the nature of conventional programming practices, expanding these practice to
include a non-utilitarian programming perspective. The uncreative approach
to organisational programming has been augmented to include a “recreational”
approach of coding for fun [27]. Live coders do not adhere to the traditional
practices of writing computer programs (e.g., pen and paper), and in so doing
stretch what is known as agile programming to its extremes. Contrary to
agile programming, there are no code requirements and no testing in place,
but rather an on-the-fly decision-making process that incorporates various
perceptual modalities. Thus, learning processes are become heavily focused
on trial-and-error techniques, and learning paradigms like learning-by-example
are at the core of live coding practices.

From a practice perspective, live coding has been addressed as a music-
making activity that ranges from live instrument making [53] to an activity
similar to conducting an orchestra [54]. While practices on live coding can
widely differ, it is still the case that typing is the most widely used approach
to live code. Thus, most performances are based on typing on a keyboard and
re-writing programming statements. The written code is a form of prescriptive
notation [55], or metaphorically speaking, can be seen as the genotype of the
musical outcome [56], whereas the heard sounds are the phenotype of the
musical outcome, that depend on uncontrolled variables such as the acoustic
surrounding. In essence, the live coder, during a performance, is evaluating on-
the-fly the written code by listening to the musical outcome, thereby assessing
on-the-fly the heard musical outcome to adjust or modify the written code.

Typing is at the center of attention when it comes to the most widespread
form of musical live coding: typing on a keyboard by sharing our screens
in front of the audience. The code is the means for music-making, but the
materiality of the code transcends into the quasi-material nature of algorithms
[57]. “Algorithms are thoughts” as it is noted in the TOPLAP Draft Manifesto 2.
Thus, code is how we transform our thoughts into algorithms. The importance of
written code itself is not paramount: in a recent talk Alex Maclean demonstrated
a live coding session without any form of written representation3.

This discussion relates to the ephemeral nature of code and the long-
standing discussion of whether live coding is creating an oral tradition; we do
not maintain every single line of code or every single code variation.

The main practice of musical live coding involves three main components:

2ManifestoDraft, https://toplap.org/wiki/ManifestoDraft (accessed: 2023-09-06)
3Alex McLean presents “live coding without anything” – https://tinyurl.com/2s3r6s8w

https://toplap.org/wiki/ManifestoDraft
https://tinyurl.com/2s3r6s8w

2.2. HISTORICAL ACCOUNTS OF PROGRAMMING DURING A PERFORMANCE 11

writing the code, listening to the musical outcome, and re-writing of the code.
This is a feedback loop between writing and listening, expressing formal rules
and experiencing what they sound like. Thus, the actual practice of expressing
logical statements is transcended by the metaphysical nature of what they
sound or look like, as in the case of visual live coding. Radically we may say
that live coding is a transcendental bridge between what is known and what is
experienced.

2.2 Historical accounts of programming during
a performance

In this section, I present how technological advancements in the computing
industry gave rise to a new form of electronic music, namely performing music
using microprocessors, and how the deconstruction of the same infrastructure
gave birth to live coding.

Programming during a performance is a natural evolution of live electronic
music performance, which predates live coding practices by a few decades.
The technological advancements in Silicon Valley during the 70s significantly
influenced this era. At that time, composers were experimenting with afford-
able microprocessors in the San Francisco Bay Area4. Eventually, a KIM-1
microprocessor (Figure 2.1) became a must have which eventually led to the
early experiments on collaborative computer music, most notably with bands
such as The League of Automatic Music Composers and later The Hub [58].

Figure 2.1: The KIM-1 microprocessor. On display at the Musée Bolo, EPFL,
Lausanne. CC BY-SA 2.0.

4http://crossfade.walkerart.org/brownbischoff/IndigenoustotheNetPrint.html

http://crossfade.walkerart.org/brownbischoff/IndigenoustotheNetPrint.html

12 CHAPTER 2. THEORETICAL BACKGROUND

The prehistory of live coding was compiled as an online release named
TOPLAP001 – A prehistory of live coding and released by wertlos.org (http:
//wertlos.org/various/). As live coding began with computer musicians,
the immediate precursor of live coding were the pioneers of the field, like Ron
Kuivila known to have performed live using a computer at STEIM in 1985, and
The Hub and the League of Automatic Composers who were also performing
in the Bay Area the same period. The League started in the late 70s and
later some of its members formed The Hub. As early as 1979, they had begun
regular biweekly informal public presentations at the East Bay Center for the
Performing Arts, organising concerts with several associated members.

Live coding is tightly connected to the flourishing of generative arts that
started in the 80s, and the community documents itself with a sense of irony and
humour [57]. This is reflected in the title of the organisation for the promotion of
live coding, called TOPLAP5. In the TOPLAP mailing list archives this sense of
humour, or maybe the necessity for openness and self-criticism, is addressed in
the very first posts6, 7, 8. Thus, a sense of extra-live-coding meaning is ascribed
to self-reflections within the community. Alan Blackwell noted in his talk in
PPIG 2022 that Alex McLean and Nick Collins introduced a methodology of
“ironic deconstruction of the infrastructure”. One of the main motivations for
live coding centered around the criticism of DJ-ing using conventional media
players to reproduce ready-made compositions, and live coding concerts had
already been present in nightclubs in the UK [59].

2.3 From mnemonic devices, to interactive in-
tefaces and on-the-fly algorithms

In this section, I continue with a more detailed history of algorithmic practices
for music performance. I start by presenting algorithmic thinking and how
the advent of computers shifted our understanding of musical processes from
static to dynamic processes. My main concern in this section is to present
how performers shift their understanding in correspondence with contemporary
technological developments and how that has resulted in creative modifications
of their algorithmic practices.

Algorithmic approaches to music composition can be traced back to the
work of Guido d’Arezzo (circa 1026) during the medieval period in Europe [60],
[61]. D’Arezzo’s algorithmic rules primarily functioned as mnemonic devices,
with the vowel-to-pitch lookup table of “AEIOU” mapped to pitch intervals
serving as a notable example [62, p. 15]. The utilization of algorithms in
musical composition has persisted for centuries, with the advent of information
theory and digital computers in the 20th century providing new avenues for
experimentation in the field.

5TOPLAP wiki Main page, https://toplap.org/wiki/Main_Page (accessed: 2023-09-06)
6Plain text file of the mailing’s list archive from 2004-2008 https://raw.

githubusercontent.com/yaxu/unravelling/master/livecodemlarchive.txt
7Complete mailing list archive: https://toplap.org/livecode-archive/
8https://github.com/yaxu/unravelling

http://wertlos.org/various/
http://wertlos.org/various/
https://toplap.org/wiki/Main_Page
https://raw.githubusercontent.com/yaxu/unravelling/master/livecodemlarchive.txt
https://raw.githubusercontent.com/yaxu/unravelling/master/livecodemlarchive.txt
https://toplap.org/livecode-archive/
https://github.com/yaxu/unravelling

2.3. FROM MNEMONIC DEVICES, TO INTERACTIVE INTEFACES AND ON-THE-FLY
ALGORITHMS 13

One of the earliest known computer programs developed for music composi-
tion was the Illiac Suite [63], an advanced program that employed Monte Carlo
algorithms and Markov chains. These probabilistic algorithms illustrated the
potential for computer-generated music, despite not being the first instance of
generative processes in the history of music-making (e.g., gamelan music [64]).
Concurrently, stochastic processes for music composition were being explored
using computers [65]. Famous composers like Xenakis were already experiment-
ing with stochastic music [66]. During this period, the interaction between
composers and computers remained largely static. The composer-programmer
was limited to initiating the execution of a program and waiting for the output,
which at the time was typically a list of integers mapped to musical notes.

As a result of the swift progress in computational capabilities and the
miniaturization of integrated circuits, epitomized by Moore’s Law, the age
of personal computing emerged, making computer programming increasingly
accessible to non-expert programmers. Scripting languages such as Perl and
BASH facilitated rapid and interactive communication with computers by
employing interpreters and runtime command prompts. This development
eventually allowed for real-time modifications of computer programs, particu-
larly in languages like LISP and later Smalltalk.

2.3.1 The first era of interactive music systems and on-
the-fly algorithms

The advent of a new era in computer-assisted music-making facilitated the
emergence of groundbreaking ensembles such as the League of Automatic
Composers (League) and The Hub, during the nascent stages of networking and
remote computer communication (the late 1970s - early 1980s). Initially, the
League was experimenting with real-time data transmission between performers
using solderless breadboard [67], [68]. Eventually this evolved to sending and
receiving data over a micro-computer network system, called the “Hub”, during
musical improvisation [69], [70]. The first hub, called Hub 0.0, was transmitting
data at a rate of 300 bits per second. The next version, Hub 1.0, reached a
communication speed of 2400 bits per second. In 2004, Hub 3.0 was using an
Ethernet router based on Ross Bencina’s OSCgroups9, a system for routing
OSC10 messages. As data and algorithms are often considered interchangeable
concepts by some computer scientists, the Hub’s achievement lies in allowing
on-the-fly modifications of their programs for ensemble music performance,
thereby illustrating the feasibility of computer-generated music within a social
context.

Typically, a music psychology perspective holds an adaptationist account
of the origins of music, which posits that music has survival value and is
inherently social [71]. So, the accomplishment of making ensemble music
with computers resonates with the essence of music as a collective activity.
While solo performances present their challenges, the complexity of ensemble

9http://www.rossbencina.com/code/oscgroups
10Open Sound Control protocol, https://en.wikipedia.org/wiki/Open_Sound_Control

(accessed: 2023-09-06)

http://www.rossbencina.com/code/oscgroups
https://en.wikipedia.org/wiki/Open_Sound_Control

14 CHAPTER 2. THEORETICAL BACKGROUND

performance is considerably heightened. As such, the psychology of music sees
ensemble performance as an exceptionally demanding task and one of the most
intricate human activities.

The transition from static algorithmic representations to dynamic interac-
tions facilitated novel modes of musical expression. This development is at
the core of interactive music systems, a wide-ranging research domain and
the primary focus of the NIME conference. Rowe [2] characterizes interactive
computer music systems as “those whose behavior changes in response to mu-
sical input,” Zicarelli [72] portrays these environments as possessing “controls
that offer immediate feedback in modifying an ongoing process.” Such innova-
tions have enabled the integration of computers into musical performances and
facilitated direct interaction with the algorithms.

Rowe [2, chap. 1] raises the critical question of establishing meaningful
communication between machine language and musical significance. How
can low-level signal processes be translated into high-level, comprehensible
musical representations for human understanding? This concept forms the
underlying premise of machine musicianship. Rowe addresses this challenge by
incorporating insights from music cognition studies, developing a sophisticated
cognitive architecture that spans various levels of cognitive organization, such
as hearing, memory, and meaning, to create tools for musical performance.

2.3.2 Towards creative modifications of algorithms

The initial phase of interactive music systems marked a significant milestone
in the history of music-making, as these systems could produce unforeseen
musical results, potentially fostering creativity during performances [73]. While
such outcomes could be attained with mechanical systems, the programming
capabilities in the age of personal computing facilitated swifter integration.
Instead of reconstructing a mechanical system entirely, one could rewrite
and recompile a software program — a process that, in many cases, would
have been unfeasible with mechanical systems due to the temporal nature of
music. Nevertheless, during the early days of computing, these processes were
comparatively slow and could impede musical creativity.

Despite these limitations, musicians could interact with the systems in
real-time. However, the systems could only respond within the constraints of
their pre-programmed generative spaces. Here, an analogy may be drawn to
contemporary AI algorithms trained on large datasets, where the training of
a model may take anywhere from several hours to months. When interacting
with such large models, adjustments are typically confined to the network’s
weights, without the ability to modify the training process on-the-fly, other
than by applying reinforcement learning on top of the pre-trained large model
to fine-tune its weights. This scenario bears similarities to the early days of
interactive music systems and machine musicianship, which persisted until the
mid to late 1990s.

As personal computers became increasingly powerful, real-time sound syn-
thesis engines emerged, pioneered by the MUSIC-N languages [74] and the
groundbreaking implementation of the Unit Generator (UGen). To this day,

2.3. FROM MNEMONIC DEVICES, TO INTERACTIVE INTEFACES AND ON-THE-FLY
ALGORITHMS 15

UGens remain the primary tool for generating real-time sound synthesis en-
gines. Music programming languages such as CSound, MAX, and OpenMusic
provided new possibilities for performing musicians. Subsequently, PureData,
an open-source version of MAX/MSP, and SuperCollider [75], transformed
how musicians interact with musical programs in real-time. By the late 1990s,
computers had attained sufficient computational resources to accommodate
the requirements of real-time sound synthesis for music-making. At this point,
it was not far away that real-time sensing technologies, such as online machine
listening to the audio [76] became available.

2.3.3 The early days of live coding

In the early 2000s, personal computers and laptops gained popularity in on-
stage musical events, from DJ sets to improvised performances. This trend
often led to the non-creative utilization of computers, relegating them to a
function similar to other music reproduction devices, such as digital compact
discs (CD-ROM). In response to this development, live coding emerged as an
“ironic deconstruction of the infrastructure” as Alan Blackwell noted in his
PPIG presentation [77], gaining traction on stage and in mailing lists.

Motivated by a blend of humor and technological curiosity, the live cod-
ing pioneers questioned the nature of computer interaction during musical
improvisation. They criticized mainstream commercial software interfaces like
Ableton and Reason as rigid and restrictive interfaces [22]. Instead, live coding
practices emphasized malleable, non-rigid interfaces and democratic approaches
[78] to music-making. The Powerbooks ensemble, for instance, comprised
musicians performing with laptops on their laps, scattered among the audience,
and utilizing their laptops’ built-in speakers.

During the first decade of 2000s, the popularization of the maker culture
emerged in parallel, characterized by advancements in open hardware such
as the Arduino microcontroller. Precursors in music include Nicholas Collins
who was developing DIY electronic musical instruments [79] since the early
1980s. While the two communities overlapped to some extent, the maker
culture garnered broader attention and societal impact, possibly due to the
tangible outcomes of open hardware, vast interdisciplinarity and capitalization
opportunities of the innovation. In contrast, the early days of live coding were
primarily confined to musicians’ circles. Presently, live coders constitute an
international community with active local hubs worldwide11. The art form
has expanded beyond music to encompass dance12, visuals13, mechatronics14,
weaving15, and more.

Live coding serves as a prime example of on-the-fly interaction with al-
gorithmic processes. Although the practice does not significantly deviate from a
blank-slate patching session using modular synthesizers, live coding goes a step

11Currently 38 nodes worldwide https://toplap.org/nodes/ (accessed: 2023-09-05)
12HTB2.0 - Kate Sicchio Concert D, Tuesday https://youtu.be/iOAffWTBVE0
13Olivia Jack - Hydra, Live Coding Visuals in the Browser https://youtu.be/cw7tPDrFIQg
14Live coding techno with a turntable https://youtu.be/IatfZAIMU_M
15CODE • WEAVE • MUSIC https://youtu.be/rR1o_IytPl8

https://toplap.org/nodes/
https://youtu.be/iOAffWTBVE0
https://youtu.be/cw7tPDrFIQg
https://youtu.be/IatfZAIMU_M
https://youtu.be/rR1o_IytPl8

16 CHAPTER 2. THEORETICAL BACKGROUND

further by redefining and questioning its own definition (if any)16. Analogous
to a modular synthesizer, live coding posits that any module is subject to
redefinition, on-the-fly.

This shift in understanding can be likened to the static mathematical
representations we impose on ourselves when doing (or undoing) mathematics.
The inadequacy of static mathematical formulations was a topic of debate in
the early days of phenomenology, notably in the discourse between Husserl and
Brouwer [80], [81]. Viewing mathematics as a static entity effectively denies the
experience of understanding mathematics and any potential re-understanding
during the process. While some may perceive this as time in mathematics,
others might consider it the journey of mathematics. Live coding essentially
incorporates temporality into the process of programming [25].

2.4 Live coding as a musical activity

Here, I present live coding as a musical activity and see three main components:
musical practice, musical agents, and musical systems. The musical practice has
been discussed in live coding and is seen as the main vehicle for learning how to
live code. Musical agents, here, refer to both human and machine agents, and
I discuss aspects of agency from the live coding literature. Finally, I discuss
live coding systems, which seem to be a necessary component, comprised of
either mechanical, software, or notational constructs.

2.4.1 Live coding practice

Traditional musicianship requires much practice, and the same applies to live
coding [38], [54]. In music technology, sometimes we forget that practice can
improve skills, and music performance is a skillful human activity. To a certain
extent, this may be linked to lower accessibility requirements when starting to
use a digital musical instrument (DMI), a digital audio workstation (DAW),
or a program for editing sounds like Audacity – one of the most popular and
open-source sound editors. The software music industry has been focused on
making their products more and more accessible, and maybe the epitome of this
is realized with the prompt engineering AI applications which simply spit out
generative compositions based on style imitation algorithms. As of early 2023,
there are numerous online text-to-song generators, but as an example I will
point out Jukebox17 developed by OpenAI, the company that made a difference
with their chatbot, called ChatGPT, in 2022. Although I will not analyze this
situation, I will make an analogy to the era in which sound recordings first

16There is an endless discussion about whether live coding requires a defini-
tion. In this thesis, I deliberately avoid entering into this discussion, and I ad-
here to the good faith of live coders, acknowledging as live coding any systems and
practices that use code for live performances. Several attempts have been made
through the years, most notably in the first ICLC in 2015 where the participants
were asked to define what live coding is https://docs.google.com/spreadsheets/d/

1ogux4mAIUbXOjiFqw7fhh6WL0FKHdVvvuijEeZl5jCM/edit?usp=sharing (accessed: 2023-09-
05).

17https://openai.com/blog/jukebox/

https://docs.google.com/spreadsheets/d/1ogux4mAIUbXOjiFqw7fhh6WL0FKHdVvvuijEeZl5jCM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1ogux4mAIUbXOjiFqw7fhh6WL0FKHdVvvuijEeZl5jCM/edit?usp=sharing
https://openai.com/blog/jukebox/

2.4. LIVE CODING AS A MUSICAL ACTIVITY 17

appeared, which have been criticized substantially for transforming the social
nature of music. On the other hand, recording technologies enabled archiving
and personalized listening activities. How the transition from personalized music
listening to a personalized music corpus18 will impact our musical activities
and the social nature of music is yet to be seen.

Regardless of the above advancements, musical practice is an activity that
typically involves both our mind and body in the situation. Musical activities
can be conceptualised as consisting of music-making, music listening and
musical imagery. Music-making involves both music composition and music
performance. Music listening is the most widespread musical activity. We are
exposed to music listening many hours per day, even involuntarily. Musical
imagery is related to our ability to imagine musical melodies and can be both
voluntary and involuntary [82]. When practising music we engage in all three
above activities, which indicates that these activities are not mutually exclusive.

On the contrary, the three above-mentioned musical activities can be seen
as progressive levels of engagement with music. It’s simply self-evident that
we are more engaged when we play music than when we listen to music. For
example, we can listen to music and engage in a conversation, whereas the same
cannot hold when we perform music, as we are bodily engaged in the music
production. Similarly, when listening to music, we are more engaged with the
music than when we merely imagine a melody of a song. It can be hard to
start dancing to the beat while only imagining the music, whereas when we
listen to dance music, we are likely to get bodily entrained to the beat. Overt
bodily movement indicates increased engagement with music, as our body is
linked to the environment, regulates our organism, and so on. Essentially, the
more embodied our interactions with music, the more engaged we are with the
musical activities.

All three musical activities are involved in live coding, similar to traditional
music performances. We typically make some effort when writing the next
code snippet, which involves processes related to musical imagery. Indicatively,
notational audiation [83], [84] may be activated during live coding [37], as
code is the notation in live coding [55]. Musical imagery also contributes to
planning sequential actions [85], and typing on a keyboard is an activity based
on serial skilled actions [86]. Of course, there is a difference between serial
skilled actions in traditional music performance and serial skilled actions in
live coding, as “the code writing of deferred time computer programming may
be assembled out of time order” [87, p. 115]. Whereas traditional musicianship
is based on temporally precise musical gestures, and musicians are considered
the “champions” of sensorimotor synchronization.

Nick Collins and Fredrik Olofsson conducted a month-long daily practice
using SuperCollider [54]. I also conducted a month-long daily practice study
examining how listening to the generated sound can influence the coding
session [38]. To the best of my knowledge, there are no other studies that
follow the daily practice paradigm. What is obvious from both my study
and Collins-Olofsson’s study is that daily practice improves our live coding

18With personalised music corpus, I refer to the possibility that each music-lover can
potentially generate his or her own “favourite” song list that meets their musical preferences.

18 CHAPTER 2. THEORETICAL BACKGROUND

skills. Knowledge and skill are seen as interchangeable notions for Satinder Gill
and intertwined with skilled performance [88]. In musical live coding, besides
any musical knowledge, there is a requirement for some basic programming
skills. Collins also suggests several exercises, some demonstrating a hilarious
attitude for radical experimentations, but certainly some very good points.
The exercises are separated into three sections isolation exercises, connectivity
exercises and repertoire implications. Isolation exercises may not be related
to exercising musical or programming skills, as typing on a keyboard does not
fit in either of the two categories. Connectivity exercises address practices
that can be used to build a battery of live coding skills that can be ready at
hand during a performance to make transitions between musical structures and
programming abstractions. Repertoire exercises involve practising repertoire,
which in live coding, at this point there is likely no such thing yet.

2.4.2 Agency in live coding

Agency in live coding has been an issue of discourse since the early days [23].
The agency is seen as distributed between the human and the machine. Andrew
Brown discusses the potential controversies in ascribing agency to non-living
things and suggests the term “relational agency” be used to describe artefacts
and machines [49]. Thus, a “black box” machine may not have agency, but as
part of human-machine interactions, the machine exhibits relational agency.
Brown argues that machine musicianship is not fundamentally different from
traditional musicianship, as some of the basic mechanisms responsible for social
bonding and music engagement, such as rhythmic entrainment, are present.
What is different in machine musicianship is an “enhanced sense of agency or
otherness” [49, p. 184].

Dahlstedt [89] introduces the term influential agency to describe how the
designer of a tool has influence over the artwork. He sketches a spectrum of
agency (Figure 2.2), which shows how agency progresses from the designer of a
tool to all involved parties. In live coding, we can see that in programming
languages, such as TidalCycles, where the designer of the tool, in this case
Alex McLean, has a certain degree of influence over the final artwork, as the
artist has to rely on pattern structures embedded in the language for the
final composition/performance. A similar notion is that of the idiomaticity of
a programming language [90], a term to denote how different programming
languages can influence the musical outcome.

2.4.3 Live coding systems

The music tradition that enabled practices like live coding to appear builds
upon automated musical instruments like the barrel organ and music boxes [49].
The diversity of live coding systems is paramount, as this has already been
addressed in the diverse practices that resist any easy forms of classification
[25, p. 231]. Whereas systems like TidalCycles lowered the entry level for live
coding, and made sense for making algorithmic dance music, it can still be
difficult to say that two live coders are using the same system, as the system is

2.4. LIVE CODING AS A MUSICAL ACTIVITY 19

Figure 2.2: A skectch of the spectrum of agency demostrating visually how the
designer has a degree of influential agency over the artwork. (Illustration from
Dahlstedt [89]).

being extensively modified in use, on the fly.
On the other hand, some sort of live coding system seems necessary, although

it may be something as simple as notation or as complex as a computer
architecture or a distributed infrastructure. The code itself is seen as a notation
in live coding practice [91]. There is a long tradition of relations between
notations and systems, ranging back to Guido d’Arezzo and mnemonic rules
[61]. As such, notation in live coding is seen as an epistemic tool and, thus,
an extension of our minds [92]. I see no difference between mind and body,
and regardless of whether code vibrates or not19, as was discussed by Nicholas
Collins [93] and Thor Magnusson [92], I see the notation as an extension of our
embodied understanding [94].

In recent years, the newly established forum Hybrid Live Coding Interfaces20

is gaining attention. In this annual event, the discussions focus on hybrid
systems that extend beyond the keyboard and, usually, the screens. The systems
presented may range from piano and other physical instruments coupled to a
live coding interface, to virtual reality and speculative visions about the field.

19We have demonstrated in previous work, how quasi-palindromic structures emerge
from generative algorithms [42], and use them in practice. I assert from musical practice
that a certain level of anticipation is to be met when the generative rules are met with
the compositional rules. This simply means that the performer can anticipate the quasi-
palindromic structures by steering the system, and it is unclear to me whether familiarity is
important here. I, here, refer to the spectrum of generativity by Dahlstedt [89], where the
generative algorithm converses with the rule system of the compositional rules.

20https://hybrid-livecode.pubpub.org/

https://hybrid-livecode.pubpub.org/

20 CHAPTER 2. THEORETICAL BACKGROUND

Chapter 3

Study A: On-the-fly
algorithms for machine
musicianship

“The code is like clay and I am sculpting it.”
Fredrik Olofsson [95, p. 37]

In Study A, I present how live coding contributes to a shift from cognition
through perception to cognition through interaction. The theory behind this
will be further elaborated in the next chapter (Study B) and can be seen as an
extended discussion on this topic commonly referred to as action-perception
theory [96]. In the present chapter (Study A), I focus on the technical develop-
ments in the field that enabled the flourishing of such an understanding. Then,
I continue on the system side and discuss the technical dimension of liveness in
programming environments, as introduced by Tanimoto [43]. I discuss how live-
ness is also used to describe percepts and experiences. I continue with two main
strategies of live coding based on a cognitive information processing paradigm.
The subsection Bottom-up systems in live coding (section 3.3) presents a survey
of all known systems that follow this approach to live code. The last two
subsections of this chapter focus on my contributions and their implications.

3.1 Live coding in machine musicianship and
software engineering

3.1.1 In machine musicianship

Live coding can be characterized as altering a program while running [18],
[22], [23], [59], [97]. Within the realm of music, coding translates into sound,
allowing the composer-programmer to experience the written program audibly
while formulating the governing rules. The running programs are perceived
as “live” primarily because the resulting output is experienced as audible

21

22 CHAPTER 3. STUDY A: ON-THE-FLY ALGORITHMS FOR MACHINE MUSICIANSHIP

sounds. Our cognitive capacities enable us to form this perceptual continuity
by grouping musical elements using cognitive processes [98], such as long-term
and short-term memory. Long-term memory (LTM) is responsible for structural
elements, such as musical patterns, themes, and motifs, whereas short-term
memory (STM) is responsible for melodic and rhythmical groupings [99].

Gestalt principles, such as proximity, similarity and good continuation
are some of the important mechanisms that contribute to grouping and the
emergence of music perception. How we progressed from an auditory perceptual
understanding to making semantic relationships between written code and heard
sounds is not fully understood, but the essence lies in the interaction between
code and sound as formulated by our lived experiences. In this thesis, I later
discuss1 the importance of musical imagery and music listening as coupled to
our sensorimotor network and the possible influences of notation and sound
with bodily movement [37].

3.1.2 In software engineering

Tanimoto [100] introduced a hierarchy of liveness for programming environments.
The hierarchy had four levels: informative (L1), informative and significant
(L2), informative, significant and reactive (L3), and informative, significant,
reactive and live (L4). This will be referred to as the technical notion of liveness,
as it pertains specifically to programming environments and does not encompass
the social context of musical performances. Two decades later, Tanimoto [43]
revisited his hierarchy, incorporating two additional levels. Algorithms could
now anticipate user behaviors, also known as tactically predictive (L5), and
make informed decisions about the programmer’s intentions, also known as
strategically predictive (L6). L5 and L6 will be referred to as advanced levels of
liveness.

The concept of liveness in musical live coding is an intrinsic attribute of
systems during live performances [101]. This characteristic is not contingent on
edit-triggered updates, as outlined in Church et al. [102], as in a performance
context, live coding systems make use of stream-based code evaluations2 [101].
This extends beyond the technical definition of liveness introduced by Tanimoto
in the context of programming environments because the multimodality of
musical live coding allows different sensory channels to influence our experience.
So, auditory and music perception have an active role in musical live coding
that blends in its many liveness-es [25].

The evolution of the concept of liveness has led to algorithms being more
than just dynamic entities that can be updated on-the-fly. The advanced levels
of liveness realize the notion of the potential for multiple future outcomes
within programming environments. This is because the user can have a preview
of possible future outcomes and select one or ignore all of them. Generative

1See Study B: Embodiment and musical gestures in machine musicianship
2There is a difference when systems use clock-based updates, where the code evaluations

are imposed forcefully by the positive edge clock. This attribute is typically related to a
“safety” attribute, that systems cannot run into error-prone evaluations, something I will
elaborate on more in the sections Study D and Discussion.

3.2. TWO APPROACHES TO LIVE CODE 23

art has been moving in this direction since the 1960s. Still, it took more than
30 years for artists to realize concept of multiple future outcomes, with the
performance by Oliveros over telephony lines [103], and almost half a century to
experience this during the unfolding of their creative practices3. Occasionally,
interfacing with multiple future outcomes in live coding – such as in code
previews – is perceived as an unwelcome feature in live coding, as our cognitive
resources may not accommodate such increased amount of information flow
[104].

3.2 Two approaches to live code

Two primary approaches to live coding exist: employing high-level abstractions
to generate music in a top-down manner or utilizing low-level programming
constructs to generate music in a bottom-up manner [40]. An example of the
high-level approach to live coding involves typing on a keyboard and evaluating
high-level programming statements. For instance, during a musical live coding
session, one might invoke a high-level abstraction to generate a musical pat-
tern, such as a musical scale, or produce a sinusoidal oscillation with specific
parameters. Conversely, adopting a bottom-up approach entails constructing
the levels of abstraction progressively and on-the-fly. For example, using an
instruction set to write the program entails accessing opcodes4. To determine
whether data reading access is provided, an arithmetic operation is performed,
or results are stored in memory. In this way, different levels of abstraction are
created and validated on-the-fly, as the incoming data are assigned to different
functions determined by their corresponding opcodes/operands. Ultimately,
bottom-up systems depend on a minimal use of abstraction.

From a cognitive perspective, top-down approaches to live coding typically
involve long-term memory processes, as the time required to type an executable
command in most programming languages exceeds the upper limits of short-
term memory (indicatively 0.5-8 seconds [99]). Although some languages like
ixi-lang were specifically designed to account for such cognitive constraints, as
the time required to type an executable command in ixi-lang is less than 5
seconds [105]. TidalCycles also has an elegant and compact syntax that enables
activations within the STM window5. Contrary, bottom-up systems typically
involve a shorter duration between code updates, which can often involve our
STM during a performance, as I will discuss later in detail.

3.2.1 The case of bottom-up systems

George Dyson, in his book Analogia [106], employs an apt metaphor from canoe
construction. A canoe can be built using a top-down approach, as in the case

3Indicatively, the performance 40 Days 40 Nights - True Rosaschi, where Pauline Oliveros
plays the accordion via the internet – https://www.youtube.com/watch?v=2qBI9Pdk_D4.

4An opcode, also known as computing syllable, is an abbreviation for operation code, and
are elementary machine instructions and elementary notions in computer organisation and
architecture.

5Alex McLean live coding demo https://youtu.be/PeyE8ATMezs

https://www.youtube.com/watch?v=2qBI9Pdk_D4
https://youtu.be/PeyE8ATMezs

24 CHAPTER 3. STUDY A: ON-THE-FLY ALGORITHMS FOR MACHINE MUSICIANSHIP

of a dugout canoe, or a bottom-up approach, exemplified by the construction
of a birch bark canoe6. This bottom-up canoe construction highlights the
advantages conferred by the modularity of the construction components. In
contrast, some of the limitations imposed by top-down architectures may hinder
the construction process. If an erroneous step is taken while creating a dugout
canoe, the material might become unusable7. The same does not apply to
bottom-up systems, which exhibit inherent generativity as this is engraved in
the modular design of such systems. In musical instruments, the same analogy
can be made with the construction of the sound box (body) of an oud8, and
the sound box of a Cretan lyra9. The sounding body of the oud is typically
constructed using small thin pieces of wood, whereas the sounding body of a
Cretan lyra is made out of a single piece of wood (i.e., not modular).

As early as 1993, Blackwell presented a bottom-up manifesto [107], drawing
inspiration from object-oriented programming (OOP) practices. The concept
he advocates is not novel for computer scientists; rather, he emphasizes the
significance of low-level abstractions that can enhance programming routines
in daily tasks. In essence, top-down paradigms assume the existence of some
bottom-up constructs, which ultimately become “invisible” to the user (this
thesis does not differentiate between users and programmers, viewing users as
experts).

Zmöling [108] suggests another view of the top-down and bottom-up
paradigms as related to code comprehension [109] and consequently to audience
perception of the code. He sees that the top-down approach has a predetermined
goal of what the program is supposed to be doing, whereas the bottom-up
approach aims to relate the novel code chunks with previously running code
chunks. How the audience perceives the written code is not straight-forward
but depends on various factors that will be discussed further in Study D.

Live writing, the process of writing text or a computer program, is also a
bottom-up approach [110]. This practice can be expanded to the live writing of
the parsing rules during a performance, a feature of the Sema ecosystem [111].
This rewriting of the parsing rules on-the-fly is, in principle, also applicable to
some low-level programming systems, such as Betablocker and Al-jazzari [112].
The parsing rules of a programming language can be dynamically modified
on-the-fly, which would generate more new languages. Some of them may
not be useful at all, but some may enhance the creative potential of a system
during a performance. For instance, we can create numerous mini-languages
throughout a performance and investigate which ones yield more pleasing or
dissonant musical outcomes. Such practices reshape the generative space of
potential outcomes. The question arises: can AI architectures benefit from
such bottom-up structures that examine multiple formal languages on-the-fly?

6Wikipedia Canoe, https://en.wikipedia.org/wiki/Canoe (accessed: 2023-09-07)
7Interestingly the same applies to top-down live coding systems, whereas in constrast

bottom-up systems do not exhibit such attributes of failure, as their design is implicitly
“safeguarding” the continuation of the running processes. Something similar applies to live
patching using sound synthesizers, as the sound is typically playing continuously.

8Wikipedia Oud, https://en.wikipedia.org/wiki/Oud (accessed 2023-09-03)
9Wikipedia Cretan lyra, https://en.wikipedia.org/wiki/Cretan_lyra (accessed 2023-

09-03)

https://en.wikipedia.org/wiki/Canoe
https://en.wikipedia.org/wiki/Oud
https://en.wikipedia.org/wiki/Cretan_lyra

3.2. TWO APPROACHES TO LIVE CODE 25

3.2.2 A bottom-up methodology

3.2.2.1 Bottom-up practices in software engineering

Bottom-up approaches to programming have been explored both in software
engineering (SE) [107] and in live coding, most notably with the use of live
writing practices [110]. Historical perspectives in SE have generally promoted
programming practices with a hierarchical and top-down approach. Blackwell,
Cox, and Lee [110] discuss the high cost of programming during the early days
of computing in business environments and how that influenced programming
development culture. This emphasis on rapid and efficient programming,
or extreme programming, ultimately led to the emergence of agile software
development.

“The top-down approach to software development, characterized
by iterative refinement, stands in stark contrast to the alternative,
bottom-up construction method. In this latter model, individual
components are created and verified before being assembled to form
a functional whole. The mindset of the ‘bottom-up’ developer aligns
more with a pragmatist or bricoleur, emphasizing craftsmanship
over the strict proof often associated with the steps of iterative
refinement. Live writing performances inherently possess a degree
of bottom-up methodology.” [110, p. 2]

The bottom-up approach to programming opposes agile programming prac-
tices, which do not set requirements during the software development cycle
planning, but rather aim for requirements discovery. Agile programming is
rooted in object-oriented programming (OOP) practices, where “iterative re-
finement” is the primary problem-solving method. In contrast, bottom-up
programming practices involve the progressive development of various separate
modules by building and verifying their functionality. This approach is often
seen in digital circuit design, where computer engineers engage directly with
the physical materials of a computer architecture. In live coding, a bottom-up
approach tends to emphasize material practices, as has been literally showcased
by Reus in the iMac Music [113] performance and the stateLogic machine [41].
While not all bottom-up systems have a direct connection to hardware, there
is often a strong link to the craft of programming due to the algorithm’s
inherent quasi-materiality within the system. Though iMac Music and the
stateLogic machine are hardware implementations, the stateLogic machine was
later written as software for SuperCollider. This connection typically exists
even in systems not built directly in hardware, but even when implemented on
a virtual machine.

3.2.2.2 Misconceptions between bottom-up and low-level processes

Low-level computations are not inherent components of a formal system. They
can be employed to filter a digital signal or write a computer program. While
filters are engineering abstractions that can be applied on a sample-by-sample
basis, they do not rely on a formal grammar. The term bottom-up live coding

26 CHAPTER 3. STUDY A: ON-THE-FLY ALGORITHMS FOR MACHINE MUSICIANSHIP

is introduced to differentiate between low-level processes using engineering
abstractions and those operating on a formal grammar. Digital filters can range
from simple linear signal transformations to complex, non-linear processes that
create chaotic oscillations. Contrary, certain formal languages can be used for
universal computations.

An exception to the abovementioned distinction between low-level and
bottom-up terminology, is the Betablocker version by Bovermann and Griffiths
[114]. In this specific version, Betablocker is the sound engine and the coder is
typing high-level abstractions in SuperCollider. Thus, the sound engine relies
on a bottom-up system and does not function similarly to a digital filter. This
system essentially traverses from a top-down approach to typing on a keyboard
to a bottom-up approach for making sound synthesis. It demonstrates in this
manner how hard it can be to make easy classifications in live coding [25].

3.2.2.3 Live writing as a bottom-up practice

Live writing presents another case of bottom-up systems [110]. Till Bovermann
presented a duet live performance with Sara Hildebrand Marques Lopes at
Karlsruhe’s live.code.fest 2013 10, where they performed with the Oulipop
system. The performance was live writing, where the performers shared
one keyboard and took turns in a live writing exercise that looks like code
poetry [115] although the Oulipop performance consisted of prose [48]. The
performance system is based on Betablocker’s sound engine, and each keystroke
manipulates a fictional computer architecture11. In this manner, live writing
was implemented as single-keystroke commands. Later on, Lee and colleagues
introduced the term live writing as the “asynchronous playback of a live coding
performance” [116]. In 2016, Lee presented live writing as a performance at
NIME12 [117], where the rules are not based on single-keystroke commands.

3.3 Bottom-up systems for live coding

Here, I will present various bottom-up systems and briefly explain how their
algorithmic processes unfold over time. I present the systems in separate
paragraphs, and their corresponding videos in Table 3.1.

Within the various practices of musical live coding, there exists a limited
number of systems that adopt a bottom-up methodology. The earliest doc-
umented instance of such a system is Betablocker, by Dave Griffiths, which
employs a video game interface for live coding musical compositions [112]. Sub-
sequently, Al-jazzari (Figure 3.1) was developed as a successor to Betablocker,

10Oulipop performance at live.code.fest 2013, Karlsruhe, Germany. https:

//podcasts.apple.com/us/podcast/till-bovermann-sara-hildebrand-marques-lopes/

id821590153?i=1000411352850 (video not available on 2023-06-25).
11“Manipulating texts according to Oulipo rules. Each keystroke triggers that the text’s

current state is translated character by character into a set of commands for a fictional
CPU. Treated as a sound signal, the ever-changing output of that CPU is played back
us and to the audience, guiding our decisions on how to alter the text next.” (https:
//research.aalto.fi/en/publications/oulipop – accessed 2023-06-25).

12Live writing https://youtu.be/1WRn2LNV9yw

https://podcasts.apple.com/us/podcast/till-bovermann-sara-hildebrand-marques-lopes/id821590153?i=1000411352850
https://podcasts.apple.com/us/podcast/till-bovermann-sara-hildebrand-marques-lopes/id821590153?i=1000411352850
https://podcasts.apple.com/us/podcast/till-bovermann-sara-hildebrand-marques-lopes/id821590153?i=1000411352850
https://research.aalto.fi/en/publications/oulipop
https://research.aalto.fi/en/publications/oulipop
https://youtu.be/1WRn2LNV9yw

3.3. BOTTOM-UP SYSTEMS FOR LIVE CODING 27

presenting a three-dimensional video game environment wherein animated
robot agents visually represent musical occurrences. Both systems share a
similar design, interfacing directly with the instruction set of the computer
architecture.

Figure 3.1: On the projection there are four window frames showing Al-Jazzari
in action, by Alex McLean and Dave Griffiths. Image by Dan Stowell is licensed
under CC BY-SA 2.0.

A somewhat similar approach to Al-jazzari and Betablocker is the TOPLAP
app, created by Nick Collins [118], which employs a “timbral instruction set” for
live coding musical outcomes. The TOPLAP app moves further and implements
a machine listening algorithm on the musical outcome. This operation serves
as the driving force of the timbral instruction set by combining the user’s
input and the result of the machine listening analysis. In this manner, Collins
speculates how we can write computer programs using the musical outcome of
the system in question.

We have introduced a collection of live coding interfaces [40]–[42] that
progressively advance the levels of abstraction, from bits to symbols and
subsequently from symbols (bytes) to tokens (words). Essentially, the user
provides the input in machine language, which is a binary representation of
instructions, and the output is provided in a symbolic representation. Initially,
I implemented this as a hardware prototype, the stateLogic machine, and
presented it in the SuperCollider Symposium 2012 Sonicarts exhibition in
London, UK (Figure 3.2).

28 CHAPTER 3. STUDY A: ON-THE-FLY ALGORITHMS FOR MACHINE MUSICIANSHIP

Figure 3.2: The figure shows one of the two stateLogic machine prototypes that
were presented at the SuperCollider Symposium 2012’s Sonicarts exhibition.
Photo by Steve Welburn.

Later we presented this approach as live hardware coding with Ioannis
Zannos [41]. In 2014, a lexical analyzer was implemented on top of the
stateLogic machine, and the algorithm design was able to recognize regular
expressions. In 2022, we redesigned the input interface by employing a feedback
loop between the encoding of the symbols and the input interface (in bits),
facilitating direct manipulation13 further by continuous gestural interaction
(Figure 3.3). The user interface is redesigned in such a manner that the
representation is not exhaustive, and we exchange experiences of meaning with
aspects that can facilitate interactivity, like the fluidity of actions [119].

CodeKlavier [120], is a project by Noriega and Veinberg where the main
point is that the pianist is programming using the piano. They refer to this dual
functionality of the pianist by calling them “the piano-coder.” CodeKlavier has
been presented as a series of submodules, each implementing a different style
of performance, from assigning a pianist the action of typing on a keyboard, to
specifying audience interactions with an AR application. Here, I will focus on
the CKalcuλator module, which can be categorized as a bottom-up system. The

13Direct manipulation (DM) is used when designing computer interfaces to facilitate direct
control of actions, typically through continuous control, like in the case of using the mouse
cursor to move a file to another folder. Another important aspect of DM is that it facilitates
cognitive processes related to recognition instead of retrieval. Some would argue that an
important component of DM is the undo functionality, but in the case of music performance
this is not applicable; we cannot unplay a note.

3.3. BOTTOM-UP SYSTEMS FOR LIVE CODING 29

5
COUNTER

C
ENCODER

1×CLK

KNOB

RESET

D B+D C+D (B+C+)+D (C+B+)+D (B+C+)B+D (C+B+)C+D

0
BIT2 (MS)

0
BIT1

1
BIT0 (LS)

KNOB

D

B+D

C+D

(B+C+)+D
(C+B+)+D

(B+C+)B+D

(C+B+)C+D

Figure 3.3: Left-hand side shows the GUI from the first revision of the prototype
in 2014, that we introduced a lexical analysis module. Right-hand side show
a preliminary sketch of the redesign that affords direct manipulation using
a knob. Video demos: https://youtu.be/AA78JewyU44 and https://youtu.

be/FZG_c1zKiVQ

system recognizes melodic sequences by the piano-coder and constructs simple
arithmetic operations on-the-fly by employing lambda functions, a common
functional programming construct.

Jonathan Reus has notably adopted a more radical approach with iMac
Music, in which he intervenes directly on the motherboard of a personal
computer. This performance system is metaphorically referring to how we can
gesturally intervene in the very workings of the computer. Jonathan Reus
nicely demonstrates the importance of the craft and physical labor that the
musician puts in during live coding. This approach contrasts with the typical
approach to live coding, where the coder is just sitting at a computer. Reus’s
approach, where he is physically manipulating circuitry, is certainly a highly
idiosyncratic system not unlike traditional modern music practices of inside
piano playing [121].

Table 3.1: Table of bottom-up systems in chronological order.

Author System Year Video URL
Griffiths Betablocker 2006 https://vimeo.com/24390484

Griffiths Al-jazzari 2007 https://youtu.be/Uve4qStSJq4

Diapoulis stateLogic machine 2012 https://vimeo.com/43121821

Reus iMac 2012 https://vimeo.com/205714278

Diapoulis Low-level live coding 2014 https://youtu.be/AA78JewyU44

Collins TOPLAPapp 2015 https://youtu.be/hfJTF3KTnFM

Noriega
& Veinberg CodeKlavier CKalcuλator 2019 https://youtu.be/hD-PWNDebD4

Diapoulis Bottom-up live coding 2022 https://youtu.be/FZG_c1zKiVQ

A common attribute among the systems above is the capacity to construct
abstraction levels dynamically and progressively. For example, the stateLogic

https://youtu.be/AA78JewyU44
https://youtu.be/FZG_c1zKiVQ
https://youtu.be/FZG_c1zKiVQ
https://vimeo.com/24390484
https://youtu.be/Uve4qStSJq4
https://vimeo.com/43121821
https://vimeo.com/205714278
https://youtu.be/AA78JewyU44
https://youtu.be/hfJTF3KTnFM
https://youtu.be/hD-PWNDebD4
https://youtu.be/FZG_c1zKiVQ

30 CHAPTER 3. STUDY A: ON-THE-FLY ALGORITHMS FOR MACHINE MUSICIANSHIP

machine processes the 3-bit input in binary notation, progressively decoding and
encoding it into symbols, providing the raw material for the lexical analyzer that
recognizes regular expressions. Betablocker, Al-jazzari, and the TOPLAP app
are stack machines, thus, are progressively implementing the computer program
by assemblages of opcodes and data. CodeKlavier CKalcuλator implements
lambda calculus on-the-fly by implementing simple arithmetic operations. For
instance, a certain musical pattern corresponds to the addition operand, another
to a specific number and so on. Finally, iMac Music presents a metaphorical
design where the live coder implements abstractions by creating short circuits
on the computer’s motherboard. Thus, the performer is not modifying the
software, but the hardware [122]. Reus’s radical approach transcends the
meaning of live coding in its every manifestation. The system is not “used” as
intended to, but rather “misused” to bring forth aspects of craftmanship and
labor during live coding.

3.4 Contributions

Here, I present the contributions of Study A in three categories: user interaction,
systems, and mapping, and I end with a simple example to demonstrate the
underlying algorithm of the stateLogic machine. My main contribution with
this study centers around the statelogic machine and its follow-up versions. To
explain how the system differs but also aligns with other live coding systems, I
introduce the term bottom-up live coding [37]. The term is used to denote a live
coding strategy that technically differs from the standard paradigm, sometimes
also called canonical live coding [104], to denote the practice of typing on
a keyboard using a programming language during a live performance, and
sharing the screen with the audience. This bottom-up strategy was discussed
previously (sections 3.2 and 3.3) with various examples and accompanied
video demos. Essentially, the bottom-up system I present is a blend of data
generation and algorithmic processes that can generate musical structures on
different levels (micro-structure, meso-structure, macro-structure). I apply
the algorithm to musical events, but in principle it can also be implemented
on the signal level, for instance as wavetable synthesis (see the source code
https://gitlab.com/diapoulis/lhc-knob). Also, the latest developments
implement a gestural controller, which opens further possibilities as it presents
a tactically predictive system in Tanimoto’s hierarchy of liveness [43].

3.4.1 User Interaction

The primary objective of our approach to bottom-up live coding was to make
live coding more “humane” by significantly reducing the temporal gap between
registering input commands and experiencing the resultant musical output. To
this end an event sonification is used to audify every step in the process (video
demo https://youtu.be/AA78JewyU44), an attempt to solve the problem
known in music psychology as delayed auditory feedback. Live coding, like
most electronic music, already alters the meaning between produced gestural

https://gitlab.com/diapoulis/lhc-knob
https://youtu.be/AA78JewyU44

3.4. CONTRIBUTIONS 31

actions and sound outcome, something we audibly experience as altered auditory
feedback [123].

I have been previously experimenting with interactive interfaces by employ-
ing combinational digital circuits, but the stateLogic machine presented one
of my first endeavors to devise a sequential digital circuit. Sequential circuits
introduce a memory component in digital design by implementing finite-state
machines and digital clocks. Using memory components for input control is
common when interfacing with an electronic musical instrument. However, the
approach of directly interfacing with a finite-state machine is unusual, particu-
larly in industrial designs (i.e., commercial hardware and software interfaces).
For instance, a typical sequencer14 interface with 8 steps is shown in Figure 3.4.
The input buttons can register values to the running sequence and correspond
to the output using highlights. In this case, there is a 1-to-1 mapping between
the input registered values and output sonic outcome.

Figure 3.4: Simple sequencer with 8 input buttons.

A visual representation of the basic algorithm for the 2014 prototype [42]
is shown in Figure 3.5. (The same algorithm was used in Paper III [40]). In
this case, the user is interfacing with three input buttons15 (Layer 0), and
there are three layers corresponding to the output (Layer 1, Layer 2, Layer
3). Thus, the input and output do not have 1-to-1 relation. Instead, the
levels of abstraction are progressively built up, which increases the complexity
of the system dramatically. The main difference for the user compared to
a simple sequencer is that here the user has to construct a more complex
mental model [124] of the behavior of the system to predict how the system will
behave. Thus the anticipation of the future outcome requires multiple levels of
abstraction, as opposed to a simple 1-to-1 mapping interface, where each input
command corresponds to a single resultant musical outcome.

In terms of musical practice, the main difference in how the user interacts
between a bottom-up and a top-down approach is that every gesture significantly
modifies the running algorithms in bottom-up systems. By that, I mean that
our gestures during a performance make significant, or effective, changes to the
running algorithms16. The same does not necessarily apply when we type on a

14The sketch on Figure 3.4 is a simplified version of controllers like the Korg nanoPAD or
the AKAI MPC series.

15See Figure 3.3 left-hand side for the GUI prototype.
16I will elaborate more on this aspect in the next chapter (Study B), where I present a

framework for gestural interactions and highlight the distinction between bottom-up and

32 CHAPTER 3. STUDY A: ON-THE-FLY ALGORITHMS FOR MACHINE MUSICIANSHIP

D

(B+C+)+B+D (B+C+)+D

B+D C+D

(C+B+)+D (C+B+)+C+D

LAYER 0
(3-bit)

LAYER 1
(modulo-8)

LAYER 2
(encoder)

LAYER 3
(lexical analyzer)

{0,1}

{0,1,2,3,4,5,6,7}

{A,B,C,D}

INPUT (1× CLK)

OUTPUT (1× CLK)

OUTPUT (3× CLK)

OUTPUT (3× CLK)

Figure 3.5: Diagrammatic description of the interface, as presented in [40],
[42]. Layer 0 is the bottom-level where the user provides the input in bits
(machine language). Layer 1 is the first level of computation, implementing a
modulo-8 function (decimal representation of numbers, 0-7). Layer 2 represents
the output of the encoder with four symbols. Layer 3 shows the lexical analysis
where 7 tokens are generated. The sets of possible input/output values are
shown within the curly brackets on each layer. On the right-hand side, the
clock division of each layer is shown.

keyboard, where long sequences of individual characters are typed to form a
programmable command. A series of individually typed characters in a text
editor can be gesturally performed (or rendered) in many different manners, as
we mistype a character, delete it, and so forth. Contrary, in bottom-up systems,
every choice we make almost immediately affects the running algorithms. The
specifics can differ between systems, but a similar logic applies for many bottom-
up systems such as the stateLogic machine, Al-jazzari, Betablocker and the
TOPLAP App.

However, Orca17 (https://100r.co/site/orca.html), a two-dimensional
tracker, is a system that also presents a characteristic that we may call al-
gorithmic significance of gestures [35], meaning that all gestures we produce
modify the running algorithms. But there are some significant differences.
Interestingly, while Orca facilitates single-letter commands, thus, in a sense

top-down systems.
17https://github.com/hundredrabbits/Orca

https://100r.co/site/orca.html
https://github.com/hundredrabbits/Orca

3.4. CONTRIBUTIONS 33

facilitating direct manipulation, at the same time, the relatively large number
of input commands (26 commands in total) does not facilitate recognition
processes. Unlike Orca, the bottom-up systems presented above do not rely on
single-letter commands and do not employ retrieval processes, also known as
recall 18, but recognition processes instead. So, whereas Orca presents some
characteristics that at first glance could be seen as a bottom-up system, at
the same time it differs substantially from all other bottom-up systems, most
notably in the fact the input commands are likely to engage retrieval processes.

3.4.2 Systems

On the system side, a bottom-up approach exemplifies the plasticity, or malle-
ability, of the user interface. The interface between the coder and the system
is dynamic, and the rules can change as we go. Maybe the best example to
illustrate this in action is iMac Music, because it points directly to the craft.
In all bottom-up systems, we construct the levels of abstraction progressively,
and sometimes the rules can change dynamically. To elaborate, alternating an
instruction set may be as easy as loading a new preset bank of instructions,
or we can experiment on-the-fly one by one with new instructions, or even
shuffle them (as in stack-based systems like Al-jazzari and TOPLAP App).
But in a top-down system like the Sema ecosystem, changing the parsing
rules in JavaScript can be challenging, necessitating that users possess a solid
understanding of parsers, regular expressions, and related concepts.

In contrast, experimenting with grammatical rules in a bottom-up manner
can be more accessible, as the users can easily test new grammars or instruction
sets and evaluate their utility in a stream-based fashion. For instance, in Al-
jazzari, each agent starts moving and generates music based on the instruction
set commands, shown in an iconic preview and selected using a joypad. In
that case, modifying an instruction set on the fly would immediately affect
the agents’ behavior, causing them to stop, clash, and so on. Such on-the-fly
experimentation presents possibilities for learning and testing the system during
practice without necessarily knowing in advance how to write the parsing rules.

The stateLogic machine demonstrates how to start live coding on the lowest
level of information – that of individual bits – without having familiarity with
the interface. In the first revision [42], in 2014, we added a lexical analyzer
on top of the system to recognize regular expressions. The re-design of the
interface [40], in 2022, enabled us to program the interface using a knob, which
affords continuous control. To the best of my knowledge, only Approximate
Programming by Kiefer [125], CodeKlavier CKalcuλator, and the redesign of
the stateLogic machine offer continuous gestural interactions in live coding
systems. The qualities of interaction in all three systems present diverse
characteristics. For instance, in CodeKlavier CKalcuλator, the piano-coder
performs sound-producing gestures to write the program. In the redesign
of the stateLogic machine, we identified that different envelopes of gestures,
either abrupt or with a steady pace, present distinct characteristics in the

18APA Dictionary of Psychology, two-process model of recall, https://dictionary.apa.
org/two-process-model-of-recall (accessed: 2023-09-07)

https://dictionary.apa.org/two-process-model-of-recall
https://dictionary.apa.org/two-process-model-of-recall

34 CHAPTER 3. STUDY A: ON-THE-FLY ALGORITHMS FOR MACHINE MUSICIANSHIP

behavior of the output. We conducted a statistical analysis which suggests
that predictive models can be developed to inform the users based on their
continuous gestural interactions [40]. While we did not implement a predictive
algorithm in practice, the study opens a window to the possibility of predicting
the generated tokens from continuous bodily movements. Such a prototype
can be a ground-breaking contribution for live interfaces as it may tame the
increased amounts of unpredictability induced by direct manipulation interfaces.

Another characteristic of all bottom-up systems is that none of them can
crash during a performance, except the iMac Music which already presents a
radical approach. It is interesting to notice that also Orca does not crash19.
I consider this fact a weak design criterion for bottom-up systems. Failure is
known to be highly appreciated within the community. If a system cannot
crash, we endanger “playing” with the interfaces, whereas we should aim to
perform with the interfaces. I will elaborate more on this issue in section 3.5,
and at length in Study D.

3.4.3 Mapping

The design of the stateLogic machine demonstrates a dynamic interface in
practice. The user controls the 3-bit input and on every clock cycle the
system traverses a fully connected directed graph (Figure 3.6). This presents
an input interface where its meaning is contextually updated based on the
output [126]. It shares similarities with dynamic mapping strategies [127]
but the interface is a directed graph, which makes it more akin to Kiefer’s
Approximate Programming [125], that uses a tree algorithm.

The case of dynamic interfaces, including dynamic mapping techniques,
offers a new window to essentially transform our understanding of gestural
control into gestural interaction. I try to make this distinction throughout
this thesis, as the term “gestural interaction” is also part of the title of this
manuscript. My main argument is that specific systems can always be controlled
to a certain extent. This is certainly not a new understanding of mapping for
electronic and computer music as it has been expressed in many different cases.
What I observe and experience, and is in agreement with previous practices [73],
[128], is that above this vague threshold of control, the only way to learn and
interact with the interface is to explore the space of possibilities, which can be
seen as an on-the-fly trial-and-error exercise for decision making. Similar to
other interactive systems, this exploratory practice is informed by our mental
model of the system’s workings. In the case of the stateLogic machine, we can
eventually learn certain patterns of interactivities. The difference with previous
approaches for exploring a generative space [129] is that the user has to reach
a goal using the stateLogic machine. In this case, the goal is to generate the
desirable symbols or tokens from the initial input layer of individual bits. So,
there is a distinct correspondence between input and output commands where
the user steers the process and navigates a mapping strategy that is updated

19The author of Orca, Devine Lu Linvega, says at 33:55 that “I don’t think you can
crash Orca” https://podcasts.apple.com/se/podcast/future-of-coding/id1265527976?

i=1000467132034

https://podcasts.apple.com/se/podcast/future-of-coding/id1265527976?i=1000467132034
https://podcasts.apple.com/se/podcast/future-of-coding/id1265527976?i=1000467132034

3.4. CONTRIBUTIONS 35

6

7

0

1

2

3

4

5

1

1 1

1

1

11

1

-1

-1

-1 -1

-1

-1

-1-1

0

0

0,< reset >

0

0

0

0

0

2
3

4

5
6

Figure 3.6: Fully-connected directed graph showing examples of transitions,
representing the modulo-8 functionality and the workings of the modified 3-bit
counter machine.

based on context.

3.4.4 A simple example of a musical improvisation system

Here, I describe with a simple example how the stateLogic machine equipped
with the lexical analyzer, as presented in [42], would operate for an improvisation
setting, similar to systems for which Dahlstedt introduces the term systemic
improvisation [89]. The system was already described above in the paragraph
“User interaction” (section 3.4.1) and a high-level representation is shown in
Figure 3.5.

Let three performers (X, Y and Z) improvise in a turn-taking manner. The
improvisation session has a time signature of 3/4. One out of three performers
serves as a conductor, simply to facilitate the decisions of who is playing for
the next measure. Each performer represents one of the 3-bit inputs given to
the stateLogic machine. This is shown in Figure 3.5 as Layer 0. The binary
representation from the least-significant bit (LS) to the most-significant bit
(MS) in little endianness corresponds to ZYX binary representation for the
performers, with 1 indicating the performer is playing and 0 indicating the
performer is resting. During the current measure the conductor decides who is
playing for the next measure. Layer 1, the output of the modulo-8 function,
determines the diatonic mode for the next measure, by simply mapping the
output to a diatonic mode (0 is mapped to a whole rest).

A simple example is shown in Table 3.2. Let the performer X (LS bit)

36 CHAPTER 3. STUDY A: ON-THE-FLY ALGORITHMS FOR MACHINE MUSICIANSHIP

begin the improvisation session and serve as the conductor. The current output
of Layer 1 is set to zero (0), which corresponds to a whole rest, and serves
as the initialization condition. This is tricky, as performer X is assigned to
be active during the 1st measure, but is not playing during the 1st measure
because the output of Layer 1 is set to zero. So, no performer is playing during
the first measure and the current output of Layer 1 is mapped to a whole rest.
For the 2nd measure, the output of Layer 1 will be mapped to diatonic mode
I (the sum of the input and output of the previous measure, 0 + 1 = 1, as
there is a homomorphic mapping between the diatonic modes and the output
of the modulo-8 function). During the 1st measure, the conductor decides that
performers Y X20 will be playing during the 2nd measure. Thus, the diatonic
mode for the 3rd measure would be IV and so on.

Table 3.2: Table showing the rules of the improvisation.

Meter 1st 2nd 3rd 4th 5th 6th
Performer X YX ZYX Z X -
Diatonic mode Rest I IV III VII Rest
Layer 1 (output) 0 1 4 3 7 0
Input (decimal) 1 3 7 4 1 0
Input (binary) 001 011 111 100 001 000

Table 3.2 shows on the output of Layer 1, but not the output of Layer 2
(symbols) and Layer 3 (tokens). The time signature is 3/4 to denote the 3x

CLK shown in Figure 3.5.
Table 3.2 shows only Layer 1 and it is the first layer that we apply a simple

binary operation between the input and the current output21. Layer 2, is
the first level of abstraction (Figure 3.5), where the output of the modulo-8
function is encoded in four symbols (A, B, C, D). Layer 3, is the second level of
abstraction where the symbols (or bytes) are sent to a lexical analyzer that
generates seven tokens (or words).

The time signature of the improvisation was set to 3/4 (Figure 3.7). This
is because the output of Layer 1 is a 3-bit output in binary representation.
This 3-bit output is fed to a decoding and encoding machine, that in response
outputs four symbols (A, B, C, D). The decoder/encoder operates at 3×CLK,
whereas the input/output layers (Layer 0, Layer 1 in Figure 3.5) operate at
1×CLK. Each of the symbols is generated on a variable-length of steps22. For
instance, symbol B requires a two-step process that spans across two quarters,
whereas A a single step. That practically means that the time signature was set
to 3/4 so that we can apply another kind of musical instruction each time a
new symbol is produced. So, when symbol B is produced then we can construct
a binary tree with the possible tokens to be recognized by the system (i.e.,
B+D, (B+C+)+D, (B+C+)+B+D). For example, we may apply different kinds of

20Indicates the ZY X binary notation. So, if performer X and performer Y are active and
performer Z inactive, Z is removed from the ZY X notation.

21The addition operation is in 2s complement, that is a modulo-8 function as shown in
Figure 3.6. For an exact description see [41].

22For the specifics of the encoding process see previous work [42] or Paper III [40].

3.5. IMPLICATIONS 37

articulation for the generated symbols, say staccato for A and legato for B. Then,
Layer 3 requires one or more symbols to generate a single token, and we can
apply co-articulation on a larger time scale.

3
4 SILENCE MODE I MODE IV

X YX ZYX

- B A - - C - - D

B+D
(B+C+)+D

(B+C+)+B+D

BCD

3
4 MODE III MODE VII SILENCE

Z X -

A A - - C A A A A

C+D
(C+B+)+D

(C+B+)+C+D

Figure 3.7: The score shows the transitions of Table 3.2. X, Y, and Z are
the three performers. A, B, C, D are the symbols. During the first bar, a tree
structure begins after symbol B is produced, indicating the possible token
generation that starts with a B (i.e., B+D, (B+C+)+D, (B+C+)+B+D). At the
end of the third bar, the token (B+C+)+D is recognized by the lexical analyzer.
The generation of token B+D is excluded when symbol C is generated, as shown
with a red dotted arrow.

For the prototype that affords continuous gestures presented in 2022 [40],
the process is somewhat more entangled, and the above example would not
elucidate the exact workings of the system, but there are a couple of things
that would make immediate sense. Essentially, the conductor no longer directly
decides who plays for the next meter. Instead, the conductor is gesturing,
corresponding to some output from the encoder. It is then the encoder that
assigns who is going to be playing for the next meter as part of a feedback loop
between the 3-bit input to the counter and the output of the encoder (for a
full description, see pseudocode in [40]).

