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Abstract
Classical algorithms and mathematical optimization techniques have been
used extensively by airlines to optimize their profit and ensure that regu-
lations are followed. In this thesis, we explore which role quantum algorithms
can have for airlines. Specifically, we have considered the two quantum op-
timization algorithms; the Quantum Approximate Optimization Algorithm
(QAOA) and Quantum Annealing (QA). We present a heuristic that inte-
grates these quantum algorithms into the existing classical algorithm, which
is currently employed to solve airline planning problems in a state-of-the-art
commercial solver. We perform numerical simulations of QAOA circuits and
find that linear and quadratic algorithm depth in the input size can be re-
quired to obtain a one-shot success probability of 0.5. Unfortunately, we are
unable to find performance guarantees. Finally, we perform experiments with
D-wave’s newly released QA machine and find that it outperforms 2000Q for
most instances.

Keywords: discrete optimization, quantum approximate optimization algo-
rithm, quantum annealing, airline scheduling, column generation
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CHAPTER 1

Introduction

Airlines have used classical algorithms and mathematical optimization [1]
techniques extensively for decades [2]. In this thesis, we explore which role
quantum algorithms can have in this context. In the following sections, we
give a brief overview of the airline industry, airline scheduling problems, and
quantum computing.

1.1 The Airline Scheduling Process

Airlines operate within an industry that is highly competitive with large op-
erational costs. In particular, the largest costs are related to fuel consumption
and crew. The airlines are furthermore governed by many operational rules
imposed by aviation authorities and unions. It is also common that airlines
themselves have internal rules that need to be respected. Additionally, airlines
also must deal with uncertainties due to weather conditions and other disrup-
tions. These characteristics force airlines to carefully schedule their flights,
crew, and aircraft to maximize revenue and minimize cost.
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Chapter 1 Introduction

Scheduling Problems
An airline has two significant decisions before scheduling [3], namely the fleet
size and structure and which routes to cover. Typically an airline begins
by determining the fleet, i.e., how many aircraft of each fleet type should
exist and how many aircraft there are in total. Given that the set of aircraft
is determined, the airline can consider which origins and destinations they
wish to cover, i.e., route planning. Generally, after these planning stages are
completed, the airline can consider the scheduling of flights, aircraft, and crew.

The scheduling problem [4], [5] has historically been divided into subprob-
lems Flight Scheduling, Fleet Assignment, Crew Scheduling, Tail Assignment,
and lastly Recovery Planning. Commonly, Crew Scheduling is further parti-
tioned into Crew Pairing and Crew Rostering. In this setting, the output of
a subproblem is input to the following subproblem and solved sequentially;
see Fig. 1.1. However, by considering the subproblems individually, the over-

Flight Scheduling

Fleet Assignment

Crew Pairing

Crew Rostering

Tail Assignment

Recovery Planning

Figure 1.1: Sequential airline scheduling process

all scheduling problem is not solved optimally. Therefore more integrated
solutions have also been considered, where two or more subproblems can be
solved iteratively, considering some aspects of other subproblems, or a com-
pletely new integrated model of multiple problems is proposed. Although
there exists no proposal to integrate all subproblems into a single problem,
probably due to the complexity and size such a problem would have. Exam-
ples of integrated problems are Crew Scheduling with Tail Assignment and
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1.1 The Airline Scheduling Process

Fleet Assignment with Flight Scheduling. There are some drawbacks when
considering integrated optimization models since the subproblems are com-
plex and large, even when considered individually. Integrating two or more
subproblems can be very difficult to model, and the integrated optimization
models will obviously become even larger in the number of required variables
and constraints. The integrated optimization problems can therefore be more
cumbersome to find good solutions to and fail in practice to perform better
than the sequential approach in Fig. 1.1.

The goal of Flight Scheduling [6]–[15] is to construct a flight schedule, which
is a list of flight legs specified by their arrival and departure airport, dates
or frequency, and time. This stage is typically completed six months in ad-
vance. The considerations an airline usually has in Flight Scheduling are
demand, ticket price, market share, airport slots, and non-stop flights versus
connecting flights for certain origins and destinations. Since the sold flight
tickets constitute the airline’s revenue, the objective becomes to maximize the
expected revenue.

Using the output of Flight Scheduling, i.e., the flight schedule, it is possible
to consider Fleet Assignment. In Fleet Assignment [16]–[33], the goal is to
cover the flight schedule with the existing fleet and maximize the profit. This
means that we need to assign a fleet type to each flight leg while not exceeding
the number of aircraft in the fleet. To maximize the profit, the goal is to match
the demand to the capacity of the aircraft, as this minimizes the spill cost of
lost passengers and operating costs.

Once the flight schedule and the fleet type are known for each flight, we can
consider the Crew Scheduling problem. The Crew Scheduling problem [34]–
[37] is typically partitioned into two problems, Crew Pairing and Crew Roster-
ing. The reasons for separating the problems are the sheer size and complexity
and the constraints and goals that differ. In Crew Pairing, the goal is to find
anonymous legal pairings in the most cost-effective way such that the flight
schedule is covered and the working contractual rules for the