3.5 Implications

There are interesting takeouts about how to use notation in bottom-up systems,
mainly because, in many cases, the code updates are so fast that it can be hard
for the users to follow them. The reason for this is related to the fact that
such systems afford faster interactions, reducing the delayed auditory feedback.
For instance, in Approximate Programming – which I do not categorize as a
bottom-up system but it certainly shares some similarities – the code updates
are so fast that it makes it impossible to read the prescriptive part of the
code. In the redesign of the stateLogic machine the continuous control interface
requires us to use faster clock updates for the interactive prototype. This
transformed the output of the 3-bit counter (Layer 1 in Figure 3.5) to a more

38 CHAPTER 3. STUDY A: ON-THE-FLY ALGORITHMS FOR MACHINE MUSICIANSHIP

descriptive representation as the current output of the 3-bit counter is displayed
as piece-wise constant curves (Figure 3.3). Furthermore, the output of the
encoder is visually suppressed and is implicitly shown to the next abstraction
level of the generated tokens as the most probable code completion. Only the
probable tokens are shown using prescriptive notation with code highlighting.
This demonstrates in practice how to devise the abstraction levels in bottom-up
systems in a manner that can be informative to the user based on cognitive
constraints. In Figure 3.3, this is shown by displaying an increased size for the
probable tokens and a reduced size for the excluded tokens. In this case, low-
level abstractions are displayed using descriptive notation, whereas higher-level
abstractions are displayed using prescriptive notation.

Continuous gestural control is a fairly unexplored area in musical live
coding. Whereas a typical case of continuous gestures would involve parameter
mapping using a mouse or more sophisticated DMIs like the Stenophone [130],
in bottom-up systems we see how continuous bodily movement is used to write
the computer programs. Whereas continuous control in HCI is known to be
not accurate, in live coding it is fascinating to see how it brings about new
opportunities that enable us to discuss gestural interactions. I will elaborate
more on this topic in the Discussion (section 7).

I posit that risk is a crucial component of bottom-up systems. All bottom-
up systems presented here are impervious to risk, meaning that these systems
cannot crash during a performance. This trait provokes inquiries into such
systems’ creative potential, as failure is not a possible outcome. Failure can
induce surprise, which is an important factor for creativity. Consequently, it
becomes imperative to reassess how risk can be incorporated into these systems.
Among the systems discussed, only Jonathan Reus’s conceptual performance
with the iMac Music system directly addresses risk in the most literal manner –
as the computer circuits may melt or catch on fire under certain circumstances.

3.6 Publications in relation to Study A

Study A combines Paper I, II, III and VII, as shown in Table 1.1. The central
contribution in Study A is Paper III [40] which introduces the term bottom-up
live coding. It also extends previous work to demonstrate how continuous
control can be used for a live coding interface, and it is an applied contribution.
Our systems presented in this study have a listening component on the machine
side. For instance, on top of the stateLogic machine, a lexical analyzer was
added to listen to the symbolic output of the system. This symbolic listener
differs from how Rowe [1] is listening and sensing the audio output and/or the
acoustic environment.

Paper I, II, and VII mainly contribute to the conceptual understanding
of the study and also introduce a methodological analysis of observations of
similar systems. All three articles will be discussed in greater detail in Study
B, where I focus on embodiment and gestures. Their role in Study A is to
support the theoretical background of the newly introduced term bottom-up
live coding, and briefly discuss from an embodied view how this term has an

3.6. PUBLICATIONS IN RELATION TO STUDY A 39

effect on our gestural interactions. In brief, Study A focuses on the system-side
whereas Study B on the human-side.

40 CHAPTER 3. STUDY A: ON-THE-FLY ALGORITHMS FOR MACHINE MUSICIANSHIP

Chapter 4

Study B: Embodiment and
musical gestures in machine
musicianship

Embodiment, a concept from psychology and philosophy, posits that human
cognition does not differentiate between mind, body, and brain, transcending
the Cartesian division between mind and body. Within this context, this thesis
sees that embodiment “assumes that subjective experiences are expressed in
bodily changes” [30, p. 236]. The consequences of embodied cognition permeate
numerous research areas, including human-computer interaction, interaction
design, and musical interfaces.

Musical gestures are corporeal articulations of musical experiences and are
seen as bodily expressions capable of unifying movement and meaning [131].
They are embodied percepts that can serve as intuitive conduits in music
performance, given their relationship to expressive interactions [31]. Machine
musicianship can incorporate designs that include musical gestures and focuses
on investigating how computing technology extends our interactions with and
understanding of music [1].

The previous conceptualization of musical gestures possesses a philosoph-
ical dimension, suggesting an affective and semantic connection between the
human body and music. Embodiment, specifically the sensorimotor theory of
embodied cognition, posits perception as a dynamic process [33] rather than a
static representation of experience. This perspective transcends the traditional
approaches to study perception and cognition, such as oversimplification of
real-world situations, as typically used as “purified” stimuli in highly controlled
experimental conditions that lack ecological validity. In contrast, an embodied
perspective suggests that we interact with our surrounding environment and
create our understanding by means of these interactions with it.

A question arises when contemplating whether music is only an evolutionary
by-product, as posited by Pinker [132] in “How the Mind Works”, or rather
an adaptation in itself – an emergent social activity that evokes emotions like

41

42
CHAPTER 4. STUDY B: EMBODIMENT AND MUSICAL GESTURES IN MACHINE

MUSICIANSHIP

joy, sadness, sorrow, nostalgia and awe. Whereas Pinker acknowledged the
evolutionary benefits of music, as it is undoubtedly an activity that promotes
cognitive and social skill development, it is really hard to answer whether one
should take an adaptationist stance or a non-adaptationist [71]. Music is
surely a socially emergent phenomenon that facilitates forming larger groups
and enables individuals to collectively overcome challenges, but it is also
possible that these skills were developed through a process of natural drift [33]
– indicating a co-evolved process, one not fostering the survival of the best but
the “good enough.”

4.1 Enaction with musical interfaces

Action and perception are intertwined processes that influence one another.
The stance I have adopted suggests an enacted theory of embodied cognition
[32], [33], positing that representations are not requisite for our understanding1.
This enacted perspective asserts that sensorimotor prediction is the main
mechanism at the center of the sensorimotor theory of embodied cognition. We
act, using some corporeal articulations, and we expect some specific outcomes.
Typically, when using interfaces for music performance we perform hand and
full-body gestures in a manner that facilitates our expectations. Thus, we
perform gestural control with roughly foreseen outcomes.

Typically we design gestural control for musical interfaces with the in-
tention to afford immediacy of action, and promote naturalness of the given
interaction. For example, when designing an air-instrument [53], such as a
theremin, to manipulate the pitch of a sound generator, it feels more intuitive
to hear the pitch ascend when raising one’s hands and descend when lowering
them. Designs that facilitate this perceived naturalness of the interface can
be explained through the concept of embodied metaphors [94]. Metaphors are
extensively used for musical control and transformation of musical material
[10]. Recognizing the delicate balance between intuition and conscious mental
effort is desirable in musical improvisation [56]. The challenge lies in identifying
this aspect in live coding and determining how to design live coding interfaces
that minimize the distance between logical actions and intuition. This balance
is not straightforward, as live coding interfaces are dynamically modified in
time, which can lead the musician to a position wherein they have little to
no control over the interface. For instance, it is often the case that we have a
rough understanding of all the ongoing processes, and this state of affairs may
eventually lead to a system crash.

Machine musicianship provides intuitive interfaces that can considerably
reduce the cognitive demands and effort required from performers during the
interaction, as it focuses on “emulating human musical understanding” [2,
chap. 1]. In traditional music performance, sensorimotor prediction is a core
mechanism that musicians use during performance [86]. The same logic more or
less applies to most of the musical interfaces developed for music performance,

1Typically, a musical interface heavily relies on some sort of rigid representation, although
we will see that this is not exactly the case in live coding systems.

4.2. EMBODIMENT AND GESTURE IN LIVE CODING SYSTEMS AND PRACTICES 43

especially when we discuss gestural control with a musical interface. Conversely,
live coding lacks immediate sensorimotor prediction, as anticipating the inner
workings of an algorithmic process is not straightforward. Of course, there is
some understanding by the performer of what is to be expected from a new
code evaluation. Still, the generativity of code usually induces substantial
mental effort to the performers. The excessive mental effort may impede the
pace and flow of their performance while potentially garnering appreciation
from the audience. While most live coders use the keyboard to interface
with the programming language, there are various other manners of gestural
interaction during a live coding performance, and various artists adopt diverse
interpretations and approaches.

4.2 Embodiment and gesture in live coding sys-
tems and practices

While gestural control is slowly garnering increasing interest in live coding
practices, it remains a relatively unexplored area within musical live coding.
Various live coding expressive styles exist, such as live coding choreography
[133], wherein embodiment and gestural expressions are essential components.
However, similar conventional practices are not yet evident for musicians. The
recent inception of the annual online workshop Hybrid Live Coding Inter-
faces2 has sparked widespread interest, which can boost the interest in bodily
movement.

The appreciation of various notions of embodiment is well acknowledged
within the musicians’ community, as observed during the NIME 2018 workshop
[134]. With such varied interpretations of embodiment, there is also a wide-
ranging focus on gestural interfaces. Cases that will be explored here include
Code LiveCode Live and Gewording3 by Baalman [122], [135], Approximate
Programming by Kiefer [125], CodeKlavier by Noriega and Veinberg [136],
iMac Music by Reus [113], stateLogic machine by Diapoulis [41], Betablocker,
and Al-jazzari by Griffiths [112], and Threnoscope by Magnusson [137]. These
particular systems were selected because they represent diverse cases of how
gestures are used in live coding. Whereas I have already conducted video
observations on several articles that extend beyond the scope of this study, this
section aims to complement the relevant articles [35]–[37] by emphasizing the
value of recognition and retrieval processes in gestural interactions.

4.2.1 Performance systems: Musical gestures in practice

Baalman has been developing a gestural interface for live coding, called Ge-
wording, that enables the performer to program the machine using full bodily
movements. While the system is still under development, Baalman reports [135]
that the system blurs the line between “design time” and “performance time”,
a concept discussed by Nilsson [138] as two distinct processes, one being out of

2https://hybrid-livecode.pubpub.org/
3https://marijebaalman.eu/projects/wezen-gewording.html

https://hybrid-livecode.pubpub.org/
https://marijebaalman.eu/projects/wezen-gewording.html

44
CHAPTER 4. STUDY B: EMBODIMENT AND MUSICAL GESTURES IN MACHINE

MUSICIANSHIP

time while the other unfolds in real-time. Essentially, Baalman modifies the
written program during a performance by typing on her laptop and immediately
testing the new space of possibilities with the gestural interface. I would guess
that the specifics of Baalman’s system are not reported simply because it is
an ongoing exploration of how sound and gestures can correspond with each
other. However, anecdotal evidence from Baalman suggests that the performer
must remember gestural sequences corresponding to specific programming com-
mands. It is unclear whether this gestural vocabulary applies any algorithmic
modifications to the running program or simply controls different parameter
mappings. Anecdotal evidence by Baalman suggests that the cognitive effort
required of the performer is highly demanding, necessitating attentiveness to
a gestural vocabulary of serial skilled actions that the gestural recognition
algorithm will interpret during a performance.

In another performance system, Code LiveCode Live [122], Baalman demon-
strates the utilization of physical input data [54] as musical material. This
system has redefined the notion of musical gestures in live coding, exemplifying
how typing can be both observable and significant [37]. The system uses the
sounds of typing itself as raw musical material and incorporates additional
built-in sensors from the laptop, such as the trackpad and CPU temperature,
among others.

Kiefer [125] developed a gesturally controlled system called Approximate
Programming (AP), which relies on the real-time rearrangement of binary trees
that form the sound synthesis engine. The algorithm is based on evolutionary
computations [127] and exhibits chaotic behavior. Anecdotal evidence from
Kiefer4 indicates that the system’s behavior can be completely unpredictable,
leading to surprises for the live coder during a performance. Essentially, the
generative space of such systems can be vast, requiring the performer to
explore them non-linearly. Here, the performer explores the generative space by
responding pre-reflectively using gestures without conscious awareness of their
implications, making it difficult for the performer to follow the code updates
on the prescriptive part of the written program.

CodeKlavier CKalcuλator [136], one of CodeKlavier’s module, by Noriega
and Veinberg represents a significant contribution that pushes the boundaries of
live coding. This approach shifts the usage from standard live coding practices,
where the composer-programmer interacts with a computer keyboard, to a
practice of interfacing with a piano keyboard. It is one of the few instances
where a traditional musical instrument is used as an interface to live code.
CodeKlavier CKalkulator recognizes musical patterns using MIDI data to
write the computer program. In this case, the coder has to recall the melodic
sequences corresponding to the desired command to carry out the arithmetic
operations. Here, the piano-coder employs retrieval processes which may
increase the cognitive effort necessary to affect the performance.

Reus presented iMac Music [113] wherein he gesturally interacts with the
internal wiring of a personal computer to live code audio-visual outcomes. This
radical approach to live coding demonstrates how the coder can change the

4Kiefer’s presentation of AP in ICLC 2015 https://youtu.be/WwhpRtxq1Kg?t=3417

https://youtu.be/WwhpRtxq1Kg?t=3417

4.2. EMBODIMENT AND GESTURE IN LIVE CODING SYSTEMS AND PRACTICES 45

running algorithmic processes within a computer by gesturally intervening with
the hardware components themselves. Here, Reus demonstrates how to gesture
inside the hardware, but at the same time, is above the hardware, inspecting how
to manipulate the system. This panoptic position of the performer suggests
that he can act quickly based on recognition processes.

The stateLogic machine is a live coding system that interfaces at the lowest
level of information, that of individual bits. Here, the notion of tangible bits
[139] is expressed in its literal manifestation. As in iMac Music, this musical
interface facilitates recognition rather than retrieval. The initial design of
the interface was developed as an approach to live hardware coding and was
implemented on solderless breadboards using transistor-transistor logic (TTL)
integrated circuits (ICs). In the initial design, three input buttons initiated
operations; after redesign of the interface in 2022, a single knob was used
for input control. The system employs stream-based code updates, and the
levels of abstraction are progressively built on-the-fly, requiring the user to be
adapt at gestural action. The level of control over the interface depends on the
period of the stream-based updates, with clock updates faster than 0.5 seconds
becoming a challenging endeavor. This is the case in the redesign, as the code
updates faster than 100 milliseconds, making it hard to claim control over the
interface. Furthermore, as the control over the interface depends on the various
levels of abstraction, different cognitive mechanisms are required to control the
first level of abstraction (see Layer 1 in Figure 3.5), and the higher levels of
abstraction (see Layer 2 and Layer 3 in Figure 3.5). This is because a token
will be generated after several clock cycles, meaning it may even require the
employment of long-term memory processes (i.e., time intervals larger than 15
seconds).

The Threnoscope [137] is a live coding system incorporating prescriptive and
descriptive notation. The descriptive aspect, which showcases structural and
functional representations of the written code, allows users to adjust musical
parameters related to the timbre of the resulting musical output. The system’s
primary objective is to establish and highlight structural relationships between
prescriptive notation and their corresponding musical structures, achieved
through the utilization of descriptive notation. The gestural control of the
descriptive part of the notation is based on direct manipulation using the
mouse, which facilitates recognition processes.

4.2.2 Recognition and retrieval with gestural interactions

A critical insight derived from examining various performance systems is
recognizing the significance of cognitive constraints, as informed by HCI and
psychological research on recognition and retrieval. Typically, a gestural
interface promoting recognition affords direct manipulation (DM), whereas an
interface necessitating the retrieval of gestural sequences is contingent upon the
complexity of the interface (CoI). Notably, there is no obvious pattern among
different systems regarding their facilitation of interactions that prioritize
recognition over retrieval or vice versa. The relative level of CoI and DM varies
on each system. The only observation one can assert is that most bottom-up

46
CHAPTER 4. STUDY B: EMBODIMENT AND MUSICAL GESTURES IN MACHINE

MUSICIANSHIP

systems rely on recognition processes. Interestingly, Orca, an interface that
affords single-key commands, thus employing direct manipulation, does not
rely on recognition but requires retrieval processes. Although it is possible that
a relatively large but limited number of commands can be mastered when the
user has enough familiarization with the interface.

Baalman’s Gewording also relies on retrieving gestural sequences, as per-
formers must learn the gestural vocabulary, which can be a cognitively de-
manding task. In such cases, there are different requirements for the performed
gestural vocabulary. The performer must recall the various elements of the
vocabulary, and their corresponding spatiotemporal trajectories. Thus the cog-
nitive mechanism of retrieval is two-fold, relying on both a discrete number of
elements from the gestural vocabulary, as well as the spatiotemporal repertoire
of gestures. Maybe a similar mechanism is at play in CodeKlavier CKalkulator
(CC) although the difference is that in CC the performer can automate cognit-
ive processes when playing the piano, as these are already learned sequential
actions. Also, in CC the exact spatiotemporality of the gestural trajectories,
including ancillary gestures that support the sound-producing gestures, do not
have an effect on the running system, as the recognition process takes place on
MIDI data. The similarity of CC with Gewording is that for both systems the
performer relies on a gestural vocabulary that is retrieved from memory.

In contrast, Kiefer’s Approximate Programming facilitates recognition pro-
cesses, even though he acknowledges the absence of sensorimotor prediction.
This can make learning the interface difficult, as we cannot anticipate how the
system will behave on our input. The stateLogic machine affords recognition,
and the user can predict how the system will behave on the input, although
the redesign in 2022 introduces a stochastic component, the user therefore
cannot accurately control the output. This stochastic component generates
a different number of tokens based on the quality of the performed gestures,
whether consisting of slow and steady movements or fast and abrupt move-
ments. Such different qualities of gestures result in noticeable variations in the
statistical distributions of the generated tokens. A plausible justification for
this stochasticity is that direct manipulation with continuous control is less
accurate than a push-button interface. Finally, Threnoscope affords recognition
processes that are implemented in the visual interface by an affordance for the
adjustment of the size of visualization rings (Figure 4.3).

4.3 How embodiment is expressed in live coding

Embodiment is essential in music performance [96] and in traditional per-
formances musicians’ bodily movements are expressed through overt gestures.
These gestures provide expressive cues that the audience can perceive [140].
Performers can embody different performance variations, such as playing with
high or low expressivity, which is discernible to the audience through bodily
movements. This connection reveals that emotional content is closely inter-
twined with our sensorimotor network, suggesting that our musical experiences
can be observed rather than induced by design; this would be a reductionist

4.3. HOW EMBODIMENT IS EXPRESSED IN LIVE CODING 47

approach [25, p.246].

Embodiment in live coding diverges significantly from traditional music
performance. Collins argues that: “If we define music as requiring a certain
sensorimotor engagement, live coding can be excluded [. . .]” [54, p. 114]. He
also argues that there is an equivalence between motor skill acquisition and
cognitive skill acquisition and that live coding could encompass different types of
attention-oriented skills. There is also a view that sees live coding as a musical
practice that suppresses motoric percepts in favour of high-level cognitive
resources [141], [142]. I argue that embodiment in live coding is far more
complex than traditional musicianship and the views above ignore how various
musical activities (i.e., musical imagery, music listening and music-making)
contribute to embodied percepts[37].

Salazar [143] questions whether a new definition of musical gestures is
needed to explain live coding practices. Practitioners generally agree on the
presence of embodiment in live coding performance, although the perspectives
on how it is experienced vary widely. For example, Baalman [122] posits
that even programming languages can influence our motor patterns, whereas
Hutchins [144] does not experience embodied percepts when live coding on
a keyboard, instead seeking embodiment in tactile interactions with sound
synthesizers.

4.3.1 Gestural interaction and musical gestures

In this study, I will not endeavor to create a new definition of the gestures
encompassing the numerous aspects of live coding. Such an effort would be
substantial, as the literature on musical gestures spans from sonic gestures to
bodily gestures [145]. Instead, I will explore what can be gleaned from observing
bodily gestures in live coding, employing the current terminology of musical
gestures as presented by Jensenius and colleagues [131]. Jensenius contends that
gestures convey “meaning” through action [53, p. 65], while musical gestures
involve the interplay between a “sign” and a “signifier” [53, p. 67]. Musical
gestures are defined as “the combination of sound and motion” [53, p. 68].
Thus, bodily motion communicates meaning.

Throughout the thesis, I use the term “gestural interactions.” The current
agreed-upon term to denote control over a device for interactive music systems
and DMIs is “gestural control” . Live coding is known to be overtly generative,
making it hard to claim control in the first place. When interacting gesturally
with the input interface, some uncertainty is infused into the performance,
either because of the difficulty of the task on the human-side or because of
the system’s agency. The term “gestural interaction” denotes that the user
is interacting with the system in an enactive manner and cannot necessarily
claim control over it. This can be particularly the case in bottom-up systems,
most especially when the code update rates are fast (i.e., less than 100ms).

48
CHAPTER 4. STUDY B: EMBODIMENT AND MUSICAL GESTURES IN MACHINE

MUSICIANSHIP

4.3.2 The role of pre-reflective processes

Pre-reflective processes reflect a phenomenological approach to examining
embodiment in music performance [31] and refer essentially to fast, automatic,
and subconscious processes [146]. But programming is typically a slow and
laborious process, not in the sense of requiring physical effort to play traditional
musical instrument, but certainly requiring increased amounts of attention.
Expression in traditional musical performance is associated with increasing
amounts of physical effort, as this is reflected in the overt bodily movement of
musicians, which results in increasing amounts of arousal. A typical example
of this is when musicians perform with a visible amount of bodily sway, which
is perceived as increased expressivity by audiences [140]. A musical live coding
performance does not tend to show any overt bodily motion, likely due to the
absence of sound-producing gestures. As this arousal component is missing
during live coding we have to look for fast gestural interactions with the
interface, which may activate sensorimotor synchronization (SMS) processes.
Other manners to search for expressive cues can be investigated in musical
structure, but I think this can be a really challenging endeavor given the
generativity of live coding systems. A research project aiming to investigate
expressivity in musical structure should definitely investigate aspects of live
writing and how the writing process relates to it.

4.4 Contributions

The contributions presented here build on a theoretical perspective of embodied
music cognition and sensorimotor theories of perception [31]. I start by present-
ing a conceptual framework that examines the characteristics of live coding
systems based on gestural interactions (Paper I and Paper II). The outcome
of this framework suggests that the constructed conceptual space is validated
based on a cognitive paradigm where low-level and high-level programming
constructs meet with the concreteness and the abstractness of the conceptual
space, respectively. I then continue with an explanation of bodily gestures in
bottom-up systems and discuss specific examples where pre-reflective processes
are evident during live coding (Paper VII).

4.4.1 A framework for live coding systems on gestural
interactions

A high-level description of musical live coding was introduced in Paper I [35].
At the bottom of Figure 4.1 there is a three-fold high-level explanation of live
coding as practice, agent and system. A system in live coding seems to be
necessary, whether it is a notation, a computer program, or a mental model.
Practice is the only way to learn how to live code, as there is no curriculum
in live coding. The agent in the middle represents both human- and machine-
agents, as both co-create the musical, and sometimes coding, outcome. This
high-level representation is coupled with a theoretical background informed by

4.4. CONTRIBUTIONS 49

both the study of musical perception and other aspects of music psychology [35],
[36].

Activity

Music making

Music listening

Musical imagery

Perception

Appreciation

Planning

Cognition

Structured code

Novel code

Mind

Multimodal assessments

É Practice 0 Agent
2 System

Interface
design

User
interaction

Gestural
mapping

Figure 4.1: High-level description of musical live coding, as presented in
Paper I [35].

The analytical framework we introduced examines how various perform-
ance systems differ from each other when observing or inferring the coder’s
bodily gestures. To facilitate communication of the framework, we decided to
constrain it to a three-dimensional framework, harnessing the intuitive power
of visualizations. The three dimensions considered are interface design (ID),
gestural mapping (GM), and user interaction (UI). A fourth binary condition
denotes whether the system has a “code-first” or “music-first” design [147].
The ID category places performance systems in a scheme similar to that used
for digital musical instruments (DMIs), which views metaphorical designs as
interfaces that use concepts from traditional musical instruments. For example,
the guitar in the Guitar Hero video game is a DMI with a metaphorical design.
In this framework, metaphorical design stands for interfaces that “hide” the
programming interface from the user, whereas literal design stands for interfaces
that expose the programming interface to the user. The second dimension
(GM) examines whether the performed gestures impact the running algorithm.
The third dimension addresses whether the interface uses direct manipulation
to facilitate recognition processes or involves algorithmic complexity, which
facilitates retrieval processes. The directionality of every dimension ranges from
low-level concepts (concrete) to high-level concepts (abstract). Interestingly
the results of the study showed that the computational design of the systems
matches our cognitive paradigm of low- to high-level concepts. Thus, the
low-level systems, like Al-jazzari and the stateLogic machine, are mapped on
low-level concepts (see Griffiths and Diapoulis on Figure 4.2).

The framework is not meant to be exhaustive but aims to open a discussion
in the live coding community on how we gesturally interact with our systems.

50
CHAPTER 4. STUDY B: EMBODIMENT AND MUSICAL GESTURES IN MACHINE

MUSICIANSHIP

The novelty of the framework is its expressive power of visualizations, where
multiple systems can be represented at once and show an overall conception
of some basic system characteristics. There is no “best” way to construct
a conceptual framework, and previous work on DMIs sometimes employs
Venn-like diagrams [148], [149], spider plots [13] and other graphic conventions.

Figure 4.2: Analytical framework. X-axis: Interface Design (ID), Y-axis:
Gestural Mapping (GM), Z-axis: User Interaction (UI). The framework should
seen more similar to a binary cube representation than to a Cartesian plot.
The Cartesian space may be misleading in this respect, but the aim is to
represent existence or non-existence of different categories. The transparent
plane, parallel to Y-axis, separates literal and metaphorical design spaces.
Uppercase letters “H” and “L” code the high-level and low-level concepts,
respectively.

At the time of writing the articles, I did not know some previous work on
gestures and live coding. Sometimes it can be hard to find a corresponding
article or video for a system, and sometimes also, the information provided
by the authors is incomplete. Here, I discuss more systems with the aim of
further testing the applicability of the framework by introducing two new
examples (Approximate Programming and Gewording). I will discuss three
cases: Threnoscope by Magnusson, Approximate Programming by Kiefer,

4.4. CONTRIBUTIONS 51

and Gewording by Baalman. I discuss Threnoscope here to visually map the
system on the framework as this system stretches the expressive capacity of
the framework. Threnoscope was discussed in Paper I, but was not visualized
in the conceptual space. Furthermore, I would like to strengthen my argument
about the distinction between GM and UI dimensions. The coding theme
presented in Paper I (see Table 3, p. 7 in [35]) demonstrates that Threnoscope
exceeds the expressive capacity of the framework by traversing the categories of
literal design and metaphorical design, and the categories of direct manipulation
and algorithmic complexity. On the other hand, for the dimension of GM, the
system can be categorized as algorithm agnostic5. Visualizing Threnoscope in
the framework will occupy a volume in the three-dimensional space, as shown
in Figure 4.2.

Threnoscope divides the design of the interface into the prescriptive notation
(code editor) and the descriptive notation (drone visualization), as shown in
Figure 4.3. The prescriptive part affords the complexity of the interface, where
the user has to type a sequence of individual characters for a single code
evaluation. The descriptive part affords direct manipulation, using the mouse
to modify parameters like the fundamental frequency of a drone sound. For
both cases (prescriptive and descriptive parts), the user does not significantly
modify the running algorithms using gestures (algorithmic significance on the
GM dimension). By significant modifications, I mean the users can perform as
many gestures as they like; this would not impact the running algorithms, but
only adjust its parameters in the case of the descriptive part of the notation.
In the prescriptive part of Threnoscope, the running algorithms would remain,
unless we modify the code.

Figure 4.3: A screenshot of the graphical user interface and the text editor of
the Threnoscope.

5The term algorithm agnostic I introduce, essentially describes that the performed gestures
are indifferent to the running algorithms.

52
CHAPTER 4. STUDY B: EMBODIMENT AND MUSICAL GESTURES IN MACHINE

MUSICIANSHIP

Typing a single line of code in the prescriptive part of the notation can
be performed in numerous ways in terms of sensorimotor control. Unless it
is causing execution of a code chunk, the user’s gestures would not influence
the system. Thus, whatever happens, typing a single line of code does not
change the workings of the system. In the descriptive part of the notation,
the user can control various parameters, which again does not mean that the
underlying algorithms are modified on-the-fly. This is the main reason that
the Threnoscope traverses bidirectionally both the ID and GM axes of the
framework but not the UI axis (Figure 4.2).

Here, the term algorithmic complexity may be better expressed as a com-
bination of the complexity of the interface and its closeness to mapping. In the
case of Threnoscope, the interface affords both direct manipulation (DM) and
increased complexity. But there is no way for the user to gesturally intervene in
the running program. This is the case for any type of canonical live coding that
does not incorporate any live writing rules or other bottom-up methodologies.

As discussed above, Gewording requires retrieval processes for the performer,
since the performer has to recall elements from the corresponding gestural
vocabulary to control the system. I am unclear whether the gestures in this
case apply algorithmic modifications, because there is no analytical description
of the system by Baalman. If the gestures can modify the running algorithms,
then the system would occupy the whole three-dimensional space making the
framework completely uninformative. If not, Gewording would occupy the
same space on the framework as Threnoscope. This is because when Baalman
is typing on the keyboard, the gestures are not linked to the running algorithms
(what Nilsson [138] calls “design time”), and when performing, the gestures
would apply significant modifications on the running algorithms (“performance
time”).

Approximate Programming is a system that employs a gestural controller to
live code using evolutionary algorithms. The user can inspect the code updates
on the prescriptive side of the notation, using either the mouse or a hardware
MIDI controller. Thus, the first dimension (ID) can be seen as metaphorical
design, as programming using sliders is not something we really do; we prefer to
use sliders to control an interface, like a mixing desk. On the second dimension
(GM), the system applies significant modifications to the running algorithms
(algorithmic significance), and on the third dimension (UI), the system uses
direct manipulation. Thus the system can be categorized in the same manner
as Al-jazzari by Griffiths, maybe with the “music-first” binary condition as the
code has to be written in advanced to be ready for performance time.

The framework contributes a visual representation that can be used by
practitioners and researchers when designing live systems that afford gestural
control. The framework aims to be practical and guide the practitioner on
some relations between the systems, such as whether a system is using a literal
or a metaphorical interface design. Here, I did not addressed anything related
to the musical aesthetics of the sound, which suggests an incomplete analysis
of musical gestures with respect to Jensenius’s above-mentioned definition (i.e.,
musical gestures consist of “the combination of sound and motion”). Instead, I
only addressed aspects related to motor perception and musical interfaces.

4.4. CONTRIBUTIONS 53

4.4.2 Gestures in bottom-up live coding

Systems that afford a bottom-up approach to live coding, like the stateLogic
machine, Al-jazzari, and CodeKlavier CKalcuλator, are not agnostic, or in-
different, to algorithmic modifications. The main reason is that bottom-up
systems are building algorithmic abstractions on-the-fly. When a command-
input is set on a bottom-up system, it is either evaluated on-the-fly or awaits
the necessary computational processes to be carried out. Until any remaining
processed are completed, those already set will not change, unless they are
modified from scratch. In this manner, every gesture we make intervenes in the
workings of the running algorithms, which is different from controlling one or
more parameters of an algorithm. The difference lies in that when controlling a
parameter, we essentially act on the “surface” of the running algorithm, but we
do not access and modify on-the-fly its very workings. This is not the case when
we live code from the bottom-up, as the running algorithm is modified during
performance. So, every gesture we make has a corresponding consequence on
the running program, and the extent of this influence varies between systems.
In the framework above (Figure 4.2), this aspect is shown with the dimension
Gestural Mapping.

Gestural control in relation to DMIs has been a long-standing topic for
discussion. Wessel presented an enactive approach to gestural control which
gives rise to a phenomenon he called “babbling” [128], a term borrowed from
the literature on speech development in infants when learning to match motoric
serial skills to heard sounds. Wessel discusses babbling in relation to generative
algorithms for gestural control of DMIs. This term shares some similarities to
what I call gestural interactions, although I see some differences that become
apparent in bottom-up systems. Wessel approached the topic from the viewpoint
of precise control in gestural interfaces and also discussed issues related to the
technical latency response of the systems. In live coding things are somewhat
different, as the responsiveness of the system is not the focus. We always use
some algorithm, and we know the algorithm has discrete steps which may
require time to compute6. Of course, one can say the steps of the algorithm
can always be carried out quickly so that we do not feel the system’s latency. I
would argue, and I think most of the live coders would agree here, that if we
do not monitor, or maybe steer, the algorithm, then the algorithm becomes
a black box. The argument here is that if we live code using a black box,
it is impossible to form a mental model of the running algorithm. Maybe
the difference between what Wessel calls “babbling” and how we steer our
algorithms with gestures is that in live coding there is always a goal. We aim
to progressively complete several code tasks to complete a desired pattern. In
essence, the process of gesturing in live coding has an implicit or explicit goal.

Thus, I argue that when we gesture in live coding we are trying to meet
our expectations of the sound outcome, similar to the infants babbling sounds
trying to match the motor movement of the lips, but with the difference

6This is demonstrateed in the demo of the stateLogic machine where for each command
to take action we have to wait for the next positive edge clock – as the “CPU” clock in this
case of the video demo is 0.5 seconds.

54
CHAPTER 4. STUDY B: EMBODIMENT AND MUSICAL GESTURES IN MACHINE

MUSICIANSHIP

that the coder is not attentive to mouth-motoric variations, but rather to
algorithmic variations, by being attentive to the written code. When the
present cognitive constraints cannot compensate for the information flow, then
the gestures of the live coder can look more similar to babbling. When the
rate of code updates does not exceed our cognitive limitations, we gesturally
interact with the interface in more of a flow state. I see here that the pace
and flow during performance can be mediated by pre-reflective processes when
gesturally interacting with the interface, which I discuss in the next section.

4.4.3 Pre-reflective processes in live coding

The pursuit of bottom-up systems, along with developing a theoretical back-
ground about gestures, has resulted in an overall building of a theory of gestural
interactions. By conducting observations of systems and practices from online
videos [37], I developed a theoretical approach to examine whether pre-reflective
processes are evident during live coding. The importance of the study lies in
my reflections on musical practice, and I argue that the focus of our attention
should turn to bottom-up systems when examining fast processes during per-
formance. This theoretical pursuit is based on a sensorimotor view of cognition,
which sees action and perception as tightly coupled.

Pre-reflective processes are cognitive processes that do not require conscious
awareness and exhibit automaticity. During live coding, whether bottom-up
or top-down, the performer is bodily engaged in an activity consisting of
serial skilled actions [86]. This practice shares similarities with traditional
music performance, but one important difference is that in live coding, the
performer operates on an open-loop motor program. This is similar to playing
the theremin, as there is no tactile sensory feedback to inform the performer
about any actions that are not conducted in the desired manner. Simply put,
when we press a character on the keyboard, there is no informative feedback for
error-correction, and we can only see on the screen if a character is mistyped
after the fact.

It is hard to imagine how would it be to live code using our closed-loop
motor program, as there is not such case. How would the pre-reflective processes
change qualitatively? Sayer [150] suggests that it is less likely that live coders
would be engaged in subliminal processes in comparison to instrumentalists.
I would agree that this is certainly the case, but it is unfair to compare a
live coder to a guitarist, as the open- and closed-loop motor programs exhibit
fundamental differences and opportunities.

4.5 Implications

My aim for the analytical framework on gestural interactions was to explore
how systems and practices differ by employing concepts from HCI, musical
interfaces and music psychology and perception. Such frameworks should not
be seen as solid and set in stone but rather as challenges for live coders to reflect
on their decisions when designing systems and consider how to go beyond them.

4.5. IMPLICATIONS 55

An important guiding principle in this work is to present the work of other
people so as to enrich the discussion. Naturally, one of my concerns throughout
the thesis is to communicate various practices and systems with the aim of
raising awareness of what is out there. The live coding community has reached
a point where robust and powerful tools are available, and I think this is where
we can reflect and try to think outside the box. The term “live coding” was
coined in 2003 [22], and the following ten years were mostly concerned with
how to support the community and its practices and encourage it to flourish.
Twenty years later, we have reached a point where anyone can open a web
browser and start live code with no need for frantic software installation and
problem-solving discussions in forums. Today, the discussions in live coding
forums is more focused on creative applications and implications rather than
on technical problem solving. I think this is the time we should focus on
diversifying our tools and practices to get the most out of the creative potential
of live coding as an artistic practice. As mentioned above, the live coding
community documents itself [57], and, I also believe, reflects on itself. So now
it is crucial to be informed about the diverse range of practices and systems
used. I think this is the most important matter that we all should really care
about.

I asserted that bottom-up systems differ in how we gesturally interact with
the systems in comparison to canonical live coding. In bottom-up systems,
almost every gesture we make impacts the running algorithms, but this is not
true when typing on a text editor. It also seems that the interactivities I discuss
in bottom-up systems differ from previous work on interactive music systems
as was described by various authors. It may be that the difference relies on
the goal-directedness one has during live coding, and this can be abstractly
described as making an algorithmic modification in the running process.

Finally, live coding is identified as a practice that relies on the open-
loop motor program, which excludes any informed sensory feedback from the
system to the user while executing bodily gestures. In 2023, a hardware
sound synthesizer equipped with motorized knobs was released7,8. Yet, the
product does not afford any advanced programming that allows the users
to co-perform using their closed-loop motor program other than a “coarse
tuning mode”, where the user slightly feels some tactile feedback because of the
predefined tuning positions9. I think it is a matter of time until more creative
applications will be developed around industrial products that afford actuated
tactile feedback, as research on force-feedback has been already presented at
NIME [151]. Thus, the implications of engaging our closed-loop motor program
also extend to market opportunities.

7Nina, that synth with the motorised knobs, is finally heading your way - almost https:
//www.musicradar.com/news/melbourne-nina-synth (accessed 2023-08-25).

8Melbourne instruments https://www.melbourneinstruments.com/ (accessed 2023-08-
25).

9Motorized synth knobs: Gimmick or Gamechanger? // NINA by Melbourne Instruments
Review and tutorial, https://youtu.be/_9b1nVeQFJo?si=1-a_cJL4sWIB-zSl&t=263

https://www.musicradar.com/news/melbourne-nina-synth
https://www.musicradar.com/news/melbourne-nina-synth
https://www.melbourneinstruments.com/
https://youtu.be/_9b1nVeQFJo?si=1-a_cJL4sWIB-zSl&t=263

56
CHAPTER 4. STUDY B: EMBODIMENT AND MUSICAL GESTURES IN MACHINE

MUSICIANSHIP

4.6 Publications in relation to Study B

Table 1.1 shows how the publications contribute to Study B. The most important
contribution is from Paper VII [37], which essentially builds upon previous
knowledge from Paper I and Paper II, although there are significant differences
in the methodology, motivation and research questions. Contrarily, Paper I and
Paper II are tightly related as Paper I is an extended version of Paper II. In
Study B, I extend the examples put into the conceptual framework to examine
the framework’s applicability. Paper VII contributes a sensorimotor theoretical
perspective in live coding that reflects on musical practice. All three related
articles contribute conceptually and methodologically to examining gesture
and embodiment in live coding.

Chapter 5

Study C: Creativity support
technologies for live coding

Creativity is defined as the “ability to bring about new ideas” [56, p. 12].
In music psychology and perception studies, creativity is mostly related to
novelty, which can be linked to any irregularities in the musical structure,
harmonic, timbral and temporal variations. In computer arts, creativity also
addresses issues of authorship and agency [89], [152], [153]. As discussed above,
electronic music systems depend on a certain level of autonomy, which obscures
the boundary between the actions of the system and those of the performer.
A common method for modeling autonomy involves the use of agent-based
systems. These systems, linked to creativity, present models that raise questions
about matters of authorship and agency.

I start by presenting some historical accounts of creativity in interactive
music systems and their use in musical improvisation. My aim is to present to
the reader a brief timeline of interactive agent-based systems and then continue
on to the specifics of creative technologies in live coding.

5.1 Interactive music systems and machine agents
in improvisation

The research on interactive music systems and musical agents in machine
improvisation has several decades of related work [2], [76], [154]–[156]. The
first systems appeared in the 80s as the work on AI by Marvin Minsky [157],
one of the first computer scientists who worked on agent-based systems. He
introduced the idea of “frames”, which are seen as precursors of object-oriented
programming (OOP) and were conceptualized as super-agents [158]. Following
this work, Robert Rowe presented his system Cypher [159] which has a listener
and a performer. The system operates on symbolic data (MIDI), and several
components were developed to analyze timbral, structural, and rhythmical
characteristics. During the same period, George Lewis started experimenting

57

58 CHAPTER 5. STUDY C: CREATIVITY SUPPORT TECHNOLOGIES FOR LIVE CODING

with his Voyager system, a dyadic performance system that he still uses today.
Voyager is a music system that exploits self-organized patterns of symbolic data
(MIDI) to accompany the performer. Lewis explains his cultural influences, as
a black American, during the development of the system, where effort was put
into non-hierarchical and flat structures. Around the 2000s, in France, Assayag
and colleagues [155], [160] were experimenting with OMax system, and Pachet
with the Continuator [161]. Both were influential systems with sophisticated
algorithms that still have a major influence to the present day. These systems
incorporate Markov models that operate on different levels and enable the
performer to have complex machine listeners that can be linked to different
structural levels of the composition/improvisation. After the 2000s, novel
algorithms for agent-based systems were presented. Indicatively, Dahlstedt was
using evolutionary algorithms to explore timbral spaces [56], and Collins [76]
was developing directed graphs of interacting agents using neural networks for
beat electronic music and accompaniment in instrumental improvisation.

A taxonomy of improvisation interfaces was presented in 2018 [162]. The au-
thors’ focus was on how creativity is related to agency and aesthetics. They iden-
tified bottom-up autonomy and top-down autonomy. For instance, a bottom-up
approach would be following a self-organization approach, whereas a top-down
would follow a hierarchical design and consider notions such as intention, belief,
and desire. A similar view on machine autonomy that extends beyond agent-
based systems for improvisation was presented by Tatar and Pasquier [163],
where bottom-up autonomy is seen as encoded or heuristic, and top-down
autonomy as agent-synthesis.

In the next section I continue to examine agent-based systems specific to
live coding. In all musical improvisation tasks, including live coding, agent-
based systems are acting on real-time processes, which presents some unique
characteristics related to the “liveness” of the systems.

5.2 From liveness and musical agents to ma-
chine learning ecosystems

At the live programming workshop in 2013, Tanimoto [43] presented a revised
version of his hierarchy of liveness1. The first ICLC was two years later in 2015,
and more and more studies emerged looking at creativity support technologies
in live coding. A short review of the last ten years in the field of agent-based
systems for live coding was presented by Xambó in 2021, where a conceptual
framework analyzing the learnability and social interactivity of the systems
was presented [164].

In this section, I will start by presenting how I see liveness in musical live
coding and I will continue to musical agents. I will close this section with
a brief presentation of two machine learning ecosystems that afford textual
programming practices.

1https://github.com/liveprogramming/2013

https://github.com/liveprogramming/2013

5.2. FROM LIVENESS AND MUSICAL AGENTS TO MACHINE LEARNING ECOSYSTEMS 59

5.2.1 On liveness

Liveness has been a concept discussed in a variety of disciplines, from software
engineering [43], [100] and human-computer interaction [165] to musical aes-
thetics [87], [166], media studies [167] and anthropology studies [168]. In live
coding music performance, liveness is an inherent quality [101]. In this chapter,
I will elaborate on what liveness is, how it is applied in live coding systems,
and how liveness exhibits different facets during a performance. I will then
present a description of liveness seen as a three-fold blend of technical liveness,
perceived liveness and felt liveness.

Liveness in the aesthetics of electronic music is an issue with various
interpretations and understandings. Whereas Croft [166] takes the stance that
the liveness of musical interfaces should adhere to mechanistic characteristics
to facilitate audience and performers’ aesthetic appreciation, Emmerson [87]
sees two central relationships related to performer’s gestures and audience
appreciation. The gestures may either be (a) only in the mental model of the
performer or (b) so experimental that they are unpredictable. Regardless of
the different perspectives on liveness, many composers believe that liveness is
a useful term in electronic music and assert that it is one of the mechanisms
that can serve to mediate expressive interactions (e.g., Croft [166]). In musical
aesthetics, the discussion focuses on the relationship between the performer,
the musical interface and the audience. This explanation of liveness involves
how different parties (i.e., performers, audiences) perceive the liveness of the
performance or system used, so I call this perceived liveness from now on.

Interestingly, aspects of liveness are also discussed from a technical per-
spective [43], [100]. I will be referring to this aspect as technical liveness.
Tanimoto introduced a hierarchy of liveness for programming environments in
1990, which was extended to define two additional levels of liveness in 2013.
Essentially, such a notion of liveness categorizes how “live” a programming
environment is. For instance, a system might be as simple as a static repres-
entation, such as a timetable (level-1 liveness, called “informative”). Level-2
liveness requires the system to be “informative and significant”, for instance an
executable flowchart. Level-3 liveness requires the system to be “informative,
significant and responsive”, such as including edit-triggered updates. Exhibit-
ing stream-driven updates, such as in a live feed on social networks, is level-4
liveness, called “informative, significant, responsive and live.” Level-5 and
level-6 livenesses were introduced in 2013 to complement the existing hierarchy
and can be seen as advanced levels of liveness. Level-5 liveness, also known as
“tactically predictive”, makes available code previews to the user, such as the
autocomplete functionality of a text editor. Level-6 liveness, also known as
“strategically predictive”, attempts to infer what the user will be doing, as in
GitHub Co-pilot. Tanimoto metaphorically conceives of the advanced levels of
liveness as algorithms that run on “negative timescales” (lookahead) as was
noted during his keynote presentation in ICLC2. Essentially, Tanimoto uses
this metaphor of negative timescales to refer to the property that the system
can see in advance of the user’s actions, desires, and intentions.

2Tanimoto’s keynote presentation in 2015 https://youtu.be/4cJANuMiq18

https://youtu.be/4cJANuMiq18

60 CHAPTER 5. STUDY C: CREATIVITY SUPPORT TECHNOLOGIES FOR LIVE CODING

In the context of live coding, liveness is not only related to its technical
manifestation. Although Tanimoto [43] addresses the similarity of control and
feedback in both musical live coding and conventional programming, I think
they differ. I suggest that it might best be discussed in the context of flow
and pace, something that is also suggested in the recently published book Live
coding: A user’s manual where it is described as the “vitality of liveness” [25,
p. 167]. When live coders discuss flow, their main concern is with the continuity
between the written code and the musical outcome. In Roberts and Wakefield
[104], some live coders reported that the technical aspect of liveness, such
as future projections of code (code previews) induce cognitively demanding
characteristics. Instead of exploiting aspects of the technical dimension of
liveness, practitioners focus on balancing pace and flow during a performance.
To do so, live coders employ several techniques to compensate for the excessive
demand on cognitive resources, such as using keyboard macros [169], defining
mini languages, or developing highly constrained interfaces. Thus, the live
coders focus mainly on controlling technical aspects of liveness, and employ
musical aspects to facilitate a felt continuity during a performance. In a sense,
one modality (sound) compensates for another (code). I will be calling this
felt liveness, which I see as a fundamental quality appearing in a live coding
performance.

To summarize this section, perceived liveness is related to perceptual aspects
of the environment and the audience. Emmerson approaches liveness through
a cognition through perception lens; Tanimoto approaches the topic from a
purely objective view of the technicalities of systems; and live coders approach
it through lived experience.

5.2.2 On musical agents

In the last decade, various live coding systems have incorporated musical agents
in their system design [156], partly due to the lower entry level of machine
listening and machine learning technologies, compared to ten or more years
ago. In the early 2000s, it was rather difficult to develop systems for mu-
sical improvisation that employed agent-based designs, as they required an
expert understanding of both programming software and hardware equipment.
Whereas machine listening and machine learning are not necessary and suffi-
cient conditions for an agent-based system, sometimes these terms are used
interchangeably. Essentially, an agent-based system demonstrates some level
of autonomy, and ongoing responsive processes during performance exhibit
autonomy to a certain extent.

Musical agents typically assume a co-creative context, where humans and
virtual agents co-perform. In live coding, this can be done in different ways
but the most widely used approach is that the virtual agent responds to
its environment. This can be done in different manners: for instance, by
constructing network architectures of interactive agents, or by simply inducing
the perception that there is a responding agent in the system. Other approaches
include having two (or more) agents that can both write code simultaneously
in their text editors. This is a common practice for the case of human-

5.2. FROM LIVENESS AND MUSICAL AGENTS TO MACHINE LEARNING ECOSYSTEMS 61

human collaborative sessions. Agents can have turn-taking roles [170], or can
collaboratively edit the same document in a manner similar to the practice of
collaborative editing with Google docs (e.g., https://flok.cc/).

Xambó [164] analysed 8 systems, some of which do not afford any learning
capabilities – like Autocode by Magnusson3– and some of which do not afford
social interactivity, like Cibo [171]. Both Autocode and Cibo, are live coding
systems that can carry a performance autonomously without a human agent.
Interestingly, Autocode’s video does not have an audience, so the performance
is speculative in its conception. Their main difference is that Cibo incorporates
a deep learning algorithm trained on a large dataset of code examples, whereas
Autocode does not afford any learning capabilities, only several interacting
agents that respond to one another. Various other systems were presented
in Xambó’s study, like Flock by Knotts [172], Cacharpo [173], Betablocker
and more. These works, along with mature MIR technologies [174], [175]
and machine learning, enable the flourishing of performance ecosystems like
Sema [176] and FluCoMa [177].

Recent trends, such as advances in neural audio technologies [178] indicate
that this proliferation of assistive technologies is starting to find its way into
interactive music systems, although it is an open question whether use of
black-box sound synthesis will ever become a trend in live coding. This is
because if the coder is unable to form a mental model linking the written
code and the generated musical outcome, then it is unclear how they would
be able to live code. It remains to be seen how live coders might incorporate
such technologies into their systems. For instance, recent developments used a
temperature parameter to experiment with the entropy of the generated code
[179]. How and if similar technologies will be used for audio generation is yet
to be seen, but it is likely happening as we speak.

5.2.3 On machine learning ecosystems

Creativity support technologies in live coding are becoming more accessible as
we get beyond the period of machine learning ecosystems. Two large projects
have appeared around 2020, Sema and FluCoMa. Sema is largely inactive today,
whereas FluCoMa is a large project with different facets active, including even a
podcast4. The two ecosystems have different target audiences, but both have as
their main focus an interest in making machine listening and machine learning
easily accessible to users of musical programming environments. Sema focuses
on delivering a web tool where users can write their own programming languages
by accessing parsing rules and applying machine listening and machine learning
within the same programming environment. The system uses JavaScript
libraries such as TensorFlow for machine and deep learning.

On the other hand, FluCoMa focuses on complementing existing program-
ming environments in an accessible manner to apply machine learning as a
third-party workflow. In that sense, Sema is focused on more expert users

3ixi lang autocode livecoding for no one at University of London’s Institute of Musical
Research, https://youtu.be/jWvzCzR_tus

4FluCoMa podcast: https://learn.flucoma.org/podcast/

https://flok.cc/
https://youtu.be/jWvzCzR_tus
https://learn.flucoma.org/podcast/

62 CHAPTER 5. STUDY C: CREATIVITY SUPPORT TECHNOLOGIES FOR LIVE CODING

and aims to deliver a fully-contained solution for live coding and AI. At the
same time, Sema assumes its users are somewhat familiar with advanced pro-
gramming concepts, such as parsing rules. In contrast, FluCoMa aims to take
advantage of users’ preferences and familiarity with their own pre-existing
preferred compositional workflows. Thus FluCoMa supports a broad range of
programming languages for music, such as PureData, SC3, and MAX/MSP,
whereas in Sema the coders can write their own individual programming
languages.

5.3 Contributions

My contributions with this study is threefold: I bring (i) visualization tech-
nologies to be used for creativity support in live coding practice and musical
analysis, (ii) a conceptual framework for designing agent-based systems, and
(iii) a technical contribution to the topic of liveness and bottom-up systems.
The contributions (i) and (ii) overlap to some extend because the conceptual
framework is a visual map that makes use of non-linear and modular visual-
izations. Furthermore, contributions (ii) and (iii) also overlap, as liveness is
extensively discussed in both.

5.3.1 Visualization technologies for creativity support

5.3.1.1 Live coding practice with a visual helper and sound visual-
izations

I explored how a visual helper can be used in live coding practice [38]. It is
interesting that there remain very few papers that discuss how we practice
live coding. The study by Nick Collins [54] is one the first published articles
that discusses the practice of live coding, and reflects on the learning outcomes.
Collins conducted daily sessions with Fredrik Olofsson and that study provides
an outline of how to do isolation exercises, connectivity exercises and finding
the implications for the repertoire (section 2.4.1). Previously, Olofsson had
documented5 another month-long daily session from scratch, and provided
SuperCollider source code from these sessions. Also, Sorensen and Brown [169]
presented practical guidelines and technical solutions that have arisen in the
practice of live coding.

I conducted daily practice sessions for one month, during October 2022,
with the aim of identifying how multimodal experience influences flow, pace,
and subjective appreciation of the musical outcome [38]. Visualizations of
sound levels and the spectrum of the sound were central to the design of the
study, along with a GUI helper showing a list of UGens to the user (Figure 5.1).
A pilot study was conducted in August 2022 for three weeks, where I mainly
tested different experimental setups and study designs. I kept daily reflective
diaries after each session as well as keeping a reproducible archive of the sessions,
using the History class in SC3. Every session was blank-slate, meaning no

5redFriklivecodepracticeAug2006, https://swiki.hfbk-hamburg.de/MusicTechnology/

818 (accessed: 2023-09-04)

https://swiki.hfbk-hamburg.de/MusicTechnology/818
https://swiki.hfbk-hamburg.de/MusicTechnology/818

5.3. CONTRIBUTIONS 63

prewritten code was available other than that of initializing the experimental
setup (booting the sound engine and activating the archival functionality).

Figure 5.1: Experimental setup of the month-long study on practicing live
coding. The sound levels and the spectrum are shown on the bottom left, the
GUI helper on top left part of the screen.

The GUI helper was used to examine its influence during coding. A helper
is not an agent. It is rather an automated program that is detached from the
ongoing workflow of the coding session and instead seeks the attention of the
practitioner. In the article, I discussed how such a tool could be evolved into an
agent-based system by implementing some level of interactivity and potentially
be used for program synthesis (a term to denote a functional code generation
process). The helper showed that a limited number of optional actions could
be useful to the performer, especially at the beginning of the sessions.

The study had two listening conditions – listening and non-listening to
the sound outcome. Visualizations held a crucial role, especially during the
non-listening session. Without any visual cues, I was unable to perceive whether
any audio was produced at all. Certain actions are almost impossible using
only our visual perception. For instance, it is rather hard to do transitions
between sounds; it is difficult to understand rhythmical aspects of the sound;
and it is also impossible to understand the density of the generated events.

The article contributes to code practices using assistive technologies, spe-
cifically to visualization technologies and the use of archival material in future
developments. For instance, a large language model could be used to build
a model on the archival material. That would definitely be a “personalized”
model for coding, as the system has only “seen” a single user. Finally, the
radical decision to turn off the audio output from the loudspeakers showed me
that certain tasks become impossible, such as what Collins calls connectivity
exercises, but also open a window for unforeseen ways to foster creativity while

64 CHAPTER 5. STUDY C: CREATIVITY SUPPORT TECHNOLOGIES FOR LIVE CODING

not listening to the generated audio.

5.3.1.2 Circular representation of musical structure

In Diapoulis and Carlé 2023 [44], a circular representation of musical structure
was constructed as part of a reproducible musical analysis on more than
one hundred live coding performances (Figure 5.2). We suggest that such a
visualization tool could be used both during practicing and performing live.
The development of the tool is informed by music cognition and adheres to
gestalt principles, such as good continuation, similarity, and proximity.

0.0%

12.5%

25.0%

37.5%

50.0%

62.5%

75.0%

87.5%

0.250.500.751.001.251.50

Onsets strength and spectral centroid

0

500

1000

1500

2000

2500

3000

3500

Hz

Figure 5.2: Circular representation of musical form for a 10 minutes performance
from the Algorave 10th anniversary party. The radius shows an acoustical
feature that is an indicator of event density, whereas the heatmap shows an
indicator of perceptual brightness. Each slice represents a duration within the
limits of our short-term memory (up to 8 seconds).

One of the key points of the study is that the analysis of the musical form
is informed by music perception and cognition. The focus is on our short-term
musical memory, which has an indicative time span of 0.5-8 seconds [99]. This is
the main informative chunk concerning the visual representation of the musical
form, as we compute a global descriptor for every short-term memory window,
as shown in Figure 5.2. Each slice on the plot represents two acoustical features
in the case of Figure 5.2, a rhythm-related feature corresponds to the length of
the radius, and a pitch-related feature corresponds to the heatmap.

Research on musical structure in live coding is relatively unexplored, perhaps
partly due to its improvisational nature. Few current studies are focusing on
musical structure [180], [181]. Dal Rı̀ and Masu explored linear and particle-
based (density plots) as part of live coding practice study, and Magnusson

5.3. CONTRIBUTIONS 65

implements a circular representation of musical structure in his performance
system, Threnoscope.

Sound visualization may be seen as complementary to code visualization,
although how code renders processes to sound is not straight-forward. The
visualization of code is important in live coding. That has been a point of
attention since the early days of live coding, most notably in the work of Dave
Griffiths and in the Al-jazzari, Betablocker and Scheme bricks systems. Today,
more tools offer advanced features for visualizing code, most notably Stru-
del6 [182] and Gibber7 [183], but still, the focus seems to be on instantaneous
visualizations of musical events of signal generators. Code visualization is seen
as a facilitator of code comprehension when applied to secondary notation and
as providing meaning enhancements when applied to primary aspects of the
syntactic rules [184].

The circular plot in Figure 5.2 enables us to quickly recognize significant
changes in the musical structure, such as a climax in the event density or the
pitch height. Furthermore, larger musical constructs, such as motifs, may also
be spotted. Such a visual representation describes the musical outcome and can
make the performer aware of the evolution of their own performance. As such,
it is an informative manner that may also be seen as descriptive notation. In
live coding, the power of descriptive notation may be greatly appreciated, as has
been demonstrated in several systems, like Flock [185, chap. 7], Threnoscope,
Strudel, Gibber, and more.

Our work offers a new window into how we may connect cognitively-informed
musical information in our improvisation sessions. Only vigorous experimenta-
tion can answer whether and how such technologies would be useful for the
audience and performers. The performer tends to share everything with the
audience, and it can be difficult to assess whether such transparency can benefit
both parties. Accessibility is important but it may be that audiences do not
want to follow everything that is happening on the performer’s side.

5.3.2 Conceptual framework for designing agent-based
systems

I introduced a conceptual framework in Paper VI [39], in the form of a non-
linear and modular map to suggest to the community how agent-based designs
can be applied to both the written code and the musical outcome (Figure 5.3).
It is an observational study, where 8 systems are the focus. The study presents
an incomplete roadmap for employing machine listening and machine learning
technologies during a live coding session. I say “incomplete”, because several
more modules could possibly be added, as I mainly discuss a limited number
of affordances and temporal constraints. Over the observed 8 use cases, I
undertook a minor focus on code generation techniques and even less focus on
online machine listening technologies. Whereas most of the systems put under
examination do perform some computational analyses on the code or the results
of the running processes, only two out of the 8 systems apply modifications to

6https://strudel.tidalcycles.org
7https://gibber.cc

https://strudel.tidalcycles.org
https://gibber.cc

66 CHAPTER 5. STUDY C: CREATIVITY SUPPORT TECHNOLOGIES FOR LIVE CODING

the prescriptive part of the code, and only one more can produce novel code
chunks for a virtual performance partner. Given the technological advancements
in large language models (LLMs), it might be a matter of time before more
and more systems will incorporate code generation techniques and program
synthesis, but this is yet to be shown.

Figure 5.3: Conceptual framework for designing agent-based systems.

Also, a main interest of Paper VI is the technical understanding of liveness,
as presented by Tanimoto’s [43] hierarchy of liveness in programming environ-
ments. A comment on this technical dimension of liveness is that it is rather
striking that advanced levels of liveness (i.e., level 5 and level 6 liveness) have
been poorly explored in live coding. The reasons for this fact are unclear, but
it may be that we find the comfort of ebb and flow in what Tanimoto calls
level-4 liveness.

5.3.3 On liveness in bottom-up systems

As mentioned above, all performance systems in live coding are necessarily
level-4 liveness systems. Still, to the best of my knowledge, there is no system to
date that claims to be a level-5 system. Paper III [40] introduces a redesign of
the stateLogic machine, which points towards a level-5 liveness system. In the
git repository (https://gitlab.com/diapoulis/lhc-knob) can be found an
interactive implementation of a system described in 2022 with level-5 liveness.
The system implements code completion and can be considered a level-5 liveness
system, although I did not implement any advanced predictive algorithms as
suggested in the article. The system provided in the git repository uses nothing
more than regular expressions, but still presents a case where the user is
informed on the future behavior of the system.

An important note is that the system we proposed is not Turing-complete,
rather it generates a formal language by employing regular expressions. In
such a manner, the formal language is generated on-the-fly. Specifically, when

https://gitlab.com/diapoulis/lhc-knob

5.4. IMPLICATIONS 67

the system starts, there are no words generated. The vocabulary of the specific
formal language presented in Paper III has a total of 7 words. Unless a new
word – also known as token – is generated, it is not part of the language.
How such minimalistic designs converse with liveness is yet to be seen, but
my guess is that multi-agent systems that form networks of minimal agents
is the way to go. Each agent could specialize in a specific level of abstraction
and perhaps their collective effort would bring about emergent outcomes on
language generation practices.

5.4 Implications

Here, I present the findings as “modalities” to address some of the important
outcomes of this study, along with my vision of how we can move forward. The
modalities refer to different ways in which we may apply creative applications.
My vision builds upon agency, which is seen here associated with predictions.
Several creative applications build on predictive modeling, and our expectations
are formed by our sensorimotor predictions. Thus, my focus is on how such
technologies can help us in such an endeavor and what points require careful
consideration.

I see three main modalities of interest for creative technologies in musical
live coding; sound, visualization and text. Sound goes without saying for
musical practices, and its significance was demonstrated in the month-long
practice sessions with the no-listening condition [38]. The importance of text
also goes without saying in live coding, but my focus here is on the technical
dimension of liveness. Visualization tools are discussed from two viewpoints:
i) how to visualize sound and ii) how to employ visualization as conceptual
tools. The first point has aesthetic implications whereas the second point is
more akin to problems in information visualization.

5.4.1 Sound

In this section the discussion is centered around machine listening and human
listening. Cognition-informed decisions are important for both, as auditory
perception already validates machine listening. The focus is how to use sound
as a creative technology.

Creativity support technologies that can be applied to sound are largely
related to machine listening. In Paper VI [39], I present the affordances and
temporal constraints of machine listening technologies (Figure 5.3). We can
apply machine listening either in an event-based fashion or by using feedback.
If the machine listening we do controls the live coding session, it can be done
in two ways; either in a top-down manner or a bottom-up manner. By top-
down, I mean we program using high-level programming abstractions, whereas
in bottom-up, we use low-level programming abstractions. The temporal
constraints in Figure 5.3 are self-explanatory, indicating the different temporal
constraints where we can apply various machine listening tasks. For instance,
pitch formation occurs within approximately 10 milliseconds, while evoking
emotions when listening to a song can take several seconds or even minutes.

68 CHAPTER 5. STUDY C: CREATIVITY SUPPORT TECHNOLOGIES FOR LIVE CODING

My study in practicing live coding for one month (Paper IV) shows that
the absence of sound can also be used as a creative technique. Essentially when
not listening we cannot experience how our coding modifications sound, which
can be seen as an intentional defamiliarization with our auditory expectations.
While this may be surprising at first glance. But when not listening to the
musical outcome, we may be able to better focus on the text, and also try novel
ideas without the anxiety which we may arise when we apply something really
radical. When listening to sound we tend to avoid code modifications that are
likely to produce an extremely loud or extremely unpleasant musical outcome.
On the other hand, when there is no listening, certain tasks become impossible,
like the perception of event density, the crafting of musical transitions, the
perception of tempo, and more. To this end, sound visualizations are helpful,
but such information about sounds levels and the spectrum are not necessarily
perceptually-validated, depending on the task. If the task is to inform us
whether there is audio output, then a simple sound level visualization may be
informative. But when we want to get an understanding of more subtle qualities
of the musical outcome, such as timbral characteristics and the perception
of rhythm, it can become impossible when we only have available sound
visualizations, such as of the spectrum. Therefore when there is no listening,
higher-level visual representations such as latent spaces or cognition-informed
visualizations can be useful.

5.4.2 Visualization

In live coding there are two main visualization strands: we want to visualize
either the code or the sound outcome. The work presented in Paper V [44]
demonstrates how to visualize the musical outcome using a circular represent-
ation. Time, in music, is usually represented either linearly or periodically.
Modern tools, like Strudel, have introduced circular-based visualization (i.e.,
spiral command) as alternatives to linear representations such as the piano
roll. The above mentioned circular representation is informed by cognitive pro-
cesses, specifically our musical memory, and we noticed that Gestalt principles
such as good continuation are validated.

Also, we presented two conceptual frameworks where we used visual repres-
entations to communicate the findings. In Paper I and II [35], [36] we employed
a three-dimensional representation to demonstrate visually how systems look
alike and differ regarding gestural control. I did not include these two articles
in the Table 1.1, because they are mainly conceptual articles and do not have
direct implications for this chapter (Study C). In Paper VI [39], we used a
non-linear map, where the systems are mapped using a continuous trace-line
connecting the different components. In both cases, visualizations are used in
a manner that helps our understanding and thus can be seen as conceptual
visualizations.

5.5. PUBLICATIONS IN RELATION TO STUDY C 69

5.4.3 Text

Another modality that is necessary in the standard paradigm of live coding is
that of text. This view is indeed restricted to particular facets of live coding,
as visual programming languages like PD and MAX/MSP can only be partially
included in the textual modality. Thus, notation is a more appropriate general
term, but I do not use it here because it can also be seen as a visualization
technology.

As discussed above, creative tools related to text, such as code previews,
can disrupt pace and flow. In my personal experimentations with bottom-up
live coding, I found that code completion is useful, as it eventually becomes
obvious which regular expression will be excluded from the lexical analyzer –
although I am not typing text on a keyboard, I generate text. Is it the case that
code completion is only useful in bottom-up live coding systems? This is really
an open question, and we will not have the answer unless we experiment more
and more with advanced levels of liveness in live coding practice. With the
current advances in LLMs it seems unavoidable that more and more systems
will incorporate code generation and program synthesis. It remains to be seen
how live coders will incorporate such tools in their practice and how this will
change the current state of practicing live coding.

5.5 Publications in relation to Study C

In this study the related articles are shown in Table 1.1. Study C is a mixture of
methodological and applied contributions. The most relevant articles (Paper IV
and Paper VI) are both mainly methodological contributions with some applied
content, as shown in Figure 1.1. The month-long practice study (Paper IV)
contributes to the discussion on GUI helpers and sound visualizations [38]. The
study on agent-based systems (Paper VI) contributes to our understanding
of agent-based systems and liveness technologies [39]. Both articles provide
practical code examples. In the case of Paper IV, I provide an extensive
collection of live sessions as a git repository. In the case of Paper VI, I provide
a code example for SC3 with the aim of giving novice users an understanding
of how to implement simple software agents in their performance systems.
Paper V [44] contributes a cognition-informed visualization for offline analysis
of musical form, but we suggest that it may also be useful for online performance
practices. Finally, Paper III [40] contributes to the discussion on liveness and
delivers a git repository with a practical implementation of code completion for
bottom-up systems, which possibly presents one of the first known cases of a
level-5 liveness system implemented for musical practice.

70 CHAPTER 5. STUDY C: CREATIVITY SUPPORT TECHNOLOGIES FOR LIVE CODING

Chapter 6

Study D: Reproducibility,
transparency and risk

“It’s risky to just run code! No debugging or testing is available.”
Nick Collins, Alex McLean, Julian Rohrhuber and Adrian

Ward [22, p. 322]

6.1 From the general to the specifics of repro-
ducibility, transparency and risk

The interactions between reproducibility and transparency in the sciences can
be seen as a risk factor in the maintenance of scientific integrity and scientific
progress, and is often described as “the reproducibility crisis.” In science and
engineering, risk studies may range from risk management and risk assessment
of software or hardware infrastructures to risk factors in medical research and
social dimensions of job insecurity, to name a few. Thus, risk is a scientific
research field and relatively few philosophers have been focusing on it [186]. I
will be focusing on aspects of risk as a qualitative manner in relation to musical
live coding.

In live coding reproducibility is a notion that is applicable only to notation.
Code is seen as notation and can be fully archived using time tags, so that
a live set can be reproduced. That makes live coding different from most
improvisational practices, as it is hard to claim that an improvisational practice
is reproducible. On the other hand, transparency is deeply embedded in the
live coding community, primarily as an feature of the open source and free
software culture, but also stemming from the improvisational nature of musical
practice itself, which is welcoming of “imperfect” performances. The live coding
ethos is depicted in the TOPLAP motto “show us your screens”, but also in
the first book published on live coding by practitioners and active authors in
the field, which uses a copyleft license [25, p. xv]. Risk in live coding extends
beyond the possibilities in an instrumental improvisation practice [22], and
is also associated both with technical and musical aspects of the work [28],

71

72 CHAPTER 6. STUDY D: REPRODUCIBILITY, TRANSPARENCY AND RISK

which can range from performance setups and musical aesthetics to language,
notation [187], system design and more. The general attitude of the live coding
community towards risk is that it is an indispensable ingredient of live coding
performance. Indicatively, the first known live coding performance, by Ron
Kuivila at STEIM in 1985, resulted in a system crash [188], [189].

6.2 Reproducibility, transparency and risk in
live coding

6.2.1 Reproducibility in live coding

Live coding practice is largely indifferent to reproducibility. Whereas the
notation of a performance can be recorded and replayed, this is not a common
practice for live coders. It is rather the case that the code is ephemeral. After a
live set, the script is not necessarily stored, and this is one of the main intricacies
of live coding that makes the practice attractive to many practitioners. Thus,
reproducibility addresses only archiving and analysis procedures, which are
largely not common practices in this work; this may be an attribute shared
among many improvisation art practices.

In the first International Conference on Live Coding (ICLC), live writ-
ing [116] was introduced as a means to reproduce, character-by-character, the
live typing of the code. This approach may radicalize our perception and
understanding of live coding practice, as it raises questions on telematic and
collaborative sessions, where network delays can be hard to trace, in order to
accurately reproduce the exact experience. This raises philosophical questions
about the multiplicity of future outcomes of a telematic performance, as every
performer of a telematic ensemble is experiencing their own temporal reality.
Of course, we have been aware of this fact, but live writing demonstrates in
practice how these multiple realities unfold to create a unique performance.

6.2.2 Transparency in live coding

An immediate criticism of live coding transparency procedures comes from
their sometimes obscure practices and is linked to what may be called technical
transparency. A complementary notion is that of selective transparency as we
“select” what to show to the audience [190]. Projecting the screen to the audience
does not secure transparency for the audience, regardless of whether they are
expert or untrained live coders. Obscure code can induce in the audience a
sense of uncontrolled and chaotic practices and lead them to wonder about
the performer’s intentions [26]. This is truly an issue in live coding, as many
practitioners, including myself, mostly perform using pre-written code. I admit
that in my practice, scripts overloaded with code can be challenging to read and
navigate. Live coding is known to have a “terrible closeness to mapping” [188],
a term to denote how the output is tightly linked to notation [191], and in my
practice, I often use lengthy one-liners1. That makes forming a mental model

1Sometimes also called sc-tweets, sc-twitts, or sc-toots, as if they were standalone tunes.

6.2. REPRODUCIBILITY, TRANSPARENCY AND RISK IN LIVE CODING 73

about the running program even harder. It can be difficult to navigate through
the code, understanding what effect different code chunks are having on the
musical outcome.

While these can certainly be seen as bad practices, it comes naturally for me
and other practitioners to write lengthy one-liners. Maybe this is an outcome
of practicing how to write sc-tweets, which are musical compositions presented
as one-liners in SC3 code and published in Twitter2. Writing an sc-tweet is
essentially an iterative design practice, and is fully transparent in the sense
of selective transparency (Figure 6.1). Before publishing an sc-tweet, there
may be several dozens, or even hundreds of iterations. Indeed Fredrik Olofsson
estimates that an average of four hours is spent on each sc-tweet [95], and
provides in his cookbook some indicative rules each sc-tweet should follow.
Even the tuning of the synthesis parameters is an essential aspect, as to make
a compact code small enough to fit the old Twitter upper text limit of 140
characters is a challenging endeavor. So, while one-liners can be a bad design
decision in terms of code comprehension and readability, to people writing
sc-tweets this is seen as a character-saving (text-economic) practice. Of course,
when the one-liners are lengthy and cover several lines of code on the text editor
(more than 250-300 characters), navigating through them to apply modifications
can be challenging and sometimes impractical. I have seen a performance by
Fredrik Olofsson3, where he uses three lengthy tweets to begin the live set. I
found this a clever approach to starting a live session, because if you simply
constrain yourself to use as little as three different tiny programs, you can
study the code and manipulate it effectively during a performance. Starting a
performance with snippets of pre-written code is also highly appreciated by
the community, as in a blank slate coding session, the progress is rather slow,
and the musical outcome may not be musically pleasant. So, taking care of
what the audience will listen to is also highly appreciated by the community,
although this comes with the drawback of poorly exploring complex algorithms
during performance time [104].

6.2.3 Risk in live coding

A descriptive definition of risk is: “situations in which it is possible but not
certain that some undesirable event will occur” [186, p. 2]. The different
qualities of risk between traditional and live coding music performances are
numerous, from the generativity of the musical outcome in a live coding session
to the fact that a musical instrument will not melt down during a performance4.
Live coding has been described as real-time instrument making [53], and a

2There was an online release of SC tweets in 2009 https://www.newscientist.com/

article/dn18173-best-of-twitter-tunes-album-released/, http://mcld.co.uk/blog/

2009/sc140-squeezing-entire-pieces-of-music-into-tweet-sized-snippets.html.
3Algorave 10th Birthday March 2022 - redFrik - 2022-03-19 22:10 https://youtu.be/

lqi-Vqr0qk4
4Ron Kuivila’s, first known live coding performance, has been described by Curtis Road

as “I saw Ron Kuivila’s Forth software crash and burn onstage in Amsterdam in 1985, but
not before making some quite interesting music. The performance consisted of typing” [189,
p. 249].

https://www.newscientist.com/article/dn18173-best-of-twitter-tunes-album-released/
https://www.newscientist.com/article/dn18173-best-of-twitter-tunes-album-released/
http://mcld.co.uk/blog/2009/sc140-squeezing-entire-pieces-of-music-into-tweet-sized-snippets.html
http://mcld.co.uk/blog/2009/sc140-squeezing-entire-pieces-of-music-into-tweet-sized-snippets.html
https://youtu.be/lqi-Vqr0qk4
https://youtu.be/lqi-Vqr0qk4

74 CHAPTER 6. STUDY D: REPRODUCIBILITY, TRANSPARENCY AND RISK

Figure 6.1: SC tweet exhibition by Charles Celeste Hutchins.

programming error may produce persistent effects on the outcome [28]. If this
happens during a performance, it is not uncommon for the coder to restart the
system. Less significant programming errors may result in transient disruptions
or glitches, which the coder may be able to resolve on-the-fly.

Knotts [28] has classified errors as either transient or persistent, to indicate
the difference between a system crash and programming errors that can be
handled without stopping the performance. Other risky behaviors may relate
to the musical outcome and have no relationship to programming errors. For
instance, it is possible in musical interfaces that use generative algorithms
to explore a sound synthesis space, which suddenly tunes its parameters to
silence [125], [127]. This problem may extend beyond the scope of live coding.
Thus, the expression of risk in generative music systems is not necessarily related
to programming glitches or errors but may extend beyond mere technicalities
and can be related to the musical outcome.

Abstract architectures have been described as designs that can increase
risk, as the interface cannot take into account practical concerns about the
intended application [192]. Abstraction is an inherent quality of all live coding
performance systems, and it is not uncommon that the desired requirements
are not exactly met during a performance. This is known as abstraction
management in the cognitive dimensions of notation [187].

Cognitive and motoric risks are also involved in live coding performance.
It is well known to live coders that performance anxiety may result in “shaky

6.3. CONTRIBUTIONS 75

hands” [193]. McLean argues that stress during a performance is not an
unwelcome feature, but this has to be on moderate levels so that it does not
induce destructive stress [194]. Several more factors may be present as risk
factors. Here, I am considering the sensorimotor constraints imposed on the
coder due to their typing activities. Typing on a keyboard is an activity based
on serial skilled actions. It is an open-loop motor control process returning
no feedback from the performed actions [37]. This state of affairs may induce
significant typing errors during a performance, inhibiting pace and flow.

The audience appreciates the effort put into a performance, especially
when significant risks are taken, according to Roberts and Wakefield [104].
Collaborative performance is seen as an activity to limit and control risk factors
during a performance. For instance, when a duet is performing, and one out of
two performers lapses into silence, the other performer most likely will still be
generating musical sounds. Similarly, when there are more than two coders,
the possibility of a total crash of the system is not likely to happen. That can
be seen in analogy to a property of network architectures, wherein, when a
node goes offline, the remaining nodes may still be fully operational depending
on the network connectivity.

Overall the aesthetics of failure are much appreciated by the live coding
community. The idea is that live coding is a non-productive programming
activity, rather a fun activity where coding is seen as a leisure activity, free
from technical innovation, robustness or stability [28].

6.3 Contributions

6.3.1 Reproducible musical analysis: Algorave case study

In Diapoulis and Carlé [44] we conducted a reproducible study on the Algorave
10th anniversary party. The algorave culture is only a subset of live coding
practices as shown in Figure 6.2 (original resource from the TOPLAP forum5),
that focuses on algorithmically produced music for dance parties. The study’s
focus is music information retrieval (MIR), where we extracted various acoustical
features from 133 live sets to examine the musical structure of the performances
(Figure 6.3). The main output of the study is a circular representation of the
musical form which may be used for interactive experimentation and exploration
of the evolution of the sound during a performance. It is the first time that a
MIR study has been conducted on such a scale in live coding research, and one
of the few reproducible frameworks within the community.

The reproducible framework was built using Docker containerization techno-
logy. The docker image6 is made as a modular build, so that it can be built in
independent stages, and not as a monolithic build. This has several advantages
as the overall process includes four main phases: i) retrieve the audio-visual

5A Venn diagram that show the relationship of algorave parties to live
coding, figure adopted from heavy-lifting post https://forum.toplap.org/t/

the-cultural-differences-between-live-coding-and-algorave/673/6
6Pre-built image on DockerHub https://hub.docker.com/r/algorave10/iclc2023 (ac-

cessed 2023-08-26).

https://forum.toplap.org/t/the-cultural-differences-between-live-coding-and-algorave/673/6
https://forum.toplap.org/t/the-cultural-differences-between-live-coding-and-algorave/673/6
https://hub.docker.com/r/algorave10/iclc2023

76 CHAPTER 6. STUDY D: REPRODUCIBILITY, TRANSPARENCY AND RISK

Livecoding

Algorave

Figure 6.2: Algorave in relation to live coding. Figure adopted from the
TOPLAP forum5.

dataset from a git repository for large files, ii) transform the video data to
audio, iii) extract the acoustical features for each performance, and iv) perform
the descriptive statistical analysis. All four of these phases can be individually
built even if any programming errors occur during the process.

The computational analysis provided by the Docker image was conducted
in a Jupyter notebook, a popular approach to literate programming running on
the browser via a localhost server connection. The analysis offered is focused on
descriptive statistics. Our main concern was to deliver an easy and accessible
approach to reproducing the information retrieval and data analysis, along with
conserving some historical and statistical information about the community.
Each performance had self-reported geographical location and programming
language or system used, which are both indicators of cultural diversity, either
musically related or socially related.

Another important goal of the study was to build bridges between academic
communities and cross disciplinary boundaries in music research. As such, the
study addresses readers from music cognition and music information retrieval
to the live coding community and other underrepresented musical communities.

As the study only focused on the audio dataset, further work can be
done on the visual data set, mostly screen recordings of the programming
practices used. While it can be technically challenging to interrelate the audio
data with their corresponding visual counterpart, this is not impossible. The
difficulties arise due to the variety of programming languages used; most of
the performances were conducted using TidalCycles. As a result, the dataset
is unbalanced in terms of programming languages, which is certainly not an
insurmountable problem but rather a challenging characteristic of the specific
dataset. On the other hand, selective transparency [195], a term to denote what
the performer is showing to the audience, can be devastating when aiming to

6.3. CONTRIBUTIONS 77

Figure 6.3: Circular representation of musical form for all 10 minutes perform-
ances, excluding outliers, from the Algorave 10th anniversary party.

find correspondences between audio and visual data. Here, there is no easy
solution, and it is also the case that the 133 performances make a relatively
small dataset for applying large scale learning algorithms. To address this
issue, I would claim that not all the available live coding recordings to date
are enough, and given the diversity of programming languages and musical
practices in play, it is an open question whether this is even possible.

6.3.2 Transparency

During the month-long daily practice sessions [38], I was writing daily reflective
diaries. The diaries are published on the git repository (https://gitlab.com/
diapoulis/livecodeme/) along with the History files, a time-tagged file for
SuperCollider. The history files can be used to reproduce the sessions, and the
diary aims to make the study process transparent to the community. While

https://gitlab.com/diapoulis/livecodeme/
https://gitlab.com/diapoulis/livecodeme/

78 CHAPTER 6. STUDY D: REPRODUCIBILITY, TRANSPARENCY AND RISK

publishing reflective diaries may not be a common practice, there are certainly
many live coders that use them as cognitive prompts (e.g., Sam Aaron [196]).
This can be extremely valuable to the community, as the reader can relate to
their practice and form certain expectations from such an endeavor.

The study contributes a unique methodology and rich data set. In total,
101 history files were produced, 62 from the experiment proper, 36 from the
pilot study, and 3 more from two days before the beginning of the month long
practice. Furthermore, there are 31 diary entries from the experiment proper
and 12 entries from the pilot study 7.

The reproducible MIR study [44] contributes a structured data set with
audio and video files on a git repository for large files8. Also, the docker files
are stored on GitHub9 and the prebuild image10 is provided on DockerHub.
This collection of code and data repositories presents a rich data set that
demonstrates the unique diversity of the live coding community. The descriptive
nature of the computational analysis aims to highlight the broad diversity of
the different practices by incorporating a creative approach to visualize the
musical form of a live coding performance.

6.3.3 Risk

Reproducibility aims to reduce risk factors, whereas transparency may increase
them. For instance, by providing an open and reproducible framework, we
aimed to help the community reproduce the analysis results. We focused on
eliminating any cross-platform dependencies and delivered a docker image.
Thus, we focused on reducing the risk of a non-reproducible outcome to the
best of our capacity. In a sense, the abstractions we use in live coding, like a
function or a class, aim to be reproducible. Otherwise, we risk failing if we
write high-level programming constructs from scratch during a performance.

At the same time, offering an open data set can be seen as a risk factor
for the community. How will this data set be used in the future? For what
purpose? Can it be used to create stereotypes? These are open questions that
no one can definitively answer, but only speculate about the multiple possible
outcomes. This is the cost of transparency. If everything is open, someone
can take advantage of the situation to their own benefit, either by stealing the
artwork or other monetization opportunities.

Risk in live coding also has a different facet. I have identified that bottom-
up systems are not subject to the risk of failure. All bottom-up systems, except
iMac Music by Jonathan Reus, were designed in such a way that they cannot
fail during a performance. The question arises, how can we make these systems
more prone to failure? As already discussed, failure is highly appreciated in
live coding. Here, I question whether pre-reflective processes can induce risk
in bottom-up systems. Of course in the case of bottom-up systems that are
not risky enough this would not make them crash on stage, but it still is an

7GitLab repository: https://gitlab.com/diapoulis/livecodeme
8https://github.com/gewhere/algorave10-large-files
9https://github.com/gewhere/iclc2023

10https://hub.docker.com/r/algorave10/iclc2023

https://gitlab.com/diapoulis/livecodeme
https://github.com/gewhere/algorave10-large-files
https://github.com/gewhere/iclc2023
https://hub.docker.com/r/algorave10/iclc2023

6.4. IMPLICATIONS 79

aspect that increases the risk of successful code evaluations and performance
in general.

6.4 Implications

6.4.1 Visual representation of sound

Music offers numerous opportunities to explore real-time scenarios and make a
bridge between audition and vision. Music is a highly interdisciplinary endeavor
that touches on musical notation, auditory display, crossmodal interactions and
information visualization. For non-real-time applications, there are numerous
ways to visualize data, both in plots and transformations. For instance, we
can apply linear transformations to visualize synthetic dimensions, also known
as latent spaces, which can be more informative than the original dataset.
When doing so, some high-level interpretation of the synthetic space is typically
conducted, which assigns meaning to our visualizations. For the circular plot
of Figure 5.2 we may apply such linear transformation and visualize synthetic
dimensions instead. For instance, we may cluster the radius representing
rhythmical information and the heatmap representing pitch-related information.

Cognitively informed visualizations in music can certainly be valuable,
especially during performance. Our work on the musical structure of the
Algorave performances shows that when certain principles of musical memory
are taken into account, Gestalt principles emerge, allowing us to perceive higher-
level characteristics of musical form, such as motifs and themes. This cognitive
strategy – using low-level characteristics to construct or predict higher-level
characteristics – is well known to cognitive scientists and psychologists, and
used extensively in experimental designs.

There is certainly a division between instantaneous and persistent visualiz-
ations in music. For instance, the spectrum is an instantaneous representation
of the spectral content, whereas the spectrogram is a more temporary, though
persistent visualization of the spectral content. A visualization that spans the
whole duration of an improvisation session is not a common approach, and it
also is impossible to make use of such representation when the duration is not
predetermined. However, certain conventions are usually set in place within
musical improvisation and it is not uncommon during a music performance to
use a timer to inform you of the running duration. In these scenarios, I would
claim that visual representations over larger temporal chunks can be informat-
ive of the musical aesthetics of the performance. In this manner, we may want
to “reproduce” the musical aesthetics of performance, and visualization can be
used as an informative tool on the performer’s side.

In the case of live coding, visualization of the musical structure is not
used, other than in the case of the Threnoscope, which demonstrates a slowly
evolving persistent visualization as a descriptive notation. From my practice, I
can assert that when I am focused on writing the code, I tend to ignore any
other information that is on my screen. For instance, when live coding, I always
have the spectrum and the sound level meters on the left side of my screen,
but while in deep focus, or using strong mental effort I completely ignore what

80 CHAPTER 6. STUDY D: REPRODUCIBILITY, TRANSPARENCY AND RISK

is happening in the visualizations. Several practitioners and systems do embed
the visualization as a background on the text editor, most notably Strudel,
which I find a useful way to tackle this issue.

6.4.2 Live coding is risky

6.4.2.1 Risk of reproducibility and transparency

The interactions of transparency and reproducibility should be treated with
care as a risk arises when tools become the artifact and not the vehicle of our
creative practices [56]. Thus, any work that aims for universal outcomes should
be aware of the dangers put into this pursuit. When a practice is detached
from its consequences to its immediate environment, then we endanger losing
our agency. Simply put, if a live coder replays the code recordings of my live
coding sessions during the month-long practice, this will not improve his or her
skill in live coding. Rather, they have to carry out a month-long practice to
benefit from such an endeavor. This may be a simplistic and obvious example,
but it denotes the risks associated with aspects of agency. A similar scenario
applies for the reproducible study and the open dataset.

6.4.2.2 Risk and gestural interactions

The implications of risk in our gestural interactions with bottom-up live coding
are central to this thesis. I identified that almost all systems are indifferent
to risk. Simply put, bottom-up systems do not crash during performance. I
find, here, that there is an opportunity to reintroduce risk in our gestural
interactions, which means that the bodily gestures we do during a performance
can fail. If we keep safeguarding our systems, we may end up in a situation
where we have created a “domesticated” version of live coding. This would feel
more like what I would call using a “generative bleep-box” than actually to
engage in live coding.

6.5 Publications in relation to Study D

In this study, the related articles are shown in Table 1.1. Study D is a mix-
ture of mostly methodological and applied contributions, with some influence
from theoretical studies. Paper V [44] contributes the reproducible and open-
source framework for analysis of the musical form of live coding sessions. The
framework builds upon an open dataset of 133 live coding performances, and
we delivered a technical solution for better accessibility over this dataset.
Paper IV [38] contributes 101 live coding sessions that can be replayed in
SuperCollider, along with daily reflective diaries. As such, both Paper IV
and Paper V contribute to the questions of scientific and artistic transparency.
Paper III [40] somehow silently contributes to this study as it also delivers an
open source code repository, but most importantly, aids Paper VII [37] in its
discussion of gestural interactions in bottom-up systems, thereby helping our
understanding of how risk is an important factor for bottom-up systems.

Chapter 7

Discussion

The discussion is divided in two main parts: 1) a review of the contributions,
and 2) implications and reflections. It is essentially a synthesis of the studies
along with the presentation of the theoretical background, and I aim here to
highlight the most important parts of this thesis. Preliminary discussion on
the future work is presented in the present chapter, but there is section 8.3 of
the Conclusions section which discusses the future work in more detail.

7.1 Review of contributions

7.1.1 Making bridges: Theory making for live coding

From the beginning, I have intended to bring to the live coding literature
an approach to understanding how a music psychologist might react to this
arguably unconventional musical practice. I contributed a sensorimotor theory
of musical live coding that reflects on practice and can be used as a first step
toward an embodied understanding to be used for studies in music performance.
The main contribution here is the observation that typing is a series of skilled
actions performed on a keyboard. This obvious and simple observation that
came out as a combination of the literature review in studies of music perform-
ance [86], [123], reflections on practice, and observations of other practitioners,
opens new horizons on the construction of a theoretical framework for live
coding.

7.1.1.1 Music perception and cognition

Expressive interaction is a term that refers to the aesthetics that are induced as
an outcome of our sensorimotor control. It addresses planning, coordination and
anticipation [197], but also addresses agency and emotional reward mechanisms
[31], [198]. I explain here how expressive interactions relate to live coding.
Throughout the thesis, I use the term pre-reflective processes to describe a
phenomenological approach to study fast processes, those that correspond to
the lowest-level of motor control. The motor control system of humans can be

81

82 CHAPTER 7. DISCUSSION

seen as a three-fold blend of low-level, mid-level and high-level control [197].
Sensorimotor synchronization (SMS) is carried on the low-level, coordination
on the mid-level, and planning on the high-level. This is a hierarchical model
that covers different time spans. The next unexplored step to better understand
cognition in live coding is to study aesthetic enjoyment and emotional responses,
per Palmer [86] who discusses how expressive performance is related to musical
structure, bodily motion and emotions. Aesthetic enjoyment up to the present
has been discussed in terms of audience appreciation [199] and the interplay
between audition and vision, and a few studies focusing on the aesthetics and
evaluation of computational creativity [200], [201]. The contributions regarding
musical structure are limited to a few studies, each focusing on a different
methodology and presenting a broad understanding of the term [180], [181].
To this end, our study differs as it presents a cognitively-informed visualization
of the process [44].

A conceptual framework was presented here that discusses how live coding
is related to various musical activities, that is, of music-making, music listening,
and the formation of musical imagery [35], [36]. This discussion offers a new
perspective on musical practice as it discusses the role of music listening and
musical imagery during a performance. Music listening is crucial and seen
as the “glue” that allows us to perceptually bind the written code with the
generated sounds. Listening is linked to anticipation, and imagery to planning.
In that sense, listening can help our predictive mental models – thus, empower
our agency – whereas imagery is linked to higher level mental operations.
Musical imagery is crucial when we write and merge in existing novel code
chunks during performance, and is linked to musical notation via notational
audiation [37].

During music-making, multiple levels of cognition come into play and
enable us to reason and develop an understanding of the relation between
the code and the sound. A feedback loop between listening, imagining, and
making music ensures that we link perceptual continuities to cognition and
reasoning. Precisely how this is done is fairly unexplored, but I have discussed
the importance of notation in live coding and how it may be linked to our
sensorimotor network.

This thesis offers extensive discussions of our various cognitive and percep-
tual limitations, and the reader can find here best practices for the design of
performance systems. For instance, extensive discussion on sensorimotor con-
trol is provided in Paper VII [37], along with a general theoretical background
on musical imagery, that expands in two articles (Paper I, PaperII) [35], [36].

The thesis also examines music listening and musical imagery in live coding,
one in relation to another. This opens new pathways on how to study live
coding as an activity of everyday life [202], such as in live coding outside [203].
Research in this direction can provide a perspective on the aesthetics of the
everyday in live coding.

7.1. REVIEW OF CONTRIBUTIONS 83

7.1.1.2 Gestural control and the meaning of bodily gestures

I have discussed the idea that typing during live coding is a kind of musical
gesture, which are actions that assign meaning to our practices [35]–[37].
Baalman exemplified this practice in her performance Code LiveCode Live,
which resolves long-standing issues on whether typing on a keyboard is actually a
musical gesture. Furthermore, her specific performance is the first known case of
the appearance of sound-producing gestures in live coding. Later contributions
include CodeKlavier CKalcuλator and essentially all other systems that involve
a traditional musical instrument.

Live coding is a practice that mainly facilitates secondary aspects of musical
gestures with communicative and expressive content. Given that the study of
musical gestures is an established research field across various music-related
disciplines (e.g., music psychology, NIME), understanding bodily gestures in live
coding and their limitations can result in new interdisciplinary collaborations.
This is not applicable only to live coding per se but applies also to the broader
electronic music field, particularly that of generative music. Music psychologists
have formerly tended to focus only on traditional expressions of musicianship.

7.1.2 Bottom-up live coding

A bottom-up system was presented in Paper III [40], implementing a redesign
based on a hardware and software prototype [41], [42]. From several of the
observation studies conducted as part of the thesis (Paper I, Paper II, Pa-
per VII) [35]–[37], it becomes apparent that all bottom-up systems share
distinct characteristics related to either the crafting of hardware components or
of formal languages. A distinction is drawn between bottom-up and low-level
computing in live coding to clarify that the term is used differently across the
literature, a fact in agreement with Roberts and Wakefield [104]. I have also
used the term low-level to refer to low-level programming languages [40], [42],
and in Roberts and Wakefield [104] the term is mainly used to indicate low-level
computations related to DSP processes by various practitioners. Although, at
the same time, the term bottom-up is also sometimes used to refer to progress-
ively building abstraction levels. Thus, I suggest that due to the ambiguity
of the term as it has been used in live coding, it may be useful to clarify the
exact context of a use case. Whereas the bottom-up term stands for systems
that afford programmable actions in the context of formal languages, low-level
computing does not secure this integration but may simply point out digital
signal processing (DSP) algorithms and other sound synthesis techniques used
during a performance.

On the other hand, a similar argument can be made for the use of the
bottom-up term, as one can apply sound synthesis processes in a bottom-up
manner: that is, progressively building the unit generators to specify sound
synthesis structures on-the-fly. Essentially, one can claim that all blank-slate
sessions are a kind of bottom-up live coding. I would still claim that, in this case,
the unit generators used for sound synthesis do not necessarily have a formal
structure dictating their use. By formal structure, I mean no grammatical rules
relate one unit generator to another. Such a bottom-up structure would most

84 CHAPTER 7. DISCUSSION

likely not rely on a formal grammar, or be Turing complete, but it is rather a
relatively unstructured routing and entanglement of different things. Thus, I
would suggest that bottom-up live coding presupposes the existence of low-level
programming constructs that are built and verified during a performance. I
would envision that this low-level nature of bottom-up systems may be useful
for approaching and exploring higher-levels of cognitive organization, such as
coordination and planning.

The work presented here is centered around the notion of bottom-up live
coding. It has been identified that such systems are still relatively rare. Al-
though it is well-acknowledged within the community that easy classifications
in live coding can be more of a problem than a solution [48], I have discussed
the significance of bottom-up systems from both a theoretical and a practical
perspective. In short, the importance lies in both the system’s workings and
the human coder’s cognition. On the system-side the program becomes more
modular, where each module is verified and can be ready to use, whereas, on
the human-side, the users tend to use such systems in a swifter manner that is
akin to traditional musicianship.

7.1.2.1 Predicting programming behaviours: A technical view on
liveness

The redesign of the stateLogic machine (Paper III) presents one of the few
cases in which continuous control is used in bottom-up systems. Earlier works
include Approximate Programming and CodeKlavier CKalcuλator. Although
the importance of both aforementioned systems is unquestionable, the redesign
we presented goes a step further to address whether a tactically predictive
system can be implemented from the bottom-up. In this thesis, I present
the git repository (https://gitlab.com/diapoulis/lhc-knob) with a simple
implementation of a tactically predictive system that performs code completion
based on regular expressions. Although the presented implementation does
not offer a predictive model between continuous gestural control data and
code completion, it realizes how a bottom-up level-5 liveness system can be
implemented using regular expressions.

Tanimoto considers the hierarchy of liveness as part of a larger category of
feedback mechanisms in software engineering [147]. Nash and Blackwell extend
this analysis of liveness, discussing the “quality of the feedback in different
domains” [101]. The system we have presented in Paper III provides a fruitful
testbed for experimentation and study of the continuous control of gestures
with advanced levels of liveness (in this case, level-5 liveness). For instance,
direct manipulation has been used in live programming [204], which applies
code changes to an HTML/DOM file using the mouse. In our case, the system
redesign implements direct manipulation, using a knob, to generate a formal
language.

From a psychology of programming perspective, the redesign shifts the focus
from aspects of visibility and meaning to facilitate fluidity of actions [119].
In live coding we often forget about the fluidity of actions, probably because
we think of the keyboard as the “standard” input interface, although several

https://gitlab.com/diapoulis/lhc-knob

7.1. REVIEW OF CONTRIBUTIONS 85

live coders put a lot of work into developing different types of keyboards (i.e.,
alternatives to the QWERTY keyboard). In any case, I think that predicting
programming behaviors in interfaces that afford continuous gestural control
would bring forward novel interactivities, which may be more rewarding and
enjoyable during a performance.

7.1.2.2 The significance of pre-reflective processes

A general tendency for shifter gestural interaction is identified in bottom-
up systems. Few of them demonstrate apparent activations of pre-reflective
processes, as identified by the fast gestural interactions the user uses with these
systems. Typically, these are bodily gestures rendered within a few milliseconds,
and in one case (CodeKlavier), the coder is playing a traditional musical
instrument, the piano in this case. A thorough study [37] of psychological and
perceptual aspects of musical live coding examines various performance practices
and systems, and discusses gestural interactions with these systems. The
accompanying theoretical analysis reflects on practice, and provides cognitively
informed decisions that the coder may take into account when designing
performance systems with an embodied orientation.

7.1.3 Recognition and retrieval processes in interfaces
and gestural control

Live coding demands retrieval processes from the performer, meaning that the
coder has to recall from memory a wide variety of different things, like the
programming commands and more. This is the case in both interface design
and in programming notation. In interfaces, the live coder has to recall long
sequences of individual characters that are required to type a single command,
especially so in the top-down approach, which uses a keyboard and a typical
programming language such as SuperCollider, Python or Lisp. Anecdotal
evidence by Marije Baalman on typing automaticity suggests that a level of
pre-learned motor patterns can serve to free cognitive resources; of course, this
is likely the case only for short sequence a few characters long.

Contrary to the top-down approach, bottom-up systems mostly rely on
recognition processes. This is also the case for the redesign of the stateLogic
machine, but also systems like Betablocker, Al-jazzari, the TOPLAP app
and iMac Music do share the same characteristics. In contrast, CodeKlavier
CKalcuλator demands retrieval processes from the performer, a result perhaps of
the complexity of the interface in HCI terms, as a gestural vocabulary has to be
retrieved during a performance so that the system can recognize musical patterns
(Figure 4.2, see Noriega & Veinberg). As such, CodeKlavier CKalcuλator may
be more similar to the Gewording system, where the performer recalls the
gestural vocabulary in order to write the program.

Even in the case of Orca, which has single-letter commands, the coder has
to remember a list of 26 different commands. Knowing by heart 26 commands
may be something that can be easily learned, but during the learning process
it also requires that the coder make a conscious effort to recall the given

86 CHAPTER 7. DISCUSSION

commands, as there is no descriptive association between the single letters
and their corresponding semantics. To this end, Orca opens questions on the
importance of familiarity and expertise with the user interface, as we can
assume that extensive training may automate a variety of tasks.

7.1.3.1 Open-loop motor program and spatiotemporality

I mentioned above typing on a keyboard is an activity that relies on an open-
loop motor program, which means that there is no closed-loop sensory feedback
during movement execution. Simply put, there is no way the coder experiences
any tactile or other sensory feedback during the typing of a single character.
This means of control shares similarities with other electronic instruments,
like the theremin and other air-instruments, although there are qualitative
differences between continuous gestural control and discrete-target control1.
The theremin presents an important case of electronic instrument, as it is the
first known electronic instrument ever made. Modern day air-instruments vary
to a great extent, and Jensenius [53, p. 242] remarks that air-instruments are
based on “noncausal interactions.”

The open-loop motor program presents several challenges and consequences,
such as making typing prone to errors, as there is no feedback from the keyboard
that the coder can take into account. When a key is pressed, the action is
not retractable, and the only way to make any corrections is simply to delete
and type again. This is the reason that air-instruments are so challenging to
master: most notably the theremin, as during performance with a theremin
the gestures are directly sound-producing, and every small bodily movement
result in an immediate audification of the electromagnetic field. In contrast, in
live coding – with the exception of Code LiveCode Live by Baalman – we do
not make sound-producing gestures. Furthermore, when using air-instruments
the performer has to deal with micro-, meso- and macro-spatiotemporalities
[53, p. 233]. When typing on a keyboard, we are not largely subject to spatial
dependencies.

7.1.3.2 Musical memory in live coding

Previous studies on the perception and cognition of live coding perform-
ance [141], [142], [150] essentially focus on long-term memory processes (longer
than 15 seconds). Whereas this is precisely the case for most canonical live
coding systems – those that use the keyboard and a textual language – this
description falls short of characterizing systems that incorporate short-term
memory processes (STM). The instances of STM activations are numerous,
whether in ixi-lang, or in short edits to single-character commands, or in dir-
ect musical instrument playing or in using other interfaces that afford direct
manipulation [37].

Bottom-up systems do offer many opportunities to integrate STM processes
into live coding. As has been mentioned above, all such systems do afford a

1A term I use here to refer to the qualitative differences that arise when controls have a
specific target, as in any teleological inquiry.

7.1. REVIEW OF CONTRIBUTIONS 87

tightly-knitted temporal relationship between the coder and the system. In a
few cases, this tight integration can even activate pre-reflective processes, thus
making good use of the first level of our musical memory, the echoic memory
that is activated within less than 0.5 seconds2. (Its general function is to inform
us about our acoustic surroundings.)

7.1.4 Visualizations

We have discussed code visualization in live coding from different angles [61],
[184], [205]. There are various techniques for representing various aspects of
the music, such as particular parameter values, patterns, continuous data, the
semantics of code, and musical form [44], [137], [180] among others. This thesis
presents two uses for visualizations: i) to visualize sound, ii) to visualize a
system. As for sound, we contributed a visual representation of musical form,
and to visualize the system, we presented tools for conceptual visualization of
creative applications.

7.1.4.1 Musical form

In Paper V [44], we constructed a cognitively-informed circular representation of
the musical structure. This representation is based on short-term memory and
is indirectly validated by the Gestalt principles of good continuation, similarity,
and proximity which emerge as the outcome of the cognitively-informed design
(Figure 5.2). We suggest that this visual representation may also be useful
for real-time applications, as it can offer visual cues to inform the coder on
the dynamic state of certain acoustical features. Furthermore, with such
visualizations, climaxes and other higher-level characteristics of musical form
can be easily spotted.

7.1.4.2 Creativity tools

A GUI helper showing a matrix of unit generators (UGens) was developed
in conjunction with my month-long practice sessions [38]. This rather simple
visualization aims to help the live coder when unclear about how to continue
a live session. The aim is to transform the helper into a software agent that
performs actions and enhances the written code with novel code chunks.

The conceptual frameworks in Paper I, Paper II and Paper VI, have the
intention of facilitating the readability of the articles, but they also come out
of a process of attempting to sketch out different concepts. Sketching is a
creative technique used widely in HCI and can facilitate our imagery through
the creation of visual representations [206]. An analytical framework of gestural
interactions [35] introduces a three-dimensional representation of the systems’
space. This cartesian plot (Figure 4.2) may be misleading, and at first glance
can be interpreted as a framework for quantification and measurements. Instead,
our aim was to demonstrate in a visual manner how various systems differ and

2For expert musicians we can assume that these durations are further extended through
extensive musical practice, so we can claim that echoic memory may reach to a few seconds.

88 CHAPTER 7. DISCUSSION

relate to one another. Higher-level diagrams are presented in both studies. The
conceptual framework in Paper I is coupled within a higher-level explanation
of musical live coding (see Figure 1), and the diagrammatic representations in
Paper VI (see Figure 1-9) visually explain live coding as a musical activity and
as a cybernetic system between a human and a machine.

The agent-based framework [39] presents a non-linear map of the system’s
affordances and the system’s temporal constraints with the aim of helping prac-
titioners to design systems that involve machine listening and AI technologies.
I use a modular design for the conceptual framework and I map 8 systems, by
visualizing the trajectories between interconnected modules. The framework
may resemble a “roadmap” to various components that agent-based systems
incorporate and its modularity invites further additions. Ultimately, the idea
here is that the coder can learn to employ the map and make ontological
relations between different domains [33, p. 136].

7.1.5 Structured datasets

A central practice of this thesis has been the conducting of online observations.
A plethora of accumulated material online has been increasing dramatically
during the last decade, and has opened rich opportunities for conducting
ethnographic, anthropological, and music information retrieval studies. This
thesis examined a wide variety of systems and practices. I spent numerous
hours searching online documentation of original performances from individuals
or grassroots organizations.

This longitudinal endeavor resulted in several structured datasets, which
I present as “Observational datasets” in the next section. The reproducible
MIR study contributes an open git repository of video recordings of 133 live
performances, along with their corresponding audio files. Finally, the month-
long practice contributes 101 SC3 scripts from the practice sessions and 43
reflective diaries.

7.1.5.1 Observational datasets

The first structured dataset was used to find relations between systems’ char-
acteristics. The emphasis was placed on the gestural interactions of the users
with the system. The exact selection criteria can be found in Paper I [35], but
the main idea was to find systems that differ in qualitative aspects of gestures.
All examples have a video available online.

• Analytical framework for gestural interactions [35]

– 10 systems

1. Al-jazzari, by Griffiths

2. Auraglyph, by Salazar

3. Code LiveCode Live, by Baalman

4. CodeKlavier CKalcuλator, by Noriega & Veinberg

5. CodeKlavier hello world, by Noriega & Veinberg

7.1. REVIEW OF CONTRIBUTIONS 89

6. iMac Music, by Reus

7. stateLogic Machine, by Diapoulis

8. Threnoscope, by Magnusson

9. TidalCycles (feedforward editor), by McLean

10. Type-A personality, by Collins & Veinberg

The second structured dataset was used in Paper VII [37]. The focus was
placed again on the gestural interactions of the users with the system, what
I call interactivity variations, to denote different expressive manners in the
performed gestures. The exact selection criteria can be found in the article,
but the main idea was to conduct unstructured observations in the quest for
embodiment in live coding. The structured dataset resulted in clustering the
systems into three categories, bottom-up, canonical and mixed systems.

• Interactivity variations [37]

– 11 systems

1. Al-jazzari, by Griffiths

2. Approximate Programming, by Kiefer

3. Betablocker, by Griffiths

4. Code LiveCode Live, by Baalman

5. CodeKlavier CKalcuλator, by Noriega & Veinberg

6. iMac Music, by Reus

7. stateLogic machine, by Diapoulis

8. superCollider, by Olofsson

9. Threnoscope, by Magnusson

10. Using PD, by uiae

11. Using various, by The Duchess of Turing

The third structured dataset was used in Paper VI [39]. The focus was
placed on agent-based systems, and several of the systems were also examined
by Xambó [164]. The exact selection criteria can be found in the article, but
the main idea was to identify patterns when designing agent-based systems
that afford machine listening and machine learning technologies.

• Designing agent-based systems [39]

– 8 systems

1. Attanayake et al., by Attanayake and colleagues

2. Autopia, by Lorway

3. Cacharpo, by Navarro & Ogborn

4. Flock, by Knotts

5. Megra, by Reppel

6. MIRLCa, by Xambó

7. Ruler, by Paz Ortiz

8. Wilson et al., by Wilson and colleagues

90 CHAPTER 7. DISCUSSION

7.1.5.2 MIR structured dataset

The dataset used for the reproducible study [44] presents possibly the largest
dataset used in a live coding study. The original recordings were published
on TOPLAP’s archive.org web page, and have 133 live coding performances
from the Algorave 10 Birthday Party3. Each performance has a maximum
duration of 10 minutes. The docker container we distribute contains the
acoustical feature extraction. In a separate GitHub repository for large files,
we distribute the video and audio recordings of each performance. While this
is the richest dataset in terms of data (acoustical features, video, audio), the
content of it is typically restricted to mostly standard live coding performances.
Being an algorave, many performers conducted beat-based music, so there is a
large influence from specific systems, such as TidalCycles, which is known to
facilitate beat-based music making. While our descriptive statistical analysis
uses only audio data, the dataset provides opportunities for video analysis. In a
manner, we appropriate the TOPLAP’s dataset with the intention to facilitate
its distribution and present an acoustical analysis of an algorave.

7.1.5.3 Musical practice: Scripts and diaries

The month-long daily practice (Paper IV) [38] contributes a git repository
of more than a hundred scripts from live coding sessions and a medium size
collection of reflective diaries. The uncommon methodology of the study,
employing non-listening conditions, along with the rich data set on code and
the experience of writing and conducting the practice session presents unique
opportunities for future studies. The previous studies of live coding practice
from Collins and Olofsson have already contributed seminal scripts with SC3
code from their daily sessions. Olofsson has conducted similar month-long
challenges at least two more times. Thus, the importance of my study is not so
much in the produced code and its code quality, but rather in the experimental
setup and enriched data set of both the code and the reflective diaries.

7.2 Implications and reflections

7.2.1 Cross-disciplinary boundaries

My research consistently focuses on building bridges between different disciplines
in music research with the live coding community. I am specifically interested in
communicating knowledge from music psychology and perception communities
to live coding. I believe Paper VII [37] can help in this direction, and open a
cross-disciplinary discussion that may also be helpful in the comprehension of
other electronic music practices. I also hope our reproducible study, presented
in Paper V [44], will present a smooth introduction to live coders of the field of
MIR studies. Music information retrieval is a highly competitive research field
with a prestigious conference (ISMIR) and a competent research community.
On the other hand, I often think that ISMIR lacks diversity in research practices,

3Algorave 10th Birthday Party: https://ten.algorave.com (accessed: 2023-09-05)

https://ten.algorave.com

7.2. IMPLICATIONS AND REFLECTIONS 91

with perhaps a too-narrow focus there on quantification and objective measures.
The live coding community has a broader and more diverse orientation, and
mutual benefits are possible.

7.2.2 Gestural interactions

I use the term gestural interaction to discuss the various qualities of gestures
within the broad diversity of live coding practices. It seems to be a consensus
within the community that gestures differ between traditional instrumental
performance and live coding performance, but there has been no attempt
to explain the specifics of this difference. Paper VII offers a theoretical un-
derstanding, and explains how the term gestural interaction is necessary to
communicate this. I further elaborate on this topic in Study A and Study B.

It is worth noting that continuous control, by means of direct manipulation
using a mouse, has been used to perform program synthesis behaviors in live
programming while manipulating HTML DOM file [204]. The connection of ad-
vanced levels of liveness with continuous gestures for machine musicianship [40]
offers the possibility to address related research topics. Program synthesis
could become an important contribution to musical live coding, and the rise of
large language models (LLMs) within coding practices might very well become
more available in years to come. How such LLMs would look in practice with
the use of continuous gestures for musical live coding remains to be seen, but
it is my belief that such emergent interactivities would move us away from
gestural control and closer to gestural interactions.

7.2.2.1 Open-loop and closed-loop live coding

One question emerging from this thesis is whether we can engage in musical
live coding practices by employing our closed-loop motor program. What
would that look like? Instrumental music performance uses both open-loop
and closed-loop motor programs, but in live coding there is no such practice,
with the exception of systems that use traditional musical instruments. Still, in
live coding performances with traditional instruments, the closed loop is only
between the performer and the musical instrument (if the instrument affords
that), but the live coding system itself is not providing sensory feedback.

The implementation of direct manipulation in the context of bottom-up live
coding [40] offers an opportunity to incorporate our closed-loop motor skills. Is
this actually possible? Well, we can simply implement an actuator on the knob
(i.e., a rotary encoder with a motor), that can resist the imposed directional
motion. This can work well, especially in the case of a level-5 liveness setup
where the system can indicate a desirable outcome to the user in a tactile
manner.

7.2.2.2 The transparency of embodiment

Embodiment is clearly evident in instrumental musical performance, as per-
formers can communicate their expressive intentions to the audience through
various bodily movements [140]. In contrast, in live coding, movement is

92 CHAPTER 7. DISCUSSION

minimal – though it is transparent. In several studies, I was able to infer the
mode of interaction and how musicians move by simply observing, mostly by
viewing screen recordings from videos online. It is interesting that we cannot
really “hide” our bodily engagement with an interface even when the audience
sees only the performance interface and not the movements of the performers
themselves.

7.2.3 Liveness and code-preview

The implications for liveness in the work presented here relate to not only
what can be learned when designing agent-based systems, but also how code
previews can influence our practices when using bottom-up systems.

The conceptual framework presented in Paper VI, is not informative on
what components can be used for Level-5 and Level-6 liveness (Figure 5.3).
This is because among the observed use cases, there is no system that claims to
be a tactically predictive system (i.e., level-5 liveness). This is understandable,
as any predictive model that generates a novel code chunk or pattern for the
coder does not necessarily informs the user what to do next in a musical live
coding setting. This is something that may be possible after extensive training
and system personalization, but I have not seen anything of this nature yet.

Code previews are not widely used in live performances. I only recently
saw a live setup by Lizzie Wilson4 that employed code previews5 during a live
performance, and there are a few demos online that demonstrate various code
preview features [207], [208]. Roberts and Wakefield [104] discussed how audio
previewing can be temporally demanding in practice and that code previewing
also is cognitively demanding. So, it is likely that live coders do not want to
take such risks during a performance. But what could it mean in practice
to use preview code during a canonical live coding session? Doing so would
mean that the system could either mind-guess the performer’s plans or make
some informed decision about future versions of the running program. The
case of mind-guessing is what Tanimoto [43] refers to as a strategic prediction
(level-6 liveness). If the system could inform the user about possible alternative
versions of the written code then it would be a tactically predictive system
(level-5 liveness). The next step beyond mind-guessing would inevitably be
mind-reading the user’s intentions, and it may not be that far away in the future,
as brain decoding for image [209] and music reconstruction [210] are getting
more and more robust using large-scale learning models. Such applications are
not likely to happen soon within conventional programming practices, as they
lack any multimodal engagement between the semantics of the code and the
user’s experience.

7.2.4 Agency: Relational, shared and influential

Agency is related to sensorimotor prediction [31]. The liveness(-es) of the
cybernetic systems I have discussed that exhibit agency, cause the assignment

4Lizzie Wilson Research Page, https://lwlsn.github.io/
5During the Algorave as part of the AIMC 2023 conference in Brighton, UK.

https://lwlsn.github.io/

7.2. IMPLICATIONS AND REFLECTIONS 93

of authorship between the human and the machine to become blurred. If the
closed-loop system proposed above were to be implemented, then that would
certainly demonstrate some shared agency between the human and the system.
I use here the term shared agency to indicate joint actions between the human
and the system that would have a physical manifestation exhibited, such as
as an actual force on a potentiometer. Such a setup would exhibit mutual
adaptations between the parties involved. The system would take an actual
co-creative role, by facilitating or opposing the coders’ intentional gestures
with a knob, say. For instance, imagine a scenario where the system opposes
the coders intention to generate a particular token – something like a game. In
this case, the system would trigger a response to the rotary encoder (equipped
with a motor) to resist the clockwise turn when the coder attempts to move it
clockwise, and the system would offer no resistance if the coder turns the knob
counter-clockwise.

The suggested implementation presented above moves beyond the relational
aspects of agency in live coding [49]. As a vision, I wonder how this influential
aspect of agency would influence various practitioners. It looks to me that
a closed-loop system might be highly personalized. Of course, most humans
roughly share the same physiological characteristics, but how each one of us
would perceive shared agency with computing machinery, might, I think, widely
differ.

94 CHAPTER 7. DISCUSSION

Chapter 8

Conclusions

I started this article-based thesis by presenting the contributing articles in three
categories: applied, conceptual and methodological contributions. Whereas the
boundaries between the categories are sometimes blurred and blend with one
another, this framing presents distinctly different ways of knowing, different
paths we follow in the process of learning and examining the unknown. Live
coding is a fairly new term, as it was coined 20 years ago [22]. Whereas it
has become an established research field within computer music and music
technology in general, it is largely unknown to the general academic audiences.
Magnusson [48] has discussed the question of whether the term live coding
will persist, or whether it is a temporary designation. Besides, it is also
an open research field, that resists the imposition of strict boundaries and
interdisciplinary norms. I hope that the field can keep its fresh and playful
character for many years to come.

My main intention throughout the thesis is to understand how we live code
for music performance practices, and then to explain it to others. In most
articles I focus on observing how other live coders practice, and on how they
develop their systems. Obviously, the target audience is mainly the live coding
community, as has been explicitly stated in most of the articles. I am always
thankful and happy to see how this community is changing, progressing and
evolving.

The home of the live coding community, in terms of publishing, is the ICLC.
Also, the related online annual meeting on Hybrid Live Coding Interfaces aims
to improve the inclusivity, accessibility, and diversity of the community and
its practices. Besides these obvious connections, the thesis may prove to be of
use to related research forums, mainly the NIME community and all computer
music-related fora, such as ICMC, SMC, AIMC, and more. Finally, the broader
audience of this thesis may also include readers from the communities for
tangible interaction (TEI) and human-computer interaction (CHI), as the main
focus of the thesis is on expressive gestural interactions. Live coding has been
presented also in prestigious ACM conferences, in particular Creativity &
Cognition [211], [212] and CHI [213], [214]. Music is an ideal context in which
to study bodily movement and temporally-dependent interactions, and live

95

96 CHAPTER 8. CONCLUSIONS

coding in particular exemplifies how processes unfold and transform in time.

8.1 Open problems in live coding

There is a lack of understanding of live coding practices in terms of their
perceptual and psychological implications. Only a few articles explicitly target
this area, and there is very little writing reflecting upon the implications of
live coding practices. I contributed a study [37] that reflects on this practice,
and presents a basic discussion from the perspective of music performance
for live coding. This thesis contributes a study of live coding in relation to
music psychology and music perception, and addresses issues of expressive
performance and musical interaction (i.e., the nature of our bodily engagement
in live coding).

In that respect, this thesis provides a new point of view, as in the live
coding literature sometimes we have tended to put more attention on the system
side and ignore the human side. In this way, this work sheds light on several
issues related to human perception and cognition, particularly topics related
to music listening, musical imagery, memory, and sensorimotor control. It does
not directly address anything related to emotional resonance and aesthetic
enjoyment, but I hope to motivate others to contribute to this fairly unexplored
field in live coding. The study of musical interaction in live coding: that is, how
we entrain with its running processes, is still in its infancy, and we essentially
do not yet know how to approach this topic. It may be impossible at this
point to comprehend musical entrainment in live coding vis-a-vis its nature
in traditional musicianship, but I would argue that it is a journey worth the
risk. On the topic of expression, there are several important contributions, like
the sections on Code LiveCode Live, CodeKlavier CKalcuλator, the stateLogic
machine, and Approximate Programming. Different individuals have different
ways of mapping expressive interactions during a performance, and I present a
discussion that explores these relations as “mental models” between code and
sound.

One thing observed across all the studies is that live coding is a diverse
topic that cannot fit into a neatly defined box. This is certainly not a problem,
but a rewarding observation, that live coding persists in its wildness [48]. The
generativity of code affords such a rich range of possibilities, that no system
closely resembles any other in its details, and only very high-level generalizations
can be made about their correspondences. Even such high-level abstractions
are often not adequate to describe certain live coding systems, which asserts
the generativity of them, and of live coding generally. This observation is
an optimistic view, for the community as it shows that live coding is not a
saturated research field. I would say in fact that we are now on the threshold
of the most fruitful period of live coding.

After 10 years of live coding, there have been quite a few efforts to deliver
solid and reliable tools to the community. Numerous languages have been
developed, and now we are entering into the era where many individuals develop
personalized languages and libraries for machine learning during performance.

8.2. RESEARCH OUTCOMES 97

From now on, we will likely enter a lively experimentation era with AI1. The
first personalized systems have already come out, and collaborative efforts have
delivered powerful (eco-)systems for employing AI in live coding. How large
language models will impact the field is unknown and unpredictable, but I
would expect to see advanced levels of liveness (such as using code previews)
more often. It remains to be seen how and if liveness will also impacts audio
generation. Issues of AI ethics and security also are sure to impact live coding
and the community should be attentive to these risks.

8.2 Research outcomes

The driving motivation behind this thesis was to explore how we can live code
in a manner that feels more like instrumental musicianship. The main research
question behind this thesis was to ask what happens when we employ sub-
conscious modes of cognition while live coding. This is a long-standing question
which has been under discussion since 2014 [42]. All other research questions
that I engage with came out in the process of doing this Ph.D. research. Some
long-standing questions I have had, such as how we practice live coding, and
how we gesture with generative algorithms, have been in the back of my mind
through the years, but I had never really conducted a systematic effort to
address them before.

8.2.1 Answers to the research questions

• RQ1: Are pre-reflective processes evident during a musical live coding
performance?

– What are the necessary conditions?

– In which cases do these conditions occur?

Pre-reflective processes, also known as fast or subconscious processes, are
essential in traditional musicianship, as they are partly responsible for
flow and groove states. In live coding the importance of these matters
is is not obvious, as we are engaged in writing a computer program,
which itself is essentially a logical task highly demanding on attentional
resources and high-level cognitive functions, like reasoning and planning.
But there are some obvious instances where fast processes are employed
in musical live coding, like in the CodeKlavier system where the coder is
playing the piano (also known as piano-coder). Besides pointing out these
obvious connections, I presented in [37] a study that mainly focuses on
answering this question. I identified several more instances based on the
fast time responses, such as short-edits, typing automaticity, bottom-up
systems, and systems that afford direct manipulation. Also, minimalistic
systems, like ixi-lang and TidalCycles – systems that exhibit elegant and

1The closing keynote ICLC 2023 by the reincarnation of Click Nilson was per-
formed with ChatGPT as a main tool. https://www.youtube.com/live/FSBtvtxP008?si=

ALTKerLzZPmtn7Ez&t=9167 (accessed 2023-08-29)

https://www.youtube.com/live/FSBtvtxP008?si=ALTKerLzZPmtn7Ez&t=9167
https://www.youtube.com/live/FSBtvtxP008?si=ALTKerLzZPmtn7Ez&t=9167

98 CHAPTER 8. CONCLUSIONS

short code expressions – are seen as our best chance to accommodate
fast processes in so-called canonical live coding. For fast processes to be
evident, it is necessary that we be engaged in a bodily manner during the
music-making. This can happen in different ways, but one obvious manner
is the user is required to respond promptly within less than a few seconds,
so that we must engage our sensorimotor system. Instances that facilitate
bodily coordination (i.e., bodily entrainment), are particularly important,
and may be the missing link between high-level motor functions, such as
planning, and low-level motor functions, such as sensorimotor control.

• RQ2: How can generative algorithms influence musical gestures used
during live coding performance?

– How is this evident in live coding, and how is its appearance similar
to or different from its appearance in work with digital musical
instruments and other interactive music systems?

How we gesture in machine musicianship radically differs how we gesture
in instrumental musicianship. There is a significant difference, because
unlike in instrumental musicianship, most expressions of bodily gestures
in live coding are not sound-producing. This thesis presents a series of
articles focusing on observing and theorizing on gestures [35]–[37], also
presenting a software prototype that implements direct manipulation [40]
for bottom-up live coding practices. I argue that how we gesture with
algorithms in bottom-up live coding differs from the standard paradigm,
as every step we make modifies, to some extent, the running algorithms.
I support the term gestural interaction to denote this enactment between
the human and system sides. I also see qualitative differences between
gesturing in live coding and in DMIs or other IMS, as we typically aim for
goal-directedness to monitor how coding structures unfold in time. When
a live system is not supporting monitoring of the code, then the gestural
interactions may feel more like performing with generative algorithms
used in DMIs and IMS.

• RQ3: What creativity support technologies are used in musical live
coding?

– What is the role of liveness, and how we can use the technological
advancements of liveness?

Technologies for creativity support in musical live coding practices are
expressed either as text, sound, or visualization. Two studies were conduc-
ted to directly address creativity issues [38], [39], and one study directly
addresses issues of liveness [40]. Visualizations are used extensively in
live coding, and if not only for aesthetic utilization, their main function
is to support creativity mechanisms. Here I argue for the importance
of descriptive notation as it may influence our embodied percepts. I
also argue that simple visual prompts can be useful as presented with
a GUI helper and can act either as reminders (e.g., “forgot panning”)

8.2. RESEARCH OUTCOMES 99

or as prompts that can creatively influence our practices. I note that
liveness is underused in live coding, likely because it can demand in-
creased mental effort during a performance. To date, the most common
expression of advanced levels of liveness in live coding practices is related
to code preview. I suggest that bottom-up systems can be an interesting
approach to “revisit” our interest in advanced levels of liveness. Maybe
small independent programs with specialized functions can also bring
forth emergent interactivities for advanced levels of liveness. Being per-
haps interconnected in a network, such small programs may be seen as
entangled minimal agents.

• RQ4: How do we practice musical live coding with assistive technologies?

– What is the role of multimodal experience in live coding practice?

There is no unique and easy way to practice live coding, so I am unclear
whether assistive technologies can “fast-track” our learning process. If
the reader wonders how to live code, the only advice is to practice at
length, similar to what one does in traditional musicianship. I found out
that my skills dramatically improved after a month-long daily practice.
Meta-learning practices, such as reflective diaries, can be helpful. Visual
cues, such as the spectral plots, sound level meters or simple reminder
prompts can be helpful, although I would expect that preferences in
the use of such tools may be highly individualistic. Also, I found it
fascinating that the defamiliarization that occurs when not listening
to the output can be used as a creative technique. It became evident
that when non-listening to the musical outcome various tasks become
impossible, such as musical transitions and perception of rhythm. Finally,
assistive technologies, when first added to one’s work flow, may indeed
impede concentration and focus during reasoning and abstract thought,
but they eventually move to the background of our attention.

• RQ5: How can and do we design agent-based systems for musical live
coding?

This is the main motivation for Paper VI [39], where it became clear
that there is little attention paid to machine listening in the live coding
community. There is a tendency to apply predictive models to the code
but not to the generated musical outcome. Feedback mechanisms could
be useful to this end, but also seem to have a small influence on current
live coding practices. Also, while most systems apply learning to some
sort of textual data, either to code or numerical parameters, there is
little focus on text generation and program synthesis, therefore having
little to no influence on the prescriptive part of the notation. I think this
tendency is likely to change as large language models becoming more and
more accessible. Finally, advanced levels of liveness (such as tactically
predictive and strategically predictive, according to Tanimoto’s hierarchy
of liveness [43]; see section 5.2.1) seem to be out of scope for current

100 CHAPTER 8. CONCLUSIONS

practitioners, because of the required cognitive load and lack of adecquate
tools.

• RQ6: How is risk expressed in musical live coding?

Risk is multifaceted in live coding, it addresses issues related to practice
where we typically tend to minimize risks during a performance, but
extends beyond the musical practice and can also address ethical and
cultural aspects. Here, I focus on musical practice and I identify that
almost all bottom-up systems do not run any significant risk of crashing.
I suggest this state of affairs should be revisited and I see the emergent
role of gestural interactions as introducing a desirable level of risk in
bottom-up practices.

8.2.2 Limitations

“Question everything apart from this statement.”

Click Nilson, last slide on the ICLC 2023 closing keynote.

I start this section by explaining the self-reference that is the first word of
this sentence. I wrote this thesis in the first-person to express its subjective
nature. This subjectivity relates to various research designs and methods,
such as the observations I conducted in four articles, the reflective diaries and
more. One important note about my personal language is that I also introduce
terminologies to explain my research outcomes. This applies throughout, from
the title of this dissertation where I use the term “gestural interaction” to the
use of the term “bottom-up” for some live coding systems. The self-referential
manner I started this paragraph with is inspired by the opening quote for
this section from Click Nilson2. Self-reference is related to paradoxes and
live coding is certainly a paradoxical practice. In computation, paradoxes
relate to undecidability [25, p. 225] and live coding is essentially on-the-fly
decision-making [48].

One obvious limitation of the bottom-up system presented in this thesis, such
as the stateLogic machine and its follow up versions, is that these systems are
not Turing complete. So the first issue arising is determining how useful these
systems are in the first place. It is possible to employ imaginary instruction
sets, like in the TOPLAP app and Betablocker, by mapping the chosen set
of tokens to different instructions. Yet, even this would not solve the known
issue of bottom-up systems on being not risky enough. Maybe, the path to be
taken for bottom-up systems should be to make them Turing complete and
introduce risk by the presence of halting states, and possible errors in parsing
rules. Of course that would impact a performance and may be unpleasant to
wait for one to two minutes for a code modification. At the same time, in
current conventional live coding the performer may still be required to type
for couple of minutes to make a change. If bottom-up systems were ever to

2Click Nilson, a persona of Nick Collins, has authored academic articles, musical perform-
ances, and public presentations.

8.3. FUTURE DIRECTIONS IN MUSICAL LIVE CODING 101

become mature, then the development of more elegant and musical systems in
years to come would become more possible.

The conceptual frameworks presented in this manuscript adhere to the
present live coding “state of mind” and are not meant to be treated as “set
in stone.” The conceptual framework introduced in Paper I and Paper II
has some limitations as it can be hard to map certain systems explicitly (i.e.,
using a single arrow). Further research along these lines would have to look
more thoroughly at concepts such as the complexity of the interface and
the precision of chosen mappings, and how these concepts may relate to our
gestural interactions. The conceptual framework presented in Paper VI presents
a paradigm more open to interpretation due to its modular design. The hard
question to answer is whether such a conceptual framework can be of use to
the live coding practitioner. This is a question I cannot answer.

Does the thesis opens a pandora box with the bottom-up and top-down
terminologies [48]? It has been remarked that tensions and techniques may
influence each other [104]. I mainly propose that a clearer description of
the systems used would be beneficial, and I highlight some characteristics of
bottom-up systems that differ from the standard approach to live code.

This thesis barely touches upon issues of visual perception and crossmodal
interactions. Each of these topics requires a rigorous undertaking, and as far as
I know there are no previous studies that address these topics at length. Visual
perception is particularly important for visual live coding, but also important
for musical live coding. Crossmodal interactions, how one modality interacts
with another, is relevant to live coding as a whole and touches upon issues
related to time perception and sequential actions. It would be particularly
important to musical live coding to study how auditory and motion perception
interact with each other, and how audition interacts with vision.

Finally, as mentioned also in the introduction, this thesis does not cover
topics related to collaborative and networked live coding, ethics, or gender
studies. Collaborative and networked live coding is central to the live coding
community and there are several tools available since the early days. I think
that in the near future more tools will be developed to enhance accessibility for
telematic performances. Collaborative editing is definitely something that we
are going to see more often, and such work has already been implemented in the
flok editor (https://flok.cc/) and in Estuary (https://estuary.mcmaster.
ca/). Ethical studies are more topical than ever in live coding, especially with
the advent of large language models, and gender studies are mainly addressed
by the feminist live coding societies, like LivecoderA3.

8.3 Future directions in musical live coding

I start the future directions section by pointing out what would be a next step
for this thesis and then address some of the possible future directions of musical
live coding.

3https://livecodera.glitch.me/

https://flok.cc/
https://estuary.mcmaster.ca/
https://estuary.mcmaster.ca/
https://livecodera.glitch.me/

102 CHAPTER 8. CONCLUSIONS

The immediate application that I see as worth experimenting with is to
develop a bottom-up system that employs the closed-loop motor program. I
suggested here that this can be done using rotary force-feedback mechanisms,
by means of rotary encoders equipped with motors. Rotary force-feedback
is used in novel musical interfaces [151], [215], but what I propose here is to
incorporate our closed-loop motor skills to predict programming behaviours.
This is an effective means to get physical haptic feedback from the system
to the coder. Usually, we use this interactivity the other way around, to get
decisions made by the human to the machine [216]. Here, I propose to do
this bidirectionally, to have system decisions affect the nature of the human’s
interface, and to go a step further by exploring the machine as an agent that
affects future previews of the system. That would open philosophical questions
on the goal-directedness of live coding and human-machine joint actions. The
latter development opens a path for human-agent as well as human-human
inter-subjective experience in live coding, and I hope to see more focus on this
topic in the literature.

Finally, as presented by Click Nilson in his closing keynote, the future of
live coding will be widely impact by large language models. The research
and practice field is largely unexplored, and only a few live coders have been
experimenting with these types of interactivities as we speak. I see great
potential in these practices and I also see that bottom-up systems can benefit
from the adoption of such practices.

I do not know how live coding will look ten years from now. My speculat-
ive vision would be to give more space to practices that affords proscriptive
evaluations to take place, that is to enable programmable actions that are
good enough. Maybe such systems coupled with an inter-subjective view on
cognition would bring forth emergent qualities of live coding practices that are
unforeseen. I would also hope that live coding would contribute to new ways of
expression for writing systems [217], and particularly to make tightly coupled
connections between different modalities, such as audition, vision and tactile
percepts.

Bibliography

[1] R. Rowe, Machine musicianship. MIT press, 2004 (cit. on pp. 2, 38, 41).

[2] R. Rowe, Interactive music systems: machine listening and composing.
MIT press, 1992 (cit. on pp. 2, 14, 42, 57).

[3] A. R. Jensenius and M. J. Lyons, A nime reader: Fifteen years of new
interfaces for musical expression. Springer, 2017, vol. 3 (cit. on p. 3).

[4] B. Verplank, M. Gurevich and M. Mathews, “2002: The plank: Designing
a simple haptic controller,” A NIME Reader: Fifteen Years of New
Interfaces for Musical Expression, pp. 59–70, 2017 (cit. on p. 3).

[5] M. J. Lyons, M. Hähnel and N. Tetsutani, “2003: Designing, playing,
and performing with a vision-based mouth interface,” A NIME Reader:
Fifteen Years of New Interfaces for Musical Expression, pp. 107–124,
2017 (cit. on p. 3).

[6] F. Bevilacqua, F. Guédy, N. Schnell, E. Fléty and N. Leroy, “Wireless
sensor interface and gesture-follower for music pedagogy,” in Proceed-
ings of the 7th international conference on New interfaces for musical
expression, 2007, pp. 124–129 (cit. on p. 3).

[7] A. McPherson, “2012: Touchkeys: Capacitive multi-touch sensing on a
physical keyboard,” A NIME Reader: Fifteen Years of New Interfaces
for Musical Expression, pp. 419–432, 2017 (cit. on p. 3).

[8] M. Wright, A. Freed and A. Momeni, “2003: Opensound control: State
of the art 2003,” A NIME Reader: Fifteen Years of New Interfaces for
Musical Expression, pp. 125–145, 2017 (cit. on p. 3).

[9] E. Berdahl and W. Ju, “Satellite ccrma: A musical interaction and
sound synthesis platform.,” in NIME, 2011, pp. 173–178 (cit. on p. 3).

[10] D. Wessel and M. Wright, “Problems and prospects for intimate musical
control of computers,” Computer music journal, vol. 26, no. 3, pp. 11–22,
2002 (cit. on pp. 3, 42).

[11] A. Hunt, M. M. Wanderley and M. Paradis, “The importance of para-
meter mapping in electronic instrument design,” Journal of New Music
Research, vol. 32, no. 4, pp. 429–440, 2003 (cit. on p. 3).

[12] S. Jordà, “Sonigraphical instruments: From fmol to the reactable.,” in
NIME, vol. 3, 2003, pp. 70–76 (cit. on p. 3).

103

104 BIBLIOGRAPHY

[13] D. Birnbaum, R. Fiebrink, J. Malloch and M. M. Wanderley, “Towards a
dimension space for musical devices,” in NIME, vol. 5, 2005, pp. 192–195
(cit. on pp. 3, 50).

[14] A. R. Jensenius, “2014: To gesture or not? an analysis of terminology in
nime proceedings 2001–2013,” A NIME Reader: Fifteen Years of New
Interfaces for Musical Expression, pp. 451–464, 2017 (cit. on p. 3).

[15] P. Cook, “2001: Principles for designing computer music controllers,” A
NIME Reader: Fifteen years of new interfaces for musical expression,
pp. 1–13, 2017 (cit. on p. 3).

[16] S. Jordà, “2003: Sonigraphical instruments: From fmol to the reactable,”
A NIME Reader: Fifteen Years of New Interfaces for Musical Expression,
pp. 89–106, 2017 (cit. on p. 3).

[17] S. O’Modhrain and G. Essl, “Pebblebox and crumblebag: Tactile inter-
faces for granular synthesis,” in Proceedings of the 2004 conference on
New interfaces for musical expression, 2004, pp. 74–79 (cit. on p. 3).

[18] G. Wang and P. R. Cook, “On-the-fly programming: Using code as an
expressive musical instrument.,” in NIME, vol. 4, 2004, pp. 138–143
(cit. on pp. 3, 21).

[19] R. Fiebrink, G. Wang and P. R. Cook, “2007: Don’t forget the laptop:
Using native input capabilities for expressive musical control,” A NIME
Reader: Fifteen Years of New Interfaces for Musical Expression, pp. 285–
297, 2017 (cit. on p. 3).

[20] A. Freed, “The fingerphone: A case study of sustainable instrument
redesign.,” in NIME, 2012 (cit. on p. 3).

[21] C. Roberts, G. Wakefield and M. Wright, “2013: The web browser
as synthesizer and interface,” A NIME Reader: Fifteen Years of New
Interfaces for Musical Expression, pp. 433–450, 2017 (cit. on p. 3).

[22] N. Collins, A. McLean, J. Rohrhuber and A. Ward, “Live coding in
laptop performance,” Organised sound, vol. 8, no. 3, pp. 321–330, 2003
(cit. on pp. 3, 6, 15, 21, 55, 71, 95).

[23] J. Rohrhuber, A. de Campo and R. Wieser, “Algorithms today notes
on language design for just in time programming,” in International
Computer Music Conference, 2005, p. 291 (cit. on pp. 3, 18, 21).

[24] J. Rohrhuber and A. De Campo, “Improvising formalisation: Conversa-
tional programming and live coding,” New Computational Paradigms
for Computer Music. Delatour France/Ircam-Centre Pompidou, 2009
(cit. on p. 3).

[25] A. F. Blackwell, E. Cocker, G. Cox, A. McLean and T. Magnusson, Live
coding: a user’s manual. MIT Press, 2022 (cit. on pp. 3, 4, 16, 18, 22,
26, 47, 60, 71, 100).

[26] E. Cocker, “Performing thinking in action: The meletē of live coding,”
International Journal of Performance Arts and Digital Media, vol. 12,
no. 2, pp. 102–116, 2016 (cit. on pp. 3, 4, 72).

BIBLIOGRAPHY 105

[27] J. Armitage, “Spaces to fail in: Negotiating gender, community and
technology in algorave.,” Dancecult: Journal of Electronic Dance Music
Culture, vol. 10, no. 1, 2018 (cit. on pp. 4, 10).

[28] S. Knotts, “Live coding and failure,” The Aesthetics of Imperfection
in Music and the Arts: Spontaneity, Flaws and the Unfinished, p. 189,
2020 (cit. on pp. 4, 71, 74, 75).

[29] F. Capra and P. L. Luisi, The systems view of life: A unifying vision.
Cambridge University Press, 2014 (cit. on p. 4).

[30] M. Leman, Embodied music cognition and mediation technology. MIT
press, 2007 (cit. on pp. 4, 7, 41).

[31] M. Leman, The expressive moment: How interaction (with music) shapes
human empowerment. MIT press, 2016 (cit. on pp. 4, 7, 41, 48, 81, 92).

[32] H. R. Maturana and F. J. Varela, The tree of knowledge: The biolo-
gical roots of human understanding. New Science Library/Shambhala
Publications, 1987 (cit. on pp. 4, 42).

[33] F. J. Varela, E. Thompson and E. Rosch, The embodied mind, revised
edition: Cognitive science and human experience. MIT press, 2017 (cit.
on pp. 4, 41, 42, 88).

[34] S. Ljungblad, “Beyond users: Grounding technology in experience,”
Ph.D. dissertation, Institutionen för data-och systemvetenskap (tills m
KTH), 2008 (cit. on p. 5).

[35] G. Diapoulis and P. Dahlstedt, “An analytical framework for musical live
coding systems based on gestural interactions in performance practices,”
in Internation Conference on Live Coding, Valdivia, Chile, 2021 (cit. on
pp. 6, 32, 43, 48, 49, 51, 68, 82, 83, 87, 88, 98).

[36] G. Diapoulis and P. Dahlstedt, “The creative act of live coding practice
in music performance.,” in PPIG, 2021 (cit. on pp. 6, 43, 49, 68, 82, 83,
98).

[37] G. Diapoulis, “Musical live coding in relation to interactivity variations,”
Organised Sound, 1–13, 2023. doi: 10.1017/S1355771823000444 (cit.
on pp. 6, 17, 22, 30, 43, 44, 47, 54, 56, 75, 80, 82, 83, 85, 86, 89, 90,
96–98).

[38] G. Diapoulis, “Livecode me: Live coding practice and multimodal ex-
perience,” in Proceedings of Psychology of Programming Interest Group,
PPIG2022, 2022 (cit. on pp. 6, 16, 17, 62, 67, 69, 77, 80, 87, 90, 98).

[39] G. Diapoulis, “Liveness and machine listening in agent-based systems
for musical live coding,” in Proceedings of AI Musical Creativity, AIMC,
2023 (cit. on pp. 6, 65, 67–69, 88, 89, 98, 99).

[40] G. Diapoulis, I. Zannos, K. Tatar and P. Dahlstedt, “Bottom-up live
coding: Analysis of continuous interactions towards predicting program-
ming behaviours,” NIME, 2022 (cit. on pp. 6, 23, 27, 31–34, 36–38, 66,
69, 80, 83, 91, 98).

https://doi.org/10.1017/S1355771823000444

106 BIBLIOGRAPHY

[41] G. Diapoulis and I. Zannos, “A minimal interface for live hardware
coding,” Live Interfaces, 2012 (cit. on pp. 6, 25, 27, 28, 36, 43, 83).

[42] G. Diapoulis and I. Zannos, “Tangibility and low-level live coding,” in
ICMC, 2014 (cit. on pp. 6, 19, 27, 31–33, 35, 36, 83, 97).

[43] S. L. Tanimoto, “A perspective on the evolution of live programming,” in
2013 1st International Workshop on Live Programming (LIVE), IEEE,
2013, pp. 31–34 (cit. on pp. 6, 21, 22, 30, 58–60, 66, 92, 99).

[44] G. Diapoulis and M. Carlé, “Reproducible musical analysis of live coding
performances using information retrieval: A case study on the algorave
10th anniversary,” in International Conference on Live Coding, ICLC,
2023 (cit. on pp. 6, 64, 68, 69, 75, 78, 80, 82, 87, 90).

[45] T. Magnusson and E. H. Mendieta, “The acoustic, the digital and the
body: A survey on musical instruments,” in Proceedings of the 7th
international conference on New interfaces for musical expression, 2007,
pp. 94–99 (cit. on p. 7).

[46] M. Merleau-Ponty, D. Landes, T. Carman and C. Lefort, Phenomenology
of perception. Routledge, 2013 (cit. on p. 9).

[47] J.-P. Banâtre, P. Fradet, J.-L. Giavitto and O. Michel, Unconventional
Programming Paradigms: International Workshop UPP 2004, Le Mont
Saint Michel, France, September 15-17, 2004, Revised Selected and
Invited Papers. Springer Science & Business Media, 2005, vol. 3566
(cit. on p. 9).

[48] T. Magnusson, “Herding cats: Observing live coding in the wild,” Com-
puter Music Journal, vol. 38, no. 1, pp. 8–16, 2014 (cit. on pp. 9, 26, 84,
95, 96, 100, 101).

[49] A. R. Brown, “Performing with the other: The relationship of musician
and machine in live coding,” International Journal of Performance Arts
and Digital Media, vol. 12, no. 2, pp. 179–186, 2016 (cit. on pp. 9, 18,
93).

[50] S. Aaron, “Sonic pi–performance in education, technology and art,”
International Journal of Performance Arts and Digital Media, vol. 12,
no. 2, pp. 171–178, 2016 (cit. on p. 10).

[51] J. Freeman, B. Magerko, D. Edwards, T. Mcklin, T. Lee and R. Moore,
“Earsketch: Engaging broad populations in computing through music,”
Communications of the ACM, vol. 62, no. 9, pp. 78–85, 2019 (cit. on
p. 10).

[52] A. Selvaraj, E. Zhang, L. Porter and A. G. Soosai Raj, “Live coding: A
review of the literature,” in Proceedings of the 26th ACM Conference on
Innovation and Technology in Computer Science Education V. 1, 2021,
pp. 164–170 (cit. on p. 10).

[53] A. R. Jensenius, Sound Actions: Conceptualizing Musical Instruments.
MIT Press, 2022 (cit. on pp. 10, 42, 47, 73, 86).

BIBLIOGRAPHY 107

[54] C. Nilson, “Live coding practice,” in Proceedings of the 7th international
conference on New interfaces for musical expression, 2007, pp. 112–117
(cit. on pp. 10, 16, 17, 44, 47, 62).

[55] T. Magnusson, “Scoring with code: Composing with algorithmic nota-
tion,” Organised Sound, vol. 19, no. 3, pp. 268–275, 2014 (cit. on pp. 10,
17).

[56] P. Dahlstedt, Sounds Unheard of: Evolutionary algorithms as creative
tools for the contemporary composer. Chalmers Tekniska Högskola, 2004
(cit. on pp. 10, 42, 57, 58, 80).

[57] C. Haworth, “Technology, creativity, and the social in algorithmic music,”
in The Oxford Handbook of Algorithmic Music, A. McLean and R. T.
Dean, Eds., Oxford University Press, 2018, ch. 31, pp. 557–581 (cit. on
pp. 10, 12, 55).

[58] S. Gresham-Lancaster, “The aesthetics and history of the hub: The
effects of changing technology on network computer music,” Leonardo
Music Journal, vol. 8, no. 1, pp. 39–44, 1998 (cit. on p. 11).

[59] A. McLean, Hacking perl in nightclubs, 2004. [Online]. Available: https:
//www.perl.com/pub/2004/08/31/livecode.html/ (cit. on pp. 12,
21).

[60] N. Collins, “Origins of algorithmic thinking in music,” in The Oxford
Handbook of Algorithmic Music, A. McLean and R. T. Dean, Eds.,
Oxford University Press, 2018, ch. 4, pp. 67–78 (cit. on p. 12).

[61] T. Magnusson, “Algorithms as scores: Coding live music,” Leonardo
Music Journal, vol. 21, pp. 19–23, 2011 (cit. on pp. 12, 19, 87).

[62] M. Carruthers and J. M. Ziolkowski, The Medieval Craft of Memory:
An anthology of texts and pictures. University of Pennsylvania Press,
2002 (cit. on p. 12).

[63] L. A. Hiller, “Computer music,” Scientific American, vol. 201, no. 6,
pp. 109–121, 1959 (cit. on p. 13).

[64] C. Matthews, Algorithmic thinking and central javanese gamelan. 2018
(cit. on p. 13).

[65] F. P. Brooks, A. Hopkins, P. G. Neumann and W. V. Wright, “An
experiment in musical composition,” IRE Transactions on Electronic
Computers, no. 3, pp. 175–182, 1957 (cit. on p. 13).

[66] I. Xenakis, Formalized music: thought and mathematics in composition.
Pendragon Press, 1992 (cit. on p. 13).

[67] J. Bischoff, R. Gold and J. Horton, “Music for an interactive network
of microcomputers,” Computer Music Journal, pp. 24–29, 1978 (cit. on
p. 13).

[68] C. Brown and J. Bischoff, “Indigenous to the net: Early network music
bands in the san francisco bay area,” Available at crossfade. walkerart.

org/ brownbischoff , 2002 (cit. on p. 13).

https://www.perl.com/pub/2004/08/31/livecode.html/
https://www.perl.com/pub/2004/08/31/livecode.html/
walkerart.org/brownbischoff
walkerart.org/brownbischoff

108 BIBLIOGRAPHY

[69] T. Perkis, Hub music, Cassette booklet, 1987 (cit. on p. 13).

[70] C. Scholz, “The scores,” in The Hub: Pioneers of Network Music, L.
Brümmer, C. Preiß and G. Robair, Eds., Heidelberg: Kehrer Verlag,
ZKM, 2021, pp. 71–125 (cit. on p. 13).

[71] W. F. Thompson, Music, thought, and feeling: Understanding the psy-
chology of music. Oxford university press, 2015 (cit. on pp. 13, 42).

[72] D. Zicarelli, “M and jam factory,” Computer Music Journal, vol. 11,
no. 4, pp. 13–29, 1987 (cit. on p. 14).

[73] P. Dahlstedt, “A mutasynth in parameter space: Interactive composition
through evolution,” Organised Sound, vol. 6, no. 2, pp. 121–124, 2001
(cit. on pp. 14, 34).

[74] C. Roads and M. Mathews, “Interview with max mathews,” Computer
Music Journal, vol. 4, no. 4, pp. 15–22, 1980 (cit. on p. 14).

[75] J. McCartney, “Rethinking the computer music language: Super collider,”
Computer Music Journal, vol. 26, no. 4, pp. 61–68, 2002 (cit. on p. 15).

[76] N. M. Collins, “Towards autonomous agents for live computer mu-
sic: Realtime machine listening and interactive music systems,” Ph.D.
dissertation, Citeseer, 2007 (cit. on pp. 15, 57, 58).

[77] A. F. Blackwell, “Coding or ai? tools for control, surprise and creativity.,”
in PPIG, 2022, pp. 57–66 (cit. on p. 15).

[78] J. Rohrhuber, A. de Campo, R. Wieser, J.-K. Van Kampen, E. Ho and
H. Hölzl, “Purloined letters and distributed persons,” in Music in the
Global Village Conference (Budapest), 2007 (cit. on p. 15).

[79] N. Collins, Handmade electronic music: the art of hardware hacking.
Taylor & Francis, 2020 (cit. on p. 15).

[80] M. Van Atten, “Brouwer, as never read by husserl,” Synthese, vol. 137,
no. 1-2, pp. 3–19, 2003 (cit. on p. 16).

[81] M. Van Atten, Brouwer meets Husserl: on the phenomenology of choice
sequences. Springer Science & Business Media, 2006, vol. 335 (cit. on
p. 16).

[82] K. Jakubowski, “13 musical imagery,” The Cambridge handbook of the
imagination, p. 187, 2020 (cit. on p. 17).

[83] W. Brodsky, Y. Kessler, B.-S. Rubinstein, J. Ginsborg and A. Henik,
“The mental representation of music notation: Notational audiation.,”
Journal of Experimental Psychology: Human Perception and Perform-
ance, vol. 34, no. 2, p. 427, 2008 (cit. on p. 17).

[84] P. E. Keller, “Mental imagery in music performance: Underlying mech-
anisms and potential benefits,” Annals of the New York Academy of
Sciences, vol. 1252, no. 1, pp. 206–213, 2012 (cit. on p. 17).

[85] P. E. Keller and I. Koch, “Action planning in sequential skills: Relations
to music performance,” Quarterly Journal of Experimental Psychology,
vol. 61, no. 2, pp. 275–291, 2008 (cit. on p. 17).

BIBLIOGRAPHY 109

[86] C. Palmer, “Music performance,” Annual review of psychology, vol. 48,
no. 1, pp. 115–138, 1997 (cit. on pp. 17, 42, 54, 81, 82).

[87] S. Emmerson, Living electronic music. Routledge, 2017 (cit. on pp. 17,
59).

[88] S. P. Gill, Tacit engagement. Springer, 2015 (cit. on p. 18).

[89] P. Dahlstedt, “Musicking with algorithms: Thoughts on artificial intelli-
gence, creativity, and agency,” in Handbook of Artificial Intelligence for
Music, Springer, 2021, pp. 873–914 (cit. on pp. 18, 19, 35, 57).

[90] A. McPherson and K. Tahıroğlu, “Idiomatic patterns and aesthetic
influence in computer music languages,” Organised sound, vol. 25, no. 1,
pp. 53–63, 2020 (cit. on p. 18).

[91] T. Magnusson, Sonic writing: technologies of material, symbolic, and
signal inscriptions. Bloomsbury Publishing USA, 2019 (cit. on p. 19).

[92] T. Magnusson, “Of epistemic tools: Musical instruments as cognitive
extensions,” Organised Sound, vol. 14, no. 2, pp. 168–176, 2009 (cit. on
p. 19).

[93] N. Collins, Semiconducting: Making music after the transistor. 2013
(cit. on p. 19).

[94] G. Lakoff and M. Johnson, “Metaphors we live by. chicago: Univ,” Press,
Chicago/IL, 1980 (cit. on pp. 19, 42).

[95] F. Olofsson, “Cybernetic music in practice,” Ideas Sonicas, vol. 23,
pp. 37–40, 2020 (cit. on pp. 21, 73).

[96] P. Dahlstedt, “Action and perception: Embodying algorithms and the
extended mind,” in The Oxford Handbook of Algorithmic Music, A.
McLean and R. T. Dean, Eds., Oxford University Press, 2018, ch. 3,
pp. 41–65 (cit. on pp. 21, 46).

[97] A. Sorensen, “Impromptu: An interactive programming environment
for composition and performance,” in Australasian Computer Music
Conference 2009: Improvise, 2005 (cit. on p. 21).

[98] A. S. Bregman, Auditory scene analysis: The perceptual organization of
sound. MIT press, 1994 (cit. on p. 22).

[99] B. Snyder, Music and memory: An introduction. MIT press, 2000 (cit. on
pp. 22, 23, 64).

[100] S. L. Tanimoto, “Viva: A visual language for image processing,” Journal
of Visual Languages & Computing, vol. 1, no. 2, pp. 127–139, 1990
(cit. on pp. 22, 59).

[101] C. Nash and A. F. Blackwell, “Liveness and flow in notation use.,” in
NIME, 2012 (cit. on pp. 22, 59, 84).

[102] L. Church, C. Nash and A. F. Blackwell, “Liveness in notation use:
From music to programming.,” in PPIG, Citeseer, 2010, p. 2 (cit. on
p. 22).

110 BIBLIOGRAPHY

[103] P. Oliveros, S. Weaver, M. Dresser, J. Pitcher, J. Braasch and C. Chafe,
“Telematic music: Six perspectives,” Leonardo Music Journal, vol. 19,
no. 1, pp. 95–96, 2009 (cit. on p. 23).

[104] C. Roberts and G. Wakefield, “Tensions and techniques in live coding
performance.,” 2018 (cit. on pp. 23, 30, 60, 73, 75, 83, 92, 101).

[105] T. Magnusson, “The ixi lang: A supercollider parasite for live coding,”
in ICMC, 2011 (cit. on p. 23).

[106] G. Dyson, Analogia: the emergence of technology beyond programmable
control. Farrar, Straus and Giroux, 2020 (cit. on p. 23).

[107] A. F. Blackwell, “Bottom-up design and this thing called an ’object’,”
EXE Magazine, vol. 8, no. 7, pp. 28–32, 1993. [Online]. Available: https:
//www.cl.cam.ac.uk/~afb21/publications/EXE93.html (cit. on
pp. 24, 25).

[108] I. m. zmölnig, “Audience perception of code,” International Journal of
Performance Arts and Digital Media, vol. 12, no. 2, pp. 207–212, 2016
(cit. on p. 24).

[109] P. Gross and C. Kelleher, “Non-programmers identifying functionality in
unfamiliar code: Strategies and barriers,” Journal of Visual Languages
& Computing, vol. 21, no. 5, pp. 263–276, 2010 (cit. on p. 24).

[110] A. F. Blackwell, G. Cox and S. Lee, “Live writing the live coding book,”
in Proc. First International Conference on Live Coding, McMaster
University, 2016 (cit. on pp. 24–26).

[111] F. Bernardo, C. Kiefer and T. Magnusson, “An audioworklet-based
signal engine for a live coding language ecosystem,” in Web Audio
Conference (WAC 2019), 2019, pp. 77–82 (cit. on p. 24).

[112] D. Griffiths, “Game pad live coding performance,” Die Welt als virtuelles
Environment. Dresden: TMA Helleraue, 2007 (cit. on pp. 24, 26, 43).

[113] J. Reus, Imac music, 2011. [Online]. Available: https://jonathanreus.
com/portfolio/imac-music/ (visited on 30/01/2022) (cit. on pp. 25,
43, 44).

[114] T. Bovermann and D. Griffiths, “Computation as material in live coding,”
Computer music journal, vol. 38, no. 1, pp. 40–53, 2014 (cit. on p. 26).

[115] A. Drymonitis, “Live coding poetry: The narrative of code in a hybrid
musical/poetic context,” Organised Sound, 1–12, 2023. doi: 10.1017/
S1355771823000493 (cit. on p. 26).

[116] S. W. Lee and G. Essl, “Live writing: Asynchronous playback of live
coding and writing,” in Proceedings of the International Conference on
Live Coding, 2015 (cit. on pp. 26, 72).

[117] S. W. Lee, G. Essl and M. Martinez, “Live writing: Writing as a real-time
audiovisual performance.,” in NIME, 2016, pp. 212–217 (cit. on p. 26).

[118] N. Collins, “Live coding and machine listening,” in Proceedings of the
First International Conference on Live Coding, 2015, pp. 4–11 (cit. on
p. 27).

https://www.cl.cam.ac.uk/~afb21/publications/EXE93.html
https://www.cl.cam.ac.uk/~afb21/publications/EXE93.html
https://jonathanreus.com/portfolio/imac-music/
https://jonathanreus.com/portfolio/imac-music/
https://doi.org/10.1017/S1355771823000493
https://doi.org/10.1017/S1355771823000493

BIBLIOGRAPHY 111

[119] A. F. Blackwell, “Patterns of user experience in performance program-
ming,” in Proc. First International Conference on Live Coding, 2015
(cit. on pp. 28, 84).

[120] A. Veinberg and F. I. Noriega, Coding With a Piano: the First Phase
of the Codeklavier’s Development. Ann Arbor, MI: Michigan Publishing,
University of Michigan Library, 2018 (cit. on p. 28).

[121] M. Mayas, Orchestrating timbre–Unfolding processes of timbre and
memory in improvisational piano performance. 2019 (cit. on p. 29).

[122] M. Baalman, “Embodiment of code,” in Proceedings of the first interna-
tional conference on live coding, 2015, pp. 35–40 (cit. on pp. 30, 43, 44,
47).

[123] C. Palmer, “10 music performance: Movement and coordination,” The
psychology of music (third edition), vol. 29, p. 405, 2012 (cit. on pp. 31,
81).

[124] R. B. Allen, “Mental models and user models,” in Handbook of human-
computer interaction, Elsevier, 1997, pp. 49–63 (cit. on p. 31).

[125] C. Kiefer, “Approximate programming: Coding through gesture and nu-
merical processes,” in Proceedings of the First International Conference
on Live Coding, ICSRiM, University of Leeds, 2015 (cit. on pp. 33, 34,
43, 44, 74).

[126] T. Bovermann, J. Rohrhuber and A. de Campo, “Laboratory methods
for experimental sonification,” The sonification handbook, pp. 237–272,
2011 (cit. on p. 34).

[127] P. Dahlstedt, “Dynamic mapping strategies for expressive synthesis
performance and improvisation,” in Computer Music Modeling and
Retrieval. Genesis of Meaning in Sound and Music: 5th International
Symposium, CMMR 2008 Copenhagen, Denmark, May 19-23, 2008
Revised Papers 5, Springer, 2009, pp. 227–242 (cit. on pp. 34, 44, 74).

[128] D. Wessel, “An enactive approach to computer music performance,”
Le Feedback dans la Creation Musical, Lyon, France, pp. 93–98, 2006
(cit. on pp. 34, 53).

[129] P. Dahlstedt, “Creating and exploring huge parameter spaces: Interactive
evolution as a tool for sound generation,” in ICMC, 2001 (cit. on p. 34).

[130] J. Armitage, A. McPherson et al., “The stenophone: Live coding on a
chorded keyboard with continuous control,” 2017 (cit. on p. 38).

[131] A. R. Jensenius, M. M. Wanderley, R. I. Godøy and M. Leman, “Mu-
sical gestures: Concepts and methods in research,” in Musical gestures,
Routledge, 2010, pp. 24–47 (cit. on pp. 41, 47).

[132] S. Pinker, “How the mind works (1997/2009),” 2009 (cit. on p. 41).

[133] K. Sicchio, “Hacking choreography: Dance and live coding,” Computer
Music Journal, vol. 38, no. 1, pp. 31–39, 2014 (cit. on p. 43).

[134] S. Salazar and J. Armitage, “Re-engaging the body and gesture in
musical live coding,” 2018 (cit. on p. 43).

112 BIBLIOGRAPHY

[135] M. A. Baalman, “Interplay between composition, instrument design
and performance,” Musical Instruments in the 21st Century: Identities,
Configurations, Practices, pp. 225–241, 2017 (cit. on p. 43).

[136] F. I. Noriega and A. Veinberg, “The sound of lambda,” in Proceedings
of the 7th acm sigplan international workshop on functional art, music,
modeling, and design, 2019, pp. 56–60 (cit. on pp. 43, 44).

[137] T. Magnusson, “Improvising with the threnoscope: Integrating code,
hardware, gui, network, and graphic scores.,” in NIME, 2014, pp. 19–22
(cit. on pp. 43, 45, 87).

[138] P. A. Nilsson, A field of possibilities: Designing and playing digital
musical instruments. Academy of Music and Drama; Högskolan för scen
och musik, 2011 (cit. on pp. 43, 52).

[139] H. Ishii and B. Ullmer, “Tangible bits: Towards seamless interfaces
between people, bits and atoms,” in Proceedings of the ACM SIGCHI
Conference on Human factors in computing systems, 1997, pp. 234–241
(cit. on p. 45).

[140] J. W. Davidson, “Visual perception of performance manner in the
movements of solo musicians,” Psychology of music, vol. 21, no. 2,
pp. 103–113, 1993 (cit. on pp. 46, 48, 91).

[141] T. Sayer, “Cognition and improvisation: Some implications for live
coding,” 2015 (cit. on pp. 47, 86).

[142] A. Goldman, “Live coding helps to distinguish between embodied and
propositional improvisation,” Journal of New Music Research, vol. 48,
no. 3, pp. 281–293, 2019 (cit. on pp. 47, 86).

[143] S. Salazar, “Searching for gesture and embodiment in live coding,” in
Proceedings of the international conference on live coding, 2017 (cit. on
p. 47).

[144] C. C. Hutchins, “Live patch/live code,” in Proceedings of the first
international conference on live coding, 2015, pp. 147–151 (cit. on p. 47).

[145] R. I. Godøy, “Gestural-sonorous objects: Embodied extensions of schaef-
fers’s conceptual apparatus,” Organised sound, vol. 11, no. 2, pp. 149–
157, 2006 (cit. on p. 47).

[146] D. Kahneman, Thinking, fast and slow. macmillan, 2011 (cit. on p. 48).

[147] S. L. Tanimoto, “Challenges for livecoding via acoustic pianos,” in 3rd
International Conference on Live Coding. Morelia, Mexico, 2017 (cit. on
pp. 49, 84).

[148] J. Malloch, D. Birnbaum, E. Sinyor and M. M. Wanderley, “A new
conceptual framework for digital musical instruments,” in Proceedings
of the 9th International Conference on Digital Audio Effects (DAFx-06),
2006, pp. 49–52 (cit. on p. 50).

[149] N. Rasamimanana, “Towards a conceptual framework for exploring and
modelling expressive musical gestures,” Journal of New Music Research,
vol. 41, no. 1, pp. 3–12, 2012 (cit. on p. 50).

BIBLIOGRAPHY 113

[150] T. Sayer, “Cognitive load and live coding: A comparison with im-
provisation using traditional instruments,” International Journal of
Performance Arts and Digital Media, vol. 12, no. 2, pp. 129–138, 2016
(cit. on pp. 54, 86).

[151] M. Kirkegaard, M. Bredholt, C. Frisson and M. Wanderley, “Torquetuner:
A self contained module for designing rotary haptic force feedback for
digital musical instruments,” in Proceedings of the international confer-
ence on new interfaces for musical expression, 2020, pp. 273–278 (cit. on
pp. 55, 102).

[152] A. McLean and G. Wiggins, “Computer programming in the creative
arts,” Computers and Creativity, pp. 235–252, 2012 (cit. on p. 57).

[153] P. Dahlstedt, “Between material and ideas: A process-based spatial
model of artistic creativity,” in Computers and Creativity, Springer,
2012, pp. 205–233 (cit. on p. 57).

[154] G. E. Lewis, “Too many notes: Computers, complexity and culture in
voyager,” Leonardo Music Journal, vol. 10, pp. 33–39, 2000 (cit. on
p. 57).

[155] G. Assayag and S. Dubnov, “Using factor oracles for machine improvisa-
tion,” Soft Computing, vol. 8, no. 9, pp. 604–610, 2004 (cit. on pp. 57,
58).

[156] P. Dahlstedt and P. McBurney, “Musical agents: Toward computer-
aided music composition using autonomous software agents,” Leonardo,
vol. 39, no. 5, pp. 469–470, 2006 (cit. on pp. 57, 60).

[157] M. Minsky, “Music, mind, and meaning,” Computer Music Journal,
1981 (cit. on p. 57).

[158] F. Castiglione, “Agent based modeling,” Scholarpedia, vol. 1, no. 10,
p. 1562, 2006, revision 123888. doi: 10.4249/scholarpedia.1562 (cit.
on p. 57).

[159] R. Rowe, “Machine listening and composing with cypher,” Computer
Music Journal, vol. 16, no. 1, pp. 43–63, 1992 (cit. on p. 57).

[160] G. Assayag, G. Bloch, M. Chemillier, A. Cont and S. Dubnov, “Omax
brothers: A dynamic yopology of agents for improvization learning,” in
Proceedings of the 1st ACM workshop on Audio and music computing
multimedia, 2006, pp. 125–132 (cit. on p. 58).

[161] F. Pachet, “The continuator: Musical interaction with style,” Journal
of New Music Research, vol. 32, no. 3, pp. 333–341, 2003 (cit. on p. 58).

[162] T. Gifford, S. Knotts, J. McCormack, S. Kalonaris, M. Yee-King and
M. d’Inverno, “Computational systems for music improvisation,” Digital
Creativity, vol. 29, no. 1, pp. 19–36, 2018 (cit. on p. 58).

[163] K. Tatar and P. Pasquier, “Musical agents: A typology and state of
the art towards musical metacreation,” Journal of New Music Research,
vol. 48, no. 1, pp. 56–105, 2019 (cit. on p. 58).

https://doi.org/10.4249/scholarpedia.1562

114 BIBLIOGRAPHY

[164] A. Xambó, “Virtual agents in live coding: A short review,” arXiv preprint
arXiv:2106.14835, 2021 (cit. on pp. 58, 61, 89).

[165] C. Nash, “Supporting virtuosity and flow in computer music,” Ph.D.
dissertation, University of Cambridge, 2012 (cit. on p. 59).

[166] J. Croft, “Theses on liveness,” Organised Sound, vol. 12, no. 1, pp. 59–66,
2007 (cit. on p. 59).

[167] P. Auslander, “Digital liveness: A historico-philosophical perspective,”
PAJ: A journal of performance and art, vol. 34, no. 3, pp. 3–11, 2012
(cit. on p. 59).

[168] S. J. Norman, Senses of liveness for digital times, 2016 (cit. on p. 59).

[169] A. C. Sorensen and A. R. Brown, “Aa-cell in practice: An approach
to musical live coding,” in International Computer Music Conference,
2007, pp. 292–299 (cit. on pp. 60, 62).

[170] A. Xambó, G. Roma, P. Shah, J. Freeman and B. Magerko, “Com-
putational challenges of co-creation in collaborative music live coding:
An outline,” in Proceedings of the 2017 Co-Creation Workshop at the
International Conference on Computational Creativity, 2017 (cit. on
p. 61).

[171] J. Stewart and S. Lawson, “Cibo: An autonomous tidalcyles performer,”
in Proceedings of the Fourth International Conference on Live Coding,
2019, p. 353 (cit. on p. 61).

[172] S. Knotts, “Algorithmic interfaces for collaborative improvisation,” in
Proceedings of the International Conference on Live Interfaces, 2016,
pp. 232–237 (cit. on p. 61).

[173] L. Navarro and D. Ogborn, “Cacharpo: Co-performing cumbia sonidera
with deep abstractions,” in Proceedings of the International Conference
on Live Coding, 2017 (cit. on p. 61).

[174] N. Collins, “Scmir: A supercollider music information retrieval library,”
in ICMC, 2011 (cit. on p. 61).

[175] N. Collins and S. Knotts, “A javascript musical machine listening library,”
in International Computer Music Conference (ICMC 2019), 2019 (cit. on
p. 61).

[176] F. Bernardo, C. Kiefer and T. Magnusson, “A signal engine for a live
coding language ecosystem,” Journal of the Audio Engineering Society,
vol. 68, no. 10, pp. 756–766, 2020 (cit. on p. 61).

[177] P. A. Tremblay, G. Roma and O. Green, “The fluid corpus manipulation
toolkit: Enabling programmatic data mining as musicking,” Computer
Music Journal, 2022 (cit. on p. 61).

[178] A. Caillon and P. Esling, “Rave: A variational autoencoder for fast and
high-quality neural audio synthesis,” arXiv preprint arXiv:2111.05011,
2021 (cit. on p. 61).

[179] J. Shimizu, R. Fiebrink et al., “Genny: Designing and exploring a live
coding interface for generative models,” 2023 (cit. on p. 61).

BIBLIOGRAPHY 115

[180] F. A. Dal Rı̀ and R. Masu, “Exploring musical form: Digital scores to
support live coding practice,” in NIME 2022, PubPub, 2022 (cit. on
pp. 64, 82, 87).

[181] T. Magnusson, “Code scores in live coding practice,” in Proceedings of
the International Conference for Technologies for Music Notation and
Representation, Paris, vol. 5, 2015 (cit. on pp. 64, 82).

[182] Strudel: Live Coding Patterns on the Web, Alex McLean’s work on this
project is supported by a UKRI Future Leaders Fellowship [grant number
MR/V025260/1]., Zenodo, Apr. 2023. doi: 10.5281/zenodo.7842142.
[Online]. Available: https://doi.org/10.5281/zenodo.7842142

(cit. on p. 65).

[183] C. Roberts and J. Kuchera-Morin, “Gibber: Live coding audio in the
browser,” in ICMC, vol. 11, 2012, p. 6 (cit. on p. 65).

[184] A. McLean, D. Griffiths, N. Collins and G. Wiggins, “Visualisation of
live code,” Electronic Visualisation and the Arts (EVA 2010), pp. 26–30,
2010 (cit. on pp. 65, 87).

[185] S. Knotts et al., “Social systems for improvisation in live computer
music,” Ph.D. dissertation, Durham University, 2018 (cit. on p. 65).

[186] S. O. Hansson, “Risk,” in The Stanford Encyclopedia of Philosophy,
E. N. Zalta and U. Nodelman, Eds., Winter 2022, Metaphysics Research
Lab, Stanford University, 2022 (cit. on pp. 71, 73).

[187] C. Nash, “The cognitive dimensions of music notations,” 2015 (cit. on
pp. 72, 74).

[188] A. F. Blackwell and N. Collins, “The programming language as a musical
instrument.,” in PPIG, 2005, p. 11 (cit. on p. 72).

[189] A. Ward, J. Rohrhuber, F. Olofsson et al., “Live algorithm programming
and a temporary organisation for its promotion,” in Proceedings of the
README Software Art Conference, vol. 289, 2004, p. 290 (cit. on pp. 72,
73).

[190] J. Reus and J. Chicau, “Anatomical intelligence: Live coding as per-
formative dissection,” Organised Sound (28) 2 (In Press), 2023 (cit. on
p. 72).

[191] A. McLean and G. A. Wiggins, “Texture: Visual notation for live coding
of pattern,” in ICMC, 2011 (cit. on p. 72).

[192] S. Aaron, A. F. Blackwell, R. Hoadley and T. Regan, “A principled
approach to developing new languages for live coding.,” in NIME, 2011,
pp. 381–386 (cit. on p. 74).

[193] T. Magnusson and K. Sicchio, Writing with shaky hands, 2016 (cit. on
p. 75).

[194] A. McLean, “Stress and cognitive load,” in Collaboration and learning
through live coding, A. Blackwell, A. McLean, J. Noble and J. Rohrhuber,
Eds., 2014, pp. 145–146 (cit. on p. 75).

https://doi.org/10.5281/zenodo.7842142
https://doi.org/10.5281/zenodo.7842142

116 BIBLIOGRAPHY

[195] J. Chicau and J. Reus, “Anatomical intelligence: Live coding as per-
formative dissection,” Organised Sound, 1–15, 2023. doi: 10.1017/
S1355771823000481 (cit. on p. 76).

[196] A. F. Blackwell and S. Aaron, “Craft practices of live coding language
design,” in Proc. first international conference on live coding, Zenodo,
2015 (cit. on p. 78).

[197] S. Gibet, “Sensorimotor control of sound-producing gestures,” in Musical
gestures, Routledge, 2010, pp. 224–249 (cit. on pp. 81, 82).

[198] M. Lesaffre, E. Van Dyck and M. Leman, Expressive interaction with
music, 2019 (cit. on p. 81).

[199] K. Burland and A. McLean, “Understanding live coding events,” Inter-
national Journal of Performance Arts and Digital Media, vol. 12, no. 2,
pp. 139–151, 2016 (cit. on p. 82).

[200] R. Bell, “Towards useful aesthetic evaluations of live coding,” in ICMC,
2013 (cit. on p. 82).

[201] E. Wilson, G. Fazekas and G. Wiggins, “On the integration of machine
agents into live coding,” Organised Sound, 1–10, 2023. doi: 10.1017/
S1355771823000420 (cit. on p. 82).

[202] A. Cárdenas, “Street code-live coding in public space,” in Proceedings
of the International Conference on Live Coding, ICLC, 2019 (cit. on
p. 82).

[203] H. Villaseñor-Ramı́rez, “Live coding outside, live coding inside: Listening,
participation and walking,” Organised Sound, 1–11, 2023. doi: 10.1017/
S1355771823000353 (cit. on p. 82).

[204] C. Schuster and C. Flanagan, “Live programming by example: Using
direct manipulation for live program synthesis,” in LIVE Workshop,
2016 (cit. on pp. 84, 91).

[205] C. Roberts, “Realtime annotations & visualizations in live coding per-
formance,” in Proceedings of the 2018 LIVE Programming Workshop,
2018 (cit. on p. 87).

[206] M. Sturdee and J. Lindley, “Sketching & drawing as future inquiry in
hci,” in Proceedings of the Halfway to the Future Symposium 2019, 2019,
pp. 1–10 (cit. on p. 87).

[207] U. Attanayake, B. Swift, H. Gardner and A. Sorensen, “Disruption and
creativity in live coding,” in 2020 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), IEEE, 2020, pp. 1–5 (cit. on
p. 92).

[208] E Wilson, S Lawson, A McLean, J Stewart et al., “Autonomous creation
of musical pattern from types and models in live coding,” 2021 (cit. on
p. 92).

[209] Z. Rakhimberdina, Q. Jodelet, X. Liu and T. Murata, “Natural image
reconstruction from fmri using deep learning: A survey,” Frontiers in
neuroscience, vol. 15, p. 795 488, 2021 (cit. on p. 92).

https://doi.org/10.1017/S1355771823000481
https://doi.org/10.1017/S1355771823000481
https://doi.org/10.1017/S1355771823000420
https://doi.org/10.1017/S1355771823000420
https://doi.org/10.1017/S1355771823000353
https://doi.org/10.1017/S1355771823000353

BIBLIOGRAPHY 117

[210] L. Bellier, A. Llorens, D. Marciano et al., “Music can be reconstructed
from human auditory cortex activity using nonlinear decoding models,”
PLoS biology, vol. 21, no. 8, e3002176, 2023 (cit. on p. 92).

[211] R. Bell, “A live coding improvisation,” in Proceedings of the 9th ACM
Conference on Creativity & Cognition, 2013, pp. 392–393 (cit. on p. 95).

[212] S. W. Lee, J. Freeman, A. Colella, S. Yao and A. Van Troyer, “Col-
laborative musical improvisation in a laptop ensemble with lolc,” in
Proceedings of the 8th ACM Conference on Creativity and Cognition,
2011, pp. 361–362 (cit. on p. 95).

[213] B. Swift, A. Sorensen, M. Martin and H. Gardner, “Coding livecoding,”
in Proceedings of the SIGCHI conference on human factors in computing
systems, 2014, pp. 1021–1024 (cit. on p. 95).

[214] J. Françoise, S. Fdili Alaoui and Y. Candau, “Co/da: Live-coding
movement-sound interactions for dance improvisation,” in Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems,
2022, pp. 1–13 (cit. on p. 95).

[215] C. Frisson and M. M. Wanderley, “Challenges and opportunities of force
feedback in music,” in Arts, MDPI, vol. 12, 2023, p. 147 (cit. on p. 102).

[216] C. Erdem, B. Wallace and A. R. Jensenius, “Cavi: A coadaptive audi-
ovisual instrument–composition,” in NIME 2022, PubPub, 2022 (cit. on
p. 102).

[217] P. T. Daniels and W. Bright, The world’s writing systems. Oxford
University Press, 1996 (cit. on p. 102).

Appended Papers

119

Paper I

An analytical framework for musical live coding
systems based on gestural interactions in

performance practices

G. Diapoulis and P. Dahlstedt

Proceedings of the International Conference on Live Coding (ICLC).
Valdivia, Chile. (2021).

https://doi.org/10.5281/zenodo.5801942

Proceedings	of	the	International	Conference	on	Live	Coding,	Valdivia,	December	2021	
https://iclc.toplap.org/2021/	

	
	

Copyright	 Diapoulis	 &	 Dahlstedt.	 This	 is	 an	 open	 access	 article	 distributed	 under	 the	 terms	 of	 the	 Creative	 Commons	 Attribution	 4.0	
International	License	(CC	BY	4.0).		

An	analytical	framework	for	musical	live	coding	
systems	based	on	gestural	interactions	in	

performance	practices	
	

Georgios Diapoulis	 Palle Dahlstedt	
Interaction	Design,	Department	of	Computer	
Science	&	Engineering,	Chalmers	University	
of	Technology,	University	of	Gothenburg	

geodia@chalmers.se	

Interaction	Design,	Department	of	Computer	
Science	&	Engineering,			Chalmers	University	
of	Technology,	University	of	Gothenburg	

palle@chalmers.se	

	
ABSTRACT	
Gestural	 interaction	in	live	coding	performance	is	still	 in	 its	 infancy,	albeit	the	long	tradition	in	music	
performance	 studies.	 Computational	 challenges	 in	 musical	 live	 coding	 have	 been	 motivating	 the	
research	community	towards	the	development	of	novel	programming	languages	and	interfaces.	On	the	
other	 hand,	 given	 the	 maturity	 of	 many	 music	 systems	 there	 is	 an	 increasing	 demand	 for	 theory	
building	on	live	coding	systems	and	practices.	Here,	we	present	an	observational	study	from	videos	of	
live	 performances	 available	 online	 and	 we	 introduce	 an	 analytical	 framework	 for	 live	 coding	 music	
systems.	We	begin	by	examining	how	performance	practices	differ	on	potentially	equivalent	systems.	
On	 the	spotlight	of	 the	 framework	 is	 the	viewpoint	of	gestural	 interactions	under	 the	prism	of	music	
psychology	and	perception.	We	examined	several	systems	on	three	main	processes:	(i)	interface	design,	
(ii)	gestural	mapping	and	(iii)	user's	interaction.	These	processes	are	presented	as	an	orthogonal	three-
dimensional	 framework,	 so	 to	 facilitate	 visualizations	 and	 readers'	 understanding.	 Preliminary	
assessments	 of	 the	 systems	 in	 question	 agree	 with	 ground	 truth	 knowledge	 of	 the	 computational	
classification	 of	 the	 systems.	 Furthermore,	we	 analyze	 a	 few	notable	 systems	 that	 are	 stretching	 the	
boundaries	of	our	dimensional	 framework,	 indicating	that	more	dimensions	may	be	required.	Finally,	
we	 discuss	 the	 analytical	 framework	 in	 relation	 to	 a	 higher-level	 description	 of	 live	 coding	 music	
performance	 and	 we	 discuss	 future	 studies	 that	 may	 be	 conducted	 to	 assess	 the	 validity	 of	 this	
approach.	

1. INTRODUCTION	
Gestures	 are	 an	 integral	 part	 in	our	daily	 interactions	with	 computing	 technologies.	 	There	has	been	
increasing	 interest	 in	mobile	 devices	 that	 afford	 gestural	 interactions,	 typically	 through	 touchscreen	
displays,	 which	 in	 return	 are	 progressively	 transforming	 user's	 interactions.	 	 In	 psychology	 of	
programming,	users	are	seen	as	experts	(Blackwell	&	Collins,	2005)	and	users'	practices	may	influence	
technological	developments.	 	 In	analogy	 to	 this	 liberated	stance	of	 the	division	between	users	versus	
experts,	 here,	we	 take	 a	 liberated	 stance	 on	 live	 coding.	 	 	We	 adhere	 any	declarations	 of	 live	 coding	
practices	as	 live	 coding,	without	a	need	 for	 strict	definitions	 (Collins,	2011).	 	 In	 the	 context	of	music	
performance,	gestures	have	been	studied	extensively	in	both	music	psychology	and	music	perception.		
There	is	a	broad	consensus	that	musical	gestures	carry	functional,	aesthetical	and	social	aspects	(Godøy	
&	Leman,	2010).	

1.1 Gestural	interaction	in	live	coding	research	

In	live	coding,	gestural	interactions	are	seen	as	an	indispensable	part	which	can	be	improved	in	terms	
of	 virtuosity	 and	 expressivity	 by	 extensive	 practice	 (Collins,	 2011).	 	 Yet,	 since	 live	 coding	 as	
performance	practice	is	still	 in	its	infancy,	there	are	no	methods	on	how	to	master	gestural	control	in	
performance.	 	Many	practitioners	have	 reported	 embodiment	during	 live	 coding	performance.	 	More	
specifically,	Baalman	 (2015)	 reflects	on	 typing	automaticity	 that	 is	developed	 through	 the	 familiarity	

Proceedings	of	the	International	Conference	on	Live	Coding,	Valdivia,	December	2021	
https://iclc.toplap.org/2021/	

	
	

Copyright	 Diapoulis	 &	 Dahlstedt.	 This	 is	 an	 open	 access	 article	 distributed	 under	 the	 terms	 of	 the	 Creative	 Commons	 Attribution	 4.0	
International	License	(CC	BY	4.0).		

with	a	certain	programming	language.		Given	such	anecdotal	evidence,	action	execution	is	linked	to	the	
mental	model	that	we	form	by	extensive	practice	with	the	programming	language	of	our	preference.			

In	 the	 context	 of	 traditional	 music	 performance,	 action	 execution	 is	 linked	 to	 imagery	 of	 auditory	
percepts	 (Keller	 &	 Koch,	 2008).	 	 Such,	 imagery	 percepts	 are	 fed	 to	 gestural	 unfoldings	 as	 these	 are	
realized	by	sequences	of	musical	gestures	during	performance.		Auditory	and	motor	perception	are	the	
driving	 forces	 of	 these	 realizations	 and	 both	 effortful	 and	 involuntary	 imagery	may	 be	 contributing	
factors	during	music	making	 in	 live	 coding	 (Diapoulis	&	Dahlstedt,	2021).	 	Given	 the	extensive	 study	
and	experimental	evidence	on	auditory	and	motoric	skills	during	performance,	musical	interface	design	
studies	have	been	taking	advantage	and	building	numerous	evaluation	frameworks	for	music	systems.		
Gestural	 control	 in	 computer	music	 interfaces	 has	 already	 a	 long	 tradition	 and	 there	 are	 numerous	
frameworks	and	evaluation	studies.		Indicatively,	in	the	NIME	community1	a	meta-analysis	revealed	that	
within	the	years	2012-2014	more	that	200	studies	related	to	evaluation	had	been	reported	(Barbosa	et	
al.,	2015).	

Evaluation	systems	in	musical	interaction	design	have	been	proposed	since	the	90s,	and	in	00s	there	is	
already	a	steady	ground	which	has	a	parallel	coevolution	with	trends	 in	human-computer	 interaction	
(Wanderley	&	 Orio,	 2002).	 	 Early	 studies	 on	 evaluation	 of	musical	 interfaces	 have	 been	 focusing	 on	
assessments	of	simple	interactions.	Later,	developments	of	mixed	methods	were	employed	to	evaluate	
authenticity	of	artificial	agents	 (Stowell	et	al.,	2009).	 	Despite	all	 these	efforts,	 it	has	been	noted	 that	
most	systems	are	used	by	a	single	performer,	who	is	typically	the	developer	of	the	system	(Barbosa	et	
al.,	 2015).	 	This	makes	difficult	 to	build	 a	 solid	background	on	evaluation	methods	of	digital	musical	
instruments	 (DMIs).	 	 In	 the	 same	study	were	 identified	 some	basic	 components	among	 the	 reviewed	
articles,	 which	 are	 related	 to	 the	 criteria	 of	 the	 evaluation,	 the	methods	 used	 and	 the	 goals	 of	 the	
evaluations	among	others.	

2. CRITERIA,	GOALS	AND	METHODS	FOR	AN	ANALYTICAL	FRAMEWORK	
Here,	 we	 will	 present	 the	 criteria,	 goals	 and	 methods	 of	 our	 study.	 	 The	 main	 goal	 is	 to	 present	 a	
preliminary	 analytical	 framework	 for	 live	 coding	music	 systems.	 	 Our	 starting	 point	 are	 the	 gestural	
interactions	 with	 the	 musical	 interface.	 	 The	 method	 is	 based	 on	 an	 observation	 study	 of	 videos	
available	 online	 (see	Table	1).	 	 The	main	 criteria	 are	 (i)	 to	 identify	performance	practices	 that	 show	
broad	variations	on	the	gestural	interactions,	and	(ii)	to	examine	how	performance	practices	may	differ	
in	potentially	equivalent	systems.		In	that	manner,	we	did	not	include	a	broad	variety	of	“standard”	or	
“canonical”	 (Roberts	 and	 Wakefield,	 2018)	 live	 coding	 systems,	 because	 they	 demonstrate	 minimal	
variation	in	gestural	interactions.		By	“standard	live	coding”	systems,	we	address	all	practices	that	are	
using	 the	keyboard	as	 the	main	 input	 interface	and	a	 typical	programming	 language.	 	Here,	 a	 typical	
programming	language,	refers	to	any	programming	language	which	can	make	use	of	an	interpreter	or	a	
compiler,	and	requires	typed	programming	expressions	that	are	well-formed	in	a	text	editor.		Instead,	in	
this	 study	 we	 focused	 on	 highly	 individualistic	 systems	 that	 build	 upon	 anything	 from	 low-level	
computing	 interfaces	 to	high-level	systems.	 	These	may	 include	 from	traditional	musical	 instruments,	
like	the	piano,	to	printed	circuit	boards	and	hardware	prototypes	on	solderless	breadboards.	

	

 Author System Video

1 Baalman Code	LiveCode	Live https://vimeo.com/434679284

2 Collins Type-A	personality https://youtu.be/0fX0AymCtgA

3 Diapoulis stateLogic	machine https://vimeo.com/43121821

	
1New	Interfaces	for	Musical	Expression,	https://www.nime.org/.	

Proceedings	of	the	International	Conference	on	Live	Coding,	Valdivia,	December	2021	
https://iclc.toplap.org/2021/	

	
	

Copyright	 Diapoulis	 &	 Dahlstedt.	 This	 is	 an	 open	 access	 article	 distributed	 under	 the	 terms	 of	 the	 Creative	 Commons	 Attribution	 4.0	
International	License	(CC	BY	4.0).		

4 Griffiths Al-jazzari https://youtu.be/Uve4qStSJq4

5 Magnusson Threnoscope https://vimeo.com/63335988

6 McLean TidalCycles https://youtu.be/PeyE8ATMezs

7 Noriega	&	Veinberg CodeKlavier	CKalkulator https://youtu.be/hD-PWNDebD4

8 Noriega	&	Veinberg CodeKlavier	hello	world https://youtu.be/ytpB8FB6VTU

9 Reus iMac	Music https://vimeo.com/205714278

10 Salazar Auraglyph https://youtu.be/qqt2vSNy_nA

Table	1.	Video	material	for	the	observational	study.	

2.1 Criteria	

The	 key	 criterion	 for	 the	 analytical	 framework	 is	 the	 gestural	 interaction	with	 the	musical	 interface.		
More	specifically,	we	aim	to	identify	whether	the	gestural	interactions	have	any	impact	on	the	running	
algorithm	 of	 the	 system.	 	 Given	 the	 anecdotal	 evidence	 that	 a	 programming	 language	may	 influence	
action	 (motor)	 execution	 (Baalman,	 2015),	 it	 is	 reasonable	 to	 think	 how	 execution	 of	 gestural	
interactions	can	change	our	mental	model	of	the	running	algorithm.			Also,	we	have	identified	that	there	
is	 increasing	 interest	 in	cases	where	performance	practices	show	variations	on	potentially	equivalent	
systems	(Diapoulis	&	Dahlstedt,	2021).	Furthermore,	to	ease	the	theoretical	analysis	we	excluded	any	
visual	percepts	and	we	focused	only	on	auditory	and	motor	perception.	

2.2 Goals	

Our	goal	is	to	present	a	preliminary	analytical	framework	for	musical	live	coding	systems.		We	coupled	
this	 framework	 to	 a	 theoretical	 background	 which	 may	 account	 for	 a	 high-level	 description	 of	 live	
coding	music	performance.	 	 	Furthermore,	we	aim	to	systematize	the	study	of	gestural	 interactions	in	
live	 coding	 performance,	 which	may	 support	 the	 development	 of	 future	 experimental	 studies	 in	 the	
psychology	and	perception	of	live	coding.			

2.3 Methods	

The	 main	 method	 was	 that	 we	 coded	 videos	 of	 live	 coding	 performances,	 based	 on	 subjective	
evaluations	of	the	first	author	(see	Table	3).		Having	in	mind	the	key	criterion	of	gestural	interactions,	
we	attempt	to	identify	which	might	be	the	most	important	factors	that	differentiate	these	performance	
systems.		Also,	we	constrained	these	factors	up	to	three	to	facilitate	visual	communication	and	reader’s	
understanding.	 	Our	method	differs	 from	previous	studies	 in	 the	 live	coding	community.	 	These	have	
been	 ranging	 from	 aesthetic	 evaluation	 studies	 (Bell,	 2013),	 to	 position	 articles	 on	 interface	 design	
(Stowell	&	McLean,	2013)	and	theoretical	approaches	on	musical	gestures	(Jarvis,	2019)	and	cognitive	
processes	(Sayer,	2015).		Here,	we	present	an	alternative	view	based	on	analyzing	videos	online	and	we	
attempt	to	bridge	studies	from	music	psychology	and	perception	within	live	coding	research	(Tanimoto,	
2017).		Our	view	stems	from	embodied	music	cognition	(Leman,	2008)	which	moves	beyond	a	view	of	
input-output	processes	of	human	perception	and	cognition,	and	on	previous	work	on	embodied	playing	
with	algorithms	(Dahlstedt,	2018).	 	On	this	background	and	given	a	subjective	perspective	of	the	first	
author	on	 live	coding	practices	we	are	presenting	a	preliminary	analytical	 framework	of	musical	 live	
coding	systems.	 	From	the	observed	video	material	that	is	available	online	(see	Table	1)	we	extracted	
meaningful	 abstractions	 and	 delivered	 a	 preliminary	 framework	 that	 can	 be	 discussed,	 challenged	
modified	and	extended	by	the	live	coding	community.	 	 	While	we	also	discuss	on	live	coding	practices	
and	agents	the	focus	on	this	study	is	on	live	coding	systems.	

	

Proceedings	of	the	International	Conference	on	Live	Coding,	Valdivia,	December	2021	
https://iclc.toplap.org/2021/	

	
	

Copyright	 Diapoulis	 &	 Dahlstedt.	 This	 is	 an	 open	 access	 article	 distributed	 under	 the	 terms	 of	 the	 Creative	 Commons	 Attribution	 4.0	
International	License	(CC	BY	4.0).		

3. SETTING	THE	GROUND	FOR	AN	ANALYTICAL	FRAMEWORK	
In	 this	 section,	 we	 start	 with	 a	 high-level	 description	 of	 live	 coding	 music	 performance.	 	 Then,	 we	
present	our	view	on	how	music	psychology	and	music	perception	may	be	related	to	live	coding	practice.		
Following	that,	we	try	to	link	this	view	to	music	cognition	and	agency	in	live	coding.		Finally,	in	the	next	
section	we	introduce	a	preliminary	dimensional	framework	for	musical	live	coding	systems.	
	
We	see	that	a	three-fold	description	of	practices,	agents	and	systems	is	at	the	very	center	of	studies	in	
live	coding	music	performance	(see	Figure	1,	bottom	row).		The	human	companion	is	an	indispensable	
part	in	live	coding	practice	(Collins	et	al.,	2003).		This	is	because	even	if	the	musical	agents	may	be	fully	
autonomous	still	the	training	corpus	is	based	on	code	written	by	humans	(Stewart	and	Lawson,	2019).		
Although	we	may	imagine	fully-autonomous	systems	which	may	not	be	based	on	humanly-written	code	
for	the	training	data,	yet,	some	amount	of	human	agency	is	being	transferred	from	the	very	foundations	
of	computer	science	(Dahlstedt,	2021).		Also,	aspects	of	human-machine	musicianship	that	arise	during	
a	live	coding	performance	are	shifting	the	boundaries	of	agency	in	music	performance	(Brown,	2016),	
and	 sophisticated	 designs	 may	 offer	 symbionts	 of	 human-machine	 musicianship	 (Collins,	 2015).		
Finally,	 a	 music	 system	 seems	 to	 be	 a	 necessary	 component	 for	 musical	 live	 coding	 performances,	
regardless	of	seeing	this	as	a	musical	notation	system	or	a	formal	computational	language	(Magnusson,	
2011).			
Music	 systems	show	a	broad	diversity	 from	 low	 level	 computing	components	 to	high	 level	 languages	
and	interface	setups.		Consequently,	practices	also	show	a	broad	diversity	which	is	influenced	to	some	
extent	by	 the	design	decisions	of	 the	systems.	 	Finally,	agents	within	 the	context	of	 live	coding	music	
performance	 also	 show	 a	 broad	 diversity,	 ranging	 from	 human	 agents,	 either	 expert/novice	
programmers	or	expert/novice	musicians,	 to	artificial	autonomous	agents	based	on	machine	 learning	
and	machine	listening.		Indicatively,	Nick	Collins	presented	two	alternatives,	which	may	also	overlap	to	
some	 extent,	 as	machine	 listening	 control	 of	 live	 coding,	 or	 live	 coding	 control	 of	machine	 listening	
(Collins,	2015).	
	

3.1 Musical	activities	in	live	coding	practice	

We	start	our	high-level	description	of	live	coding	performance	by	discussing	how	musical	activities	may	
be	experienced	in	live	coding	practice.		Musical	activities	can	be	divided	to	three	overlapping	categories,	
music	making,	music	 listening	 and	musical	 imagery	 (Luck,	2015).	 	We	may	also	 claim	 that	 there	 is	 a	
progressive	 level	 of	 engagement	within	musical	 activities,	 starting	 from	 least	 engagement	 in	musical	
imagery,	more	engagement	into	music	listening	and	even	more	in	music	making	(see	Figure	1,	Activity).		
Music	making	involves	both	music	composition	and	music	performance.		Skilled	musical	performance	is	
achieved	when	 the	musician	 is	exposed	 to	repetitive	practice	of	an	activity.	 	The	same	applies	 to	 live	
coding	practice	(Nilson,	2007).	

3.2 Music	perception	in	live	coding	performance	

3.2.1 Music	listening	and	appreciation	
Music	listening	is	the	most	wide-spread	musical	activity.		We	are	exposed	many	hours	per	day	to	music,	
even	 involuntary.	 	During	music	performance,	either	 traditional	or	 computer	music	performance,	 the	
musician	is	both	making	and	listening	to	the	generated	sounds	and	appreciates	online	music	percepts.		
Contrary	 to	 traditional	 music	 performance,	 in	 computer	 music	 the	 generation	 of	 sounds	 is	 cloaked	
within	circuits	and	other	high-level	components.		Thus,	in	the	absence	of	any	visual	and	haptic	feedback	
(which	 is	 typically	 predominant	 in	 traditional	 music	 performance),	 in	 computer	 music	 we	 are	
exclusively	 relying	 in	 our	 auditory	 capabilities.	 	 This	 is	 done	 by	 taking	 advantage	 of	 our	 ability	 to	
segment	sound	events	with	audition.	While	onset	and	offset	detection	can	be	a	notoriously	difficult	task	
for	 machine	 listening,	 and	 may	 be	 a	 philosophical	 enquiry	 on	 its	 own	 (Toiviainen,	 2015;	 personal	

Proceedings	of	the	International	Conference	on	Live	Coding,	Valdivia,	December	2021	
https://iclc.toplap.org/2021/	

	
	

Copyright	 Diapoulis	 &	 Dahlstedt.	 This	 is	 an	 open	 access	 article	 distributed	 under	 the	 terms	 of	 the	 Creative	 Commons	 Attribution	 4.0	
International	License	(CC	BY	4.0).		

communication),	 in	 computer	 generated	music	 there	 is	 no	 alternative,	 other	 than	 to	 embody	 sound	
events	 just	 by	 listening	 to	 them	 (Palmer,	 1997).	 	 As	 a	 result,	 here,	we	 excluded	 any	 visual	 percepts	
during	musical	live	coding.		This	is	because	the	visual	channel	is	a	another		complicated	mechanism	and	
during	live	coding	it	can	have	a	very	important	contribution	to	the	experience.		This	decision	to	focus	on	
motor	and	auditory	percepts	may	also	contribute	to	the	discussion	of	live	coding	for	blind	and	visually	
impaired	people	(Vetter,	2020).	

	

Figure	 1.	 High-level	 description	 of	 live	 coding	 music	 performance:	 practices,	 agents,	 systems;	 including	 the	
subcomponents	 of	 musical	 activities,	 music	 perception	 and	 cognition	 in	 performance	 and	 the	 dimensional	
analytical	framework	of	live	coding	systems.		

3.2.2 Musical	imagery	and	planning	

Musical	imagery	is	when	a	melody	of	a	song	comes	to	our	mind.		The	so-called	earworms,	exemplify	the	
phenomenon	of	involuntary	musical	imagery.		During	music	performance,	we	employ	both	involuntary	
and	effortful	music	percepts	(Keller,	2012).	 	 Interestingly,	 involuntary	imagery	can	also	trigger	motor	
execution	(Keller	&	Koch,	2008).		Thus,	a	blend	of	effortful	and	involuntary	imageries	take	place	during	
performance.	 	 Musical	 imagery	 is	 intertwined	 to	 anticipated	 music	 percepts	 and	 Godøy	 (2003)	 has	
suggested	 that	gestural	 imagery	 is	an	 integral	part	 in	music	performance.	 	He	elaborates	on	 that	and	
hints	that	our	mental	capacity	enable	us	to	compress	gestural	unfoldings	in	time,	while	the	same	is	not	
true	for	auditory	percepts.		One	cannot	compress	a	musical	sound	and	experience	the	same	qualities.		In	
live	coding	we	are	planning	our	future	actions	by	trial-and-error,	which	is	an	act	of	novelty	(Tanimoto,	
2017).	 	 On	 this	 account,	 auditory	 percepts	 can	 trigger	 gestural	 unfoldings	 during	 a	 live	 coding	
performance,	which	 in	 return	may	 contribute	 to	 planning	 of	 abstract	 actions	 (Diapoulis	&	Dahlstedt,	
2021).	 	 Interestingly,	 musical	 notation	 can	 also	 trigger	 involuntary	 imagery,	 which	 is	 known	 as	
notational	audiation	in	music	literature	(Keller,	2012).	
	

3.3 Music	cognition	and	code	structures	

As	presented	above,	musical	planning	is	a	combination	of	gestural	and	auditory	anticipatory	percepts	
and	music	listening	can	be	employed	to	experience	segmentations	of	the	generated	sounds.		Also,	when	
we	appreciate	a	music	percept,	this	may	result	to	structured	code	in	live	coding	practice	(see	Figure	1,	

Proceedings	of	the	International	Conference	on	Live	Coding,	Valdivia,	December	2021	
https://iclc.toplap.org/2021/	

	
	

Copyright	 Diapoulis	 &	 Dahlstedt.	 This	 is	 an	 open	 access	 article	 distributed	 under	 the	 terms	 of	 the	 Creative	 Commons	 Attribution	 4.0	
International	License	(CC	BY	4.0).		

Cognition).	 	 The	 question	 arises	 how	 such	 sounds	may	 be	 used	 to	 change	 our	mental	 model	 of	 the	
running	program?		Here,	sound	segmentation	is	seen	as	the	only	informative	unit	which	we	can	employ	
to	modify	 and	 structure	 our	 code.	 	 In	 fact,	 algorithms	 are	 not	 structures	which	 afford	 segmentation	
themselves.	 	 Furthermore,	 gestures	 also	 do	 not	 exhibit	 'well	 formed'	 characteristics	 and	 it	 can	 be	
difficult	even	for	human	annotators	to	segment	gestural	unfoldings.	 	Here,	we	see	that	segmentations	
that	 are	 formed	 from	 auditory	 percepts	 can	 inform	 gestural	 interactions	 in	 planning	 future	 action	
executions.	 In	 that	 manner,	 planning	 contributes	 to	 novel	 code	 evaluations	 (Diapoulis	 &	 Dahlstedt,	
2021).	

3.4 How	agency	appears	in	live	coding	

Artificial	 agency	 is	 an	 immediate	 consequence	 during	 live	 coding	 practice	 (Brown,	 2016).	 	 This	 is	
further	 entangled	when	machine	 learning	 or	machine	 listening	 components	 are	 involved	 during	 the	
activity	of	music	making	(Collins,	2015).	 	For	 instance,	when	a	machine	 listening	component	 is	being	
involved,	then	we	can	think	of	this	as	an	augmentation	to	our	hearing.		When	we	control	code	structures	
or	parameters	with	machine	listening	processes	then	the	running	program	can	be	thought	as	an	agent	
that	 applies	 semantic	 (code)	 adjustments	 that	 are	 driven	 by	 another	modality.	 	 In	 that	manner,	 the	
electronics	are	producing	mechanical	energy	which	vibrates	air	molecules	and	surrounding	structures	
and	then	is	processed	again	through	digital	logic	to	apply	adjustments	on	its	own	structure.		In	fact,	this	
can	 be	 also	 done	 without	 rendering	 the	 physical	 sounds,	 but	 we	 exemplify	 the	 physical	 process	 to	
facilitate	 reader's	understanding.	 	These	practices	are	shifting	conventional	agencies	 in	musicianship.		
In	 traditional	music	 performance	 the	musicians	 can	 embody	 expressive	 intentions	 in	 a	 clear	manner	
and	 the	 visual	 channel	 biases	 our	 perception	 of	 expressivity	 (Davidson,	 1993).	 	 How	may	we	 study	
expressivity	in	such	symbionts	of	human-machine	musicianship?	

4. LIVE	CODING	SYSTEMS	

A	 live	 coding	 system	 is	 a	 rather	 complicated	 structure.	 	 All	 the	 fruitful	 efforts	 of	 the	 live	 coding	
community	to	deliver	systems	that	can	enable	live	performances	and	even	algorave	parties	has	come	to	
a	rather	matured	state,	 in	comparison	to	10	years	ago.	 	Some	of	 the	most	prominent	systems	are,	 for	
example,	ixi-lang	(Magnusson,	2011),	SonicPi	(Aaron,	2016)	and	TidalCycles	(McLean	&	Wiggins,	2010).		
A	common	feature	of	all	abovementioned	systems	 is	 that	 they	are	based	on	elegant	code	expressions	
which	foster	immediacy	during	performance	and	may	also	ease	educational	purposes.		Indicatively,	ixi-
lang	was	developed	with	a	constraint	of	5	seconds	per	command	so	to	facilitate	live	performance.		The	
technological	demands	of	such	developments	and	the	fact	that	the	original	authors	had	to	develop	most	
of	the	system	on	their	own,	may	have	hindered	other	aspects	of	these	developments.		For	instance,	from	
the	viewpoint	of	gestural	 interactivity	 these	systems	demonstrate	equivalence	at	 first	glance.	 	This	 is	
because,	the	composer-programmer	is	typing	programming	commands	on	a	keyboard,	which	includes	
algorithmic	 complexity,	 and	 waiting	 until	 she	 has	 an	 executable	 command	 ready	 to	 be	 successfully	
evaluated	 by	 the	 interpreter.	 	 Here,	 we	 refer	 to	 this	 category	 of	 systems	 as	 “standard	 live	 coding”	
systems.		

4.1 A	three-dimensional	analytical	framework	for	musical	live	coding	systems		

In	 this	 section,	we	 present	 a	 three-dimensional	 analytical	 framework	 (Diapoulis	 &	 Dahlstedt,	 2021),	
equipped	 with	 a	 dyadic	 condition,	 here	 called	 code-first	 and	 music-first,	 as	 proposed	 by	 Tanimoto	
(2017).		Each	dimension	represents	a	process	as	shown	in	Table	2,	and	is	equipped	with	two	semantic	
differential	concepts.	 	On	the	 lower	end	 is	a	 low-level	concept,	also	called	concrete,	and	on	the	upper	
end	a	high-level	concept,	also	called	abstract.		For	the	dyadic	condition	we	assigned	code-first	as	a	low-
level	 concept	 in	 analogy	 to	 how	 a	 musical	 score	 affords	 different	 interpretations	 during	 music	
performance.		Algorithms	are	seen	as	scores	in	live	coding	(Magnusson,	2011),	and	in	this	case	code	is	

Proceedings	of	the	International	Conference	on	Live	Coding,	Valdivia,	December	2021	
https://iclc.toplap.org/2021/	

	
	

Copyright	 Diapoulis	 &	 Dahlstedt.	 This	 is	 an	 open	 access	 article	 distributed	 under	 the	 terms	 of	 the	 Creative	 Commons	 Attribution	 4.0	
International	License	(CC	BY	4.0).		

seen	as	more	concrete	in	comparison	to	the	generated	music	which	may	differ	for	example	in	different	
music	halls,	sound	reproduction	systems	and	the	like.

 Process Low-level	(concrete) High-level	(abstract)

X	axis Interface	design	(ID) Literal	design Metaphorical	design

Y	axis Gestural	mapping	(GM) Algorithmic	significance Algorithm	agnostic

Z	axis User	interaction	(UI) Direct	manipulation Algorithmic	complexity

Dyadic	condition Sound	generation	(SG) Code-first Music-first

Table	2.	Dimensional	analytical	framework	for	musical	live	coding	systems.	

The	first	dimension,	interface	design,	refers	to	the	concept	of	how	literal	or	metaphorical	is	the	design	
of	 the	 interface.	 	 By	 literal	 design	 we	 refer	 to	 any	 design	 decisions	 that	 rely	 on	 conventional	
programming	 interfaces,	 like	 a	 text	 editor	 or	 a	 hardware	 prototype	 equipped	 with	 printed	 circuit	
boards,	switches,	buttons	and	the	like.	 	Metaphorical	design	refers	to	any	design	decisions	which	may	
conceal	 the	 programming	 activity,	 like	 playing	 the	 piano	 or	 playing	 a	 video	 game.	 	 The	 second	
dimension	 on	 gestural	 mapping	 examines	 what	 is	 the	 effect	 of	 gestural	 interactions	 on	 the	 running	
algorithm.		For	instance,	during	a	“standard	live	coding”	the	musician	is	typing	on	the	keyboard	without	
any	temporal	or	other	constrains.		In	that	manner,	the	live	coder	is	doing	as	many	gestures	as	she	likes	
until	the	code	execution	is	successful.		We	call	this	process	algorithm	agnostic.		On	the	other	hand,	if	the	
gestural	 unfoldings	 are	 modifying	 the	 structure	 of	 the	 running	 algorithm	 we	 call	 this	 process	
algorithmic	significant.	 	The	best	example	to	understand	this	dimension	is	to	watch	the	performances	
by	 Noriega	 &	 Veinberg	 “hello	 world”	 and	 “CKalkuλator”.	 	 In	 these	 two	 different	 setups	 of	 the	
CodeKlavier	system,	 the	pianist	 is	 typing	on	the	musical	keyboard	(see	“hello	world”),	or	 just	playing	
the	piano	(see	“CKalkuλator”).	 	We	see	that	 in	 the	“hello	world”	performance	the	gestural	mapping	 is	
agnostic	 to	 the	 algorithm,	while	 in	 “CKalkuλator”	 the	 gestures	 are	modifying	 the	 running	 algorithm.		
Finally,	 the	 third	 dimension	 shows	 the	 semantic	 differentials	 of	 direct	manipulation	 and	 algorithmic	
complexity.		Defining	direct	manipulation	in	the	context	of	live	coding	can	be	a	challenging	endeavour.		
We	see	 that	a	musical	 interface	which	 facilitates	recognition	 instead	of	 retrieval,	may	be	classified	as	
exhibiting	direct	manipulation.	

Table	3	below	shows	a	color	coding	for	the	systems	examined	in	this	study.		The	uppercase	“L”	stands	
for	 low-level	 concepts	 and	 the	uppercase	 “H”	 for	high-level	 concepts.	 	When	 the	 systems	 in	question	
afford	both	low-level	and	high-level	concepts,	we	coded	such	cases	as	“L/H”.	

 Author System ID GM UI SG

1 Baalman Code	LiveCode	Live L H H H

2 Collins Type-A	personality L/H L/H L H

3 Diapoulis stateLogic	machine L L L L

4 Griffiths Al-jazzari H L L L

5 Magnusson Threnoscope L/H H L/H L

6 McLean TidalCycles L H H L

7 Noriega	&	Veinberg CodeKlavier	CKalkuλator H L H H

8 Noriega	&	Veinberg CodeKlavier	hello	world H H H H

9 Reus iMac	Music L L L H

Proceedings	of	the	International	Conference	on	Live	Coding,	Valdivia,	December	2021	
https://iclc.toplap.org/2021/	

	
	

Copyright	 Diapoulis	 &	 Dahlstedt.	 This	 is	 an	 open	 access	 article	 distributed	 under	 the	 terms	 of	 the	 Creative	 Commons	 Attribution	 4.0	
International	License	(CC	BY	4.0).		

10 Salazar Auraglyph H H H L
Table	3.	“L”	for	low-level	concepts	and	“H”	for	high-level	concepts.		“ID”:	interface	design,	“GM”:	gestural	mapping,	
“UI”:	user	interaction,	“SG”:	sound	generation.	

	

5. VISUAL	REPRESENTATION	OF	LIVE	CODING	SYSTEMS	IN	A	DIMENSIONAL	FRAMEWORK	
Figure	2	 shows	a	 three-dimensional	 representation	of	 the	analytical	 framework.	 	This	 is	based	on	an	
orthogonal	coordinate	system,	which	may	be	misleading	for	the	reader	as	orthogonality	typically	refers	
to	 independent	 concepts.	 	 It	 is	 interesting	 to	 observe	 that	 in	 this	 spatial	 representation	 Marije's	
Baalman	 “Code	 LiveCode	 Live”	 system	 overlaps	 to	 a	 “standard	 live	 coding”	 system	 (see	 Table	 3,	
McLean).		Also,	the	“stateLogic	machine”	by	Diapoulis	overlaps	with	“iMac	Music”	by	Reus.		Finally,	the	
performance	 “hello	 world”	 overlaps	 with	 “Auraglyph”	 system.	 	 Interestingly,	 in	 all	 these	 pairs	 the	
systems	differ	on	the	dyadic	condition	code-first	and	music-first.		From	the	observation	that	the	“Code	
LiveCode	 Live”	 differs	 from	a	 “standard	 live	 coding”	 system	only	 in	 the	 code-first	 condition,	Marije's	
system	 assigned	meaning	 to	 the	 act	 of	 typing	 on	 the	 keyboard	 (Diapoulis	&	Dahlstedt,	 2021).	 	What	
more	can	we	learn	from	these	overlapping	systems	that	differ	only	on	the	dyadic	condition	code-first,	
music-first?	

	
Figure	2.	Three-dimensional	 analytical	 framework	 for	musical	 live	 coding	 systems.	 	X:	 interface	design	 (ID),	Y:	
gestural	mapping	(GM),	Z:	user	 interaction	(UI).	 	The	dyadic	condition	on	sound	generation	(SG)	 is	shown	with	
dashed	arrows.	

Based	on	Table	3	and	Figure	2	we	should	note	that	a	preliminary	validation	of	the	systems	in	question	is	
provided	by	 the	directionality	 of	 the	 cognitive	 design	 that	we	 selected	 for	 the	 semantic	 differentials.		
The	classification	as	low-level	and	high-level	on	each	system	agrees	to	ground	truth	knowledge	of	the	

Proceedings	of	the	International	Conference	on	Live	Coding,	Valdivia,	December	2021	
https://iclc.toplap.org/2021/	

	
	

Copyright	 Diapoulis	 &	 Dahlstedt.	 This	 is	 an	 open	 access	 article	 distributed	 under	 the	 terms	 of	 the	 Creative	 Commons	 Attribution	 4.0	
International	License	(CC	BY	4.0).		

workings	of	the	systems.	 	For	 instance,	“Al-jazzari”	 is	 indeed	based	on	low-level	computing	processes	
and	is	classified	as	such	in	all	dimensions	except	the	interface	design	(ID)	axis.	

6. DISCUSSION	
We	 have	 introduced	 a	 preliminary	 three-dimensional	 analytical	 framework	 for	 musical	 live	 coding	
systems.		Here,	we	attempt	to	bridge	the	gap	between	studies	in	music	psychology	and	perception	and	
to	shift	perceptions	on	fundamental	differences	between	traditional	and	live	coding	music	performance	
(Sayer,	2015;	Tanimoto,	2017).	 	The	focal	point	of	the	study	was	to	examine	live	coding	systems	from	
the	viewpoint	of	gestural	 interactions.	 	That	was	a	 revealing	point	of	departure	as	we	 identified	how	
potentially	 equivalent	 systems	 can	 bring	 about	 meaning	 to	 gestural	 interactions	 in	 live	 coding	
performance	(Diapoulis	&	Dahlstedt,	2021).	

We	coded	videos	 from	performance	practices	available	online,	based	on	subjective	evaluations	of	 the	
first	 author.	 	 We	 identified	 early	 on,	 based	 on	 personal	 experience,	 that	 metaphorical	 design	 is	
particularly	 important	within	 the	 broad	diversity	 of	 live	 coding	 systems.	 	 Such	 systems	 can	 be	 quite	
surprising	for	someone	somehow	familiar	with	live	coding,	when	she	attends	a	live	coding	performance	
in	which	the	performer	seems	to	be	engaged	in	a	video	game	activity.		Furthermore,	based	on	personal	
reflections	when	designing	a	live	coding	prototype,	it	is	reasonable	to	experience	the	dominance	of	the	
code-first	 requirement.	 	 When	 designing	 his	 “stateLogic	 machine”,	 the	 first	 author	 (GD)	 	 tried	 to	
minimize	 this	 notably	 anxious	waiting	 time,	 but	 he	 realized	 that	 you	must	 always	wait	 for	 the	 next	
positive	 edge	 clock.	 	 At	 least	 we	 cannot	 see	 any	 other	 way	 except	 if	 we	 move	 to	 a	 different	
computational	 paradigm	 that	 the	 input	 information	 is	 read	 on-demand	 and	 not	 periodically	 in	 time.			
About	the	second	dimension	on	gestural	mapping,	we	reflected	on	the	literature	of	musical	gestures	in	
music	 performance	 (Godøy	 &	 Leman,	 2010).	 	 In	 analogy	 to	 the	 primary	 and	 secondary	 aspects	 of	
musical	 gestures,	 we	 thought	 how	musical	 gestures	 in	 live	 coding	 can	 be	 significant	 to	 the	 running	
algorithm.	 	 In	 traditional	 music	 performance	 primary	 gestures	 refer	 to	 sound-producing	 gestures,	
whereas	the	secondary	gestures	typically	may	carry	emotions	or	facilitate	communication.		During	live	
coding,	 the	 sound-producing	 part	 cannot	 correspond	 to	 the	 traditional	meaning	 of	 sound-producing	
gestures,	 as	 the	 sound	 generation	 is	 performed	 using	 digital	 signal	 processing	 algorithms.	 	 Here,	we	
identified	 that	 musical	 gestures	 in	 live	 coding	 can	 either	 have	 immediate	 impact	 on	 the	 running	
algorithm	 or	 can	 be	 ignorant	 about	 the	 workings	 of	 the	 algorithm.	 	 For	 instance,	 in	 Baalman’s	
performance	the	musical	gestures	are	sound-producing	gestures,	but	they	do	not	change	the	structure	
of	 the	 running	 algorithm.	 	 This	 because	 the	 modifications	 are	 performed	 on	 the	 parameter	 level.	
Contrary,	 in	 CKalkuλator	 the	 pianist	 is	 programming	 by	 playing	 the	 piano.	 	Here,	 there	 is	 a	 fine	 line	
between	what	we	 adhere	 as	programming	or	not.	 	 For	 example,	 in	Threnoscope,	Thor	Magnusson	 is	
applying	direct	manipulation	with	the	mouse	to	modified	parameters	of	the	running	algorithm.		We	also	
classified	 this	 interaction	 as	 algorithm	 agnostic,	 due	 to	 the	 fact	 it	 does	 not	 apply	 changes	 to	 the	
structure	 of	 the	 running	 algorithm.	 	 A	 structural	 change	 on	 the	 running	 algorithm,	 is	 exemplified	 by	
Kiefer’s	 (2015)	 “approximate	 programming”.	 	 Specifically,	 this	 is	 exemplified	 by	 the	 real-time	
visualizations	of	the	synths	structure	as	these	are	shown	using	hierarchical	trees2.	An	important	note	is	
that	in	computer	music	an	algorithm	is	expressed	using	binary	digits.		One	may	question	how	a	gesture	
may	have	an	effect	 on	a	one-dimensional	 structure	 (Collins,	 2016).	 	Here,	we	 see	 an	algorithm	as	 an	
abstraction	that	corresponds	to	a	mental	model	and	may	be	influence	by	embodiment	in	performance	
(Fanfani	 et	 al.,	 2020).	 	 Finally,	 the	 third	 dimension	 on	 user	 interaction	was	 employed	 by	 studies	 in	
psychology	 of	 programming	 and	 human-computer	 interaction	 (Diapoulis	 &	 Dahlstedt,	 2021).		
Sometimes,	 it	 can	 be	 difficult	 to	 evaluate	whether	 a	musical	 interface	 affords	 direct	manipulation	 or	
algorithmic	 complexity.	 	 It	 should	 be	 noted	 that	 interfaces	which	 support	 recognition	 processes	 are	
seen	as	exhibitors	of	direct	manipulation.	

	
2	https://github.com/chriskiefer/ApproximateProgramming_SC/blob/master/approxTree.scd	

Proceedings	of	the	International	Conference	on	Live	Coding,	Valdivia,	December	2021	
https://iclc.toplap.org/2021/	

	
	

Copyright	 Diapoulis	 &	 Dahlstedt.	 This	 is	 an	 open	 access	 article	 distributed	 under	 the	 terms	 of	 the	 Creative	 Commons	 Attribution	 4.0	
International	License	(CC	BY	4.0).		

On	the	dyadic	condition	code-first/music-first	we	would	like	to	make	an	analogy	to	traditional	musical	
instruments.	 	 Let	 us	 think	 for	 a	 moment	 how	musical	 instruments	 like	 the	 qanun	 or	 the	 organ	 are	
changing	 music	 systems	 during	 performance.	 	 In	 both	 instruments	 the	 musician	 apply	 on-the-fly		
changes	to	the	system.		The	qanun	has	a	mandal	technology	which	enables	the	performer	to	adjust	the	
length	of	the	strings.		In	principle,	the	mandal	technology	is	changing	the	melodic	modes,	also	known	as	
maqams,	that	the	instrument	affords.		Is	this	mandal	technology	a	precursor	to	changing	the	program	as	
it	is	running?			Is	this	form	of	interaction	a	precursor	of	the	dyadic	condition	code-first	and	music-first?		
Certainly,	moving	a	mandal	on	the	qanun	is	not	a	sound-producing	gesture,	but	a	necessary	one.	
	
In	our	study	there	is	a	predominant	absence	of	collaborative	live	coding	systems	and	practices.		We	did	
not	examine	this	category	of	systems	intentionally,	due	to	the	broad	new	perspective	that	collaborative	
live	coding	brings	about	in	the	development	of	the	field.		Performing	with	other	people	is	seen	as	one	of	
the	 most	 difficult	 tasks.	 	 If	 we	 would	 like	 to	 represent	 collaborative	 performance	 systems	 with	 the	
approach	 presented	 here,	 it	 is	 reasonable	 to	 assume	 that	more	 dimensions	 are	 required	 for	 a	more	
inclusive	 framework.	 	 	A	straight-forward	solution	 to	 this	can	be	a	multi-dimensional	space	based	on	
design	space	analysis	(Birnbaum	et	al.,	2005).	

An	 important	 result	 from	 the	 present	 study	 is	 that	 a	 preliminary	 validation	 is	 provided	 by	 the	
computational	 classification	 of	 the	 systems,	 which	 agrees	 to	 ground	 truth	 knowledge.	 	 For	 instance,	
systems	that	are	based	on	low-level	computing	processes	are	also	classified	as	low-level	systems	in	our	
dimensional	 framework.	 	 This	 is	 because	 we	 followed	 a	 cognitive	 paradigm	 which	 assigns	 the	
directionality	of	the	dimensions	from	low-level	to	high-level	concepts.	

Finally,	future	studies	should	validate	the	framework	and	propose	new	dimensions	for	a	more	inclusive	
framework.	 Such	 frameworks	 may	 be	 used	 by	 both	 practitioners	 and	 academics	 for	 either	 creative	
explorations	or	theoretical	discussion	and	design	of	experimental	studies.	This	direction	will	contribute	
to	 the	 psychology	 and	 perception	 of	 live	 coding.	 	 For	 instance,	 interview	 studies	 with	 the	 original	
authors,	 or	 other	 live	 coders,	may	 be	 employed	 to	 verify	 shared	 conceptions	 among	 the	 community.		
Also,	 questionnaire	 studies	 may	 validate,	 or	 not,	 the	 semantic	 differentials.	 	 If	 such	 efforts	 proved	
successful,	 then	 we	may	 have	 to	 start	 thinking	 how	we	may	 browse	 such	music	 spaces	 during	 live	
coding	 practices	 (ie.	 Type-A	personality	 and	Threnoscope).	 Creative	 exploration	 of	 such	 dimensional	
spaces	should	be	seen	as	a	helpful	 tool	and	as	a	challenge	to	move	beyond	the	expressive	capacity	of	
such	developments.	

Acknowledgments	

Special	thanks	to	Mafalda	Samuelsson-Gamboa	for	reviewing	and	Kivanç	Tatar	for	input	on	this	article.	

REFERENCES	
Aaron,	Sam.	"Sonic	Pi–performance	in	education,	technology	and	art."	International	Journal	of	Performance	Arts	
and	Digital	Media	12,	no.	2	(2016):	171-178.	

Baalman,	Marije.	"Embodiment	of	code."	In	Proceedings	of	the	First	International	Conference	on	Live	Coding,	pp.	
35-40.	2015.	

Barbosa,	Jeronimo,	Joseph	Malloch,	Marcelo	M.	Wanderley,	and	Stéphane	Huot.	"What	does"	Evaluation"	mean	for	
the	NIME	community?."	(2015).	

Bell,	Renick.	"Towards	useful	aesthetic	evaluations	of	live	coding."	In	ICMC.	2013.	

Birnbaum,	David,	Rebecca	Fiebrink,	Joseph	Malloch,	and	Marcelo	M.	Wanderley.	"Towards	a	dimension	space	for	
musical	devices."	In	Proceedings	of	the	2005	conference	on	New	interfaces	for	musical	expression,	pp.	192-195.	
2005.	

Blackwell,	Alan	F.,	and	Nick	Collins.	"The	Programming	Language	as	a	Musical	Instrument."	In	PPIG,	p.	11.	2005.	

Proceedings	of	the	International	Conference	on	Live	Coding,	Valdivia,	December	2021	
https://iclc.toplap.org/2021/	

	
	

Copyright	 Diapoulis	 &	 Dahlstedt.	 This	 is	 an	 open	 access	 article	 distributed	 under	 the	 terms	 of	 the	 Creative	 Commons	 Attribution	 4.0	
International	License	(CC	BY	4.0).		

Brown,	 Andrew	 R.	 "Performing	 with	 the	 other:	 the	 relationship	 of	 musician	 and	 machine	 in	 live	 coding."	
International	Journal	of	Performance	Arts	and	Digital	Media	12,	no.	2	(2016):	179-186.	

Collins,	Nicolas.	"Semiconducting:	Making	music	after	the	transistor."	Musical	Listening	in	the	Age	of	Technological	
Reproduction.	Routledge,	2016.	313-322.	

Collins,	Nick,	et	al.	"Live	coding	in	laptop	performance."	Organised	sound	8.3	(2003):	321-330.	

Collins,	Nick.	"Live	coding	of	consequence."	Leonardo	44,	no.	3	(2011):	207-211.	

Collins,	Nick.	"Live	Coding	and	Machine	Listening."	In	Proceedings	of	the	International	Conference	on	Live	Coding,	
pp.	4-11.	2015.	

Dahlstedt,	Palle.	"Action	and	Perception:	Embodying	Algorithms	and	the	Extended	Mind."	The	Oxford	Handbook	of	
Algorithmic	Music,	Oxford	University	Press,	2018.		41-65.	

Dahlstedt,	 Palle.	 "Musicking	 with	 Algorithms:	 Thoughts	 on	 Artificial	 Intelligence,	 Creativity,	 and	 Agency."	
Handbook	of	Artificial	Intelligence	for	Music.	Springer,	Cham,	2021.	873-914.	

Davidson,	Jane	W.	"Visual	perception	of	performance	manner	in	the	movements	of	solo	musicians."	Psychology	of	
music	21,	no.	2	(1993):	103-113.	

Diapoulis,	Georgios,	and	Palle	Dahlstedt.	(2021).	"The	creative	act	of	live	coding	practice	in	music	performance."	In	
PPIG	2021	Doctoral	Consortium,	University	of	York,	York,	UK.	

Fanfani,	Giovanni,	et	al.	"(Micro-)	Performing	Ancient	Weaving	in	the	PENELOPE	project."	Performance	Research	
25.3	(2020):	123-130.	

Godøy,	Rolf	Inge.	"Gestural	imagery	in	the	service	of	musical	imagery."	In	International	Gesture	Workshop,	pp.	55-
62.	Springer,	Berlin,	Heidelberg,	2003.	

Godøy,	Rolf	Inge,	and	Marc	Leman,	eds.	Musical	gestures:	Sound,	movement,	and	meaning.	Routledge,	2010.	

Jarvis,	 Ian.	 "Live	 coding:	 sound	 -	 gesture	 -	 algorithm."	 In	 Proceedings	 of	 the	 international	 conference	 on	 live	
coding.	Prado,	Madrid	(2019).	

Keller,	Peter	E.	"Mental	imagery	in	music	performance:	underlying	mechanisms	and	potential	benefits."	Annals	of	
the	New	York	Academy	of	Sciences	1252,	no.	1	(2012):	206-213.	

Keller,	Peter	E.,	and	Iring	Koch.	"Action	planning	in	sequential	skills:	Relations	to	music	performance."	Quarterly	
Journal	of	Experimental	Psychology	61,	no.	2	(2008):	275-291.	

Kiefer,	Chris.	"Approximate	Programming:	Coding	through	Gesture	and	Numerical	Processes."	Proceedings	of	the	
First	International	Conference	on	Live	Coding,	ICSRiM,	University	of	Leeds.	2015.	

Leman,	Marc.	Embodied	music	cognition	and	mediation	technology.	MIT	press,	2008.	

Luck,	Geoff.	"Lecture	notes	in	the	x-factor	in	music."	University	of	Jyväskylä,	Jyväskylä,	Finland	(2015).	

Magnusson,	Thor.	"Algorithms	as	scores:	Coding	live	music."	Leonardo	Music	Journal	21	(2011):	19-23.	

McLean,	Alex,	and	Geraint	Wiggins.	"Tidal–pattern	language	for	the	live	coding	of	music."	In	Proceedings	of	the	7th	
sound	and	music	computing	conference.	2010.	

Nilson,	Click.	"Live	coding	practice."	Proceedings	of	the	7th	international	conference	on	New	interfaces	for	musical	
expression.	2007.	

Palmer,	Caroline.	"Music	performance."	Annual	review	of	psychology	48,	no.	1	(1997):	115-138.	

Roberts,	 Charlie,	 and	Graham	Wakefield.	 "Tensions	 and	Techniques	 in	 Live	Coding	Performance."	 (2018):	 293-
317.	

Sayer,	Timothy.	"Cognition	and	improvisation:	some	implications	for	live	coding."	(2015).	

Stewart,	 Jeremy,	 and	 Shawn	 Lawson.	 "Cibo:	 An	 Autonomous	 TidalCyles	 Performer."	 Proceedings	 of	 the	 Fourth	
International	Conference	on	Live	Coding.	2019.	

Stowell,	Dan,	and	Alex	McLean.	"Live	music-making:	A	rich	open	task	requires	a	rich	open	interface."	In	Music	and	
human-computer	interaction,	pp.	139-152.	Springer,	London,	2013.	

Proceedings	of	the	International	Conference	on	Live	Coding,	Valdivia,	December	2021	
https://iclc.toplap.org/2021/	

	
	

Copyright	 Diapoulis	 &	 Dahlstedt.	 This	 is	 an	 open	 access	 article	 distributed	 under	 the	 terms	 of	 the	 Creative	 Commons	 Attribution	 4.0	
International	License	(CC	BY	4.0).		

Stowell,	Dan,	Andrew	Robertson,	Nick	Bryan-Kinns,	and	Mark	D.	Plumbley.	"Evaluation	of	live	human–computer	
music-making:	Quantitative	and	qualitative	approaches."	International	journal	of	human-computer	studies	67,	no.	
11	(2009):	960-975.	

Tanimoto,	Steve.	"Challenges	for	livecoding	via	acoustic	pianos."	In	3rd	International	Conference	on	Live	Coding.	
Morelia,	Mexico.	2017.	

Toiviainen,	P.	Personal	communication	(2015).	

Wanderley,	Marcelo	Mortensen,	and	Nicola	Orio.	"Evaluation	of	input	devices	for	musical	expression:	Borrowing	
tools	from	hci."	Computer	Music	Journal	26,	no.	3	(2002):	62-76.	

Vetter,	Jens.	"WELLE-a	web-based	music	environment	for	the	blind."	Proceedings	of	the	International	Conference	
on	New	Interfaces	for	Musical	Expression.	Birmingham,	United	Kingdom.	2020.	

	

Paper II

The creative act of live coding practice in music
performance

G. Diapoulis and P. Dahlstedt

Psychology of Programming Interest Group (PPIG), Doctoral Consortium.
York, UK. (2021).

The creative act of live coding practice in music performance

Georgios Diapoulis
Interaction Design

University of Gothenburg,
Chalmers University of Technology

geodia@chalmers.se

Palle Dahlstedt
Interaction Design

University of Gothenburg,
Chalmers University of Technology

palle@chalmers.se

Abstract
Live coding is the creative act of interactive code evaluations and online multimodal assessments. In the
context of music performance, novel code evaluations are becoming part of the running program and
are interrelated to acoustic sounds. Performers’ and audience ability to experience these novel auditory
percepts may involuntary engage our attention. In this study, we discuss how live coding is related to
auditory and motor perception and how gestural interactions may influence musical algorithmic struc-
tures. Furthermore, we examine how musical live coding practices may bring forth emergent qualities of
musical gestures on potentially equivalent systems. The main contribution of this study is a preliminary
conceptual framework for evaluation of live coding systems. We discuss several live coding systems
which exhibit broad variations on the proposed dimensional framework and two cases which go beyond
the expressive capacity of the framework.

1. Introduction
1.1. Live coding for the composer-programmer
Live coding practice is a well spread performance activity among computer musicians. Since the funding
act of the Temporary Organisation for the Promotion of Live Algorithm Programming, which begun with
its draft manifesto (TOPLAP, 2005), a community of few live coders has now been seeing a tremendous
expansion. In fact, the term live coding seems to be unclear within academic circles. Many believe that
the term corresponds to streaming tutorials where professional programmers show best practices on how
to “code live”. While this may reflect some aspects of live coding, it does not manifest the potential of
a novel computing platform.

Live coding in music performance is a multimodal endeavour. Audition, vision, touch and balance are
all forming a closely knit whole during performance. All aforementioned sensory cues may engage
both the composer-programmer and audience in a multimodal experience. During performance practice
the live coder is typically sharing her screen with the audience. This makes the process of live coding
a transparent performance act, in which failure is always a possible outcome. In this manner, both the
coder and the audience incorporate the generated music as a proxy to form a mental model of the running
program. Consequently, the live coder aims to modify the running program on-the-fly, so that novel
auditory percepts may involuntary engage our attentional resources (Escera, Alho, Winkler, & Näätänen,
1998). Such novel performance acts that are realized within the context of “show us your screens”, are
widely used in algorave parties, where the audience is sometimes dancing during the concert (Collins
& McLean, 2014). If the live coder fails to evaluate successfully the current code chunk and commit
a system crash, she might start all over once again, or if she feels exhausted she might seek for some
encouragement from the audience. This gestural communication between the audience and the live
coders is well established in live performances as the algoraves are about to become 10 years old in
2022.

1.2. Humans in the loop
Live coding is a novel performance practice and maybe extends the notion of human-centric computing.
This is because the human participant has an active role which is determined by the social nature of mu-
sical activities (Collins, McLean, Rohrhuber, & Ward, 2003; Thompson, 2015). On the other hand, there
are still difficulties how to humanly embody our interaction with algorithms. Musicians are encountered
to a first-hand experience of the semantic gap, as this is portrayed between the generated music and the

PPIG 2021 DC www.ppig.org

typed code expressions. The most promiment way, to date, to experience embodied interactions in live
coding is taking flesh during a dance performance (McLean & Sicchio, 2014). Even in this scenario,
the dancer is carrying on the performance within the predominant absence of causal or direct auditory
percepts linked to musicians’ gestures. Besides these drawbacks, the world of live coders is a lively and
widely divergent community of hackers, expert and novice programmers, academics, professional and
hobby musicians and most likely a bunch of retired enthusiasts within the next decades (Nilson, 2007).
Furthermore, there is a broad range of computer music conferences that have incorporated live coding
as a research topic, but most importantly there is a quasi-annual conference on live coding (ICLC), first
appeared in 2015.

1.3. Outlining the purpose of the study
In this study, our purpose is to present a conceptual framework for evaluation of live coding music
systems. There is a broad variation of systems and practices among live coders and to the best of our
knowledge there is no study to date which examines how music systems may differ to each other. The
swedish alter ego of Nick Collins has reflected on different practices and actually proposed a battery
of live coding exercises (Nilson, 2007). That was a month long live coding exercitiae carried out and
documented with Fredrik Olofsson. In the next section we review literature from music psychology
and perception along with studies in live coding and human-computer interaction. The focal point is
how gestural interactions are employed in musical interaction design. Following that, we present a
preliminary conceptual framework which aims to evaluate live coding systems. Finally, we discuss how
such frameworks may flourish the development of novel music systems and we reflect on the possibility
of a parallel evolution of performance practices.

2. Live coding: musical activities, music performance, systems and practices
2.1. Musical activities
Musical activities may be divided into three categories: music-making, music listening and musical im-
agery (see Figure 1). Music-making involves both music composition and music performance. Music
listening is the most widespread activity as we are exposed to music many hours per day, even invol-
untary when drinking a coffee in a coffee shop. Musical imagery is the activity of imagining a melody
of a song, a musical gesture and so on. A typical case of involuntary musical imagery are the so-called
earworms, which is when a melody is in a person’s mind.

Here, musical activities are presented as progressively overlapping categories. We may claim that there
is also a progressive engagement in musical activities, starting from the least engagement in musical im-
agery, following to more engagement during music listening and even more engagement during music-
making (Luck, 2015). In that manner, during performance the live coder is employing music percepts
towards building progressive levels of engagement. When an audience is attending a concert then the
dynamics between audience and musicians is also an engaging experience, where dancing and gestural
communication are typically of major importance.

2.2. Traditional and live coding music performance
During a concert, the generated music is heard by both performer and audience, and intersubjective
music preferences may vary considerably. Whereas a live coding performance incorporates both visual
and auditory percepts, to the best of our knowledge, there are no studies which assess how the visual
channel contributes to audiences’ appreciation. For instance, in traditional music performance is well
established that exaggerated bodily movement biases our visual perception of expressivity, which in
return contributes to audience appreciation (Davidson, 1993).

Contrary, in live coding the bodily movement is usually minimal. This is an issue which the live coders
have to consider if they would like to tighten the engagement with audiences and co-performers. Al-
though, the visual projections have an important role in the live experience as a whole, it is difficult to
make educated assessments due to the broad variety of live coding systems. Thus, in our study we con-
sider only the auditory percepts during performance. Here, music listening is seen as an activity which
is linked to music preferences and appreciation of the generated music. The live coder is appreciating

PPIG 2021 DC www.ppig.org

the generated music on-the-fly and this may result to structured code evaluations, which are tested and
work properly (see Figure 1). In addition, musical imagery is linked to anticipated percepts which occur
when people are exposed to music-like stimuli. During music performance this contributes to planning
and involves a sequence of bodily movements which are required when playing a musical instrument
(Keller & Koch, 2008). Similarly, in live coding performance, the coder is planning her future actions
by trial-and-error of novel code evaluations (Tanimoto, 2017). In that manner, the coder is anticipating
the auditory percepts of her actions.

The difference between live coding and traditional music performance is that in live coding the learned
associations are not necessarily linked to automaticity in gestural control. Instead, the coder is making
progressive levels of abstraction, which may be automated to a certain extent (Nilson, 2007). Auto-
maticity in sensorimotor control, especially in the case of typing, is being unfolded in a later stage when
the planning has brought forth some sort of mental model of the novel code structures. Such practices
are linked to novelty and creativity, which are interrelated concepts to some extent. Typically, creativity
depends on some novelty-related component. When there is mismatch of expectations during a live cod-
ing performance, this may result to either failure of execution and possibly a system crash or to novel
music percepts.

Figure 1 – Musical activities in live coding performance. Description of perception and cognition
during performance.

2.3. Perceptual and cognitive aspects of live coding systems and practices
2.3.1. Motor skills in musical interface design
From a motor perspective, a system’s response time cannot be smaller to the slowest part of the system
(Gibet, 2010). If we transfer this from the motor domain to the user interface design, then we may
conclude that the only case of intimate gestural feedback with a user interface (UI) can be achieved based
on direct manipulation. Moreover, it is reasonable to assume that in many cases the user’s understanding
is facilitated when no algorithm is involved during gestural interactions. Contrary, the systems that are
used in live coding performances and new interfaces for musical expression (NIMEs), may require a
long sequence of gestural interactions which involve algorithmic complexity. The question arises, how
algorithmic complexity may be linked to musical gestures as these are portrayed in traditional music
performance (Jensenius, Wanderley, Godøy, & Leman, 2010). Do we have to expand the notion of
musical gestures (Salazar, 2017)? This can be a plausible argument because musical interfaces share
properties from both human-computer interaction (HCI) and traditional music performance. In HCI the
gestures in users’ interfaces are considerably different than musical gestures. In music performance
there is a gestural virtuosicity which is considered a no-go in user interface design.

PPIG 2021 DC www.ppig.org

2.3.2. Multifaceted functionality of musical imagery
During a live coding performance the composer-programmer is making music on-the-fly by incorpo-
rating interactive code evaluations. While doing so, she is listening to the music but also imagining
anticipated music percepts. The latter is known as anticipatory auditory imagery (Keller, 2012). For
instance, in dance music we anticipate the bass drum to be heard on regular intervals within the musical
structure. If the composer alternate these regular repetitions of the bass drum our expectations would be
mismatched and novel music percepts may arise from such structural modifications. Another significant
aspect of musical imagery is that during music listening, pianists have demonstrated activations of in-
voluntary motor imagery (Haueisen & Knösche, 2001). Thus, anticipatory imagery is involved both in
action planning and action execution (Keller, 2012).

Here, we stretch the importance of a sequence of gestural interactions and we question how online
auditory percepts may influence such mutlilayered gestural unfoldings in live coding. We argue that
there should be some sort of mental models that allow the musician to conduct on-the-fly programmatic
structures that meet her musical percepts. Interestingly, expert programmers have reported imageries of
gestures and other bodily movements during problem solving tasks (Petre & Blackwell, 1999). Whereas
direct manipulation can indeed provide a more traditional-like sense of intimate gestural control, more
complex systems may also employ gestural imagery. Godøy (2003) sees that contrary to auditory im-
agery, gestural imagery may be suppressed in time. That is, we can “fast-forward” musical gestures
using our mind, whereas the same do not apply to sounds. One cannot compress the duration of a sound
and experience similar percepts. How such “gestural compressions” may be related to goal-directed
actions? Is the teleological inquiry a mechanism which can facilitate the formation mental models?

If we examine the so-called “earworms” which seem to arise out of circumstances of involuntary mu-
sical imagery (notably have been reported widely in non-musicians as well) (Williamson, 2011), then
such involuntary actions may trigger the formation of mental models. Such imagery, also known as
spontaneous, can be triggered by musical notation. This is known as notational audiation in literature.
Live coders employ similar imagery artifacts from chunks of code, as the code is becoming a musical
notation (Magnusson, 2011). For instance, the first author is employing visual imagery when performing
standard live coding sessions in SuperCollider using the keyboard. This is in the form of geometrical
abstractions which are typically realized using low frequency oscillators (LFOs) to manipulate melodic
and rhythmic structures that are usually driven by unit generators (UGens).

Several kinds of mental imagery have been reported in both expert and novice programmers (Petre
& Blackwell, 1999). For example, both expert and novice programmers reported that they employed
visual imagery when structuring a program. Gestures and algorithms can be difficult to put into strict
boundaries, that is to put them into segmented structures. On the other hand, auditory and visual percepts
exhibit segmentation properties. For instance, a sound event may attribute segmented boundaries to
gestures via the onsets and the offsets of the sound. This is how computer music is linked to bodily
movement throught its temporal structure (Palmer, 1997).

2.3.3. Knit together systems and practices
So far, we have argued that a blend of effortfull and involuntary imagery takes place during perfor-
mance. One instance of imagery is immidiately linked to gestural interactions (Godøy, 2003), which has
temporal advantages in comparison to auditory percepts (ie. “fast-forward” gestural representations).
Moreover, musical notation can function as a source of imagery-induced processes. One can think that
there is a solid ground already so to engage with the study of musical gestures in live coding, but the
broad variations of systems and practices bring about a plethora of gestural interactions. On top of that,
we have to take into consideration some principles of human-computer interaction. For instance, stan-
dard live coding systems which are based on typing on a keyboard are known to offer terrible closeness
of mapping (Blackwell & Collins, 2005). In fact, live coding systems that incorporate the keyboard for

PPIG 2021 DC www.ppig.org

gestural control may be seen as obscured, as typing on a keyboard is “neither observed nor significant”1

(Jensenius et al., 2010).

Here, the contribution by Marije Baalman is more than significant (Baalman, 2009). Baalman demon-
strated in her “Code LiveCode Live” session that typing on a keyboard can bring about meaning and
made the transition from an unspecified and “non significant” domain to the musical gestures domain.
This point is likely the very essence of this article, which is linked to the very title of this paper. That
is, potentially equivalent live coding systems may bring about different performance practices. This in
return, can bring forth novel contributions such as assigning meaning to “non significant” actions, like
typing on a keyoard.

3. A conceptual framework for evaluation of live coding music systems based on ges-
tural interactions

Our investigation began by examining different systems and practices in musical live coding. We re-
viewed half a dozen live coding systems from the viewpoint of how gestural interactions vary across
different practitioners. A turning point which made us realize the importance of variations in perfor-
mance practices was Marije’s Baalman “Code LiveCode Live”. The interesting characteristic of Mar-
ije’s system is that it is potentially equivalent to a standard live coding system. Particularly, Marije used
SuperCollider language which is commonly used by many live coders. The only difference between a
standard live coding system based on SuperCollider and “Code LiveCode Live” is that Marije activated
the built-in microphone and other sensors of the laptop while typing. In that manner she used the typing
sounds on the keyboard as the raw material of the composition. This action transformed the meaning
of typing in Marije’s system. Typing on a keyboard cannot be seen as a non significant action neither
as not observed. In contrast, typing has now become a musical gesture, which is actually a sound-
producing gesture. That is, it is absolutely significant for the production of the sound. This realization,
demonstrated how different practices may bring about creative acts in potentially equivalent live coding
systems.

In the following section we are discussing the four main systems under investigation. Next, we present
a preliminary visualization of our framework. At the end of this section, we discuss two more systems
which cannot be represented using our framework. A discussion follows including potential future work
and adjustments can be done to fine tune the framework.

3.1. Four systems under investigation
Here, we focus on four idiosyncratic live coding systems by emphasizing on the gestural control. These
are Al-jazzari by Dave Griffiths, stateLogic machine by Diapoulis, Code LiveCode Live by Baalman and
CodeKlavier by Noriega & Veinberg. The motivation was to examine cases where the musical gestures
play an important role in gestural control. As such we included typical cases where the keyboard is used
as the input interface, but also exotic (Diapoulis & Zannos, 2012, 2014) and metaphorical design cases,
like piano performances (Tanimoto, 2017). The aforementioned variations clearly showed that music
systems incorporate design metaphors (Wessel & Wright, 2002). A typical case of a design metaphor
denotes a computer music system that was developed based on some existing musical instrument. For
example, if we map the letters of the keyboard to a MIDI piano this would account as a metaphorical
design. In contrast, literal design setups, like the standard live coding systems, are based on a keyboard
which may inhibit gestural expression in comparison to playing the piano.

3.1.1. Code LiveCode Live
Marije Baalman approached the tackling issue of embodiment within laptop performance by incorpotat-
ing the clicking sounds on the keyboard into her musical composition (Baalman, 2009, 2015). In that
manner, Marije accomplished direct sound to be heard during her live coding performance, as she used
physical data as audio input (Nilson, 2007). That was indeed a novel contribution, although the practi-

1Original quote by Hulteen (1990) state that (p.310) “A gesture is a motion of the body that contains information. Waving
goodbye is a gesture. Pressing a key on a keyboard is not a gesture because the motion of a finger on it’s way to hitting a key
is neither observed nor significant. All that matters is which key was pressed”.

PPIG 2021 DC www.ppig.org

calities of such dual-functionality of the keyboard as both a percussive instrument and a typing UI could
not establish a “normal paradigm” for live coding music performance. In fact, Marije’s apparatus was
not aiming to reach this goal. Most likely her novel contribution was indicating self-referential aspects,
as they unfold, during performance. If this apparatus was meant to be taken literally as a “standard”
for performance, then it would have triggered a parallel co-evolution of novel keyboard setups, UIs and
programming languages.

3.1.2. CodeKlavier
In the same direction the CodeKlavier system (Noriega & Veinberg, 2019), demonstrated a novel live
coding performance setup by employing the clavier of the piano as input interface. The novel contribu-
tion of the “Hello world” performance 2 was that the authors literally executed a hello world program
using the piano as input interface. Whereas this may sound as a “dummy” demonstration, the aim was
to be a proof of concept. Below we will focus on the fourth revision of the system, also known as CK-
alculator3. If we imagine a one-dimensional space of design metaphors (Dahl & Wang, 2010) and literal
design then the CodeKlavier would be on the one end of design metaphor and Baalman’s approach on
the other end of literal design. Moreover, the two systems differ on another dimension. Marije’s design
is agnostic to the significance of keypresses, whereas in CodeKlavier CKalculator design the impor-
tance of keypresses is highly significant to structure the code. By algorithm agnostic we mean that
Marije’s gestures do not have any impact on the algorithm itself. The coder is doing as many gestures
as she likes, she might also do gestures without any temporal contraints and this has no effect on the
algorithmic structure of the program.

3.1.3. Al-jazzari
Contrary to the previous two music systems, Dave Griffiths presented one of the very first systems which
approached live coding from a low-level perspective (McLean, Griffiths, Collins, & Wiggins, 2010). Al-
jazzari is building on a metaphorical design in which a computer game is used as a notation for live
coding. The computational approach relies on evaluating commands from a minimalistic instruction set
and the input interface is a gamepad controller. Here, every user’s action has a significant impact on the
algorithm. This is because a positive edge clock is registering the user’s input in real-time.

3.1.4. stateLogic machine
Diapoulis and Zannos (2012, 2014) presented a low-level computational approach to deal with live
coding. The users’ input is provided on the lowest level of the machine, that is, the bit level. The
machine is a combination of two finite state machines (FSM), a counter and a decoder, and the user
interface is an automaton itself. In the revised version (Diapoulis & Zannos, 2014), the machine was
able to recognize regular expressions and generated a minimal type-3 language, which enumerated seven
words. Here, the design is literal as the performer is providing the input using switches. The actions of
the performer are absolutely significant to the algorithm and the code precedes to the generated music.

3.2. Dimensional framework
One way to evaluate live coding systems is to rely on a multi-dimensional space. Here, we decided to
constrain the proposed framework up to three dimensions. Whereas an orthogonal three-dimensional
system can be misleading, we decided to employ such representation to facilitate the understanding of
the reader. Our intention was to provide a comprehensible visual representation of the framework. Thus,
we engaged in a process of identifying the most important semantic differentials which can reflect the
variations between the systems under investigation.

Our first observation was that the interface design can be either metaphorical or literal. We introduce
here the term “literal design” to denote that the system fulfils the requirements of a standard live coding
system. That is, the interface is based on some sort of electronic components such as switches, key-
boards, circuits and the like. This is the first dimension (X-axis) of the framework as shown in Figure 2.

2CodeKlavier - hello world (Anne Veinberg playing piano and coding at the same time!) https://youtu.be/
ytpB8FB6VTU

3Anne Veinberg, Felipe Ignacio Noriega - The CodeKlavier CKalculator (. . .) | Lambda Days 2019: https://www
.youtube.com/watch?v=0fL40oLU8C4

PPIG 2021 DC www.ppig.org

Here, we assert that the interface design should be reflected to the qualities of gestural interactions.

The second dimension of the framework examines the importance of gestural interactions on the algo-
rithm of the system. For instance, in the case of stateLogic machine every input provided from the user
modifies the algorithm of the system. To provide a more concrete example, here, we have to introduce
a third dimension which has direct manipulation on the lower end and algorithmic complexity on the
upper end. If we imagine a continuous gesture on a tangible interface then this is a direct manipulation
gesture. The question arises, “what if there is an algorithm behind this direct manipulation gesture?”
(Björk, 2021). For this reason, the second dimension of the framework clarifies whether the gesture is
actually significant to the running algorithm or it is agnostic to it. Thus, the second dimension, as shown
on the Y-axis, corresponds to gestural mapping and the third dimension, Z-axis, to user interaction.

The directionality of the axes was designed to represent concrete concepts on the lower end and abstract
concepts on the upper end. This is a cognitive paradigm that shows a directionality from low-level
concepts to high-level concepts. The three basic dimensions on the framework are shown in Table 1.
The dimensions represent some of the basic processes that the live coder is engaged with during the
development of a musical performance system.

Table 1 – Each axis denotes a process which is represented by semantic differentials. The direction-
ality of the axes is composed by low-level concepts on the lower end and high-level concepts on the
upper end.

Process Low-level (concrete) High-level (abstract)
X-axis Interface design literal design metaphorical design
Y-axis Gestural mapping algorithmic significance algorithm agnostic
Z-axis User interaction direct manipulation algorithmic complexity

Finally, as shown in Figure 2 we included a binary dimension as was proposed by Tanimoto (2017). In
a live coding system, either the code preceeds the music (code-first) or the the music preceeds the code
(music-first). Regarding the case of Baalman’s system, we categorize it as a music-first because the
typing sounds are feeded forward to the generated music. Here, we have to highlight that if the performer
does not execute any commands to switch on the built-in microphone of the laptop, then no typing sounds
will be heard. In that manner, the system may also be categorized as code-first. In principle, a more
accurate description would be to go beyond the binary division of code-first and music-first to include
more categories. In this case, Baalman’s system would be a conditional music-first system.

3.3. Beyond the expressive capacities of the framework
Below we present two cases which cannot be represented with the propose framework.

3.3.1. Type-A personality
The piano composition “Type-A personality” was performed during the first international conference in
live coding (Collins & Veinberg, 2015). The pianist is playing the piano but also typing on a keyboard at
the same time. Indicatively, keyboard characters are shown on the score in the video of the performance.
This system cannot be categorized neither as a metaphorical design nor as a literal design. Furthermore,
the gestural mapping seems to be significant to the algorithm but an interview with the either the com-
poser or the performer will shed light to it. For example, if a machine listening component performs
online music analysis then the gestural interactions are significant to the algorithmic. Finally, the system
seems to incorporate only direct manipulation.

3.3.2. Threnoscope
The live coding system “Threnoscope” presented a blend of visual notation coupled to a standard live
coding system (Magnusson, 2014). The implementation was done in SuperCollider and the performer
can use both the keyboard and the mouse for user interaction. In that manner, the system incorporates
both direct manipulation and algorithmic complexity. The gestural interaction is agnostic the algorithm,
although when the performer interacts with the visual notation it can adjust numerical values on different

PPIG 2021 DC www.ppig.org

Figure 2 – Dimensional framework from the viewpoint of gestural interactions. Uppercase charac-
ters “H” and “L” correspond to high-level and low-level concepts for the triad XYZ axes, respec-
tively. Dashed arrows show systems that the code precedes the generation of sound.

parameters.

4. Discussion
We presented a preliminary version of an evaluation framework for musical live coding systems from the
viewpoint of gestural interactions. Musical gestures in traditional music performance have a long history
and the musicians are well-known to be experts of sensorimotor control. A central theme in our study
was to built upon a theoretical background in which the musical activities are seen as nested categories.
Indicatively, music-making incorporates both music listening and musical imagery. An attempt was
made to explain how gestural unfoldings may influence our mental model of the running program. This
may be explained through segmented structures that are realized by auditory percepts, which in return
may influence the fast-forward of gestural interactions. On the level of musical imagery, spontaneous
imagery has shown to influence motor activity (Haueisen & Knösche, 2001), thus, it can be involved in
action planning and execution (Keller, 2012).

A clear distinction between musical live coding systems and practices is made, to facilitate the un-
derstanding of the reader. Interestingly, we presented a case (Baalman, 2009) in which potentially
equivalent systems can bring about different performance practices. Our motivation was to conceptual-
ize how variations in performance practices may contribute to the development of novel systems. The
preliminary nature of the proposed framework is expemplified by two special cases which cannot be
represented in a consistent manner. Furthermore, the three-dimensional representation that was choosen
for visual communication, may be misleadning for the reader as the orthogonality of the axes typically
corresponds to independent concepts.

Furthermore, we introduced the dimension of gestural mapping from the viewpoint of how gestural
interactions may have an effect on the running algorithm. This clarifies the reason that the direct manip-
ulation and the algorithmic complexity are presented as semantic differential concepts.

PPIG 2021 DC www.ppig.org

Future studies should evaluate the validity of the framework, either using quantitative, qualitative or
mixed methods. Indicatively, interview studies can be very beneficial for verifying shared conceptions
among the community of live coders. How such frameworks may benefit the live coding community?
We believe that by offering a conceptual framework based on the viewpoint of gestural interactions
we will facilitate the development of novel performance systems. Engaging into iterative processes by
practicing and making efforts to go beyond the expressive capacities of such frameworks can be only
beneficial for our imagination during performance.

5. References
Baalman, M. (2009). Code LiveCode Live. Retrieved 2021-09-29, from https://marijebaalman

.eu/projects/code-livecode-live.html
Baalman, M. (2015). Embodiment of code. In Proceedings of the first international conference on live

coding (pp. 35–40).
Björk, S. (2021, September). Personal communication.
Collins, N., & McLean, A. (2014). Algorave: Live performance of algorithmic electronic dance music.

In Proceedings of the international conference on new interfaces for musical expression (pp. 355–
358).

Collins, N., McLean, A., Rohrhuber, J., & Ward, A. (2003). Live coding in laptop performance.
Organised sound, 8(3), 321–330.

Collins, N., & Veinberg, A. (2015). “type a personality.” a performance at iclc 2015. Retrieved from
https://www.youtube.com/watch?v=0fX0AymCtgA

Dahl, L., & Wang, G. (2010). Sound bounce: Physical metaphors in designing mobile music perfor-
mance. In Nime (pp. 178–181).

Davidson, J. W. (1993). Visual perception of performance manner in the movements of solo musicians.
Psychology of music, 21(2), 103–113.

Diapoulis, G., & Zannos, I. (2014). Tangibility and low-level live coding. In Icmc.
Escera, C., Alho, K., Winkler, I., & Näätänen, R. (1998). Neural mechanisms of involuntary attention

to acoustic novelty and change. Journal of cognitive neuroscience, 10(5), 590–604.
Gibet, S. (2010). Sensorimotor control of sound-producing gestures. In Musical gestures (pp. 224–249).

Routledge.
Godøy, R. I. (2003). Gestural imagery in the service of musical imagery. In International gesture

workshop (pp. 55–62).
Haueisen, J., & Knösche, T. R. (2001). Involuntary motor activity in pianists evoked by music percep-

tion. Journal of cognitive neuroscience, 13(6), 786–792.
Jensenius, A. R., Wanderley, M. M., Godøy, R. I., & Leman, M. (2010). Musical gestures: Concepts

and methods in research. In Musical gestures (pp. 24–47). Routledge.
Keller, P. E. (2012). Mental imagery in music performance: underlying mechanisms and potential

benefits. Annals of the New York Academy of Sciences, 1252(1), 206–213.
Keller, P. E., & Koch, I. (2008). Action planning in sequential skills: Relations to music performance.

Quarterly Journal of Experimental Psychology, 61(2), 275–291.
Luck, G. (2015, September). Lecture notes in the x-factor in music. University of Jyväskylä, Jyväskylä,

Finland.
Magnusson, T. (2011). Algorithms as scores: Coding live music. Leonardo Music Journal, 21, 19–23.
Magnusson, T. (2014). Improvising with the threnoscope: Integrating code, hardware, gui, network,

and graphic scores. In Nime (pp. 19–22).
McLean, A., Griffiths, D., Collins, N., & Wiggins, G. (2010). Visualisation of live code. Electronic

Visualisation and the Arts (EVA 2010), 26–30.
McLean, A., & Sicchio, K. (2014). Sound choreography<> body code. In Proceedings of the 2nd

conference on computation, communcation, aesthetics and x (xcoax) (pp. 355–362).
Nilson, C. (2007). Live coding practice. In Proceedings of the 7th international conference on new

interfaces for musical expression (pp. 112–117).

PPIG 2021 DC www.ppig.org

Noriega, F. I., & Veinberg, A. (2019). The sound of lambda. In Proceedings of the 7th acm sigplan
international workshop on functional art, music, modeling, and design (pp. 56–60).

Palmer, C. (1997). Music performance. Annual review of psychology, 48(1), 115–138.
Petre, M., & Blackwell, A. F. (1999). Mental imagery in program design and visual programming.

International Journal of Human-Computer Studies, 51(1), 7–30.
Salazar, S. (2017). Searching for gesture and embodiment in live coding. In Proceedings of the inter-

national conference on live coding.
Tanimoto, S. (2017). Challenges for livecoding via acoustic pianos. In 3rd international conference on

live coding. morelia, mexico.
Thompson, W. F. (2015). Music, thought, and feeling: Understanding the psychology of music. Oxford

university press.
TOPLAP. (2005). ManifestoDraft. Retrieved 2021-09-29, from https://toplap.org/wiki/

ManifestoDraft

PPIG 2021 DC www.ppig.org

Paper III

Bottom-up live coding: Analysis of continuous
interactions towards predicting programming

behaviours

G. Diapoulis, I. Zannos, K. Tatar and P. Dahlstedt

Proceedings of the International Conference on New Interfaces for Musical
Expression (NIME).

Auckland, New Zealand. (2022).

https://doi.org/10.21428/92fbeb44.51fecaab

International Conference on New Interfaces for Musical Expression

Bottom-up live coding:
Analysis of continuous
interactions towards
predicting programming
behaviours
Georgios Diapoulis, Iannis Zannos, Kıvanç Tatar, Palle Dahlstedt

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

International Conference on New Interfaces for Musical Expression
Bottom-up live coding: Analysis of continuous interactions towards predicting

programming behaviours

2

ABSTRACT

This paper explores a minimalist approach to live coding using a single input

parameter to manipulate the graph structure of a finite state machine through a

stream of bits. This constitutes an example of bottom-up live coding, which operates on

a low level language to generate a high level structure output. Here we examine

systematically how to apply mappings of continuous gestural interactions to develop a

bottom-up system for predicting programming behaviours. We conducted a statistical

analysis based on a controlled data generation procedure. The findings concur with the

subjective experience of the behavior of the system when the user modulates the

sampling frequency of a variable clock using a knob as an input device. This suggests

that a sequential predictive model may be applied towards the development of a

tactically predictive system according to Tanimoto’s hierarchy of liveness. The code is

provided in a git repository.

Author Keywords

NIME, live coding, tactically predictive

CCS Concepts

•Applied computing → Sound and music computing; Performing arts; •Human-

centered computing → Interface design prototyping;

Introduction
There are two routes to live coding, either a top-down approach which is how the

majority of live coding systems work, or a bottom-up approach which is typically

centered on idiosyncratic setups [1][2][3]. We provide an implementation of a bottom-

up live coding system capable of generating a minimal language based on regular

expressions. We examine whether a bottom-up approach to live coding can inform

programming behaviours from predictions run on user's gestural interactions. Recent

advances in TidalCycles and Extempore, two popular languages for live coding,

demonstrate how artificial intelligence (AI) algorithms can build systems suggesting

code patterns to the user [4][5]. This category of systems can be seen as a tactically

predictive approach to live coding in Tanimoto’s hierarchy of liveness [6].

Such research has not been done in the case of bottom-up systems because these are

still relatively rare. Motivated by this observation, we present an experimental study in

International Conference on New Interfaces for Musical Expression
Bottom-up live coding: Analysis of continuous interactions towards predicting

programming behaviours

3

which we simulate simple gestural interactions (turning a knob, or adjusting a slider)

to guide a lexical analysis process based on bottom-up computations. This experiment

is based on a hardware as well as a software prototype. The interaction was conducted

on the lowest level of information theory, i.e. the level of individual bits. First-person

experiences indicate that this prototype affords intentional control to a certain extent.

Furthermore, earlier work suggests that interactive exploration is the way to go [7][8].

We present an algorithmic implementation and a git1 repository along with an

exploratory data-driven analysis on the generated sequences. For the data analysis, we

conducted a controlled data generation process to examine any statistical

dependencies of the system and explore possibilities for future developments. Our aim

was to explore the statistical dependencies of the system over continuous gestural

interactions, towards a tactically predictive level of liveness [6].

In this paper, we explore an alternative approach in the interpretation of a data stream

provided by a continuous controller. Instead of using this stream as continuous control

for a parameter [9], we use it as discrete input in an algorithm to modify the graph

structure of the algorithm [10]. We propose a radically simplified interface, with far

less visual information elements than our original design. The new design, instead of

exploiting “experiences of visibility” and “experiences of meaning” explores aspects of

interactivity, like fluidity of actions [11].

The goal is to explore the statistical properties of the generated sequences of tokens

and examine how to use them in redesigning an interactive musical prototype. The

user interface providing input to the machine is composed of a single potentiometer

(knob). We explore firstly the outward behavioral characteristics of the machine, i.e.

the shapes of streams that it produces in response to shapes of input. That makes

possible to devise various scenarios for creating sound based on the output stream.

Related work
Typical live coding systems rely on the level-4 liveness, which is described as

“informative, significant, responsive and live” [6]. The level-5 liveness is called

“tactically predictive” and presented for the first time in the revision of the hierarchy.

An example of a tactically predictive system is the autocompletion mode, a feature of

modern text editors. Attempts towards a level-5 in live coding systems were recently

presented [4][5]. Our aim is to examine whether a bottom-up approach to live coding

may afford interactions which can be classified as tactically predictive.

International Conference on New Interfaces for Musical Expression
Bottom-up live coding: Analysis of continuous interactions towards predicting

programming behaviours

4

Continuous interaction in live coding

Previous work on continuous musical interactions in live coding ranges from

parameter adjustments [9] to approximate programming [10]. The latter explores

binary trees interactively by means of continuous gestural control. Baalman [12],

experiments with continuous control in live coding performance and develops an

environment called GeCola. Armitage and McPherson [13] present a physical

prototype based on a stenotype machine, in which continuous sensory input is used for

parameter adjustments.

Low-level computing in live coding

Bottom-up approaches to live coding have been presented since Dave's Griffiths

Betablocker [1][2]. This video game system is based on assembly instructions for live

coding. Reus [3] presents a more radical approach which intervenes on the

motherboard of an iMac computer to rewire its internal computing components.

Diapoulis and Zannos presented a hardware prototype along of a modulo-8 function

implementation coupled to a variable-length Huffman decoder [7]. In a follow-up study

[8] they developed an equivalent interactive software interface and implemented a

high-level component capable of generating a regular language. The next step to these

developments would be to map the tokens to an instruction set and a corresponding

computer architecture. Here, we investigate how to map the 7 tokens to the

instruction set presented by Collins [14].

Psychology of programming

The physical and virtual prototypes of our initial design relies on experiences of

visibility and meaning [11]. More specifically, all the information was visible, which

makes the process transparent, but can also overload the user with information. Here,

we discuss how to exchange such decisions with designs that foster interactivity. The

decision to limit the interaction to a single knob encourages fluid gestural interactions.

Visual components such as the current input value can be replaced with a continuous

line representing the knob adjustments.

Methods
Below, we focus on the system design and we present the algorithm description along

with one of the main features that enabled the continuous interaction, here called

secondary variable clock. In the second part of the methods, we describe the data

generation and the statistical analysis. Following up on our previous studies [7][8], we

International Conference on New Interfaces for Musical Expression
Bottom-up live coding: Analysis of continuous interactions towards predicting

programming behaviours

5

introduce a novel 1-to-1 mapping which enables the use of a single knob to generate a

formal language.

Our statistical analysis simulates four main scenarios. These occur out of all

combinations of either a smooth and steady gesture or a sudden and unexpected

gesture in an ascending or a descending direction. We run our simulations on a faster

clock cycle than the clock cycle of the initial prototype, and we select a range which

may be realized on a physical prototype. Our initial software and hardware prototypes

rely on 0.5 seconds clock cycle for the primary fixed clock.

System design

We employed three main algorithms: i) A fully-connected graph, inspired by a 3-bit

counter operating on two’s complement, which is the equivalent to the modulo 8

function (see Image 1); ii) a variable length Huffman decoder, implemented as a FSM

with three states, equipped with one-hot entropy encoding (combinational logic); and

iii) an algorithm which performs lexical analysis based on regular expressions. Inspired

by our motivation to generate a bottom-up approach to live coding using continuous

gestural interactions, we used the output of the decoder to modify the input of the 3-

bit counter. This decision enabled us to overrun the push buttons for registering the

input to the 3-bit counter, and employ a single knob providing the input values

instead. We applied 1-to-1 mapping of the encoder's output to the input of the

counter. From the 8 values (0-7) of a 3-bit word, we use only the four uneven ones (1,

3, 5, 7) to eliminate the possibility of infinite length sequences during the tokenization

process.

Image 1

High level diagram of the system. From left to right: (i) 3-bit counter, (ii) Huffman

decoder, (iii) Lexical analysis.

International Conference on New Interfaces for Musical Expression
Bottom-up live coding: Analysis of continuous interactions towards predicting

programming behaviours

6

Algorithm description

Pseudocode

Table 1: The four symbols variable-length encoding and the 1-to-1 mapping to the 3-

bit counter input values.

Table 1

Provide input using a knob

 The knob controls the period of a 3-bit counter (secondary variable clock)

 The secondary variable clock may span from 0.5x f_s - 20x f_s

The 3-bit counter is initialized, see (i) Image 1

 The values are registered by the primary fixed clock

 It operates at 1x clk

 Initialization conditions do not radically change the system's behaviour

 Its input is controlled by the 1-to-1 mapping of the encoder's output

 Some symbols may be discarded due to the variable length encoding and the 1x clk

 Only uneven digits are used as input to the counter (1, 3, 5, 7)

 To avoid infinite length sequence in the lexical analysis

 The counter outputs 3 bits at a time

 The output is serialized and fed to the decoder

The Huffman decoder operates at 3x clk (ii)

 The machine operates on variable-length bit streams

 The input to the decoder is 1 bit at a time

 The 3x clk is used to avoid an accumulated stream of bits

 The encoder's output is a stream of symbols

 Feedback channel between the output and the input of the counter (1-to-1 mapping)

 Outputs 4 symbols (A, B, C, D), or bytes

 The encoding is entropic and context-free

The lexical analysis component is serially fed from encoder's output (iii)

 A POSIX expression is generating tokens (words)

 Symbol A mapped to empty string

 The language implementation is noisy

 The input of uneven digits secure a finite length sequence of each token

 The token generation has a variable length of symbols

 List of tokens:

 D

 B+D

 C+D

 (B+C+)+D

 (C+B+)+D

 (B+C+)+B+D

 (C+B+)+C+D

Symbol Binary code 1-to-1 mapping

A 0 1 (001)

B 10 3 (011)

C 110 5 (101)

D 111 7 (111)

International Conference on New Interfaces for Musical Expression
Bottom-up live coding: Analysis of continuous interactions towards predicting

programming behaviours

7

Data generation

The data are generated offline. We simulated four different scenarios of continuous

gestural interactions, which can be performed using a knob. These scenarios occur

from all combinations of linear and exponential envelopes with either increasing or

decreasing values (see Table 2). Together with the four aforementioned combinations,

we also examined the effect of different secondary variable clock rates ranging above

or below the Nyquist frequency. Specifically, we generated data for six secondary

variable clock rates (0.5×, 1×, 2×, 5×, 10× and 20× fs) and one controlled variable in

which we run the simulations based on only the primary fixed clock rate.

Table 2: Experimental design for the data collection. A design of 2×2 combinations of

simulation scenarios for each experimental condition. A total of 7×20 runs were

collected for the exploratory data analysis (see an example on Table 3). The rightmost

column “Tokens” shows the total number generated across all experimental conditions.

The primary fixed clock condition is a controlled variable that is independent of the

secondary variable clock. The simulation scenarios are the four possible pairs

occurring from combinations between the Gesture type and Envelope type parameters.

Table 2

We generated 20 different sequences for each experimental condition as shown in

Tables 2 and 3. Each sequence simulates an actual duration which may be applied in

the context of the interactive prototype ranging from 6.25 to 125.0 seconds. If we

Experimental

condition

Gesture type Envelope type Tokens

Primary fixed clock - - 0

Variable clock (0.5×fs) ascending/descending linear/exponential 0

Variable clock (1×fs) ascending/descending linear/exponential 82

Variable clock (2×fs) ascending/descending linear/exponential 645

Variable clock (5×fs) ascending/descending linear/exponential 1190

Variable clock (10×fs) ascending/descending linear/exponential 1462

Variable clock (20×fs) ascending/descending linear/exponential 1007

International Conference on New Interfaces for Musical Expression
Bottom-up live coding: Analysis of continuous interactions towards predicting

programming behaviours

8

assume that the typical duration of the clock cycle is 0.5 seconds, this corresponds to

a minimum of 12 clock cycles in the interactive prototype. The generated sequences of

tokens have a variable length as indicated in the rightmost column of Table 3. The

sampling frequency during the offline data generation was 50Hz and the duration of

the experiment has a simulation range 0.25 - 5.0 seconds, with a step of 0.25 seconds.

The simulated envelopes have a lower boundary 0.01×fs, whereas the upper boundary

is determined by the experimental condition.

Image 2 shows the data generated by the counter, under the four simulation scenarios

of linear/exponential envelopes and ascending/descending direction of movements

(gestures), when the output from the Huffman decoder modifies the increment value of

the counter.

Image 2

Output values of the counter are shown for the four simulation scenarios.

International Conference on New Interfaces for Musical Expression
Bottom-up live coding: Analysis of continuous interactions towards predicting

programming behaviours

9

Results
Each of the four simulated scenarios (ascending/descending gestures,

linear/exponential envelopes) produces outputs with distinct characteristics

independently of the length of the gesture. The statistical analysis identified a

relationship between the type of envelope (linear vs exponential) and the differences in

the characteristics of the output, which is the number of tokens per second produced.

This can be a valuable insight for redesigning the interactive prototype. Finally, the

individual token frequencies do not show large variations across experimental

conditions and simulation scenarios.

Table 2 shows that the experimental conditions of the primary fixed clock and the

secondary variable clock at 0.5×fs did not produce any tokens. We examined all

remaining experimental conditions (1×, 2×, 5×, 10×, 20×fs). We excluded 1×fs from

the analysis as it produced very few tokens across the simulation scenarios, and would

be impossible to use for interactive experimentation. From the three remaining

conditions of 5×fs, 10×fs and 20×fs, the exploratory analysis indicates that both the

5×fs and 10×fs are more informative experimental conditions for interactive

experimentation. This is indicated in the variability of the boxplots in Image 3, as for

the case of 20×fs the corresponding simulated scenarios demonstrate overlapping

distributions.

Image 3 (boxplots) shows how the token generation differs based on different

experimental conditions and simulation scenarios. It indicates that the simulated

scenario 5×fs can be a better option for the development of a tactically predictive

system. This is because there is a clustering of values for the families of linear and

exponential envelopes. In practice, this can be implemented when the live coder is

overwhelmed with too many token generations. That is, a sudden and unexpected

gesture will most likely result in an average token generation of 0.1 tokens per second,

whereas in the case of a linear envelope the token generation occurs approximately

0.3 times per second. Thus, by employing a sudden gestural interaction, the user may

 generate one token every 10s, instead of one token every 3s for the case of a smooth

and steady gesture. This system’s affordance will provide some time to the user to

examine how to proceed to the next token generation, as this would be realized in a 20

clock cycle on the interactive prototype.

International Conference on New Interfaces for Musical Expression
Bottom-up live coding: Analysis of continuous interactions towards predicting

programming behaviours

10

Generated sequences for simulated scenarios

Table 3 shows the length of the generated tokens for the experimental condition of

5×fs. The second column denotes the actual duration in seconds assuming a clock

cycle of 0.5s. We selected lower end 6.25s for the actual duration to avoid zero-length

sequences, while considering a reasonable minimum time span for applying effortful

computations. Our short-term musical memory has an upper time-span of 3-5s [15],

and thus 6.25s is close enough for expert user interaction.

Image 3

Boxplots showing the number of generated tokens per

second for three different experimental conditions (5x, 10x,

20x fs) and simulation scenarios (‘lin’ for linear and ‘exp’ for

exponential envelopes; ‘asc’ for ascending and ‘des’ for

desceding gestures).

International Conference on New Interfaces for Musical Expression
Bottom-up live coding: Analysis of continuous interactions towards predicting

programming behaviours

11

Table 3: Number of tokens for the 5×fs experimental condition. The columns show the

results for the 20 runs for each simulation scenario.

Table 3

Run

(sequence)

Actual

Duration (s)

Linear

Ascend

Linear

Descend

Exponential

Ascend

Exponential

Descend

1 6.25 2 2 1 1

2 12.5 6 4 1 1

3 18.75 6 7 1 2

4 25.0 5 10 0 2

5 31.25 13 16 3 5

6 37.5 14 13 5 6

7 43.75 11 17 2 8

8 50.0 15 18 5 3

9 56.25 20 19 8 6

10 62.5 19 20 7 8

11 68.75 21 20 6 4

12 75.0 31 22 9 9

13 81.25 27 28 5 11

14 87.5 25 26 6 11

15 93.75 33 34 9 9

16 100.0 33 32 9 13

17 106.25 34 31 16 12

18 112.5 40 42 14 15

International Conference on New Interfaces for Musical Expression
Bottom-up live coding: Analysis of continuous interactions towards predicting

programming behaviours

12

Frequencies of tokens

Table 4 demonstrates that the frequencies of the generated tokens do not show

variations across different simulation scenarios.

Table 4: Frequencies of tokens. Column 1 shows the simulation scenarios; ‘lin’: linear

envelope, ‘exp’: exponential envelope, ‘asc’: ascending gesture, ‘des’: descending

gesture.

Table 4

While being simplistic and noisy, this regular language implementation already affords

an easy manner to make predictions. When the first symbol of a token sequence is

being processed and is either a B or a C, then the search space of the expected tokens

is immediately reduced to 3 out of 7 possible outcomes. This observation implies an

inherent notion of a “tactically predictive” system, as the programmer can be

presented with the future possibilities, although without having immediate control to

select any of them.

The predictability was tested subjectively by the first author through experimentation,

who concluded that it was relatively easy to predict which tokens will be excluded by

the system.

19 118.75 44 40 14 17

20 125.0 47 40 22 19

5×fs D B+D C+D (B+C+)+D (C+B+)+D (B+C+)+B

+D

(C+B+)+C

+D

lin/asc 0.26 0.27 0.07 0.13 0.09 0.15 0.02

lin/des 0.31 0.26 0.07 0.12 0.11 0.10 0.03

exp/asc 0.31 0.20 0.08 0.10 0.07 0.20 0.03

exp/des 0.34 0.24 0.09 0.12 0.12 0.06 0.02

International Conference on New Interfaces for Musical Expression
Bottom-up live coding: Analysis of continuous interactions towards predicting

programming behaviours

13

Discussion
We presented a bottom-up live coding system and identified its affordances potentially

presenting embodied meanings. We examined four pairs of simulation scenarios, as

these occur out of the combinations of ascending and descending gestures, which may

be either smooth and steady (linear envelope) or sudden and unexpected (exponential

envelope) movements. Statistical analysis showed that two clusters are formed across

the linear and exponential envelopes. This indicates that a tactically predictive model

may rely on such ground truth knowledge. Moreover, a tactically predictive bottom-up

system should not only predict the next token, but also provide an estimate of when

this token will be produced. Finally, continuous interactions may also carry meaning in

the form of embodied metaphors [16]. Such human universals are particularly

important when motivated by inclusion and accessibility in design.

We examined aspects of the interactive prototype and we indicated that a redesign

should be based on fostering aspects of interactivity of the interface such as fluidity of

actions (see Image 4). A detailed analysis of the interface should be carried out based

on the patterns of user experience framework [11]. While such endeavour goes beyond

the scope of the study, many different aspects may be affected, like the clock period,

visual displays and more. Different formal language implementations may also be

examined so as to compensate for the noisiness of the proposed regular language used

here. This implementation can take advantage of previous developments by mapping

Image 4

Left-hand side shows the GUI from the initial prototype [8]. Right-hand side

shows a preliminary redesign, where the token displays may dynamically change

in size and color to indicate probabilities for the next token.

International Conference on New Interfaces for Musical Expression
Bottom-up live coding: Analysis of continuous interactions towards predicting

programming behaviours

14

both the tokens and the continuous knob values to an instruction set used for

interactive musical experimentation [14].

Conclusions
We conducted a data-driven statistical analysis based on controlled simulations of

simplified continuous gestural interactions to examine whether a tactically predictive

module for a bottom-up approach to live coding can be implemented. Early evidence

suggests that different gestural manners can modify the rate of change of the lexical

analysis process using a single knob as input device. Future work is required to

analyse dependencies between the variable length sequences of tokens and how these

are related to the counter values and envelope shapes, to assess the predictive

potential of this system.

Ethical statement
The present study follows ethical principles of open and free software along with low

consumption on computational resources. No human participants were recruited on

this study. Also, the proposed version for redesigning the hardware and software

prototype is considering accessibility in design. Admittedly this ability depends on a

deep familiarity of the inner mechanism of the system, which requires solid grounding

in the theory of finite state machines and digital design. However, the authors believe

that this is a first step towards making such systems more generally accessible. The

authors report no potential conflict of interest. This work was partially supported by

the Wallenberg AI, Autonomous Systems and Software Program – Humanities and

Society (WASP-HS) funded by the Marianne and Marcus Wallenberg Foundation and

the Marcus and Amalia Wallenberg Foundation.

Footnotes

Citations

1. https://github.com/gewhere/bottom-up-live-coding ↩

1. Bovermann, T., & Griffiths, D. (2014). Computation as material in live coding.

Computer Music Journal, 38(1), 40–53. ↩

2. McLean, A., Griffiths, D., Collins, N., & Wiggins, G. (2010). Visualisation of live

code. Electronic Visualisation and the Arts (EVA 2010), 26–30. ↩

International Conference on New Interfaces for Musical Expression
Bottom-up live coding: Analysis of continuous interactions towards predicting

programming behaviours

15

3. Reus, J. (2011). iMac music. Retrieved from

https://jonathanreus.com/portfolio/cmmbe/ ↩

4. Attanayake, U., Swift, B., Gardner, H., & Sorensen, A. (2020). Disruption and

creativity in live coding. In 2020 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC) (pp. 1–5). ↩

5. Wilson, E., Lawson, S., McLean, A., Stewart, J., & others. (2021). Autonomous

Creation of Musical Pattern from Types and Models in Live Coding. ↩

6. Tanimoto, S. L. (2013). A perspective on the evolution of live programming. In

2013 1st International Workshop on Live Programming (LIVE) (pp. 31–34). ↩

7. Diapoulis, G., & Zannos, I. (2012). A minimal interface for live hardware coding.

Live Interfaces. ↩

8. Diapoulis, G., & Zannos, I. (2014). Tangibility and low-level live coding. In ICMC. ↩

9. Magnusson, T. (2014). Improvising with the Threnoscope: Integrating Code,

Hardware, GUI, Network, and Graphic Scores. In NIME (pp. 19–22). ↩

10. Kiefer, C. (2015). Approximate Programming: Coding through Gesture and

Numerical Processes. In Proceedings of the First International Conference on Live

Coding, ICSRiM, University of Leeds. ↩

11. Blackwell, A. F. (2015). Patterns of user experience in performance

programming. In Proc. First International Conference on Live Coding. ↩

12. Baalman, M. (2020). the machine is learning. Live Interfaces. ↩

13. Armitage, J., McPherson, A., & others. (2017). The Stenophone: live coding on a

chorded keyboard with continuous control. International Conference on Live Coding.

↩

14. Collins, N. (2015). Live Coding and Machine Listening. In Proceedings of the

International Conference on Live Coding (pp. 4–11). ↩

15. Snyder, B., & Snyder, R. (2000). Music and memory: An introduction. MIT press. ↩

16. Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: Univ. Press,

Chicago/IL. ↩

Paper IV

Livecode me: Live coding practice and
multimodal experience

G. Diapoulis

Proceedings of the 33rd Annual Workshop of the Psychology of Programming
Interest Group (PPIG).

London, UK. (2022).

Livecode me: Live coding practice and multimodal experience

Georgios Diapoulis
Interaction Design

Chalmers University of Technology,
University of Gothenburg

georgios.diapoulis@chalmers.se

Abstract
I present a practice-led research design to explore relations between listening and non-listening condi-
tions during a month-long live coding practice. A documentation of the live coding sessions and textual
data from my daily diaries are presented in a git repository. The study offers a set of observations related
to musical and programming practices, an ongoing work on a visual helper and outlines issues related to
solo live coding practice.

1. Introduction
A central component of musicianship is diligent practice. Musical practice is a daily activity that mu-
sicians do, and the same applies to live coding. Musical live coding uses on-the-fly computer programs
to generate sound patterns (Collins, McLean, Rohrhuber, & Ward, 2003). It can also be seen as an ap-
proach to experience composition while composing musical outcomes (Sorensen & Brown, 2007), and
it is an improvisational practice. A significant difference between learning how to live code and learn-
ing how to master composition or instrumental music performance is that there is no school to learn
how to live code, except a wiki page on TOPLAP website 1. Learning by example and trial-and-error
problem-solving technique is at the heart of every live coding practice. Click Nilson, a persona of Nick
Collins, contributed the first study on live coding practice and proposed a set of exercises for improving
coding and musical expertise (Nilson, 2007). He addressed these topics by consulting developmental
and educational psychology literature studies and carried out a month-long daily practice with Fredrik
Olofsson.

My perspective was to carry out daily practice sessions, having in my mind how a novice user would
explore live coding. The primary motivation was to improve my musical live coding skills and explore
the role of music listening during live coding practice. To explore the role of listening in the context of
multimodal perception, I conducted daily sessions with listening and without listening to the generated
sounds. The latter was done by muting the soundcard’s audio output to the speakers. Listening to the
sound while coding is an indispensable part of live coding practice (A. F. Blackwell & Collins, 2005).
I posed the question, what if the live coder does not listen to the sound? Thus, I experienced whether
listening to the generated sound patterns may help me to understand the written code and benefit my live
coding practice.

For the present study, I carried out daily solo live coding sessions. At times it felt like a conversation with
myself (Gamboa, 2022), but also a familiar thing to do as I have been practising musical instruments
for many years. For the live coding sessions I used SuperCollider 2, a programming environment for
sound synthesis and algorithmic composition, and documented temporally accurate representations of
the coding sessions. Every day I conducted both listening and non-listening sessions, and I wrote short
diary entries at the end of the day, sometimes listening the sessions afterwards by replaying the code
recording.

Multimodal experience in live coding studies has been approached from an audience perspec-
tive (Burland & McLean, 2016). In this article, I focus on the subjective experience of the live coder.
Contrary to Burland and McLean (2016), who discuss how audio-visual information facilitates audience

1https://toplap.org/wiki/Live_Coding_Practice
2supercollider.github.io/

PPIG 2022 216

aesthetic experience, my focus was how audio-visual information could be useful for the performer.
Thus, instead of focusing on audience appreciation and enjoyment, I focus on the relation between the
auditory and visual percepts of the live coder. How can I get informed when I do not listen to the mu-
sical outcome? For that purpose, I explored how visual information from the audio spectrum analyzer,
a visual representation of the magnitude of a signal as a function of frequency, can be helpful for the
performer.

This study is focused on reproducing the methodology of the seminal practice sessions by Collins and
Olofsson and is also influenced by the methodological approach presented by Blackwell and Aaron
(2015). It is a practice-led research approach, which can be seen as an extended concept of research
through design. By focusing on the four elements by Blackwell and Aaron (i.e., identifying design
exemplars, critical orientation, exploratory implementation, and reflective assessment), I contribute a
code repository of the coding sessions and reflections related to musical and programming practices,
multimodal perception and general issues related to the activity of practising live coding alone.

2. The practice of musical live coding
The computer can be seen as the ’natural tool’ of electronic music (Nilson, 2007). During a live coding
session, the code is translated to musical outcomes, and the musicians constantly listen to the gen-
erated sounds (A. F. Blackwell & Collins, 2005). Collins presented a month-long live coding prac-
tice session along with Fredrik Olofsson. The practice sessions were conducted in SuperCollider, and
the documentation of the self-administered daily sessions of unaccompanied solo practice is available
online (https://swiki.hfbk-hamburg.de/MusicTechnology/819). During this month-
long practice, the two live coders had different approaches. Collins had a daily plan and exercised
specific algorithmic problems, like the 3x + 1 problem, whereas Olofsson did not have a specific plan
per day. The sessions were ’blank slate’, meaning there was no pre-written code to be executed. The
goal of both coders was to practice one hour per day. That is, one hour-long practice sessions simulating
a performance setting. Collins sums up his contributions on three main aspects: (i) isolation exercises,
(ii) connectivity exercises, and (iii) repertoire implications. Isolation exercises are activities that a live
coder can carry out alone and do not necessarily relate to musical practice. Examples include practis-
ing fast typing or solving mathematical problems. Connectivity exercises are music-related and address
issues the live coder has to confront during a live session. These connectivity exercises may include
controlling musical tension, mixing audio signals, and so on. The third aspect of, what I call, repertoire
implications addresses issues such as code sharing in laptop ensembles, among others.

Sorensen and Brown (2007) report five computational techniques used during live coding practice. These
techniques are generic and can be extended to different aspects of electronic music, like using probability
functions, periodic functions and modulo arithmetics, among others. They elaborate on the programming
practices during live coding, such as code expansion, function abstractions and keyboard shortcuts.
Collaboration and communication are two live coding practices that are also essential. Collaborative
live coding has also been a risk management technique (Roberts & Wakefield, 2018). In my month-long
practice, I did not do any collaborative sessions. On the communication aspect, I communicated my
daily practices with various people, from academics to practitioners and non-musicians. However, I feel
I should have been more systematic in this.

Magnusson (2015) explored notational aspects of live coding practice. Magnusson identifies a difference
between prescriptive and descriptive aspects of visual notations and offers a solution to the problem
of making a connection between code representations and temporal representations of musical events.
Another approach to visualisation of musical forms have been recently presented (Dal Rì & Masu,
2022), either as a linear temporal evolution or as clusters showing event density per family of sounds.
The authors suggest that these two visualization techniques can be complementary to each other, and
reflect on issues related to attention span between coding and visual representations of musical form.

PPIG 2022 217

2.1. Psychological aspects of live coding practice
The present study offers a perspective in which the user’s task is unlike the ’normal model’ of live
coding practices (A. F. Blackwell & Collins, 2005). The normal model of musical live coding involves
listening to the sound while simulating a performance setting. Still, I conducted at least one session
daily without listening to any sounds. Consequently, it contributes to the literature with a use case where
the user’s needs are unlike the needs of a live coder. In that manner, I present an unusual case of live
coding practice that is unlike previous research in the field. The outcome of this study is compiled by
examining the reflective diaries, and I discuss how the non-listening condition can benefit or hinder a
live coding session.

3. Design of the study
The design of the study is simulating a performance setting, similar to Collins and Olofsson. By perfor-
mance setting, I refer to a continuous live set with a predetermined minimum duration and a continuous
evolution of sound patterns. There was no systematic preparation before each session, and in most cases,
no preparation. All practice sessions were ’blank slate’ live coding, that is, with no use of pre-written
code. That was my main design exemplar, and I conducted a pilot and an experiment proper (A. F. Black-
well & Aaron, 2015). The study was conducted in two parts, a pilot study took place in August 2022 and
a proper one in October 2022. A series of 12 daily live coding sessions were carried out during August,
and a month-long daily practice was carried out in October. The experimental designs were different as
an outcome of the post-proceedings policy of the PPIG conference.

Part of the critical orientation (A. F. Blackwell & Aaron, 2015) is reflected in the experimental design
which was influenced by the seminal study of Davidson (1993) on the perception of expressive per-
formance. This critical orientation led me to question how music listening is useful to the performer.
Davidson (1993) designed a study in which she assigned expressive manners to violinists and recorded
both video and audio recordings. Later, for validating the expressive manners Davidson conducted a per-
ceptual experimental showing stimuli of full-body movement from the violin performances. Part of the
methodological novelty of the study was that the stimuli were based either on visual information only,
audio information only, or showing both audio-visual information from the violin performances. In that
manner, Davidson controlled the perceptual channels demonstrating that the visual channel can bias our
perception of expressivity in music performance. Here, I applied a similar orientation and designed a
listening and a non-listening condition, but without assigning any expressive manners or specific tasks
during my practice.

During the pilot practice sessions in August, I did three daily sessions of 500 seconds each (36 indepen-
dent sessions in total). This is approximately 8 minutes, considered a short duration for a live coding
performance. The three conditions of the August daily sessions are coded in the file names of the prac-
tice sessions as ’No-Audio Level meter’ (NAL), ’No-Audio Spectrum’ (NAS), and ’Audio-Visual’ (AV)
conditions. Both NAL and NAS sessions did not include any audio, as I muted the audio from the sound
card to the loudspeakers. The NAL sessions were conducted without audio from the loudspeakers, and
the only informative cues about the generated sound patterns came from a stereo sound level meter (see
Figure 1). The NAS sessions were also conducted without any auditory cues, and the visual cues in-
cluded both a sound level meter and a spectrum (see Figure 2). During the AV sessions, I could listen
to the generated sound patterns and see the visual cues coming out of the sound level meter and the
spectrum (see Figure 2).

During the pilot study in August, I focused on a controlled experimental design, and I also aimed to
control the listening and acoustic conditions. By controlled conditions, I refer to designing a daily plan
about the order of the listening conditions (NAL, NAS, AV), but also to control the sound levels from
the computer to the listener. In that manner, I used a MacBook Pro laptop, reproducing the generated
sounds from the built-in loudspeakers on maximum levels. I realised that this experimental setup and
a controlled experimental setup could be challenging to provide fruitful results for my study. After the
PPIG conference and my presentation, I received valuable feedback, which made me redesign the ex-

PPIG 2022 218

Figure 1 – Pilot experimental setup in SuperCollider for the NAL condition.

perimental setup. The main change was to discard the NAL sessions, as I found them uninformative
and maybe annoying. That phase can be seen as the exploratory implementation (A. F. Blackwell &
Aaron, 2015). During the experiment proper in October, I did not attempt to control the acoustic condi-
tions. Thus, when I refer to listening to the sound output, I may interchangeably refer to listening from
loudspeakers or headphones.

During the month-long experiment in October, I conducted two sessions (AV and NAS) per day of
at least 1500 seconds each, by swapping the order of the first and second session every day. This is
equivalent to two 25 minutes sessions per day, which is considered an adequate duration for a live
coding performance. I manually monitored the duration of every session, and I did not set a hard limit
on finishing the sessions. Contrary, during the August sessions, I had programmatically set a hard limit
to finalise the sessions after the 500 seconds time limit. For the pilot study in August, every session was
catalogued with an audio recording and a timestamped text file showing every code execution. For the
experiment proper in October, the audio recordings were not conducted, mainly due to large allocations
of memory storage.

The code was captured using the History class of SuperCollider. This class can provide reproducible
live coding sessions in terms of code executions and audio output. The collected data are timestamped
scripts, in the format of plain text files (*.scd files), for SuperCollider.

Short-length reflections were written about the daily sessions. The length varies but is no more than
200-300 words per day. Some daily diaries are as short as 1-2 sentences, especially during the October
sessions. It is difficult to distinguish whether they can be considered reflective diary entries or note-
taking prompts. Complete documentation of the code and the diaries is provided online (https://
gitlab.com/diapoulis/livecodeme/).

3.1. Visual helper to aid creativity
Part of the experimental design includes a graphical interface (GUI) as a visual helper, as shown in the
top-left of Figure 1 and Figure 2. It is a simple helper device that emulates using Post-it notes on the
screen (A. Blackwell & Green, 2003). My motivation was to have some visual aid that shows various
unit generators (UGens), and get inspiration when building sound synthesis engines. A UGen is the
basic building block for sound synthesis engines in many programming languages. SuperCollider has
a plethora of UGens, either in the main library or as third-party developments, which makes difficult
to recall each one of them. My idea was to begin from a visual helper which could potentially be
developed into a software agent. As shown in Figure 1, the initial implementation was done by simply

PPIG 2022 219

randomising a list of UGens and printing them on a GUI. Initially, I used a dense matrix format, with
dimensions 13x6, refreshing the GUI every 50 seconds. During the pilot study, I selected a constrained
set of UGens to be used across the study. The initial list had 128 entries, and I manually selected basic
signal generators (like sine and noise oscillators), routing UGens, filters, triggers and envelopes. I found
this family of UGens to be limiting my coding practice.

During the study, the GUI did not change significantly. I kept its main passive functionality, and I
reduced drastically the amount of UGens shown at a time. During the experiment proper the GUI was
showing 8 UGens at a time, and it was updated every 30 seconds (see Figure 2). Some preliminary
research on how this can be developed into a software agent was done and is discussed across the
diaries. Some of the early conclusions came out of the pilot study, which was to transform the GUI to
a ’disruptive’ software agent (Attanayake, Swift, Gardner, & Sorensen, 2020), that induces or simply
replaces code segments with UGens of similar functionality. This part of the study is still a work in
progress.

Figure 2 – Experiment proper setup in SuperCollider for the NAS and AV conditions.

3.2. Overall comments on the experimental setup
After my initial attempt to do a controlled study, I feel that I shifted to the other end of having no
constraints set in place. Initially, I was inspired from the approach by Fredrik Olofsson while doing the
month-long practice sessions with Nick Collins, and did not have a specific coding daily plan. Later
I realised that Fredrik Olofsson had also imposed a set of constraints to another practice session that
conducted with Marcus Fjellström 3. In these sessions Olofsson used a single synth definition across all
sessions. That is radically different from my experimental design, where I experimented with coding
synth representations for sequencing, sound generation, control structures, machine listening among
others.

4. Looking into the sound
The design of the study affords an alternative view to live coding. While playing music without listening
to it sounds like a no-go, this is the main contribution of this study. Thus, I here present a reflective
assessment compiled from the daily diary entries (A. F. Blackwell & Aaron, 2015).

4.1. Reflections from experience
It goes without saying that musical live coding without listening to the sound can hardly be a rewarding
activity. Musicians use sound as the primary informative cue during a performance, and I have never

3https://fredrikolofsson.com/f0blog/pact-april/

PPIG 2022 220

attended a concert where the performers intentionally choose not to listen to the sound. During my non-
listening practice sessions, I was sometimes curious to hear what the musical outcome sounded like, and
I did sometimes unmute momentarily during the pilot study. During the experiment proper, I did not
unmute the non-listening condition, instead, I listened to some of the code recordings after the end of
the sessions. It is out of the question that when you live code and do not listen to the sound there are
limited possibilities of what can be perceived from the musical outcome. For instance, if I program a sine
oscillator and assign a specific frequency, I need perfect pitch to be able to ’hear’ how the outcome may
sound like. All in all, the only informative cue when non-listening to the sound can be reconstructed
by imaging the musical outcome. Musical imagery is a valuable musical ability but it may be a less
engaging activity in comparison to music listening. That is, we can be really engaged when listening to
the music, and this may be expressed with overt bodily movements, such as dancing, whereas it is less
likely to start dancing when imagining a melody of a song.

While live coding does not include any direct involvement between the sound energy and the performed
actions, when listening to the sound we may be able to simulate sound actions (Jensenius, 2007, p. 19).
Even if there is no direct link to any profound sound actions from daily experience or if the sounds are
completely synthetic, we are still able to dance to the beat and produce synchronised bodily movements.
The same cannot apply to visual percepts, as we generally perform better in audio-motor synchonisation
tasks in comparison to visuo-motor tasks (Hove, Fairhurst, Kotz, & Keller, 2013). Thus, there is an
embodied understanding that makes the sound and vibration an indispensable part of music making.

4.2. Reflections from the diaries
In the diaries, I found mixed feelings about the non-listening condition. It looks like I both appreci-
ated some surprisingly appealing musical outcomes but was also annoyed when I had no idea what this
may sound like. Several musical tasks are hard to do when non-listening to the sound. I found out
that I often forget to apply any panning in non-listening conditions. In principle, many connectivity
exercises (Nilson, 2007) can be almost impossible to control when non-listening to the sound. Certain
aspects like having a percept about the tempo and the beat are impossible to extract by the visual infor-
mation on the spectrum, during the non-listening condition. Furthermore, it is quite impossible to track
for how long a specific musical pattern is active and produces repetitions, and difficult to understand
the length of the musical patterns. I noticed that typically in the non-listening condition, the generated
sound pattern had a short duration compared to the listening condition.

When listening to the sound, I sometimes experienced a feeling of performance anxiety. I feel that this
can hardly be the case when non-listening to the sound. Furthermore, it felt like I spent more time and
was more careful when listening to the sound. It seems logical as any programming mistakes can have
significant differences in the produced sound levels, which can cause hearing damage. Thus, it looks
like that the listening condition is linked to more careful actions, whereas the non-listening condition
produces greater extent of experimentation and trial-and-error practices.

4.3. Psychology of programming when non-listening
Whereas I will not present a detailed analysis on the cognitive dimensions of notation between the
listening and non-listening conditions, I will present certain aspects that may improve the quality of
discussion (A. Blackwell & Green, 2003). I realised that progressive evaluations could be complex
when non-listening to the musical outcome. When executing a new code chunk, it can be hard to spot
differences from the spectrum. For instance, perceiving differences on the spectrum can be difficult when
the musical modifications have slight frequency variations. Consequently this can cause hard mental
operations, as the console may not show any programming errors. Furthermore, I have noticed that when
I listen to the sound, I am more careful in progressive evaluations. That may indicate that the listening
condition increases viscosity, that is resistance to change, but I think that the non-listening is more likely
to cause such imbalance. This is because, error-proneness is also increased while non-listening to the
sound which may cause premature commitments. For instance, I may execute a series of progressive
evaluations and later realise I did no changes on the running program. Because of my inability to
identify any differences on the spectrum, I may think that the progressive evaluations impacted the

PPIG 2022 221

generated sound patterns. All this description may only apply to me and amplified to some extend by my
obsessive commitment on using only the Ndef class for sound synthesis in SuperCollider. Further, my
obscure coding practice with long one-liners can also cause severe problems to progressive evaluations,
error-proneness and hard-mental operations.

5. Discussion
One of my goals is to motivate other live coders to collaborate often and practice in a daily fashion.
Because of the very nature of live coding, as a practice which differs substantially from traditional
music performance, I have the feeling that live coders do not practice in a daily fashion (at least, this
is the case for me). Carrying out a month-long practice made me realise different things, ranging from
my programming skills with my favourite programming language, SuperCollider, to how musical agents
can be used in live coding and what programming habits I have when live coding.

The present study began with a view more akin to a controlled experiment and developed into a first-
person study based on research through design and reflective diaries. It is important to notice that while
I keep an interchangable order between listening and non-listening conditions (AV and NAS) in October
I cannot say whether this had any impact on the study. I did learn several things about my live coding
practice, and first and foremost that I do not practice as much as I should be practicing. The month-long
practice exercise imposed to me to realise my characteristic incompetence (Dahlstedt, 2012) in a live
setting, but also to provide me with hope as I did make some progress. I certainly feel more confident
after a month of daily practice, and I also believe I have developed a more on-the-fly feeling about the
generated sound patterns. A live coder can quickly get into the labyrinth of ’coding for the sake of
coding’ and sometimes prioritising the code instead of the generated music could be the case. Because
of the nature of typing and textual languages, live coding is far from traditional music performance.
Maybe the only sensorimotor relation between live coding and instrumental performance is that both are
carried out using serial skilled actions (Palmer, 1997).

The non-listening condition demonstrated how cumbersome and sometimes annoying it can be to live
code for the sake of coding. When there is no anticipation of the musical outcome, it can be hard
to get motivated to continue a live coding session. Sound enhances our anticipatory reward system,
especially when combined with visual correspondences. On the other hand, this lack or reduced levels of
anticipation because of absence of sound, may lead to unexpected musical outcomes, which can appeal
to the coder. It can give a sense of being outside of one’s self. Thus, a non-listening condition can be
used to generate novel and creative sound patterns. For instance, I can have an educated guess of how a
music pattern will sound by simply writing the code expression. An essential skill set of sound synthesis
techniques can enable the coder to surprise herself positively. Thus especially in the case of online live
streaming, a no-listening condition can be used as a creative technique for music-making. Given that the
audience cannot understand the acoustic environment of the performer, the audience can also be unable
to perceive whether the coder is listening or not to the generated sounds. Can such audience-performer
dynamics bring about any novel interactions? Or do they raise any artistic concerns? Both are hard to
answer and go beyond the scope of this study.

The visual helper I used during the sessions showed a limited number of UGens and was not developed to
a musical agent. Its impact on my practice was minimal because it did not require attentional resources.
On the other hand, I found such a simple program to be an excellent approach to familiarize myself
with the large collection of UGens available in SuperCollider. I did a preliminary investigation on the
potential of such visual aid, and I can see the potential of transforming this to either an on-demand
agent or to a disruptive agent (Attanayake et al., 2020). Such a system would require a natural language
processing component to be trained on the code and generate novel code chunks, coupled to a machine
listening and learning component capable to extract similarity measures between the running musical
outcome and the simulated code evaluations. The git repository can provide the coding database as it
contains 98 individual live coding sessions.

It is important to notice that machine listening and learning algorithms have become more accessible.

PPIG 2022 222

In the seminal practice session by Collins and Olofsson only a pitch follower UGen is used in a couple
of live coding sessions. More studies will follow on that aspect, given the rapid advances in the field of
machine listening and machine learning. Indicatively the FluCoMa environment (Tremblay, Roma, &
Green, 2021) offers a rich library for applying such computational techniques and is compatible with a
variety of programming environments, like MAX/MSP, PureData and SuperCollider. In my sessions I
did use some machine listening UGens, but I did not use any machine learning algorithms. This is likely
the case because of the blank slate approach, which would require much effort in order to adjust such
algorithms to my sessions.

While this is an ongoing research in terms of live coding practice as a disciplined endeavour, several
things become apparent. First and foremost when there are no informative visual cues during the non-
listening condition it is almost impossible to live code. I found myself loosing the thread of coding and
had no idea how the musical outcome may sound like. Further on, from the spectrum alone it can be
sometimes difficult to perceive whether command executions have actually any impact on the generated
musical outcome.

A month-long practice is an excellent approach to get better on live coding. I found myself improving on
several aspects, from creating naming conventions that can be informative, to how to separate triggers
and control signals from sound generators. Such programming practices do have an impact on the
musical outcome, as I was able to control musical structures more fluidly. Finally, I did carry the
practice sessions alone and at times I was feeling demotivated and I was repeating my practices over and
over. This feeling of demotivation amplifies the importance of collaboration. Whether the collaboration
is as simple as turn-taking sessions or collaborative group performance, it is important to interact with
more live coders and exchange ideas and knowledge. I recommend live coders that aim to commit to
month-long practice sessions to find a human collaborator.

6. Conclusions
In this study, I challenged myself to do a month-long daily practice in musical live coding. I aimed
to examine the relations between auditory and visual percepts and improve my live coding skills. I
discussed how listening to the sound can help the coder in progressive evaluations and reduce error-
proneness, while non-listening to the sound may be used as a creative coding practice technique. Further,
when no informative visual cues and no sound are available to the coder, practicing musical live coding
looks like an impossible task as I usually lose the thread of programming. I also experimented with a
simple GUI visual helper, which can be developed into a software agent, and the documentation of the
study can be used as a dataset for such developments. Practicing live coding in a daily and disciplined
fashion is not easy, and several times, I repeated myself in both my coding practices and reflective
diaries. The practice of musical live coding can be easier when it is a group activity, and I recommend to
live coders who are determined to commit to month-long daily sessions to find at least one more coder.

7. Acknowledgements
I warmly thank the PPIG community for the valuable feedback during the conference, and special thanks
to Alan Blackwell for his detailed review of the draft version of the present study. Both were catalytic
to the improvement of this study.

8. References
Attanayake, U., Swift, B., Gardner, H., & Sorensen, A. (2020). Disruption and creativity in live coding.

In 2020 ieee symposium on visual languages and human-centric computing (vl/hcc) (pp. 1–5).
Blackwell, A., & Green, T. (2003). Notational systems–the cognitive dimensions of notations frame-

work. HCI models, theories, and frameworks: toward an interdisciplinary science. Morgan Kauf-
mann, 234.

Blackwell, A. F., & Aaron, S. (2015). Craft practices of live coding language design. In Proc. first
international conference on live coding.

Blackwell, A. F., & Collins, N. (2005). The programming language as a musical instrument. In Ppig

PPIG 2022 223

(p. 11).
Burland, K., & McLean, A. (2016). Understanding live coding events. International Journal of Perfor-

mance Arts and Digital Media, 12(2), 139–151.
Collins, N., McLean, A., Rohrhuber, J., & Ward, A. (2003). Live coding in laptop performance.

Organised sound, 8(3), 321–330.
Dahlstedt, P. (2012). Between material and ideas: A process-based spatial model of artistic creativity.

In Computers and creativity (pp. 205–233). Springer.
Dal Rì, F. A., & Masu, R. (2022). Exploring musical form: Digital scores to support live coding practice.

In Nime 2022.
Davidson, J. W. (1993). Visual perception of performance manner in the movements of solo musicians.

Psychology of music, 21(2), 103–113.
Gamboa, M. (2022). Conversations with myself: Sketching workshop experiences in design epistemol-

ogy. In Creativity and cognition (pp. 71–82).
Hove, M. J., Fairhurst, M. T., Kotz, S. A., & Keller, P. E. (2013). Synchronizing with auditory and visual

rhythms: an fmri assessment of modality differences and modality appropriateness. Neuroimage,
67, 313–321.

Jensenius, A. R. (2007). Action-sound: Developing methods and tools to study music-related body
movement.

Magnusson, T. (2015). Code scores in live coding practice. In Proceedings of the international confer-
ence for technologies for music notation and representation, paris (Vol. 5).

Nilson, C. (2007). Live coding practice. In Proceedings of the 7th international conference on new
interfaces for musical expression (pp. 112–117).

Palmer, C. (1997). Music performance. Annual review of psychology, 48(1), 115–138.
Roberts, C., & Wakefield, G. (2018). Tensions and techniques in live coding performance.
Sorensen, A. C., & Brown, A. R. (2007). aa-cell in practice: An approach to musical live coding. In

International computer music conference (pp. 292–299).
Tremblay, P. A., Roma, G., & Green, O. (2021). Enabling programmatic data mining as musicking:

The fluid corpus manipulation toolkit. Computer Music Journal, 45(2), 9–23.

PPIG 2022 224

Paper V

Reproducible musical analysis of live coding
performances using information retrieval: A
case study on the Algorave 10th anniversary

G. Diapoulis and M. Carlé

Proceedings of the International Conference on Live Coding (ICLC).
Utrecht, Netherlands. (2023).

https://doi.org/10.5281/zenodo.7843813

Proceedings of the 7th International Conference on Live Coding (ICLC 2023)
April 19th - 23rd – Utrecht, Netherlands

Reproducible Musical Analysis of Live Coding Performances Using
Information Retrieval:

A Case Study on the Algorave 10th Anniversary

Georgios Diapoulis
Chalmers University of Technology, University of Gothenburg

georgios.diapoulis@chalmers.se
Martin Carlé

Ionian University, Hub of Art Laboratories
mc@aiguphonie.com

ABSTRACT

We present a reproducible music information retrieval (MIR) study on 133 performances from the 10th anniversary
of Algorave. Our aim in this paper is to provide a reproducible framework for computational analysis of musical
performances. Here, we present a tool for analysing acoustical characteristics and for visualizing the musical structure
from performances of one algorave event. Our musical analysis of the live coding performances highlights the musical
diversity within the live coding community to a broader scientific audience. At the same time, we expect that the
algoravers will gain insights on their ownmusical practices through the computational analysis of the musical structure
of their performances. In concerning ourselves with reproducibility, our intention is to motivate more researchers
to analyse musical practices of other under-represented music communities. As a basic tool for reproducibility we
construct a pipeline for analysing performances using Python within a Jupyter notebook. To make this reproducible
on different computers we wrapped the whole workflow setup into a docker image. We represent the results of our
analysis as a series of plots of different kinds. These plots present both overviews of the entire repertory in compact
form, and comparisons of individual pieces in more detail. In learning one can use such visualization as a means for
raising awareness on one’s evolution of the musical outcome. In performance this visualization can be developed to a
real-time and possibly an interactive tool which informs the coder about the musical outcome of a live set on-the-fly.
Finally, we reflect on how and to what extent such MIR studies can provide valuable insights in live coding performance
practices, while also considering the limitations facedwhen dealingwith such large parameter spaces in humanmachine
musicianship.

1 Introduction

An algorave party aims at celebrating the act of live coding by hosting and promoting live music events across the world.
Live coding is a performance practice where a domain specific programming language is used for music-making (Collins
et al. 2003). Typically, live coders share their screen with the audience with the intention to make the process of music-
making technically transparent to the listeners. Moreover, an algorave party is a political act in physically displacing
academic music concerts from lecture halls to the dancefloors of nightclubs. During a live coding performance we
allow ourselves to fail (Knotts 2020). Uncertainty and instability during a performance is common and the audience
welcomes technical errors and programming mistakes during performance (Armitage 2018). These are attitudes also
shared in other improvisation contexts.

1

Here, we present an analysis of recordings from the 24 hours stream of Algorave 10, retrieved from the Internet Archive¹.
The event was shortly announced only a few days before the happening by Alex McLean on the mailing list of TOPLAP²
and the TOPLAP’s chat server. The 144 available slots were filled within the next days and 133 recordings were retrieved
from the archives. The aforementioned welcoming ethos of the live coding community was present vibrantly in the
chat of the streaming provider and on other channels (e.g. TOPLAP Discord). All five continents were represented and
a broad variety of performance practices and systems were exhibited during the 24 hours live streaming.

Our approach aims at a reproducible framework for music information retrieval of the Algorave 10th anniversary. The
goal is to offer a framework that live coders can easily use to conduct musical analysis of performances and gain further
insights into decoding a live set. We start by presenting the background of algorave parties and provide generic statistics
of events taking place so far. We continue with the specifics of the Algorave 10th Birthday Party and offer descriptive
statistics of the performances. Furthermore, we discuss our musical structure analysis from a cognitive MIR perspective
and introduce a visual representation of the analysed musical forms. Finally, we review the structure of the reproducible
framework of this study.

2 Background of algorave acts

The term algorave has been presented as a descriptor of a musical genre welcoming newcomers and underrepresented
groups (Armitage 2018). Diversity and the live coding ethos are particularly important to the community. Accordingly,
women live coders have been actively present since the founding act of TOPLAP (“TOPLAPManifestoDraft,” n.d.), albeit
still forming a minority in the early days. Today, there are several bands, workshops, algorave events, TOPLAP nodes,
and research programs (Sicchio 2014), where women are leading figures. For instance, the Hydra environment³ for
visual live coding, widely used in algoraves, has been developed by Olivia Jack.

The main impact of algoraves is to provide an incentive for people to get together and celebrate live coding dance
music. As dancing involves the body ontological relations between concepts and sounds are further emphasised. In
particular, drawing relationships between thoughts and sounds in electronic music is not a given thing (see algorithms
in TOPLAP manifesto). There is a long discussion about whether electronic sounds can have an embodied meaning
(Dahlstedt 2018), especially when the sound source has been disconnected from the musical instruments, transferred
to electronic circuits, or reproduced through loudspeakers.

2.1 Historical accounts of algorave parties

An algorave is typically an event where people get together to enjoy live coding acts while dancing to the beat. The
first algorave was in London in 2012 (Collins and McLean 2014). Since this kick-off event, many physical and virtual
algoraves have been organised worldwide with the help of the algorave official website (“Algorave,” n.d.). The 10th
anniversary of the first algorave party was celebrated worldwide with numerous physical events and a 24 hours live
stream. Each performance had a time slot of 10 minutes which is typically considered a short performance, just within
the limits of being a challenging endeavour (Baalman 2020). This indicates how well the community has progressed
since its beginnings in the early 2000s and suggests a grown maturity of the available live coding tools.

The Algorave page⁴ lists 322 past events since the first algorave in 2012, and one future event that will accompany the
ICLC 2023 conference this year. A crucial aspect of algoraves is that the events take place in a physical venue where
people can get together and dance. A total of 21 out of the 322 events have been reported as being ‘online’ or on ‘the
internet’. The pandemic was a turning point for online events. Before, only two live-streamed sessions were reported.
The first event was a hybrid algorave live-streamed from Sheffield in 2016 and the second was the 5th anniversary in
2017. The Algorave 10th anniversary live stream took place between 2022/03/19 and 2022/03/20, and was accompanied
by several local events celebrating the occasion with the motto “weareten”.

Collins and McLean (2014) presented the first study on algoraves. They show an estimate of how many people were
dancing at each event out of a total of 18 algoraves, from 2012-03-17 to 2014-04-26. While it can be difficult to keep
an objective account of how many people are dancing on algoraves, it is interesting to see the audiences’ engagement
with dance raising over the years. A way to approach this question would be to perform some video analysis on any
recordings from algoraves and provide an estimate of the overall overt movement of the participants.

¹https://archive.org/details/toplap
²https://forum.toplap.org/t/algorave-turns-10/1882/42
³https://github.com/hydra-synth
⁴https://algorave.com/ – Accessed 2022-12-12

2

2.2 Descriptive statistics on the 24 hours stream of the Algorave 10

The 10th anniversary had international coverage with 13 physical and virtual events. The events are mainly located
in Europe and North America. Indicatively, in 2021 there were 15 live events in total, and in 2022 the total number of
events is 28 so far. The motto “weareten” is explicitly written in several announcements. It is important to notice here
that live coding in performing arts is about to become 20 years old, whereas the expression of live coding as dance in
nightclubs is only 10 years old.

Throughout the 24 hours happening, the “Algorave 10th Birthday Party” was accompanied by a smooth and continu-
ous live streaming of heterogeneous performances. Given the decentralized and flat organization of the community,
we would like to draw special attention to the well-coordinated organization and execution of the event. Inevitably,
different time slots served different time zones better. This led a clustering of locations within the 24 hours stream-
ing. The event’s coverage was worldwide and engaged musicians from all five continents (Africa, America, Australia,
Asia, and Europe). Table 1 shows the number of performances per continent. There was one cross-continental perfor-
mance between Barcelona and Toronto (slot #104) and one worldwide performance (slot #17)⁵, where several live coders
spontaneously entered Estuary⁶ and started an on-the-spot improvisation.

EU NA SA AS OC AF Total
63 27 20 20 2 1 133

Table 1: The number of performances in Algorave 10 per continent. (EU: Europe, NA: North America, SA: South
America, AS: Asia, OC: Oceania, AF: Africa).

Various programming languages and performance setups across the live coders can be noted. Table 2 accounts for the
occurrences of the different live coding languages. The total sum of the noted systems equals the number of perfor-
mances in the current analysis. Several performances used hybrid systems with more than one programming language.
As annotated, we report the main language used during the performances. It is furthermore important that many sys-
tems also incorporated live coding visuals. In particular, Hydra was employed in many performances. Many video
descriptions do not explicitly state the programming language used. Thus, Table 2 should be seen as the overall ten-
dency of the performers’ preferences for generating sound. Several performance setups also incorporated hardware
synthesizers and other equipment. Most notably, a “game boy(girl)” by pulu, but also musical instruments, like elec-
tric guitars. Visual languages and any hardware controllers of musical instruments used during performances are not
reported in our annotation.

LANGUAGE Annotated
Tidal Cycles 52
SuperCollider 18
Sonic Pi 14
FoxDot 8
Orca 7
CSound 1
Chuck 1
MAX/MSP 1
Other 8
N/A 11
————— ———–
TOTAL 121

Table 2: Annotated counts on the participants preferred music-making software programming environment.

⁵http://ten.algorave.com – Accessed 2022-05-10
⁶https://archive.org/details/algorave-10-equinox-open-jam

3

3 Characteristics of musical form

We begin by presenting theoretical backgrounds for the musical form of a performance from the perspective of music
cognition. Then we discuss the parameters of the musical form and continue to build on this knowledge in order to
construct a circular representation showing the temporal evolution of a music performance. Lastly, we discuss the
benefits and limitations of this approach.
Musical form depends on our memory capacity. Musical memory operates on three main timescales, the so-called
echoic memory for sounds with a duration of less than 0.5s, the short-term memory (STM) for sound events between
0.5-8s and the long-term memory (LTM) for sound events that occur on larger timescales, typically more than 15s
(Snyder 2000). These different levels of organization surface differently when listening, imagining and playing music.
For instance, during a music performance, the musician has to be attentive to both, the micro-structure of a musical
phrase, and also to larger musical segments. In the context of a so-called canonical live coding performance (Roberts
and Wakefield 2018), the coder is mostly applying changes to the musical outcome on larger timescales (15s and more).
Few live coding environments may enable the musician to apply fast changes, like ixi-lang (Magnusson 2011) which
was developed with the goal to make code modification within less than 5 seconds possible. A typical MIR architec-
ture extracts low-level acoustical features. These features share some similarities with our auditory perception. The
formation of pitch, for example, takes place within 10ms when listening to the acoustic environment. Above this level,
our perceptual capacities group events together in order to structure perceptual boundaries (Bregman 1994). Indica-
tively, the gestalt principles, like the principle of proximity, similarity and good continuation are excellent examples of
perceptual organisations (Schnupp, Nelken, and King 2011).
Several MIR architectures make use of the knowledge taken from the workings of our music cognition. For instance,
computational segmentation of sounds is a typical example of a MIR task that employs music perception and cognition
knowledge. Musical structure analysis uses it to identify different sounds, music excerpts or even songs. How different
segments get organised is also important. Accordingly, pulse and meter are the first steps towards organizing motifs
and themes. That is howwe achieve periodic groupings of adjacent and nonadjacent elements (Parncutt 1994). Studying
musical form requires to take both low-level and high-level music percepts into account. A typical cognitive approach of
MIR begins with the low-level features to predict higher-level features. Consequently, a musical form can be described
by two family characteristics: primary parameters, including pitch, rhythm and harmony, and a secondary parameters
which include loudness, tempo, event density and timbre characteristics, among others (Snyder 2000). In this study we
are combining these approaches. We start by extracting low-level acoustical features to synthesize higher-level musical
structures and incorporate pitch-based and rhythm-based features to account for the musical form of a live coding
performance.

3.1 Musical structure analysis in MIR

Musical structure analysis (MSA) in audio-based MIR focuses on objective descriptors of the signal. This is a necessary
step when attempting to understand what the main acoustical characteristics of a composition are. Qualitative descrip-
tors or human annotations typically complement these objective ones. The latter may correspond to information like
labelling musical sections, such as verse, refrain, or annotating onsets and offsets of musical events, and so on. Further-
more, current state-of-the-art analyses are based on novelty, repetition and homogeneity (Klapuri, Paulus, and Müller
2010). Some of these approaches use similarity-based representations, such as MFCCs similarity matrices, to represent
the temporal evolution of the audio. Studies on MSA have shown that the main challenges are related to subjectivity,
ambiguity and hierarchy (Nieto et al. 2020). A typical example of “subjectivity” relates to how human annotations are
collected. For instance, a noisy data set is a crowd-sourced annotation strategy. Respectively, ambiguity is related to
the subjective percepts of the same annotator. Thus, when listening to a sound excerpt repeatedly, the annotator may
be undecidable for a task such as music segmentation.

3.2 Primary and secondary parameters of musical form

3.2.1 Primary parameters

Primary parameters exhibit proportional relationships between them (Snyder 2000, 195). For instance, we do catego-
rizations of pitch intervals, and we make subdivisions of rhythmic structures. The same does not apply to loudness, and
pitch is independent of loudness. We perceive roughly the same pitch quality regardless of how loud a sound is. Pitch
emerges when sound events range between 10-100ms and demonstrate stable perceptual qualities. For instance, we can
easily understand whether a pitched sound has a higher pitch than another. Tonality and harmony are pitch-dependent,
and when concerning music, we often discuss the fundamental note of a sequence. Sometimes an exact boundary be-
tween primary and secondary parameters is unclear. The mel-frequency scale is a pitched-based perceptual scale which
describes how humans perceive equally distanced pitch intervals. A common acoustical descriptor is computed on the
mel-scale. The so-called mel-frequency cepstral coefficients (MFCCs) have been used in many applications, like music
genre classification, similarity measures, spectral envelope and speech recognition.4

Rhythm is defined when “two or more events take place within the length of short-term memory” (Snyder 2000, 159).
Rhythm emerges from repetition of sound events where pulse and event density are particularly important. In the
context of musical structure, rhythm is expressed in hierarchical organizations and we learn and categorize different
rhythms based on cultural characteristics, music training and musicianship.

3.2.2 Secondary parameters

Secondary parameters may be seen as by-products of primary characteristics. For instance, the spectral centroid, an
acoustical feature which can describe the brightness of a sound, may be a by-product of pitched events. Brightness has
a typical range of 2000-4000Hz which can be an important characteristic for periodic and transient signals. Pulse and
event density are fundamental components of our rhythm perception. Pulse demonstrates an endogenous periodicity
that is not strictly periodic but exhibits temporal fluctuations (Large and Snyder 2009). Beat depends on rhythmic
complexity and has been suggested to play an important role in the perception of groove. Meter exhibits hierarchical
organization and depends on the pulse, although there are cultural variances (Holzapfel 2015).

3.3 Musical form in live coding

Little research has been done on musical form and its characteristics in live coding. To some extent, this is reasonable
as live coding is mainly an improvisational practice, free of rigid form characteristics. Recently a study examined two
different aspects of visualisations during live coding practice (Dal Ri and Masu 2022), namely as a linear representation
of events and as a density plot. The study suggests that the two approaches can complement each other. Magnusson
examined how visual notation relates to code representation and how this is reflected in the temporal evolution of
musical events. He also discussed how this knowledge was used for developing Threnoscope (Magnusson 2015).

4 Circular visual representation for STM windows

Given the above mentioned definition of rhythm focusing on our musical memory, we here present a circular visual-
ization for structural representations of music performances. Our motivation is to represent performances of unequal
lengths. Although all performances in this study had approximately a duration of 10 minutes, they all were still slightly
different to each other. Therefore we present a circular representation to demonstrate the evolution of the Algorave 10
performances and we divide the circle into an arbitrary number of equally-distanced slices. Each slice has a maximum
duration similar to the upper limit of our STMwhich is 8 seconds. The circular plot can represent both, pitch-related and
rhythm-related characteristics combined. It may be used to represent the temporal evolution of one feature at a time.
This is based on the assumption that each performance can be divided into an arbitrary amount of discrete segments. In
this specific case, we divide the circular representation into 72 segments. As a result, the perceptual continuity between
segments is imposed forcefully but it nonetheless facilitates our aim to communicate the temporal evolution of highly
diversified performances. This is because several of the gestalt principles, like the principles of good continuation,
common fate and similarity, are applied to the proposed visualization. The segments are equally-distanced from each
other and their values are local descriptors which were calculated based on the mean feature values. Any other global
descriptor can also be applicable, like higher-order statistical moments. Each segment is visually represented with a
slice, as shown in Figure 1. An alternative approach to transforming all performances to equal lengths would need to
involve dynamic time warping or zero padding. Dynamic time warping is a computationally expensive technique for
our use case and doesn’t serve well the reproducibility goals of the present study. Zero-padding could be useful for
computations in the frequency domain. So, the circular representations here may be seen as an alternative approach to
a frequency-domain representation, though they are not equivalent and should not be confused. Furthermore, we aver-
age real numbers per segment (feature values) and plot them in a circular representation to demonstrate their evolution
over time.

In Figure 1 we map pitch- and rhythm-based features. Essentially, the plot is a counter-clockwise representation of
the temporal evolution of a 10 minutes recording. The shift into the performer’s perspective is done by representing
the time as chunks (slices) of STM windows. The plot requires a three-dimensional representation. Time is the first
dimension and two more dimensions show the feature values. Here, we show one pitch-based and one rhythm-based
feature. Specifically, time is shown as a function of angles/radians (from 0%− 100%), the pitch-based feature is shown
on the colourmap (spectral centroid) and the rhythm-based feature is a function of the radius (onsets strength). The
features are extracted using the Librosa library in Python (McFee et al. 2015).

5

Figure 1: Circular representation of a performance. The time axis is represented in radians, here shown in percentages. Each
slice on the rose polar plot represents one STM window (0.5− 8s). The length of each slice shows the onsets strength, which
may be seen as an indication of the density of the events. The heatmap shows the range of values for the spectral centroid.

Figure 2: A comparison of two performances, by left_adjoint and YEE-KING. The dimensions are the same as those in Figure
1. Please notice that the range of values for the acoustical features of onsets strenght and spectral centroid differ between
the two performances.

4.1 A closer look on two live sets from Algorave 10

Figure 2 shows two performances from Algorave 10, by left_adjoint⁷ and YEE-KING⁸. The two cases were selected
because they demonstrate a rich musical evolution over time. The plots show the same acoustical features as Figure 1,
onsets strength on the radius and spectral centroid on the heatmap. Both performances begin with no sound during the
first seconds of the performances. This is represented accurately with no sound events in the case of the performance
by left_adjoint. In contrast, in YEE-KING’s plot, some high-pitched background noise is adequate and is shown with
high values of the spectral centroid, an indicator of the brightness of a sound and a relatively small density of sound
events.

Both performances show a similar evolution in the first two minutes (see from 0% - 20%) with a low density of musical
events and relatively low brightness values. During this period, left_adjoint conducts a so-called ‘blank slate’ live
coding while experimenting with muffled synth and drum sounds. Later (~25%), some brighter drum sounds, like
cymbals, are introduced, and the indicator of event density (onsets strength) is slightly increased. At around 40% of
left_adjoint’s performance, there is a climax in the brightness of the musical outcome caused by multiple cymbal sound
events. Similarly, YEE-KING’s performance demonstrates a climax on the onset strength in the region of 25% of the total
performance time. In the second half of the performance (50% - 100%), both cases exhibit great amounts of variability

⁷https://archive.org/details/algorave-10-left-adjoint
⁸https://archive.org/details/algorave-10-yee-king

6

in the feature values. In the case of left_adjoint, two overt climaxes are shown of the event density indicator which is
surrounded by variations between mid and high-frequency values for the spectral centroid. In the case of YEE-KING
performance, the variations on the indicator of event density are subtle but there are significant variations on the
spectral centroid.

5 Reproducible analysis of the Algorave 10 performances

Reproducibility with regard to both, information retrieval and analysis, has been realised by employing docker. In
addition, the original videos were retrieved from the Internet Archive and placed in an online git repository for large
files⁹. Since any changes on the git-lfs repository can be transparently tracked, the latter practice suits reproducibility
better than retrieving the videos from the Internet Archive. However, a drawback of the git-lfs solution is that a
configuration file with unique references to the original material is required. Another one it that repository provides
put a limit on the download bandwidth which in our case means that after seven full downloads per month slower
downloads are to be expected. We still consider this approach the better practice but remain open to any feedback from
the community.

The Dockerfile, the recipe to build a container image, is made available in a GitHub repository¹⁰. The analysis pre-
sented in this study can be reproduced using two methods: i) run the prebuilt image from docker hub¹¹ which is the
recommended method, or ii) build the image from the Dockerfile yourself¹². There are three main steps to reproduce
our results. The first step is to retrieve the recordings of the Algorave 10 performances from the mentioned git-lfs
repository. We provide a Python script for the video-to-audio conversion. But the audio files are also readily available
in mp3 format with as sampling rate of 22050 Hz. The second step extracts the acoustical features from the audio files,
while the third step analyses and plots the acoustical features.

At the end of the building process of the docker image, the user can access a Jupyter Lab notebook demonstrating the
descriptive statistics and three python scripts that render the plots of this study.

5.1 Acoustical feature extraction

The acoustical feature extraction is taking place during the building process of the docker image while the extracted
features are stored in a data file. This file can then be accessed within the Jupyter Lab notebook.

For each performance we extracted 9 time series of acoustical features and one global descriptor for the estimated tempo:
three rhythm-based features (onsets strength, tempo and pulse) and seven pitch-based features or feature vectors (20
MFCCs, spectral centroid, spectral roll-off, spectral flatness, spectral bandwidth, 7 features of spectral contrast and a
pitch estimator of the fundamental frequency of a window). The pitch estimator showed many missing values (∼ 40%
of the windows).

We mapped each feature to the circular representation as a function of time. Corresponding to the STM window of 8s,
we computed a mean within each of 72 segments (as the actual low-level analysis window is 2048 samples). Finally
we plotted each feature for 121 performances (as shown in Figure 3). Specific performances were excluded from the
analysis as outliers. There were two main criteria for identifying outliers: i) performances which did not begin at the
scheduled time, and ii) performances that showed low values of the onsets-related acoustical feature. The two main
rhythm-based features, pulse and onsets strength (an indicator of event density) show similar distributions for every
performance. Some pitch-based features, such as the spectral roll-off and the spectral bandwidth, show correlations.
The two main rhythm-based features are also correlated with each other.

5.2 Estimated tempos of the algorave performances

Figure 4 show a histogram and a box plot of tempos for all the performances. The average tempo is 122±18 bpm and is
matching the so-called preferred tempo. The tempo range is 81− 161 bpm. The performances had an average duration
of 574± 42s. This average duration results in an approximate value of 8s for each one of the 72 slices, which matches
the upper limit of our STM.

⁹https://github.com/gewhere/algorave10-large-files
¹⁰https://github.com/gewhere/iclc2023
¹¹https://hub.docker.com/r/algorave10/iclc2023
¹²Building the image from the Dockerfile require several hours. In contrast, the prebuild docker image runs within few seconds.

7

Figure 3: Polar plots for all 121 live coding performances. The plots are two dimensional, in contrast to Figure 1, and show
the temporal evolution of the spectral centroid. Every plot is normalized for each performance individually.

8

Figure 4: Tempos for all the 121 performances. Left hand side shows a histogram of the tempos and the right hand side
shows a box plot with the median and the 1st and 3rd quartiles.

6 Discussion

The present study attempts to supply a transparent process for systematic computational analysis of live coding per-
formances. As accessibility is an important value for the live coding community, we provide a reproducible analysis
based on docker that launches a jupyter notebook for the computational analysis of the study. The raw data set which
was retrieved from the Internet Archive has an audio-visual format from all the recordings carried out during the Al-
gorave 10, 24 hours streaming. We copied the Internet Archive Algorave 10 collection to a git-lfs repository resulting
in a transparent and computationally robust reproducibility method. As a beneficiary side-effect, this method offloads
computational resources from the Internet Archive. Our study reveals first insights into the audio data set. To access
further details of the live coding experience, one may look into computer vision analyses of the video material and how
the outcome correlates with the acoustical features.

The live coding community acknowledges that there is no school for learning how to live code (Nilson 2007). Con-
sequently, studying the musical structures of different performances can enable valuable comparisons of the musical
forms created in live coding. To this end, the study offers a useful tool for studying the musical structure of live coding
performances and provides a testbed for exploring more than the musical outcome. In particular so, as the video data
are also made available, the basis for a multimodal information retrieval study is ready at hand. It is important for us
to communicate our findings with the community and make the respective insights available to everyone interested in
live coding practices. For this reason, we paid special attention to a quick and economic reproducibility of our study
and offer a template to instantly start out with the MIR.

The produced diagrams allow for quick perception of similarity. For instance, the circular representation makes it
easy to identify where a climax in the musical features occurs during a performance. In turn, this enables to visually
recognise whether two performances share similar strategies in the evolution of the musical structure. We regard this
as our main contribution and we also see potential for interactive applications. This circular visualization can convey
valuable information of the evolution of cognitive processes and is used to communicate both, low-level and higher-
level musical structures. For instance, the plots may be used to display perceptually significant changes on the level
of our STM or to display larger musical segments, such as motifs and themes. To achieve this, it may be as easy as to
highlight a quarter of the circular diagram. The capacity to easily spot out perceptually relevant information, such as
climaxes, is an important feature, since a live coding session is a cognitively demanding task while resources are scarce
during a performance.

Moreover, the proposed circular representation can be a valuable tool in teaching and practising live coding. For in-
stance, it is acknowledged that cognitive load is high during a live coding performance (McLean 2014), but live coding is
also seen as a technique which may sharpen attentional capabilities (Nilson 2007). While learning how to live code, the
performer has to cope with many hard mental operations that may counteract the perceived flow during a performance
(Nash and Blackwell 2014). Hence, an interactive visualization of the evolution of a live coding session may be useful,
especially in the case when practising live coding. Such an interactive application could be seen as an informative
real-time prop that reminds the coder about the stationary evolution of the acoustical features.

9

Besides the concrete case of circular diagrams, the study offers a playground for exploring similarities and differences
between performances, live coding systems and languages. Further analyses including the video material can help to
examine how programming language notations are related to musical structure. Such analyses can be valuable for
making informed decisions in developing live coding idioms and languages.

Information retrieval studies in live coding are limited. Xambó, Lerch, and Freeman (2018) has proposed a theoretical
framework for information retrieval studies in live coding focusing on real-time processes. Tools for such real-time
applications have been available for over a decade (Collins 2011) and they overlap to some extent with technologies
of musical agents (Xambó 2021). The approach we present here differs from such real-time and performative applica-
tions in focusing on an offline system for analyses of live coding musical performances. Such a reproducible testbed
may help us to identify patterns during a live coding performance, ultimately leading to interactive tools for real-time
applications. Indicatively, we envision an interactive application for our proposed circular visual representation of the
musical form which might become a tool of descriptive notations (Magnusson 2015). More applications may come out
of this engagement with a similar reproducible approach.

The diversity and the ethos of the community encourage open practices and transparent procedures. Likewise, accessi-
bility has been addressed in live coding (Skuse 2020; Vetter 2020). Design and display technologies have been reported
as key facilitators for disabled musicians. Whether the circular representation presented here may facilitate learning
and interactive explorations in this direction is an open question. We would like to point out that we regard the circular
representation as equally useful for both, disabled and non-disabled musicians. For example, in the case of visually
impaired and blind musicians, we can imagine a tangible shape-changing interface for representations of the musical
structure.

7 Conclusion

We present an information retrieval study of the Algorave 10, 24 hours live stream. A total of 133 performances with a
maximum duration of 10 minutes each were retrieved from the Internet Archive and mirrored to a git repository, based
on git for large files. We present a reproducible study using the docker containerisation infrastructure as to offer a
playground for the creative exploration of information retrieval techniques applied to live coding performances. The
computational analysis is based on audio data but the original recordings also include video data which can provide
further possibilities for in-depth analyses of the performances. On the basis of our engagement with the dataset, we
can provide descriptive statistics about the Algorave 10 and a circular visual representation for the musical form of
live coding performances. This visual representation was constructed by considering aspects of music perception and
memory. We expect that such visual representation will be useful for live coders and may have applications in teaching
and practising musical live coding.

8 Acknowledgements

This contribution has been partially funded through the financial support of the project “ΔΗΜΙΟΥΡΓΙΚΟΣ ΚΟΜΒΟΣ
ΤΕΧΝΩΝMIS :5047267” code 80504, ΕΣΠΑ 2014-2020, ΕΠΑνΕΚ; HAL (Hub of Art Laboratories), co-financed by Greece
and the European Union and implemented at the Ionian University, Corfu.

References

“Algorave.” n.d. https://algorave.com.

Armitage, Joanne. 2018. “Spaces to Fail in: Negotiating Gender, Community and Technology in Algorave.” Dancecult:
Journal of Electronic Dance Music Culture 10 (1).

Baalman, Marije. 2020. “Marije Baalman performing 10 minute live coding challenge at Creative Coding Utrecht.”
https://marijebaalman.eu/projects/code-livecode-live.html. 2020.

Bregman, Albert S. 1994. Auditory Scene Analysis: The Perceptual Organization of Sound. MIT press.

Collins, Nick. 2011. “SCMIR: A SuperCollider Music Information Retrieval Library.” In ICMC.

Collins, Nick, and Alex McLean. 2014. “Algorave: Live Performance of Algorithmic Electronic Dance Music.” In
Proceedings of the International Conference on New Interfaces for Musical Expression, 355–58.

Collins, Nick, AlexMcLean, Julian Rohrhuber, and AdrianWard. 2003. “Live Coding in Laptop Performance.” Organised
Sound 8 (3): 321–30.

10

Dahlstedt, Palle. 2018. “Action and Perception: Embodying Algorithms and the Extended Mind.” In The Oxford Hand-
book of Algorithmic Music, 41–66. Oxford University Press.

Dal Ri, Francesco Ardan, and Raul Masu. 2022. “Exploring Musical Form: Digital Scores to Support Live Coding
Practice.” In NIME 2022. PubPub.

Holzapfel, André. 2015. “Relation Between Surface Rhythm and Rhythmic Modes in Turkish Makam Music.” Journal
of New Music Research 44 (1): 25–38.

Klapuri, Anssi, Jouni Paulus, and Meinard Müller. 2010. “Audio-Based Music Structure Analysis.” In ISMIR, in Proc. Of
the Int. Society for Music Information Retrieval Conference.

Knotts, Shelly. 2020. “Live Coding and Failure.” The Aesthetics of Imperfection in Music and the Arts: Spontaneity, Flaws
and the Unfinished, 189.

Large, Edward W, and Joel S Snyder. 2009. “Pulse and Meter as Neural Resonance.” Annals of the New York Academy of
Sciences 1169 (1): 46–57.

Magnusson, Thor. 2011. “The Ixi Lang: A Supercollider Parasite for Live Coding.” In ICMC.

———. 2015. “Code Scores in Live Coding Practice.” In Proceedings of the International Conference for Technologies for
Music Notation and Representation, Paris. Vol. 5.

McFee, Brian, Colin Raffel, Dawen Liang, Daniel P Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto. 2015. “Librosa:
Audio and Music Signal Analysis in Python.” In Proceedings of the 14th Python in Science Conference, 8:18–25. Citeseer.

McLean, A. 2014. “Stress and Cognitive Load.” Collaboration and Learning Through Live Coding.

Nash, Chris, and Alan Blackwell. 2014. “Flow of Creative Interaction with Digital Music Notations.”

Nieto, Oriol, Gautham J Mysore, Cheng-i Wang, Jordan BL Smith, Jan Schlüter, Thomas Grill, and Brian McFee. 2020.
“Audio-Based Music Structure Analysis: Current Trends, Open Challenges, and Applications.” Transactions of the Inter-
national Society for Music Information Retrieval 3 (1).

Nilson, Click. 2007. “Live Coding Practice.” In Proceedings of the 7th International Conference on New Interfaces for
Musical Expression, 112–17.

Parncutt, Richard. 1994. “A Perceptual Model of Pulse Salience and Metrical Accent in Musical Rhythms.” Music
Perception 11 (4): 409–64.

Roberts, Charlie, and Graham Wakefield. 2018. “Tensions and Techniques in Live Coding Performance.”

Schnupp, Jan, Israel Nelken, and Andrew King. 2011. Auditory Neuroscience: Making Sense of Sound. MIT press.

Sicchio, Kate. 2014. “Hacking Choreography: Dance and Live Coding.” Computer Music Journal 38 (1): 31–39.

Skuse, Amble. 2020. “Disabled Approaches to Live Coding, Cripping the Code.” In Proceedings of the International
Conference on Live Coding, 5:69–77.

Snyder, Bob. 2000. Music and Memory: An Introduction. MIT press.

“TOPLAP ManifestoDraft.” n.d. https://toplap.org/wiki/ManifestoDraft.

Vetter, Jens. 2020. “WELLE-a Web-Based Music Environment for the Blind.” In Proceedings of the International Confer-
ence on New Interfaces for Musical Expression. Birmingham, United Kingdom, 701–5.

Xambó, Anna. 2021. “Virtual Agents in Live Coding: A Short Review.” arXiv Preprint arXiv:2106.14835.

Xambó, Anna, Alexander Lerch, and Jason Freeman. 2018. “Music Information Retrieval in Live Coding: A Theoretical
Framework.” Computer Music Journal 42 (4): 9–25.

11

Paper VI

Liveness and machine listening in musical live
coding: A conceptual framework for designing

agent-based systems

G. Diapoulis

Proceedings of the 4th Conference on AI Music Creativity (AIMC).
Brighton, UK. (2023).

ISBN: 9780995786295

AIMC 2023

Liveness and machine
listening in musical live
coding: A conceptual
framework for designing
agent-based systems
Georgios Diapoulis

URL: https://aimc2023.pubpub.org/pub/dk76kh2j

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

2

Abstract
Music-making with live coding is a challenging endeavour during a performance. Contrary to traditional music

performances, a live coder can be uncertain about how the next code evaluation will sound. Interactive

artificial intelligence (AI) offers numerous techniques for generating future outcomes. These can be

implemented on both the level of the liveness of the code and also on the generated musical sounds. I first

examine the structural characteristics of various live coding systems that use agent-based technologies and

present a high-level diagrammatic representation. I sketch simple block diagrams that enable me to construct a

conceptual framework for designing agent-based systems. My aim is to provide a practical framework to be

used by practitioners. This study has two parts: i) a high-level diagrammatic representation informed by

previous studies, where I analyze patterns of interaction in eight live coding systems, and ii) a conceptual

framework for designing agent-based performance systems by combining both liveness and machine listening.

I identify diverse patterns of interactivities between the written code and the generated music, and I draw

attention to future perspectives. One code snippet for SuperCollider is provided and mapped to the conceptual

framework. The vision of the study is to raise awareness on interactive AI systems within the community and

potentially help newcomers navigating in the vast potential of live coding.

Introduction
Live coding is a performance practice where the performers share their screens with the audience and apply

modifications to the running program[1]. It offers a rich technique for generative music[2] and a novel

computing platform for exploring autonomy and interactivity with AI systems. Here, musical AI systems may

range from rule-based systems to evolutionary computations, and from swallow learning to deep learning

approaches. Liveness is here used as the “ability to modify a running program”[3] and is an inherent quality

during a live coding performance[4]. The term liveness is not used similarly to its meaning in musical

aesthetics[5] but rather denotes a degree when something is live[6]. I will mainly focus on a technical

understanding of liveness as introduced by Tanimoto, which is mostly concerned about the live feedback to the

programmer[7]. Machine listening is used during live performances for online sensing of musical percepts[8].

There is a long history of agent-based systems without support of real-time audio listening[9][10], but in the

last decade, there has been immense progress in audio applications. Such developments have resulted in

machine learning and machine listening ecosystems, like FluCoMa[11] and Sema[12]. Here, I will not focus on

ecosystem designs but on performance systems developed by live coding practitioners. These are typically

developed for a specific performance and are usually experimental designs.

Many practitioners can be unclear on implementing AI architectures into their designs. Whereas this may look

unjustified due to decades of experience with interactive AI technologies[13], creative AI practices have a slow

diffusion into interactive music systems. This slow diffusion is partly reflected in modern commercial software

applications, which lean towards seamless interactions. The same issues apply to live coding systems to a

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

3

certain extent. Indicatively, there are recent efforts to implement machine listening in Chuck1, and popular

languages like Sonic Pi2 and TidalCycles3 do not offer built-in implementation for machine listening and

machine learning. Thus, my goals are to raise awareness within the community and offer an entry-level for

those unclear on how to incorporate interactive AI in their performance systems.

Here, I begin with a high-level diagrammatic representation of live coding and present a conceptual framework

of agent-based systems in live coding. Musical agents are here seen as both human and software agents[14].

The framework is informed by examining various examples of live coding systems developed by practitioners

and reflecting on my experience as a live coder. It addresses some affordances and temporal constraints to

consider when designing interactions between code and music. It is an observational study where I reflect on

my practice when necessary and provide one code example in SuperCollider. The example aims to help

navigate the proposed conceptual framework when designing agent-based systems.

I will start with the related work on liveness and machine listening in live coding. Then I continue and present

the methodology and the observation material. I examine the basic structural components of agent-based live

coding systems and discuss interactivity patterns on the observed material. The last section presents a

conceptual framework for designing agent-based systems in live coding.

Theoretical background
Tanimoto's hierarchy of liveness was initially presented with four levels[7]. The levels are informative (L1),

informative and significant (L2), informative, significant and responsive (L3), informative, significant,

responsive and live (L4). Later on, Tanimoto introduced two more levels, called tactically predictive (L5), and

strategically predictive (L6). Liveness is an inherent property of live coding systems, and a system used in the

performance is L4 liveness[15]. A promising area of investigation has been started looking at predictive

models, which are moving towards L5 liveness. Recently, a few live coding systems have exhibited

characteristics of tactical predictions[16][17][18]. Essentially, a tactically predictive system can inform the

users of their programming behaviours, and a trivial case is the auto-completion mode of modern text editors.

A strategically predictive system can perform intelligent predictions and examine the liveness concerning

agency. Some sort of predictive modelling is typically used when we aim to advance from an L4 system to an

L5 system, albeit not necessary. Here, it is important to notice that no system today claims to fulfil the

requirements for making tactical predictions. There is also a critical view in the literature[19] on whether

advanced levels of liveness, such as code previewing, can be useful to the performer, as the cognitive resources

during a performance are scarce, and more information can be no more than a distraction[20].

Besides the technical characteristics, liveness in programming environments depends on the notation of the

language and the environment itself[4]. In live coding, notation usually consists of the functional parts of code.

However, secondary notation, like comments, indentation and syntax highlighting, can also play an important

role in the dramatization of a performance[21]. In musical live coding, liveness can have more qualities as the

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

4

musical outcome and the humans involved are necessary parts. Thus the environment extends further than that

of a typical programming environment and includes the notation (code), the musical outcome (music), and the

musical agents involved (agents). Typically the performers, but some authors would argue for the importance

of the audiences[22], and for a relational sense of ‘otherness’ that artificial agents can induce during a

performance[23].

One functional characteristic of the human agent in a live coding session is that it can hear the musical

outcome. As already mentioned, when the running program is rendered to musical outcome within a

performance context, then the live coding system is necessarily within the L4 liveness[15]. The code generates

musical outcomes sensed by the coder, who modifies the running program. Thus, there is a feedback loop

between code and musical sounds as mediated by our auditory perception. The code is rendered to another

modality (sound/musical outcome) and consequently to a continuous auditory stream (listeners' perception)

that the coder can monitor.

Collins[24] presented a cookbook for machine listening in live coding. He presented two main categories of

systems. For the first possibility, also known as “live coding control of machine listening”, there are two design

decisions: (i) a feature-adaptive design which employs some feedback processes and (ii) an event-based design.

For the feature-adaptive design, Collins implements a code with a pitch extraction algorithm that operates at

10ms. The output of the pitch extractor is within a feedback loop that controls the same sound generator. For

the event-based design, an onset detector senses the environment with a microphone and triggers sound events.

Regarding the second possibility, also known as “machine listening control of live coding”[24], Collins

presented a timbral instruction set approach to let the machine listening component do the programming on this

(imaginary) computer architecture. This system has a clock-based operation and follows a bottom-up approach

to live coding as the levels of abstraction are progressively built on-the-fly. This system exemplifies how we

may program a computer using another sensory modality. In this case, the machine listening component is a

model of human hearing. The results of this analysis are applying progressive modifications to the instruction

set, which can successively perform on-the-fly computations.

Introducing the observational material
Xambó[25] reviewed agent-based systems for musical live coding practices, providing the main material of my

study. I focus on the systems that do afford both social interactivity and learnability. These are the two

dimensions that Xambó introduced and denote whether the musical agents can cooperate (‘social interactivity’)

and whether the system affords either on-the-fly or pre-trained learning (‘learnability’). I call these interactive

AI systems, which can either learn from the environment or sense the environment. Thus, systems like Cibo[26]

 are excluded from my study.

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

5

List of video material

The methodology is formulated from complete observations, meaning that the observer did not interact with or

influence the observed cases[27], and abductive inference[28]. I used as modes of investigation clues,

metaphors, patterns and explanations as have been formed from personal practice as a live coder. I set certain

criteria for selecting the observation material, a method known as criterion sampling[29]. The criteria I set for

the observations are: i) there is an online video of the system, either performance, or a demo, along with a

corresponding article, ii) the system is using the ‘standard paradigm’ for live coding, that is typing on a

keyboard in a textual programming language, iii) the system affords learning or sensing, and iv) all examples

used in Xambó’s review[25] that fulfill the criteria (i), (ii) and (iii).

The selection of the use cases presented here is a combination of a search on Google scholar using the

keywords “live coding” AND “machine listening”, “live coding” AND “software agents”, “live coding” AND

“musical agents”. The retrieved material was constrained to the first 100 entries for each query. Also, all

entries from the International Conference on Live Coding (ICLC) repository on Zenodo4 were retrieved, and

regular expressions were used to search relevant articles. A total of 85 articles were retrieved from Zenodo.

Some entries were excluded when the article was not written in English. Also, several systems were excluded

because of mixed designs on the user interaction, such as modifying the system using both code and interactive

graphical interfaces (e.g., interactive sonification, interfaces for education). The retrieved studies were last time

updated on 2023-01-30.

The first selection criterion for a video demonstration implies a requirement that a practitioner has developed

the system. The second criterion constrains the observation material to the arguably most common approach to

live coding, that is, typing on a keyboard. The third criterion sets the requirement for interactive AI systems,

and the fourth criterion is using bibliographical information from state-of-the-art live coding practices and

agent-based systems. This resulted in a corpus of 8 videos, as shown in Table 1. I will briefly introduce all

systems in the following bullet list, and in the next section, I will examine the systems in relation to one

another.

1 Attanayake et al.[16] https://vimeo.com/447733242

2 Autopia[30] https://vimeo.com/349044280

3 Cacharpo[31] https://vimeo.com/227332172

4 Flock[32] https://vimeo.com/145109691

5 Mégra[33] https://vimeo.com/321099751

6 MIRLCa[34] https://youtu.be/ZRqNfgg1HU0

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

6

Table 1: List with the observational material.

7 Ruler[35] https://youtu.be/zjTL0DOCNBo

8 Wilson et al.[17] https://youtu.be/2F1D8Harnkc

1. Attanayake[16] and colleagues present a recommender system to suggest novel musical patterns to the user.

The system uses Markov chains on the melodic patterns to suggest novel musical sequences. The system has

three user modes: (i) continue writing code, (ii) execute the recommendation, or (iii) request a new pattern.

An interview study was conducted where the participants indicated that the ‘disruptive’ mode was more

enjoyable than the others. The system does not use machine listening.

2. Autopia[30] is a collaborative live coding system that uses audience voting and evolutionary computations.

It uses genetic programming to generate prescriptive notation, in this case, code chunks that generate music

which is neither ambiguous nor imprecise[36] and run the code independently. The system can perform on

its own (without live coders) and also can be controlled by the coders.

3. Cacharpo[31] is a system that offers a co-performer for collaborative live coding sessions. The autonomous

agent listens to the coder and extracts low-level acoustical features, which are progressively linked to higher-

level features. Then, semantic descriptions are informed by machine listening, and a pre-trained neural

network model maps acoustical characteristics to musical code patterns. The system has two modes; the

coder either writes the code and the agent awaits, or the agent writes the code, and the user awaits.

4. Flock[32] is a collaborative live coding system that uses machine listening and a voting algorithm. The

network dynamics of the system use evolutionary computations and incorporate a preference function

informed by machine listening. Such preferences are visualized using descriptive notation[37], a

representation of what is heard as the preference algorithm controls the final audio mix.

5. Mégra[33] is a system that uses probabilistic Markov models to generate new patterns on-the-fly. The

system does not use machine listening. Instead, it is similar to Attayake's online training procedure, focusing

on small datasets. Contrary to Attanayake, the system does not offer a code preview.

6. MIRCLa[34] is a music information retrieval (MIR) for querying audio samples using semantic tags from

the cloud. The system is trained on a database of sounds and computes similarity measures and retrieves

audio samples from Freesound ready to use in performance. It has three main functions: i) audio

repurposing, ii) audio rewiring, and iii) audio remixing.

7. Ruler[38] is a rule-based system that explores generative spaces. The system was developed as an approach

to on-the-fly programming a sound synthesizer. There is no machine listening implemented, the evaluation

was conducted with human participants and similarity measures on the rule-based generator.

8. Wilson et al. [17] developed an agent that suggests code patterns in TidalCycles to the user. The model was

trained on a large code database. Essentially, the system affords code previewing, similar one of the user

modes used in Attanayake and colleagues.

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

7

Diagrammatic representation of the systems

From the above descriptions and the video observations, I identify four necessary parts of the systems: i)

Human agent(s), ii) Software agent(s), iii) Code, and iv) Music. I abbreviate as Human (H), Software (S), Code

(C), and Music (M) when necessary.

To facilitate understanding, I use block diagrams to represent the systems above using a rather simplistic

representation of musical live coding (Figure 1). A typical live coding session can be schematically represented

in the below diagram (H, C, M). The H writes text rendered to C, and C generates sound rendered to M. This is

an incomplete representation, as the human also listens to the musical outcome during a performance (see

transition labels on Figure 2).

Thus, a more accurate schematic representation of an agent-based system would include auditory feedback to

the human (Figure 3). Here, the schematic representation does not show how the system informs the software

agent. None of the systems in Table 1 can be represented in this manner, as they all have software agents aware

of either the written code or the musical outcome.

Figure 1: Simplistic schematic representation
of a musical live coding session.

Figure 2: Descriptions of the transitions
between the blocks.

Figure 3: A simple schematic representation of
an agent-based system for musical live
coding, not corresponding to any of the

observed cases.

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

8

More specifically, the systems by Attanayake et al.[16], Wilson et al.[17], and Autopia[30] are monitoring the

written code and applying code modifications to prescriptive code chunks[37] (Figure 4). Some of the systems

require the coder's permission to apply the changes, essentially a code preview feature that is not shown on the

diagram below.

Contrary to the systems above, Mégra and Ruler do not apply visible modifications to the code, as indicated by

the red dotted arrow (Figure 5). Instead, the systems apply probabilistic and rule-based AI algorithms,

respectively, to enrich the musical outcome as a seamless process. This functionality can be useful when fast

musical variations are required, typically due to musical style requirements (e.g., dance music). Furthermore,

Mégra has the potential for interactive visualizations, which can be seen as a descriptive notation. This feature

is discussed by Reppel[33] but is not demonstrated in the accompanied video demo, and not visualized in the

diagram below.

On the other hand, MIRCLa by Xambó[39], while agnostic about the content of the written code, the system is

semantically aware of the musical outcome. The system has access to the acoustical features database on

Freesound, and can retrieve similar context to the played sounds. This is denoted with the dashed arrow from M

 to S, indicating that the software agent is receiving textual data (Figure 6). Furthermore, while S is modifying C

 (red dotted arrow), this has no visible consequences for the user on the prescriptive notation. The user can only

monitor the output of the interpreter to get informed about the applied code modifications. In practice, the

system is much more complex, but I represent its main interactivity during a performance in the simple

schematic.

Figure 4: Agent-based systems informed by
textual data.

Figure 5: Agent-based systems informed by
textual data without modifications on the

prescriptive notation.

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

9

Flock, by Knotts[32], is a system that applies a voting algorithm on collaborative live coding sessions. The

analysis is performed on the musical outcome of the system, and the software agents modify descriptive

notation, indicated with the blue dashed arrow, along with controlling the final audio mix (Figure 7). Again, the

system is more complex as it is a multi-user performance.

Cacharpo[31] is a system that simulates a co-performer and has a turn-taking design. The software agent awaits

the user to provide permission to start typing novel code chunks. The system is performing an analysis of the

acoustical features of the musical outcome and is not aware of the written code (Figure 8). Thus, Cacharpo

generates prescriptive notation and listens to the musical outcome.

In all above cases the relations between the H, C, and M are always the same. The coder writes an encoded text

which is decoded and rendered to music, and consequently, the coder listens to the sound to modify the code.

From the observations, it becomes obvious that none of the systems is informed by both the music and the code

Figure 6: Agent-based systems informed by
textual data related to the musical outcome,

without modifications on the prescriptive
notation.

Figure 7: Agent-based systems informed by
sound with modifications on the descriptive

notation.

Figure 8: Agent-based systems informed by
sound and applying modifications on the

prescriptive code.

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

10

(Figure 9). More possibilities can be explored with this simple diagrammatic representation, and its complexity

can increase when adding more components or transitions.

Relations between the systems: Interactions of musical agents in
live coding
Some systems incorporate software agents as assistants[31] or recommender systems[16][39]. There are

several reasons for doing so, either because of intrinsic temporal constraints (e.g., typing speed) or because of

extrinsic temporal constraints (e.g., browsing a large sample bank). For instance, Navarro and Ogborn[31]

developed a software assistant (Cacharpo), which can be used for collaborative live coding performance

between humans and software agents. The system uses machine listening and neural networks to generate

novel code chunks in the autonomous agent workspace. This type of system can be seen as having intrinsic

temporal constraints, as one performer cannot type the amount of code that two live coders can do. An example

of extrinsic temporal constraints is MIRLCa by Xambó[39]. This system retrieves sound samples from the

Freesound cloud database based on semantic queries (e.g., rain, noise). In this case, the live coder does not

have the temporal capacity to search Freesound's webpage and select an audio sample that sounds like rain or

noise. Consequently, MIRLCa system would do a better job given the constraints imposed on a live coder

during a music performance, as it will calculate similarity measures between the semantic tag and the

acoustical features of the sound sample.

On the other hand, Ruler, Mégra, and Autopia are agnostic of the acoustic characteristics of the musical

outcome. These systems do not use machine listening. Instead, they apply AI algorithms in the domain of code.

Whereas Autopia applies visible modifications on prescriptive code, Ruler and Mégra do not afford visible

code modifications. The AI algorithms run on background processes, and, in the case of Ruler, the user is

informed by the printouts from the interpreter. None of the three systems uses any descriptive notation, as

Flock does, and none uses machine listening on the audio other than Flock and Cacharpo. To clarify, MIRLCa

is applying machine listening-related technologies that use semantic information from the cloud. Thus, no real-

time audio processing is performed, instead the system is informed from offline acoustical characteristics

stored on the cloud.

Figure 9: A future system informed by both the
written code and the musical outcome.

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

11

All the abovementioned systems (Flock, Cacharpo, MIRLCa, Ruler, Mégra, Autopia) have L4 liveness. Below

I continue with more cases which may be seen as advanced levels of liveness (L5 and L6). So far, two systems

following the ‘standard paradigm’ have been developed towards making tactical predictions during a live

coding session. These are the showcases by Wilson et al.[17] and Attanayake et al.[16]. The systems vary

considerably in design decisions and available features. In Wilson et al.[17], the system is based on

TidalCycles using a deep learning architecture pre-trained on a large corpus of code examples. In Attanayake et

al., the system's predictive algorithm is a Markov model capable of online predictions of musical patterns. The

two abovementioned cases make predictions on code segments, implementing a code preview functionality,

with no involvement of machine listening. Their main difference is that Attanayake's et al. system affords

online learning, whereas Wilson's et al. system affords offline learning.

It becomes obvious that prescriptive and visible notation is used by many systems (Autopia, Cacharpo,

Attanayake et al., and Wilson et al.). The agents can adjust, or write from scratch, the prescriptive part of the

notation, allowing the user to get involved with the generated code chunks. On the other hand, three out of

eight systems (Mégra, MIRLCa and Ruler) do not use visible modifications on the prescriptive part of the

notation or any descriptive notation. Only Flock provides the feature of modifications on the descriptive part of

the notation. As for the modality of the music, it becomes evident that only Flock and Cacharpo use the

acoustical characteristics for online sensing of the generated musical sounds, and MIRLCa applies offline

sensing of acoustical characteristics using semantic information from the cloud. Similarly, some systems afford

online training algorithms, and some afford pre-trained algorithms. I will further elaborate on these in the next

section.

Conceptual framework for designing agent-based systems
As an extension of the previous section, where I examined the interactions of agent-based systems, I identified

three different domains of interest when designing a system. The domains of i) ‘Code’, ii) ‘Music’ and iii)

‘Software agents’, will be referred to as the coding domain, the musical domain, and the software agents,

respectively.

Below I introduce a conceptual framework (Figure 10) informed by technologies of liveness and machine

listening. My focus is not on how to technically implement software agents in live coding but on what concepts

can be useful when designing interactive AI systems. The framework is not meant to be exhaustive but rather a

tool to aid in analysing and developing agent-based systems. Live coding is known to “resist or trouble any

easy classification, categorization, or explanation”[40](p. 2). It is a non-linear framework that composes new

knowledge from the literature and my musical practice. More specifically, Collins[24] recommendation on how

machine listening and live coding may be combined is shown along with a part of a model for the timescales of

auditory perception by Petri Toiviainen[41] on the musical domain. Some parts, like the temporal constraints

and the affordances of the code, are formulated as a result of the literature study. The domain of software

agents is constructed as part of the observation material. The thick semi-transparent line patterns indicate a

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

12

‘weak’ border between the three main domains of code, software agents, and music. Thus, the three domains

span vertically (pattern coding), whereas the three categories of affordances, temporal constraints, and negative

timescales span horizontally (colour coding). The outward arrows from the domain of software agents to the

musical domain and the coding domain indicate that agents can act upon these modalities. As live coding also

facilitates interactive visualizations, the framework constrains the creative aspects that can appear in a live

coding session, as it does not consider the potential of visualization technologies. Finally, I provide a code

snippet and map it on the framework to facilitate understanding of how to navigate the conceptual framework.

Domains of the conceptual framework

Coding domain

The leftmost column (Figure 10) shows the coding domain, along with some of the affordances of a system and

the temporal constraints related to user interaction. The code can do an action (prescriptive notation) or can

describe an action (descriptive notation). Secondary notation[22], such as code comments, is a descriptive

notation. The visibility of the code is independent of whether the code is prescriptive or descriptive. Some

processes can run in the background and be invisible to the user.

Moreover, the code updates demonstrate some inherent temporal constraints. The coding domain temporal

constraints and affordances depend on actions that are either system actions, human agent actions, or software

agent actions[42]. A question arises whether we consider the code part of the system, the coder’s reasoning and

performative processes, or an autonomous entity. Thus, it is related to how we ascribe agency to the code, and

this opens a wider discussion on aesthetic appreciation[43], which go beyond the scope of the article. For

Figure 10: Conceptual framework for designing agent-based systems for musical live coding.

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

13

instance, Tidal has an inherent tempo clock which can be seen as a clock-based system action. Code updates

can be performed by users or autonomous agents on demand or immediately (e.g., Attanayake et al.[16]).

Software agents domain

The middle column shows the domain of software agents. I identify that the agents can act upon the coding

domain and the musical domain and can be either single agent systems or multiple agent systems. When they

act on the musical domain they afford sensing, and when they act on the coding domain, they afford learning.

Both sensing and learning can be either online or offline, as discussed above. I examined the relations between

the different systems and I discussed how agents could exhibit either intrinsic or extrinsic temporal constraints.

Musical domain

The rightmost column show the musical domain. The affordances of the musical outcome are discussed as

presented by Collins[24], and the temporal constraints present the temporal characteristics of low-level

(signal), mid-level (feature) and high-level (structure, concept) acoustical features. There are indicative

durations for each feature family, which indicate an inherent delay time for computations when applying

machine listening.

Mapping use cases on the framework

Figure 11 shows examples of mapping different systems on the conceptual framework. At least one attribute

from each block (e.g., Notation, Modifications, Learning, Sensing) is necessary unless a system is not

operating on a specific domain. For instance, many systems do not incorporate machine listening technologies,

like Attanayake et al.[16] which is agnostic of the musical domain.

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

14

The code example below demonstrates a simple agent-based system. If we follow the coding domain from top

to bottom (orange dashed line on Figure 11), we can trace the path of interactivity starting from the musical

domain (upper right on Figure 11). The code example applies feedback-based machine listening to extract a

relatively low-level acoustical feature on-the-fly. The specific feature is the spectral centroid, a feature

correlated to pitch and perceptual brightness. Thus, it affords online sensing using a single agent (musical

domain). Following that, a conditional statement determines whether another single agent (coding domain) will

generate sound or move into silence. This conditional statement (if statement in SynthDef ‘agent’) can be seen

as a thermostat, which implements a negative-feedback design and can hardly be seen as a sufficient condition

for learning by experience[44]. I will not attempt to discuss what can be seen as learning. Still, I would argue

that this rather simple system exhibits some elementary properties that can be useful when designing systems

that can learn to reach an equilibrium state. In complex systems, like a live coding performance, equilibria are

not easy. Continuing in the coding domain, the code example, does not make any visible modifications on the

notation and has immediate effect when reaching the threshold value.

// Code example in SuperCollider (SC3 v.3.13.0)

(
SynthDef(\ml, { arg audioBus = 0, controlBus = 2;
 var chain, feat;
 chain = FFT(LocalBuf(1024), InFeedback.ar(audioBus, 2));
 feat = SpecCentroid.kr(chain);
 Out.kr(controlBus,
 if(
 RunningSum.kr(feat[0], 100) * 0.01 < 3000,
 feat[0],
 DC.kr(controlBus)
).poll(3)
);
}).add;

Figure 11: Mapping the code example and two of the systems on the conceptual framework.

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

15

arg freq = 330, ffreq = 2, pan = 0.0, amp = 1.0;
 var seq, pattern, trig, gate;
 pattern = [[1, 9/8, 2], [3/2, 1, 0.5], [4/5, 3/2, 6/5]].mirror;
 gate = Gate.kr(LFSaw.kr(ffreq).range(freq/2, freq),Impulse.kr(ffreq * 3));
 trig = Stepper.kr(Impulse.kr(ffreq), 0, 1, 9).fold(2, 7).fold(4, 5);
 seq = Demand.kr(Impulse.kr(trig), 0, Dseq(pattern * gate, inf));
 Out.ar(0, Pan2.ar(SinOsc.ar(seq).mean, pan, amp))
}).add;
SynthDef(\agent, {
 arg controlBus = 2, threshold = 3000;
 var seq = Stepper.kr(Impulse.kr(In.kr(controlBus)/100), 0, 1, 3);
 Out.ar(0,
 Pan2.ar(
 RLPF.ar(
 if(In.kr(controlBus) < threshold,
 SinOsc.ar(In.kr(controlBus) * seq),
 Silent.ar
), 3000, 0.5
), 0.0, 0.2
).tanh
)
}).add;
)

// run line-by-line
~centroid = Synth(\ml);
~sine = Synth(\sine);
~agent = Synth(\agent);

~sine.set(\freq, 110);
~sine.set(\freq, 220);
~agent.set(\threshold, 100); // deactivate
~agent.set(\threshold, 200); // boundary
~sine.set(\freq, 1000);
~agent.set(\threshold, 1000);
~sine.set(\freq, 2000);
~agent.set(\threshold, 3000);
~sine.free; // free sine
~agent.set(\threshold, 100); // autonomous
~agent.set(\threshold, 0); // silence
~agent.free; ~centroid.free;

A similar logic can be applied to follow the traces of interactivities for Attanayake and Cacharpo, and in

principle all use cases can be mapped to the framework. I would like to comment on the negative timescales, a

term I adopted from Tanimoto’s presentation5 during the ICLC 2015. The dashed circle in Attanayake’s system

indicates that the system is not claimed to be an L5 system. I would claim that code previewing is L5 liveness,

but it can be a complex issue whether code preview is L5 or not. Here, I support the authors’ position (for both

[16] and [17]) for not claiming to be L5 systems. As a last point on L5 systems, I would expect to see in the

future liveness technologies that can compensate for machine listening inherent delays. Simply put, as the

technical notion of liveness can ‘see’ into ‘negative timescales’ and machine listening has inherent delays due

to digital signal processing constraints (e.g., sampling rate) and perceptual constraints, then I think that

expectations are raised on these technologies[24].

Conclusions
In this study, I aimed to provide a practical framework for designing agent-based systems for live coding music

performances. I reviewed studies focusing on the ‘standard paradigm’ to live coding, that is, typing on a

keyboard, and I examined eight use cases with online video material. I presented a high-level diagrammatic

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

16

representation of live coding systems and identified interaction patterns between code, music and musical

agents. I identified from this analysis that there is little attention to machine listening. Many instead incorporate

machine learning for text generation which renders visible and prescriptive code chunks, but in many other

cases, the agents have seamless consequences for user interaction. Also, no system incorporates both machine

listening and text processing algorithms by making informed decisions on both domains of the generated music

and the written code. Following the eight use cases analysis, I constructed a conceptual framework that can be

used when designing agent-based systems and provided a code snippet to facilitate understanding. The

implications of this framework are that it can help practitioners to navigate into ecosystems for machine

musicianship, such as FluCoMa and Sema, and can also provide practical insights when designing agent-based

systems for live coding, maybe to be used in education. Although the study presents a simple code example

and two use cases of agent-based implementations mapped to the present framework, further informed

decisions can be made using interviews with the developers of the use cases in question.

Ethics Statement
I declare no conflict of interest because of funding or otherwise. The present study follows the free/open-

source software ethos along with low consumption of computational resources. No human participants were

recruited for this study and no sensitive data were collected. The main methodology is based on an

observational study from online video material where I did not interact with the participants, and it is mainly a

methodological study. The study has an educational orientation and aims to support the live coding research

community. Principles of accessibility, environmental sustainability, inclusion and socio-economic fairness

were considered.

Acknowledgements
I thank Sara Ljungblad for pointing me out to connect and draw the trajectories of the interconnected

components of the framework.

Footnotes
1. https://chuck.stanford.edu/release/VERSIONS — Accessed 23-01-28 ↩

2. https://sonic-pi.net/ — Accessed 2023-03-14 ↩

3. https://tidalcycles.org/ — Accessed 2023-03-14 ↩

4. https://zenodo.org/oai2d?verb=ListRecords\&set=user-iclc\&metadataPrefix=oai_dc ↩

5. Tanimoto’s keynote presentation during the first International Conference on Live Coding (ICLC 2015),

https://youtu.be/4cJANuMiq18 ↩

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

17

References
Attanayake, U., Swift, B., Gardner, H., & Sorensen, A. (2020). Disruption and creativity in live coding. 2020

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 1–5. ↩

Bernardo, F., Kiefer, C., & Magnusson, T. (2019). An AudioWorklet-based signal engine for a live coding

language ecosystem. Web Audio Conference (WAC 2019), 77–82. ↩

Blackwell, A. F., & Collins, N. (2005). The Programming Language as a Musical Instrument. PPIG, 11. ↩

Blackwell, A. F., Cocker, E., Cox, G., McLean, A., & Magnusson, T. (2022). Live coding: a user’s manual.

MIT Press. ↩

Blackwell, A. F., Cocker, E., Cox, G., McLean, A., & Magnusson, T. (2022). Live Coding’s Liveness(es). In

Live coding: a user’s manual (pp. 159–204). MIT Press. ↩

Brown, A. R. (2016). Performing with the other: the relationship of musician and machine in live coding.

International Journal of Performance Arts and Digital Media, 12(2), 179–186. ↩

Church, L., Nash, C., & Blackwell, A. F. (2010). Liveness in Notation Use: From Music to Programming.

PPIG, 2. ↩

Collins, N. (2003). Generative music and laptop performance. Contemporary Music Review, 22(4), 67–79. ↩

Collins, N. (2011). Live coding of consequence. Leonardo, 44(3), 207–211. ↩

Collins, N. (2011). SCMIR: A SuperCollider music information retrieval library. ICMC. ↩

Collins, N. (2015). Live Coding and Machine Listening. Proceedings of the International Conference on

Live Coding, 4–11. ↩

Collins, N., McLean, A., Rohrhuber, J., & Ward, A. (2003). Live coding in laptop performance. Organised

Sound, 8(3), 321–330. ↩

Croft, J. (2007). Theses on liveness. Organised Sound, 12(1), 59–66. ↩

Dahlstedt, P., & McBurney, P. (2006). Musical agents: toward computer-aided music composition using

autonomous software agents. Leonardo, 39(5), 469–470. ↩

Diapoulis, G., Zannos, I., Tatar, K., & Dahlstedt, P. (2022). Bottom-up live coding: Analysis of continuous

interactions towards predicting programming behaviours. NIME 2022. ↩

Gifford, T., Knotts, S., McCormack, J., Kalonaris, S., Yee-King, M., & d’Inverno, M. (2018). Computational

systems for music improvisation. Digital Creativity, 29(1), 19–36. ↩

Green, O., Tremblay, P. A., & Roma, G. (2019). Interdisciplinary Research as Musical Experimentation: A

case study in musicianly approaches to sound corpora. Electroacoustic Music Studies Network Conference:

Electroacoustic Music: Is It Still a Form of Experimental Music? ↩

Knotts, S., & others. (2018). Social Systems for Improvisation in Live Computer Music [Phdthesis]. Durham

University. ↩

Lankoski, P., & Björk, S. (2015). Formal analysis of gameplay. In Game research methods (pp. 23–35). ↩

Lewis, G. E. (2000). Too many notes: Computers, complexity and culture in" voyager". Leonardo Music

Journal, 33–39. ↩

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

18

Lorway, N., Powley, E., & Wilson, A. (2021). Autopia: An AI collaborator for live networked computer

music performance. ↩

Magnusson, T. (2019). Sonic writing: technologies of material, symbolic, and signal inscriptions.

Bloomsbury Publishing USA. ↩

Magnusson, T. (2019). Sonic writing: technologies of material, symbolic, and signal inscriptions.

Bloomsbury Publishing USA. ↩

McKechnie, L. E. F. (2008). Observational research. In L. M. Given (Ed.), The SAGE Encyclopedia of

QUALITATIVE RESEARCH METHODS (pp. 573–576). SAGE. ↩

McLean, A. (2014). Stress and Cognitive Load. In A. Blackwell, A. McLean, J. Noble, & J. Rohrhuber

(Eds.), Collaboration and learning through live coding (pp. 145–146). ↩

Nash, C., & Blackwell, A. F. (2012). Liveness and Flow in Notation Use. NIME. ↩

Navarro, L., & Ogborn, D. (2017). Cacharpo: Co-performing Cumbia Sonidera with Deep Abstractions.

Proceedings of the International Conference on Live Coding. ↩

Olsson, C. M. (2015). Fundamentals for writing research: a game-oriented perspective. ↩

Palys, T. (2008). Purposive sampling. In L. M. Given (Ed.), The SAGE Encyclopedia of QUALITATIVE

RESEARCH METHODS (pp. 697–698). SAGE. ↩

Paz Ortiz, A. I. (2022). On-the-fly synthesizer programming with rule learning [Phdthesis]. Universitat

Politècnica de Catalunya. ↩

Paz Ortiz, A. I. (2022). On-the-fly synthesizer programming with rule learning. ↩

Reppel, N. (2020). The Mégra System-Small Data Music Composition and Live Coding Performance.

Proceedings of the 2020 International Conference on Live Coding, 95–104. ↩

Roberts, C., & Wakefield, G. (2018). Tensions and Techniques in Live Coding Performance. ↩

Rowe, R. (1993). Chapter 5: Machine Listening. In Interactive music systems: machine listening and

composing. MIT press. ↩

Rowe, R. (2004). Machine musicianship. MIT press. ↩

Stewart, J., & Lawson, S. (2019). Cibo: An autonomous tidalCyles performer. Proceedings of the Fourth

International Conference on Live Coding, 353. ↩

Tanimoto, S. L. (1990). VIVA: A visual language for image processing. Journal of Visual Languages &

Computing, 1(2), 127–139. ↩

Tanimoto, S. L. (2013). A perspective on the evolution of live programming. 2013 1st International

Workshop on Live Programming (LIVE), 31–34. ↩

Toiviainen, P. (2015). Lecture notes in Music Perception I. University of Jyväskylä. ↩

Wilson, E., Lawson, S., McLean, A., Stewart, J., & others. (2021). Autonomous Creation of Musical Pattern

from Types and Models in Live Coding. ↩

Wisdom, J. O. (1951). The hypothesis of cybernetics. The British Journal for the Philosophy of Science,

2(5), 1–24. ↩

Xambó, A. (2021). Virtual Agents in Live Coding: A Short Review. arXiv Preprint arXiv:2106.14835. ↩

AIMC 2023 Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems

19

Xambó, A., Lerch, A., & Freeman, J. (2018). Music information retrieval in live coding: a theoretical

framework. Computer Music Journal, 42(4), 9–25. ↩

Xambó, A., Roma, G., Roig, S., & Solaz, E. (2021). Live Coding with the Cloud and a Virtual Agent. NIME

2021. ↩

Paper VII

Musical live coding in relation to interactivity
variations

G. Diapoulis

Organised Sound 28.2.
Cambridge University Press, UK. (2023).

https://doi.org/10.1017/S1355771823000444

Musical Live Coding in Relation to
Interactivity Variations

GEORGIOS DIAPOULIS

Chalmers University of Technology, Gothenburg, Sweden
Email: georgios.diapoulis@chalmers.se

This article explores the similarities and differences between
live coding and traditional music performances. The focus is on
how bodily movements are expressed and whether pre-
reflective processes may be activated during a live coding
performance. While reports from practitioners vary on
percepts of embodiment, the community is missing a theoretical
background that reflects on practice. Understanding pre-
reflective processes in live coding can benefit performance
practices and tool development. As a live coder, I reflect on
personal experiences and explore what I call ‘interactivity
variations’, a term to denote different gestural manners of
interactions during a performance. I observe patterns of
embodiment among various live coders who use diverse
performance systems from online videos. Out of 11 examples of
performance systems, two cases demonstrate interactivity
variations that can activate pre-reflective processes while
another exploits direct manipulation. I present some
implications for the patterns of bodily movement during a live
coding performance and discuss how descriptive and
prescriptive notation can be important and potentially
influence our sensorimotor network. The article contributes a
first account of a sensorimotor theory on live coding
performances, reflecting on practice and embodied music
cognition by presenting an aesthetic analysis of 11 online video
examples.

1. INTRODUCTION

Live coding and traditional musical performance can
be viewed as the two extremes on an imaginary
continuum of music performance studies. While
motoric and cognitive skills are demanding for both
performance styles (Palmer 1997; McLean 2014), I
will primarily concentrate on the qualitative differ-
ences that arise from the motoric skills performed
through bodily gestures. This discussion will establish
the foundation for my main research question: Are
pre-reflective processes evident in live coding perform-
ances? The term ‘pre-reflective process’ is used
interchangeably with ‘fast processes’ or ‘subconscious
processes’ (Leman 2016).
My primary theoretical framework is drawn from

music psychology and music perception research on
music performance, employing Leman’s theoretical
framework on pre-reflective processes for expressive
interactions. I subscribe to the phenomenological

approach of autopoietic enactivism (Varela,
Thompson and Rosch 2017), a sensorimotor theory
of embodied cognition that sees cognition as an
emergent phenomenon of sensorimotor activities. I
also investigate how the user gesturally interacts with the
input interface, which may involve addressing human–
computer interaction (HCI) as needed. Essentially, the
main emphasis is on the live coder, with a secondary
focus on the physical interface and programming
language. The field of research on music performance
is largely indifferent to the specific musical instruments
used. Instead, it focuses on musical structure, bodily
movement and emotional responses (Palmer 1997). I
concentrate on bodily movement and hope that future
research will also look into musical structure and
emotional responses, as they are currently unexplored
areas in live coding.
Here, I describe how live coding is conducted by

combining approaches from both HCI and music
psychology, with an emphasis on gestural interactions.
The term ‘gestural interactions’ refers to both musical
gestures (Leman and Godøy 2010) and bodily gestures
used in HCI, with gestures, viewed in the context of
human–material interactions (Ishii, Lakatos, Bonanni
and Labrune 2012), and the material, in this case,
being sound. Musical gestures unify bodily movement
and meaning and can therefore serve as a means of
studying subjective percepts resulting from bodily
movement (Jensenius, Wanderley, Godøy and Leman
2010). My motivation is to explore what can be learnt
about a performer’s cognitive and sensorimotor
processes through observation of various systems
and practices.

2. METHOD

In this article, I discuss 11 performance systems and
practices, primarily by conducting complete and
unstructured observations of live performances I have
attended or watched online, reviewing a diverse corpus
of literature and reflecting on my experiences as a live
coder. Here, the literature spans music psychology and
perception studies and research on live coding and
HCI. Unstructured observations refer to the idea
that an observation is carried out without systematic

Organised Sound 00(00): 1–13 © The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited. doi:10.1017/S1355771823000444

https://doi.org/10.1017/S1355771823000444 Published online by Cambridge University Press

criteria guiding the observed showcases. It is an
approach commonly adopted when there is little
theoretical background on the phenomenon being
observed or when the researcher does not know the
outcome of the study (McKechnie 2008). Complete
observations involve the observer refraining from
interacting with the participants during the observa-
tion. In the case of live coding, complete observational
studies have recently started to appear (Diapoulis and
Dahlstedt 2021a) due to the increasing availability of
online audiovisual material.1 Ten years ago, such
observations were not feasible due to the scarcity of
online resources.

Thus, unlike observational studies in ethnomusicol-
ogy, the methodology used here does not involve a
coding scheme or other systematic criteria. Instead,
the observation is an ongoing process documented
through reflective diaries or other forms of documen-
tation such as sketching diaries. Personal practices
have certainly influenced the selection of the 11 video
examples. Over the last year, I selected examples that I
encountered, and together they formed a structured set
of live coding systems that illustrate diverse practices
of interactivity variations2 on single-person examples
(see section 5). Live coding is a community that
documents itself (Haworth 2018) and reflects on itself,
and my intention is to contribute to the research goals
and ethos of the community, of which I consider
myself a part.

3. TRADITIONAL AND LIVE CODING MUSIC
PERFORMANCE

In traditional music performance, whether instrumen-
tal or vocal, there exists a direct relationship between
energy and sound (Leman 2007). Put simply, the more
effort we exert in striking a drum, the louder the
resultant sound will be. This allows performers and
audiences to engage with the process of sound
generation, resulting in a more rewarding and
enjoyable experience. Such a reward mechanism is
related to our ability to make predictions between
bodily movements and resultant sounds. For example,
when observing a drummer lift her hand to the sky and
strike the snare drum, we expect a loud and powerful
sound as a result. Conversely, live coding does not
involve this relationship (Dahlstedt 2018). In live
coding, performers experience an indirect involvement
with the music due to the use of notation (Nash 2012).
There exists a dissociation between action and
perception, as the bodily gestures performed by the

live coder do not directly correspond to the production
of sound. This can result in minimal bodily movement,
which raises questions about the significance of typing
on a keyboard (Haga 2008).
This indirect level of description is why live coding

has been referred to as a propositional improvisation
practice (Goldman 2019) and a radically different
form of performance compared with traditional music
performance (Sayer 2015). Goldman explicitly states
that he does not practise live coding, while Sayer’s
study does not specifically reflect on practice. On the
other hand, practitioners view live coding as necessi-
tating a distinct range of sensorimotor skills. For
example, Fredrik Olofsson does not feel any lack of
immediate feedback, regardless of the non-physical
interactions involved during coding (Nilson 2007).
Music performance is an embodied practice (Palmer

1997; Godøy 2021). Embodiment, here, ‘assumes that
subjective experiences are expressed in bodily changes’
(Leman 2007: 236). During live coding, our subjective
experiences include how we reason about the running
program, how we appreciate the musical outcome and
how we plan the progression of the performance
(Diapoulis and Dahlstedt 2021b). All these are
expressed in bodily changes, which can range from
minimal keyboard movements to overt dancing to the
beat. These movements can be synchronised and non-
synchronised with the musical outcome.
Live coding practitioners have reported percepts of

embodiment during performances, though such
reports can be contradictory. According to Baalman
(2015), embodiment is so profound in live coding that
even grammars and programming languages can
shape motoric execution patterns. By contrast,
Hutchins (2015) sees a lack of embodiment in coding
and aims to achieve it through live patching with
synthesisers, because of tactility percepts. A recent
workshop at NIME on gestures and embodiment in
live coding also suggests diverse understandings of
embodiment within the community (Salazar and
Armitage 2018).

4. FROM NOTATION TO SOUND AND FROM
SOUND TO MUSICAL MINDS

Live coding is sometimes described as a state of mind
(Tanimoto 2015). It blurs musical concepts such as
composition, performance and improvisation, while
also challenging standard views on programming,
such as the typical software engineering development
cycle. The difference between live coding and most
music improvisation practices is that live coding is an
improvisation practice based on notation (Baily 1999;
Magnusson 2019). Moreover, the notation is written
on-the-fly, and can also be maintained with its
accurate temporal evolution (Rohrhuber, de Campo,

1TOPLAP archive.org (https://archive.org/details/toplap), and
YouTube Eulerroom (www.youtube.com/@Eulerroom).
2A term inspired by the established term in music psychology
performance variations, which refers to different manners of
expressive performance.

2 Georgios Diapoulis

https://doi.org/10.1017/S1355771823000444 Published online by Cambridge University Press

Wieser, Van Kampen, Ho and Hölzl 2007), thus can
be reproduced by a machine. The standard paradigm
of musical live coding involves a composer-program-
mer typing on a keyboard and sharing his/her screen
with the audience. Roberts and Wakefield (2018) have
referred to this standard paradigm as canonical live
coding. This term refers to the practice that first
appeared in the early 2000s, where a command line
prompt was used as an interface equipped with an
interpreter or a compiler. Interpreter-based languages
are more popular due to their runtime immediacy on
the musical outcome (Collins, McLean, Rohrhuber
and Ward 2003).
When executable code chunks are rendered to

audible sounds, the coder faces the indirect involve-
ment between code and sound. Long sequences of
typed individual characters are enfolded in the many
steps required to evaluate a code expression. This is
known as the complexity of the interface in HCI
(Myers 1994), which refers to the number of steps
required to perform a programmable action, such as
opening a text document using drop-down menus on a
text processor. In the cognitive dimensions of nota-
tion, a similar notion is that of the closeness of mapping
(Blackwell and Collins 2005), a term from the
psychology of programming that indicates how
notation relates to output (McLean and Wiggins
2011). It is reasonable to assume that not all live
coders are trained in blind typing techniques or use the
same type of keyboard. Thus, the multiplicity of
typing a single line of code can be enormous. Typing is
also an open-loop motor program (Palmer 1997),
which makes it an activity prone to errors, as there is
no informative feedback mechanism to adjust or
correct ongoing movements.
When listening to the generated sounds, the live

coder somehow makes sense of the relation between
the live writing of the code and the musical outcome.
This may be seen as a mental link between the code
and the sound, which enables the performer to listen to
how structured code executions sound and imagine
how novel code evaluations may sound. Thus, in live
coding, both musical imagery and music listening have
central roles during music-making (Diapoulis and
Dahlstedt 2021a). Musical imagery is a mental process
that can induce musical experiences or elicit musical
realisations. It is a multimodal phenomenon, either
auditory, visual or motoric, in which we anticipate
desired effects or experience music both voluntarily
and involuntarily (Jakubowski 2020).
Voluntary musical imagery, also known as online

musical imagery to denote the imagery present during
a performance, contributes to planning future actions
(Bishop, Bailes and Dean 2012). Involuntary musical
imagery can be induced by a phenomenon known as
notational audiation (Brodsky, Kessler, Rubinstein,

Ginsborg and Henik 2008; Keller 2012), a type of
visual imagery. This is when we can internally ‘hear’ a
melody depicted on a score. Motoric and auditory
imageries are interrelated, and one can influence the
other, also known as crossmodal interactions. A delay
between performed actions and auditory feedback,
which can be significant in live coding due to the
complexity of the interface and the very poor closeness
of mapping (Blackwell and Collins 2005), disrupts
action-perception couplings, in turn disconnecting the
temporal precision of motoric actions with listening
percepts. This phenomenon is known as delayed
auditory feedback, where action and sound are several
milliseconds apart or altered auditory feedback when
the performed action does not match the heard sound
(Palmer 2012). These discrepancies can increase the
gap between action and perception and hinder
voluntary imagery and, consequently, embodiment.
In this context, the visual aspects of the code or coding
environment that can induce involuntary imagery (i.e.,
notational audiation) may play an important role.
When there are the disruptions in auditory feed-

back, how can we still embody the sound in our
performance? The overt embodiment in live coding
can be induced through listening to the sound, as we
can exclude any tactility percepts that carry vibrations.
Additionally, simulating motor actions through visual
perception is possible, but it may be challenging for
live coders to direct their attention away from the
coding interface. In such situations, peripheral vision
could be useful; for example, to be aware of people
dancing nearby. Sometimes, we embody the generated
sound by nodding to the beat or dancing. These are
secondary aspects of musical gestures, which can have
sound-accompanying or communicative functions
(Leman and Godøy 2010; Jensenius et al. 2010) and
do not have sound-producing functionality. Of course,
this is more likely to happen when the musical outcome
affords such embodied percepts, typically observed
during Algorave parties, which are live coding events in
dance clubs (Collins and McLean 2014).
Ultimately, the generated musical outcome facili-

tates an understanding and aesthetic enjoyment of the
running program. One can say that the live coder uses
the generated sound patterns as a proxy to form a
mental model of the running program (Diapoulis and
Dahlstedt 2021b). A mental model is ‘any internal
representation of the relations between a set of
elements’ (American Psychological Association n.d.)
and denotes internal representations of relations and
reasoning (Kosslyn 1996). Coding is an act of
reasoning, although I will later argue that in live
coding, reasoning on-the-fly can have more intuitive
qualities when coupled with listening to the musical
outcome, thus bringing forth percepts and imageries.

Musical Live Coding in Relation to Interactivity Variations 3

https://doi.org/10.1017/S1355771823000444 Published online by Cambridge University Press

I build upon a sensorimotor theory of embodied
cognition and adhere to the autopoietic enactive view
of embodied cognition, which avoids distinguishing
between mental and non-mental processes (Shapiro
and Spaulding 2021). Here, I explain how we live code
and how sound, mediated by code, affects our bodily
experiences. As such, while the termmental modelmay
not be the most historically accurate, I use it to
describe the phenomenon I experience as a live coder
or how we make our understanding from code to
sound and vice versa.

We have seen, so far, that canonical live coding
involves a complex interface consisting of typing on a
keyboard. This amplifies our indirect involvement
between the code and generated sounds and the
perceived alteration of the auditory feedback, one that
is not bound to physical actions. Besides these obvious
challenges, musical notation is known to give rise to
the phenomenon of notational audiation, which can
induce involuntary imagery in performers. Musical
imagery is known to give rise to percepts of
embodiment and can also initiate motor activity. As
we cannot engage with musical sound using sound-
producing musical gestures or primary aspects of
musical gestures, there is a dissociation between action
and perception. Instead, we can only exploit second-
ary aspects of musical gestures, such as full-body
movements, and examine how micro-movements such
as typing can be useful. So far, I have only presented
typing in live coding mostly as an activity that hinders
embodied percepts based on action-perception theory.

4.1. How the interaction is performed

During a canonical live coding performance, the user
interacts in a similar way to how end-users type in a
word processor software. One persona of Nick
Collins, known as Click Nilson, used a cloud-based3

word processor to collaboratively re-write his presen-
tation script with the audience during the live code
festival symposium in Karlsruhe in 2013 (Nilson
2016). The main difference when a text editor is used
alongside a programming environment for music-
making is that the code evaluations are performed
when a code chunk can be executed, which usually
requires the conscious allocation of resources. Short
edit-execution cycles, such as numerical parameter
adjustments, are unlikely to enter conscious aware-
ness, as this may take up to a few milliseconds. An
average typing speed is 60–80 words per minute
(wpm), or 3–4 characters per second (Marklin and
Simoneau 2004). Short edits may be performed even
faster than that, potentially approaching the upper

limits of delayed auditory feedback, as the fastest
typists can exceed several hundred wpm.
This strategy, which is predominantly found in full

slate4 live coding – an approach where pre-written
code is used during a performance – is widely used by
coders as a risk management technique or as a means
of maintaining pace and flow (Roberts and Wakefield
2018). This full slate approach, a weak approach to
live coding (Magnusson 2014b), exploits pre-written
code. Thus, it can be common that the performer is
only editing the code instead of writing the perfor-
mance script on-the-fly, which Magnusson refers to as
the strong criterion. Identifying the limit between a
weak approach to live coding and simply a generative
reproduction of the material can be difficult, similar to
how hard it is to draw the line between interpretation
and improvisation (McPherson and Limb 2019).
It is generally accepted that typing on a keyboard is

an activity based on serial actions. This has similarities
with traditional music performance, as serial skilled
actions are carried out during a musical performance
(Palmer 1997). (In fact, sequence production spans a
variety of daily activities such as speech and walking.)
The main difference between live coding and traditional
music performances is that the live coder does not make
sound-producing bodily motions. This makes live
coding a performance practice that can hinder engage-
ment with audiences and co-performers related to
embodied experience and the aesthetic enjoyment of the
music (Brattico, Brattico and Jacobsen 2009). The main
reason is that when humans observe sound-producing
movements, they can mentally simulate these actions in
their sensorimotor network (Keller and Appel, 2010;
Keller 2012). Sometimes this can also produce overt
bodily movement, such as dancing (Keller 2008). The
same does not apply to live coding, as the performed
typing actions are mostly rendered in an unordered
manner, or non-linearly, in terms of both temporal
order and motoric sequential patterns. Commenting on
the temporal aspects of live coding, Emmerson (2017:
115) states that ‘the code writing of deferred time
computer programming may be assembled out of time
order’. In terms of how motoric sequences unfold, this
means that the same typing sequence can be produced
in different ways. Thus, audience engagement via
mental simulations of observed bodily movements
cannot easily happen. Instead, the audiences and co-
performers tend to bodily entrain through music
listening and bodily movement. Maybe the only aspect
we can mentally simulate is an expectation about a new
code chunk evaluation by simply seeing the visual
highlighting of the code. Hernani Villaseñor (2019) has
been performing live while filming his typing. This can
be seen as a ‘virtual action-sound mapping’ (Jensenius

3I personally attended Click’s Nilson presentation. 4Full Slate https://youtu.be/zJFJEqblEIA (accessed 14 April 2023).

4 Georgios Diapoulis

https://doi.org/10.1017/S1355771823000444 Published online by Cambridge University Press

2022: 155), denoting the multiple layers between action
and sound, coupled with the discrete action of running
the code. Live coders exploit this relation between code
executions and resultant sounds. I usually do not look
at the interpreter’s output following every code
evaluation; instead, I expect to hear the sonic changes.
During a live coding performance, novel code

evaluations can have entirely predictable or not-at-
all-predictable musical outcomes. Typically, a novel
musical outcome may induce surprise to both
performer and audience, expressed as a violation of
expectations and may arise from creative explorations
of the generative space (Dahlstedt 2012). Maybe the
most common example of when our expectations are
violated in a live coding performance is when a
programming error occurs, and the generated sound
patterns stop. The same can happen when we explore a
generative music space, and the musical parameters
suddenly tune into silence. This can make a live coding
performance alien to an unfamiliar audience. The
unfamiliar spectators may be ignorant of how the
sound is produced, as reported in the documentary
Show Us Your Screens (McCallum 2011). Maybe the
audiences’ perception will change as live coding
becomes more popular. Magnusson (2019) reports
that audiences unfamiliar with programming can
follow the sound-generation process by attending to
the live writing process. Visual aspects such as code
highlighting are particularly important to this end,
and the progress of special-purpose text editors, such
as Gibber (Roberts and Kuchera-Morin 2012) and
Strudel (Ross and McLean 2023) interfaces, has been
tremendous in the last decade.
To summarise this subsection, canonical live coding

involves typing on a keyboard. I have presented the
activity of typing as serial skilled actions, which also
applies to traditional music performance. However,
whereas in traditional performance, the serial actions
are tightly coupled in time and can give emergence to
sensorimotor synchronisation, in live coding, the serial
actions are out of time order. This suggests that using
typing to interface with the programming language is
not likely to result in the development of entrained
bodily movements such as coordinated and rhythmic
actions. Furthermore, it is unlikely that typing can
induce mental simulations due to the multiplicities of
individualistic typing styles, keyboard layouts and
the error rate of open-loop motor programs. I can
only speculate that exploiting typing gestures may
induce mental simulations to co-performers and
audiences on larger temporal chunks, where each
micro-movement loses its significance and the gestalt
of the typed chunks matters. But would that apply
only to those exposed to live coding practice? Is
familiarity important here? These are some open
questions.

4.2. Pre-reflective processes in machine musicianship

The effect of action and perception on music cognition
has been studied extensively. There is growing
evidence that these two are inseparable from one
another. We make our understanding by enacting our
world (Varela et al. 2017), and the role of the human
body is of fundamental importance. Here, musical
gestures are seen as non-verbal communication, which
has pro-social functions and can enable ‘pre-reflective
experiences’ (Leman 2016: 92). For example, in
electronic dance parties, a sweep from low to high
frequencies may result in excitement, manifested in
people raising their hands. How pre-reflective (or
subconscious) processes are manifested in live coding
has been barely discussed (Diapoulis and Zannos
2014; Dahlstedt 2018). This can be important as it will
enable a discussion on how to better conduct live
coding sessions and, consequently, how to better
coordinate live coding ensembles.
I have already discussed that traditional music

performance is tightly connected to bodily movement,
but the movement is also related to expressive
performance. Several mechanisms facilitate musicians’
engagement with expressive performance (e.g., plan-
ning and anticipating future actions), entrained
processes (e.g., loosely coupled bodily movement)
and reward mechanisms linked to emotional reso-
nance and aesthetic enjoyment (Leman 2016). As the
embodied paradigm of music performance has gained
more attention, entrainment is considered one of the
fundamental mechanisms during music performance
(Repp and Su 2013; Clayton et al. 2020). Entrainment
is a phenomenon that appears in several mechanical
systems and may bring about stability in oscillatory
systems, regardless of any small perturbations within a
system. Recent studies suggest that sensorimotor
synchronisation (SMS) and coordination are respon-
sible for the emergence of entrained processes during a
duet performance (Clayton et al. 2020). SMS is a pre-
reflective process roughly within 200–2000ms (ibid.),
whereas coordination emerges at larger timescales of
more than two seconds but may indicate coordination
over several seconds to minutes. Godøy (2021: 2) also
identifies roughly the same time intervals (0.3–5s) as
being of utmost importance during a performance,
describing it as the ‘enigmatic relationships between
notions of continuity and discontinuity in both
philosophy and psychology’. Indeed, timescales below
200–300ms are mostly concerned with sound quality,
including its early reflections within the acoustic
surrounding. For longer durations, we mediate sound
through our bodies and make music realisations. Over
larger timescales, we coordinate, and social phenom-
ena emerge as the outcome of complex interactions,
such as a music performance in public.

Musical Live Coding in Relation to Interactivity Variations 5

https://doi.org/10.1017/S1355771823000444 Published online by Cambridge University Press

These indicative timeframes would suggest that SMS
is essentially impossible during canonical live coding.
Sayer (2015) supports this argument while Goldman
(2019) suggests that live coding can be seen as a
propositional improvisation practice, which operates on
long-term memory mechanisms. Goldman (2019) and
Sayer (2015) suggest that live coding incorporates slow,
conscious processes, making the emergence of fast, pre-
reflective experiences impossible. Several reasons are
offered for this, such as the content of feedback, the
temporal nature of the feedback and the discrete nature
of decision-making (Goldman 2019).

It is indeed true that the so-called canonical live
coding incorporates mostly slow processes. Several
systems, such as ixi-lang and TidalCycles (McLean
andWiggins 2010b), have been developed, taking such
perspectives into account. Indicatively, ixi-lang was
developed with the constraint of writing and executing
a code chunk in less than five seconds (Magnusson
2011). Even this may not help in enabling fast, pre-
reflective processes in a live coding session. So, the
question is immanent: Can pre-reflective processes be
enabled during live coding performance?

4.3. Summary on interaction, perception and
cognition

I would argue that from a theoretical perspective, fast
and entrained processes are unlikely to occur when
using typing-based live coding systems. Entrained
processes can afford small perturbations and eventu-
ally reach stability, but the multiplicities of typing a
single line of code can be devastating to SMS. We can
see bodily entrainment in live coders primarily as
dancing to the beat, such as in the case of Algorave
parties. But these are merely secondary aspects of
musical gestures. It is unclear how these can influence the
production of micro-movements. Maybe systems that
require short typed sequences to make a sound (e.g., ixi-
lang, TidalCycles), albeit being out of order and non-
synchronised, can provide the best chance for the case of
canonical live coding to employ pre-reflective processes,
along with practices such as short edits. Orca,5 a two-
dimensional control interface inspired by trackers that
affords single letter commands (for a description, see
Blackwell, Cocker, Cox, McLean andMagnusson 2022:
147), operates on stream-based evaluations, which helps
to reduce the delayed auditory feedback.

5. LIVE CODING HERE AND THERE

In this section, I present a selection of live coding
examples. The reasons are twofold: first, to elaborate
on how non-verbal interactions, rendered as musical

gestures, are experienced during a live coding music
performance; second, to discuss what can be learnt by
observing such gestural interactions about the live
coders’ sensorimotor control and, possibly, cognitive
processes. I say possibly because we typically conduct
sophisticated experimental designs to merely infer
what a person is imagining (Shepard and Metzler
1971; Zatorre and Halpern 2005), which is likely
impossible using complete observations.
All the examples discussed here are solo perform-

ances, constraining the observed possibilities of
interactivity variations. Furthermore, most video
recordings from Eulerroom on YouTube or other
individual resources, are solo performances. Hence,
I limited my study to solos because the embodied
interactions I study (e.g., serial skilled actions) are
evident when a soloist is bodily interacting with the
computer interface, and I do not study inter-musician
interactions.
The online video examples were intended to be

available to the general public (Snee 2013;
Theodosopoulou Bourlogianni, 2021) and no con-
sent was required (Loveday, Woy and Conway
2020) to conduct the observational study and the
aesthetic analysis. The links to the videos are shown
in Table 1. I compiled this specific list because each
video is a good example of each particular system’s
characteristics. No computational analysis, down-
load or reuse were conducted for this study.
The examples presented in the table are divided into

three categories: 1) canonical systems, 2) bottom-up
systems, and 3) a mixed category of systems.
Canonical systems exemplify the standard paradigm
to live coding, as discussed earlier. As canonical live
coding is very well known in the community, I will
present only one example of a canonical system which
really stands out (Baalman 2009). Bottom-up systems
are live coding systems that depend on very little
abstraction (Diapoulis, Zannos, Tatar and Dahlstedt
2022). Typically, the levels of abstraction are built up
on-the-fly, as we go. They are relatively uncommon
and highly constrained, which exhibits some interest-
ing characteristics. Also, the bottom-up systems in
Table 1 do not use the keyboard, which makes them
radically different from canonical systems. The third
category presents systems that afford gestural input as
direct manipulation (e.g., a mouse), an interface that
affords continuous control and facilitates recognition
instead of retrieval. I restricted the scope of this
category and excluded non-conventional interfaces as
the bottom-up category already uses a number of
examples with unconventional interfaces. The third
category of mixed systems demonstrates some exam-
ples that lie between canonical and bottom-up
systems, as input control in bottom-up systems mostly
relies on recognition instead of retrieval.5https://100r.co/site/orca.html.

6 Georgios Diapoulis

https://doi.org/10.1017/S1355771823000444 Published online by Cambridge University Press

Before going to the examples, I want to clarify any
confusion in the literature between low-level and
bottom-up processes. As Roberts and Wakefield
(2018) explain, low-level processes are mostly related
to algorithms that operate on digital signal process-
ing (DSP). These also afford low-level computational
abstractions but do not necessarily generate or
operate on formal languages. By contrast, bottom-
up systems necessarily rely on formal languages. DSP
algorithms are mostly engineering abstractions for
time series analysis and computations. A time series
is a sequence of data points, and some applications
include forecasting future data points and smoothing
noisy data, among others. As such, their primary
function is to act as filters of information. A formal
language or a computer architecture is not a filter;
rather, it affords the universal process of computing
any problem given enough time under Turing
completeness (a Turing complete machine is a
universal machine that can approximate any com-
putable mathematical problem).
I did not include in Table 1 a variation of

Betablocker (Bovermann and Griffiths 2014) written
for SuperCollider,6 as it would fit within the canonical
live coding systems. In this case, Betablocker (Griffiths
2006) is used as a sound engine, which would spark a
new category of low-level systems that can afford
Turing completeness. Essentially, the system traverses
from canonical live coding to bottom-up systems that
generate low-level DSP processes. This example
demonstrates how hard it can be to apply ‘any easy
classifications’ to live coding systems (Blackwell et al.
2022: 231), as ‘attempts to define this wide field : : :

are likely to become an exercise in herding cats’
(Magnusson 2014a: 14).

5.1. The case of canonical live coding

Canonical live coding is the most common approach.
This includes the ‘standard’ interface of a computer
screen and a keyboard. Whether gestural actions can
be performed on a keyboard is a matter of debate;
however, the current consensus is that typing on a
keyboard is ‘neither observed nor significant’
(Jensenius et al. 2010: 16). While this is undoubtedly
the case in everyday interactions with computers, the
same argument cannot hold in a live coding perfor-
mance context. Typing is typically observed in this
scenario as the performers share their screens.
Furthermore, this becomes significant at certain times,
specifically when code evaluations are performed and
rendered as perceivable sound patterns. The sound
vibrates molecular structures in the affine medium,
that is, gas, liquid or solid. This transforms the
meaning of typing into significant actions, as Baalman
(2009; Baalman n.d.) demonstrate in the Code Live
Code Live video (Table 1). Baalman switches on the
onboard microphone of the laptop, and the typing
sounds are used as raw material for the musical
outcome. This performance setup demonstrates how
typing on a keyboard can be both observed and
significant.
Baalman (2015) has reported that our programming

language of preference can influence our motoric
execution patterns. She elaborates more on embodi-
ment during a performance and provides anecdotal
evidence of typing automaticity. The argument is that
certain typing tasks have been automatised to such an
extent that they require minimum effort. These are
known as body schemas, cognitive organisations of
one’s body that can also monitor sequences of bodily

Table 1. Chronological list of performance systems in the observational study. Betablocker, Code LiveCode Live, CodeKlavier
CKalcuλator and iMac music have earlier release dates than the release date of their corresponding videos.

Performer Performance/System Video URL Category Year

Dave Griffiths Betablocker https://vimeo.com/24390484 B 2006
Dave Griffiths Al-jazzari https://youtu.be/Uve4qStSJq4 B 2007
Marije Baalman Code LiveCode Live https://vimeo.com/434679284 C 2009
Georgios Diapoulis stateLogic machine https://vimeo.com/43121821 B 2012
Jonathan Reus iMac music https://vimeo.com/205714278 B 2012
Thor Magnusson Threnoscope https://vimeo.com/63335988 M 2013
Chris Kiefer Approximate Programming https://youtu.be/WwhpRtxq1Kg?t=3417 M 2015
The Duchess of Turing Using various https://youtu.be/hfJTF3KTnFM M 2019
Noriega, F. I. and A. Veinberg CodeKlavier CKalcuλator https://youtu.be/hD-PWNDebD4 B 2019
uiae Using PD https://youtu.be/A-HohsA9R1o M 2020
Fredrik Olofsson (redFrik) SuperCollider https://youtu.be/lqi-Vqr0qk4 M 2022

Note: B = bottom-up system; C = canonical system; M = mixed category of systems.

6Tai-studio, An Introduction to Detablocker: https://vimeo.com/
32938807 (accessed 14 April 2023).

Musical Live Coding in Relation to Interactivity Variations 7

https://doi.org/10.1017/S1355771823000444 Published online by Cambridge University Press

motions and appear as learned motor patterns (Leman
and Godøy 2010). Whether gestural unfoldings, a term
to indicate a weak temporality7 of bodily gestures,
may influence our mental model of the running
program is an open question (Diapoulis and Dahlstedt
2021a). To elaborate, can this weak temporality of
typing influence how we internally represent code-
sound relations and reason about the running
program? Godøy (2004: 58) has argued that we can
mentally ‘compress’ bodily gestures in time using
imagery, what he refers to as gestural imagery. The
same cannot apply to sounds: we cannot mentally
compress a sound and experience the same character-
istics. Maybe gestural imagery can compensate on-
the-fly due to our frustration with attending to every
single moment of sound and actually influence our
mental model (by encodings on our sensorimotor
network). Baalman reports that our programming
language of preference can shape our motoric actions
so that certain sequences are encoded in our
sensorimotor network as typing gestures that unfold
in time when necessary. If the language of our
preference can shape our motoric patterns, then can
motoric patterns shape the language we use? Simply
put, can the performer’s gestures influence the
development of the programming language? I will
elaborate on these two questions in the next section.

5.2. The case of bottom-up live coding

I argue that bottom-up systems exhibit interactivity
variations where the gestures can influence the program-
ming language. I will mainly focus on two cases:
CodeKlavier CKalcuλator by Noriega and Veinberg
(2019) and the stateLogic machine (Diapoulis and
Zannos 2012). These were chosen because they share
distinct characteristics of gestural interactions. These two
cases, along with Al-jazzari and Betablocker by Griffiths
(2007) and iMac Music by Reus (2012), belong to the
category of bottom-up live coding systems.

CodeKlavier CKalcuλator (Table 1) is a perfor-
mance system that recognises the musical patterns of
the pianist-coder. The extracted MIDI patterns corre-
spond to gestural sequences that the pianist performs
to write lambda functions, a common construct in
functional programming, on-the-fly. The recognition
algorithm identifies repetitive melodic patterns and
then instructs the lambda functions to perform the
corresponding code evaluations. The system affords
simple operations, such as addition and multiplication,
and anecdotal evidence from the pianist-coder suggests
that it is a highly challenging approach to live code, as
the mind is split into two tasks simultaneously. The first
task corresponds to serial skilled actions resulting in the

musical outcome, and the second task is to perform
conscious operations to write and modify a running
program. Playing the piano indeed involves pre-
reflective processes. Then, on the notational level of
the generated code, the piano-coder has to allocate
cognitive resources that may hinder expressivity
during the performance. This approach showcases
how musical gestures can be employed to write
computer programs. In practice, the pianist plays
repetitive melodic patterns and incorporates them into
musical improvisation.
When developing the approach to live hardware

coding (Diapoulis and Zannos 2012, 2014), the initial
motivation was to make live coding somewhat more
humane. At the time, as a student of material science, I
naively imagined material crystal structures that could
be
live-coded based on a notation analogous to Miller
indices, a notation system used in crystallography.
This notation system offers a three-dimensional spatial
representation of crystal structures in a binary-like
notation. In this manner, elementary building blocks
of material structures can be abstracted so that the
engineer can imagine larger-scale crystal structures.
As a result, what we literally see as a grain of salt can
be reduced to a minimal expression, and from the
minimal expression, we can deduce some of the
material properties such as stiffness and conductance.
The stateLogic machine (Table 1) is an experimental
interface still in development (Diapoulis et al. 2022)
and demonstrates the generation of a formal language
from the bottom up. Initially, three input buttons were
used, which depended on a clock-based paradigm. In this
way, the user could apply stream-based updates within
less than 0.5 seconds. These short-duration updates can
enable pre-reflective processes. It is possible to automate
certain pattern predictions without expending mental
effort, such as looping into even and odd numbers.
However, the clock-based interaction distorts the
perceived immediacy of the interface, especially when
the updates are larger than 100 milliseconds (Nash
2012). In principle, Al-jazzari, Betablocker and iMac
Music are also clock-based systems. Nevertheless, there
are different embodied percepts when the clock rate is
fast enough, transforming the interaction into phenome-
nally continuous percepts.
Technically speaking, these systems may not

influence the language development process but
they do affect the algorithmic structure of the
written programs. We gesturally intervene to modify
the algorithm’s very workings and there is clearly a
minimal distance between the two. For instance, in
Al-jazzari and Betablocker, the coder may experi-
ment with multiple instruction sets or update them
on-the-fly. Such dynamic updates on the level of an
instruction set can account for developing a

7By weak temporality I refer to the typing gestures during live
coding, which lack any sense of strong temporal couplings.

8 Georgios Diapoulis

https://doi.org/10.1017/S1355771823000444 Published online by Cambridge University Press

language on-the-fly. This is because all studied
systems construct the running program by on-the-fly
assemblages of low-level languages. In iMac Music,
Reus (2012) is taking a radical stance and rewires the
internal hardware components of a personal com-
puter (Table 1). This approach goes one step further
and addresses live coding by intervening in the
wirings of the hardware. How would live coding
look when we can hot-swap modular hardware
components? What would previewing algorithms
look like? Would the system re-arrange its constitu-
ent structure to make a new component? I find a
large range of possibilities for human–material
interactions (Ishii et al. 2012) in live coding, and it
is fascinating that we have not yet scratched the
surface of this topic.

5.3. Mixed systems

All studied performances in the mixed category utilise
direct manipulation with the mouse to some extent.
The most diverse performance is that by The Duchess
of Turing, where various systems are used, some of
which are non-conventional, and one that can be
regarded as a bottom-up system. Specifically, the
TOPLAP app (Collins 2015) uses machine listening
algorithms to program an instruction set. I present this
performance, called Using various, because of the
broad variety of systems used. All other performances
use a single programming system and direct manipula-
tion. The performance by uiae and redFrik share many
similarities, but the difference between textual and
visual language is a major difference. Threnoscope by
Magnusson presents an important contribution to
notation systems while Approximate Programming
by Kiefer presents a sophisticated algorithm for on-the-
fly adjustments. I selected The Duchess of Turing
performance to question whether we can actually form
a mental model of the running program using listening
and all other systems because of the diverse direct
manipulation interactions, ranging from simple param-
eter adjustments to complicated tree algorithms.
What happens when the coder is using a mixture of

different systems? How can the performer form a
mental model of the running program(s) by simply
listening to the musical outcome? These questions are
well illustrated in a live coding performance by The
Duchess of Turing (Table 1) for the fifteenth anniversary
of TOPLAP. During the performance, the composer-
programmer uses a variety of systems, such as PureData
(PD), MAX/MSP, CSound and Scheme, and various
systems developed by Nick Collins, such as BBCut,
Autom8 and TOPLAP app. The live coder switches
between systems to generate sound patterns, creating a
mashup of live coding systems that resembles DJ-ing or
bricolage of live coding systems (McLean and Wiggins

2010a). The software systems are not interconnected; it is
rather the musical outcome that connects everything
together.
Another interpretation of this performance is that

the language design and programming structures no
longer matter when rendered to sound, as auditory
perception can compensate and perceptually ‘bind’
everything together. Would that be somehow opposed
to the view about the idiomaticity of low-level tools, as
presented in McPherson and Tahıroğlu (2020)?
Idiomaticity denotes that the design of a tool,
regardless of how open-ended it is, carries design
constraints that can distinctly shape the musical
outcome. This discussion opens questions about
agency. The notion of idiomaticity of programming
languages looks aligned with a theoretical view of how
influential agency progresses from all parties involved,
to the spectator of the artwork by creating feedback
networks (Dahlstedt 2021). The performance in
question appears to suggest that when information
is materialised, it loses its affiliation.
One engaging live coding performance by uiae,

Using PD (Table 1), demonstrates how gestural
interaction with the mouse modifies the system’s
algorithmic structure. Interestingly, as the different
PD objects move around the programming panel, they
modify their connectivity, likely from the relative
distance between nodes. Fredrik Olofsson (Table 1,
superCollider) also demonstrated a similar approach,
where direct manipulation using the mouse modified
the routing of the audio busses. Another system that
uses direct manipulation is the Threnoscope by Thor
Magnusson (2014b), which uses a generative system
combining graphic scores and text-based program-
ming. Using Threnoscope (Table 1), the coder can
continuously control the parameters of the generated
drone sounds, using interactive visuals that display a
descriptive notation shown as coloured rings.
Chris Kiefer (2015) presented an approach based on

a gestural controller called Approximate Programming
(Table 1). This is based on genetic algorithms and the
exploration of parameter spaces for machine musician-
ship. Approximate programming is an interactive
programming paradigm where the user controls the
generation of different unit generators, using a
multiparameter gestural controller. The major contri-
bution of Kiefer’s work is the dynamic modification of
algorithmic tree structures of interconnected unit
generators. Such an approach to live coding demon-
strates how gestural interactions can be applied to
modify the algorithmic structure of a binary tree.
While it can be difficult to distinguish between

algorithmic and parameter modifications, I would like
to discuss this from a perspective that might clarify
how I use the two terms. For a programmer, a variable
is a powerful abstraction. In programming

Musical Live Coding in Relation to Interactivity Variations 9

https://doi.org/10.1017/S1355771823000444 Published online by Cambridge University Press

environments such as SuperCollider (McCartney
2002), a variable can be a generic box that holds
different things. When a system is using variables as
numerical parameters, such as a filter’s cutoff
frequency, then most likely, the generated sound
patterns are predictable. If we use a variable to apply
simple mappings between a control parameter and a
range of numerical values, then we do not exploit the
affordances of a variable. Of course, in some cases,
simple 1-to-1 mappings are necessary and desirable;
for instance, we may want a single knob to control the
tempo and nothing more than that. Still, I draw
attention to this here to clarify that gestural inter-
actions using the mouse or other input devices may
correspond to either simple modifications of a
numerical parameter or complicated algorithmic
modifications such as structural rearrangements of
binary trees (e.g., Kiefer 2015).

This discussion on intervening with gestures on the
algorithm itself is not related to gesture-sound map-
pings in the sense of running an algorithm to identify
some gestural characteristics and render plausible
sounds. I am interested in how we gesturally modify
or re-program the algorithms on-the-fly. So, to avoid
confusion with gesture-soundmappings, I here focus on
gesture-algorithm mappings, which share some similari-
ties with dynamic mapping strategies (Dahlstedt 2009;
Kiefer 2015).

5.4. Summary of the observations

In this section, I have discussed how meaningful
musical gestures can be produced using typing during
canonical live coding. Inspired by Baalman’s typing
automaticity, I question whether gestures can influ-
ence the programming language. The answer becomes
apparent when I examine the bottom-up systems,
where bodily gestures can operate on pre-reflective
processes and influence the development of the
programming language. An online performance that
creates mashups from various programming lan-
guages may indicate the importance of sound, not
the tool. It is similar to when we have a phase
transition in a material (e.g., water crystallises to ice),
but the process is not reversible anymore, meaning
that when the code is rendered to sound, the process is
no longer reversible. Maybe this performance suggests
that when the tool is ignorant of its consequences to
the environment, it loses its agency.

Several performance systems incorporating direct
manipulation have been examined, and I underline the
broad spectrum of interactions, from simple manip-
ulations of numbers to sophisticated algorithms
operating on binary trees. These systems differ from
canonical systems as they offer the user an intuitive
manner for interactions. In cases such as Approximate

Programming, the live coder can modify the algorith-
mic structure on-the-fly, using continuous gestural
interactions on multiparameter controllers. This also
exhibits pre-reflective activations during a perfor-
mance. On the other hand, such systems may not allow
code changes to be monitored. When this happens, we
lose the possibility of involuntary imageries due to
notational audiation. Thus, there is a fine line between
intuitive control and how to monitor informative
notations. For instance, in Threnoscope, the live coder
can monitor the descriptive notation as interactive
visualisations of coloured rings and can continuously
control the parametric changes. Thus, if the system’s
temporal updates on the prescriptive notation are too
fast, causing them to become uninformative, we can
facilitate the use of descriptive notations instead
(Magnusson 2019).

6. CONCLUSIONS

This article has explored whether pre-reflective
processes can be activated in live coding. I presented
an embodied cognition view to live coding music
performance by discussing how notation, while
hindering our bodily relationship with the generated
sound patterns, also offers some opportunities. A first
indication comes from the literature review, where the
potential of notational audiation is posited as valuable
to live coders due to involuntary musical imagery.
Typing on a keyboard is an activity that incorporates
serial skilled actions. While this shares similarities with
traditional music performance because they are both
based on serial skilled actions, typing is performed out
of time order, making it difficult to observe entrained
processes in canonical live coding. On the other hand,
two cases of bottom-up live coding systems
(CodeKlavier CKalcuλator and stateLogic machine)
exhibit gestural interactions on timeframes that are
capable of engaging pre-reflective processes during a
performance. Several systems that use direct manipu-
lation are examined, and at least one (Approximate
Programming) also exhibits fast processes, although it
is questionable whether the user can exploit the
prescriptive notation during a performance. Owing
to design constraints, using a descriptive notation can
be an alternative so that involuntary imageries may be
activated due to notational audiation. The study
provides a first account of exploring fast processes in
live coding by conducting observations from online
videos and combining diverse literature, drawing on
music psychology and music perception studies. The
study is limited to solos, which could potentially
constrain the results. But I intentionally limited the
study to musician–system interactions and not musi-
cian–musician interactions. Thus, some essential
parts of the performer’s interactivity variations are

10 Georgios Diapoulis

https://doi.org/10.1017/S1355771823000444 Published online by Cambridge University Press

identified, such as the temporal unfolding of bodily
gestures during a performance and how similar or
different this might be from traditional instrumental
performance. Future studies could focus on intersub-
jective experiences in live coding and combine online
video observations with interview studies and ques-
tionnaires to provide a more holistic view of how
practitioners and the community experience fast
processes in musical live coding.
This study contributes to the understanding of live

coding, focusing on the gestural and psychological
aspects of the practice, which have not been extensively
studied before. This benefits both the practitioners, to
increase understanding of the practice from within the
community, and the general electronic music commu-
nity, which may not be familiar with the particular
conditions and practices of live coding. The methodol-
ogy and theoretical background can be helpful to other
under-represented groups practising generative music
and autonomous music systems. As such, it may be
used as a methodological template in how to conduct
observational research from online videos, especially
when there is little theoretical background in the field.

Acknowledgements

I thank Palle Dahlstedt for proofreading and supervi-
sion. I am also thankful to the anonymous reviewers
and guest editors for making this article better.

REFERENCES

American Psychological Association. N.d. Mental Model.
APA Dictionary of Psychology. https://dictionary.apa.
org/mental-model (accessed 23 January 2023).

Baalman, M. 2009. Code LiveCode Live, or Livecode
Embodied. [Performance]. Proceedings of the
International Conference on New Interfaces for Musical
Expression, NIME, 329.

Baalman,M. 2015. Embodiment of Code. Proceedings of the
First International Conference on Live Coding. Leeds:
ICLC, 35–40.

Baalman, M. n.d. Code LiveCode Live. https://
marijebaalman.eu/projects/code-livecode-live.html (accessed
14 September 2022).

Baily, J. 1999. Ethnomusicological Perspective: Response to
Sawyer’s ‘Improvised Conversations’. Psychology of
Music 27(2): 208–11.

Bishop, L., Bailes, F. and Dean, R. T. 2012. Musical
Imagery and the Planning of Dynamics and Articulation
during Performance. Music Perception: An
Interdisciplinary Journal 31(2): 97–117.

Blackwell, A. F. and Collins, N. 2005. The Programming
Language as a Musical Instrument. Proceedings of 17th
Psychology of Programming Interest Group, University of
Sussex, 120–30.

Blackwell, A. F., Cocker, E., Cox, G., McLean, A. and
Magnusson, T. 2022. Live Coding: A User’s Manual.
Cambridge, MA: MIT Press.

Bovermann, T. and Griffiths, D. 2014. Computation as
Material in Live Coding. Computer Music Journal 38(1):
40–53.

Brattico, E., Brattico, P. and Jacobsen, T. 2009. The Origins
of the Aesthetic Enjoyment of Music—A Review of the
Literature. Musicae Scientiae 13(2_suppl): 15–39.

Brodsky, W., Kessler, Y., Rubinstein, B. S., Ginsborg, J.
and Henik, A. 2008. TheMental Representation ofMusic
Notation: Notational Audiation. Journal of Experimental
Psychology: Human Perception and Performance 34(2): 427.

Clayton, M., Jakubowski, K., Eerola, T., Keller, P. E.,
Camurri, A., Volpe, G. and Alborno, P. 2020.
Interpersonal Entrainment in Music Performance:
Theory, Method, and Model. Music Perception: An
Interdisciplinary Journal 38(2): 136–94.

Collins, N. 2015. Live Coding and Machine Listening.
Proceedings of the First International Conference on Live
Coding. Leeds: ICLC, 4–11.

Collins, N. and McLean, A. 2014. Algorave: Live
Performance of Algorithmic Electronic Dance Music.
Proceedings of the International Conference on New
Interfaces for Musical Expression. London: NIME:
355–8.

Collins, N., McLean, A., Rohrhuber, J. and Ward, A. 2003.
Live Coding in Laptop Performance. Organised Sound
8(3): 321–30.

Dahlstedt, P. 2009. Dynamic Mapping Strategies for
Expressive Synthesis Performance and Improvisation.
International Symposium on Computer Music Modeling
and Retrieval. Berlin: Springer, 227–42.

Dahlstedt, P. 2012. Between Material and Ideas: A Process-
Based Spatial Model of Artistic Creativity. In
J. McCormack and M. d’Inverno (eds.), Computers and
Creativity. Berlin: Springer, 205–33.

Dahlstedt, P. 2018. Action and Perception: Embodying
Algorithms and the Extended Mind. In A. McLean and
R. Dean (eds.) The Oxford Handbook of Algorithmic
Music. Oxford: Oxford University Press, 41–65.

Dahlstedt, P. 2021. Musicking with Algorithms: Thoughts
on Artificial Intelligence, Creativity, and Agency. In E.
R. Miranda (ed.) Handbook of Artificial Intelligence for
Music. Cham: Springer, 873–914.

Diapoulis, G. and Dahlstedt, P. 2021a. An Analytical
Framework for Musical Live Coding Systems Based on
Gestural Interactions in Performance Practices.
Proceedings of the International Conference on Live
Coding. Valdivia, Chile: ICLC.

Diapoulis, G. and Dahlstedt, P. 2021b. The Creative Act of
Live Coding Practice in Music Performance. Proceedings
of the 32nd Psychology of Programming Interest Group,
York, UK.

Diapoulis, G. and Zannos, I. 2012. A Minimal Interface for
Live Hardware Coding. Live Interfaces, ICSRiM,
University of Leeds.

Diapoulis, G. and Zannos, I. 2014. Tangibility and low-
Level Live Coding. International Computer Music
Conference. Athens: ICMC&SMC.

Musical Live Coding in Relation to Interactivity Variations 11

https://doi.org/10.1017/S1355771823000444 Published online by Cambridge University Press

Diapoulis, G., Zannos, I., Tatar, K. and Dahlstedt, P. 2022.
Bottom-Up Live Coding: Analysis of Continuous
Interactions towards Predicting Programming Behaviours.
Proceedings of the International Conference on New
Interfaces for Musical Expression. Auckland: NIME.

Emmerson, S. 2017. Living Electronic Music. Abingdon:
Routledge.

Godøy, R. I. 2004. Gestural Imagery in the Service of
Musical Imagery. International Gesture Workshop.
Berlin, Heidelberg: Springer.

Godøy, R. I. 2021. Constraint-Based Sound-Motion Objects
in Music Performance. Frontiers in Psychology, 12.
https://doi.org/10.3389/fpsyg.2021.732729.

Goldman, A. 2019. Live Coding Helps to Distinguish
between Embodied and Propositional Improvisation.
Journal of New Music Research 48(3): 281–93.

Griffiths, D. 2006. Betablocker. General Public Licence
(GPL). www.pawfal.org/flotsam/betablocker/betablocker.
scm (accessed 9 May 2023).

Griffiths, D. 2007. Game Pad Live Coding Performance.Die
Welt als virtuelles Environment. Dresden: TMA
Helleraue.

Haga, E. 2008. Correspondences between Music and Body
Movement. Doctoral dissertation, University of Oslo.

Haworth, C. 2018. Technology, Creativity, and the Social in
Algorithmic Music. In A. McLean and R. Dean (eds.)
The Oxford Handbook of Algorithmic Music. Oxford:
Oxford University Press, 557–81.

Hutchins, C. C. 2015. Live Patch/Live Code. Proceedings of
the First International Conference on Live Coding. Leeds:
ICLC, 147–51.

Ishii, H., Lakatos, D., Bonanni, L. and Labrune, J. B. 2012.
Radical Atoms: Beyond Tangible Bits, toward
Transformable Materials. interactions 19(1): 38–51.

Jakubowski, K. 2020. Musical Imagery. In A. Abraham
(ed.) The Cambridge Handbook of the Imagination.
Cambridge: Cambridge University Press, 187–206.

Jensenius, A. R. 2022. Sound Actions: Conceptualizing
Musical Instruments. Cambridge, MA: MIT Press.

Jensenius, A. R., Wanderley, M. M., Godøy, R. I. and
Leman, M. 2010. Musical Gestures: Concepts and
Methods in Research. In R. I. Godøy and M. Leman
(eds.)Musical Gestures: Sound, Movement, and Meaning.
New York: Routledge, 12–35.

Keller, P. E. 2008. Joint Action in Music Performance. In
F. Morganti, A. Carassa and G. Riva (eds.) Enacting
Intersubjectivity: A Cognitive and Social Perspective on
the Study of Interactions. Amsterdam: IOS Press, 205–21.

Keller, P. E. 2012. Mental Imagery in Music Performance:
Underlying Mechanisms and Potential Benefits. Annals
of the New York Academy of Sciences 1252(1): 206–13.

Keller, P. E. and Appel, M. (2010). Individual Differences,
Auditory Imagery, and the Coordination of Body
Movements and Sounds in Musical Ensembles. Music
Perception 28(1): 27–46.

Kiefer, C. 2015. Approximate Programming: Coding
through Gesture and Numerical Processes. Proceedings
of the First International Conference on Live Coding,
ICSRiM, University of Leeds.

Kosslyn, S. M. 1996. Image and Brain: The Resolution of the
Imagery Debate. Cambridge, MA: MIT Press.

Leman, M. 2007. Embodied Music Cognition and Mediation
Technology. Cambridge, MA: MIT Press.

Leman, M. 2016. The Expressive Moment: How Interaction
(with Music) Shapes Human Empowerment. Cambridge,
MA: MIT Press.

Leman, M. and Godøy, R. I. 2010. Why Study Musical
Gestures?. In R. I. Godøy and M. Leman (eds.) Musical
Gestures: Sound, Movement, and Meaning. New York:
Routledge, 3–11.

Loveday, C., Woy, A. and Conway, M. A. 2020. The Self-
Defining Period in Autobiographical Memory: Evidence
from a Long-Running Radio Show. Quarterly Journal of
Experimental Psychology 73(11): 1969–76.

Magnusson, T. 2011. The ixi lang: A supercollider Parasite
for Live Coding. Proceedings of the International
Computer Music Conference. Huddersfield: ICMC.

Magnusson, T. 2014a. Herding Cats: Observing Live
Coding in the Wild. Computer Music Journal 38(1): 8–16.

Magnusson, T. 2014b. Improvising with the Threnoscope:
Integrating Code, Hardware, GUI, Network, and
Graphic Scores. Proceedings of the International
Conference on New Interfaces for Musical Expression.
London: NIME, 19–22.

Magnusson, T. 2019. Sonic Writing: Technologies of
Material, Symbolic, and Signal Inscriptions. London:
Bloomsbury Academic.

Marklin, R. W. and Simoneau, G. G. 2004. Design Features
of Alternative Computer Keyboards: A Review of
Experimental Data. Journal of Orthopaedic & Sports
Physical Therapy 34(10): 638–49.

McCartney, J. 2002. Rethinking the Computer Music
Language: SuperCollider. Computer Music Journal
26(4): 61–8.

McKechnie, L. E. F. 2008. Unstructured Observation. In
Lisa M. Given (ed.), The Sage encyclopedia of Qualitative
Research Methods. Thousand Oaks, CA: Sage, 907–8.

McLean, A. 2014. Stress and Cognitive Load. Collaboration
and Learning through Live Coding. Report from Dagstuhl
Seminar, 13382: 145–6.

McLean, A. and Wiggins, G. A. 2010a. Bricolage
Programming in the Creative Arts. Proceedings of the
22nd Psychology of Programming Interest Group,
Madrid.

McLean, A. and Wiggins, G. 2010b. Tidal–Pattern
Language for the Live Coding of Music. Proceedings
of the 7th Sound andMusic Computing Conference, SMC,
331–4.

McLean, A. and Wiggins, G. A. 2011. Texture: Visual
Notation for Live Coding of Pattern. Proceedings of the
2011 International Computer Music Conference,
Huddersfield.

McPherson, M. J. and Limb, C. J. 2019. Improvisation:
Experimental Considerations, Results, and Future
Directions. In Rentfrow, P. J. and D. J. Levitin (eds.)
Foundations in Music Psychology. Cambridge, MA:
MIT Press.

McPherson, A. and Tahıroğlu, K. 2020. Idiomatic Patterns
and Aesthetic Influence in Computer Music Languages.
Organised Sound 25(1): 53–63.

Myers, B. 1994. Challenges of HCI Design and
Implementation. Interactions 1(1): 73–83.

12 Georgios Diapoulis

https://doi.org/10.1017/S1355771823000444 Published online by Cambridge University Press

Nash, C. 2012. Supporting Virtuosity and Flow in Computer
Music. Doctoral dissertation, University of Cambridge.

Nilson, C. 2007. Live Coding Practice. Proceedings of the 7th
International Conference on New Interfaces for Musical
Expression. New York: NIME: 112–17.

Nilson, C. 2016. Collected Rewritings: Live Coding Thoughts,
1968–2015. Burntwood, UK: Verbose. https://composer
programmer.com/research/collectedrewritings.pdf

Noriega, F. I. and Veinberg, A. 2019. The Sound of
Lambda. Proceedings of the 7th ACM Sigplan
International Workshop on Functional Art, Music,
Modeling, and Design. Berlin: FARM, 56–60.

Palmer, C. 1997. Music Performance. Annual Review of
Psychology 48(1): 115–38.

Palmer, C. 2012. 10 Music Performance: Movement and
Coordination. In D. Deutsch (ed.) The Psychology of
Music, 3rd edn. London: Elsevier, 405–22.

Repp, B. H. and Su, Y. H. 2013. Sensorimotor
Synchronization: A Review of recent Research (2006–
2012). Psychonomic Bulletin & Review 20(3): 403–52.

Reus, J. 2012. iMac Music. https://web.archive.org/web/
20161027164504/https://jonathanreus.com/portfolio/imac-
music/ (accessed 8 April 2023).

Roberts, C. and Kuchera-Morin, J. 2012. Gibber: Live Coding
Audio in the Browser. Proceedings of the International
Computer Music Conference. Ljubljana: ICMC.

Roberts, C. and Wakefield, G. 2018. Tensions and
Techniques in Live Coding Performance. In A. McLean
and R. Dean (eds.) The Oxford Handbook of Algorithmic
Music. Oxford: Oxford University Press, 293–317.

Rohrhuber, J., de Campo, A., Wieser, R., Van Kampen, J. K.,
Ho, E. and Hölzl, H. 2007. Purloined Letters and
Distributed Persons. Music in the Global Village
Conference, Budapest.

Roos, F. and McLean A. 2023. Strudel: Live Coding
Patterns on the Web. Proceedings of the International
Conference on Live Coding. Utrecht: ICLC.

Salazar, S. and Armitage, J. 2018. Re-engaging the Body
and Gesture in Musical Live Coding. Proceedings of the
International Conference on New Interfaces for Musical
Expression. Blacksburg, VA: NIME.

Sayer, T. 2015. Cognition and Improvisation: Some
Implications for Live Coding. Proceedings of the
International Conference on Live Coding. Leeds: ICLC.

Shapiro, L. and S. Spaulding 2021. Embodied Cognition. In
E. N. Zalta (ed.) The Stanford Encyclopedia of
Philosophy, Winter edn. https://plato.stanford.edu/
archives/win2021/entries/embodied-cognition/ (accessed
18 January 2023).

Shepard, R. N. and Metzler, J. 1971. Mental Rotation of
Three-Dimensional Objects. Science 171(3972): 701–3.

Snee, H. 2013. Making Ethical Decisions in an Online
Context: Reflections on Using Blogs to Explore
Narratives of Experience. Methodological Innovations
Online 8(2): 52–67.

Tanimoto, S. L. 2015. Livesolving: Enabling Collaborative
Problem Solvers to Perform at Full Capacity.
Proceedings of the International Conference on Live
Coding. Leeds: ICLC.

Theodosopoulou Bourlogianni, D. 2021. Music and
Autobiographical Memory: How an Analysis of
Desert Island Discs May Help Conceptualise
Personalised Music Interventions for People Living
with Dementia. Doctoral dissertation, University of
East Anglia.

Varela, F. J., Thompson, E. and Rosch, E. 2017. The
Embodied Mind, Revised Edition: Cognitive Science and
Human Experience. Cambridge, MA: MIT Press.

Zatorre, R. J. and Halpern, A. R. 2005. Mental Concerts:
Musical Imagery and Auditory Cortex. Neuron 47(1):
9–12.

VIDEOGRAPHY

McCallum, L. 2011. Show Us Your Screens. Vimeo,
February 22. https://vimeo.com/20241649 (accessed 14
April 2023).

Villaseñor, H. 2019. Dar forma al espacio: Primer
Festival Expresiones Contemporáneas. YouTube, 10
November. https://youtu.be/vARqRuMoPx8 (accessed
14 April 2023).

Musical Live Coding in Relation to Interactivity Variations 13

https://doi.org/10.1017/S1355771823000444 Published online by Cambridge University Press

	output
	Diapoulis2023phd
	Abstract
	List of Publications
	Acknowledgement
	Introduction
	Machine musicianship
	New interfaces for musical expression
	Musical live coding
	Research approach
	Personal statement/background
	Research approach and methods

	Contributions
	Conceptual
	Methodological
	Applied

	Challenges in musical live coding
	Research questions
	Structure of the thesis

	Theoretical background
	Live coding 101
	Historical accounts of programming during a performance
	From mnemonic devices, to interactive intefaces and on-the-fly algorithms
	The first era of interactive music systems and on-the-fly algorithms
	Towards creative modifications of algorithms
	The early days of live coding

	Live coding as a musical activity
	Live coding practice
	Agency in live coding
	Live coding systems

	Study A: On-the-fly algorithms for machine musicianship
	Live coding in machine musicianship and software engineering
	In machine musicianship
	In software engineering

	Two approaches to live code
	The case of bottom-up systems
	A bottom-up methodology
	Bottom-up practices in software engineering
	Misconceptions between bottom-up and low-level processes
	Live writing as a bottom-up practice

	Bottom-up systems for live coding
	Contributions
	User Interaction
	Systems
	Mapping
	A simple example of a musical improvisation system

	Implications
	Publications in relation to Study A

	Study B: Embodiment and musical gestures in machine musicianship
	Enaction with musical interfaces
	Embodiment and gesture in live coding systems and practices
	Performance systems: Musical gestures in practice
	Recognition and retrieval with gestural interactions

	How embodiment is expressed in live coding
	Gestural interaction and musical gestures
	The role of pre-reflective processes

	Contributions
	A framework for live coding systems on gestural interactions
	Gestures in bottom-up live coding
	Pre-reflective processes in live coding

	Implications
	Publications in relation to Study B

	Study C: Creativity support technologies for live coding
	Interactive music systems and machine agents in improvisation
	From liveness and musical agents to machine learning ecosystems
	On liveness
	On musical agents
	On machine learning ecosystems

	Contributions
	Visualization technologies for creativity support
	Live coding practice with a visual helper and sound visualizations
	Circular representation of musical structure

	Conceptual framework for designing agent-based systems
	On liveness in bottom-up systems

	Implications
	Sound
	Visualization
	Text

	Publications in relation to Study C

	Study D: Reproducibility, transparency and risk
	From the general to the specifics of reproducibility, transparency and risk
	Reproducibility, transparency and risk in live coding
	Reproducibility in live coding
	Transparency in live coding
	Risk in live coding

	Contributions
	Reproducible musical analysis: Algorave case study
	Transparency
	Risk

	Implications
	Visual representation of sound
	Live coding is risky
	Risk of reproducibility and transparency
	Risk and gestural interactions

	Publications in relation to Study D

	Discussion
	Review of contributions
	Making bridges: Theory making for live coding
	Music perception and cognition
	Gestural control and the meaning of bodily gestures

	Bottom-up live coding
	Predicting programming behaviours: A technical view on liveness
	The significance of pre-reflective processes

	Recognition and retrieval processes in interfaces and gestural control
	Open-loop motor program and spatiotemporality
	Musical memory in live coding

	Visualizations
	Musical form
	Creativity tools

	Structured datasets
	Observational datasets
	MIR structured dataset
	Musical practice: Scripts and diaries

	Implications and reflections
	Cross-disciplinary boundaries
	Gestural interactions
	Open-loop and closed-loop live coding
	The transparency of embodiment

	Liveness and code-preview
	Agency: Relational, shared and influential

	Conclusions
	Open problems in live coding
	Research outcomes
	Answers to the research questions
	Limitations

	Future directions in musical live coding

	Bibliography
	Appended Papers
	Paper i - An analytical framework for musical live coding systems based on gestural interactions in performance practices
	Paper ii - The creative act of live coding practice in music performance
	Paper iii - Bottom-up live coding: Analysis of continuous interactions towards predicting programming behaviours
	Paper iv - Livecode me: Live coding practice and multimodal experience
	Paper v - Reproducible musical analysis of live coding performances using information retrieval: A case study on the Algorave 10th anniversary
	Paper vi - Liveness and machine listening in musical live coding: A conceptual framework for designing agent-based systems
	Paper vii - Musical live coding in relation to interactivity variations

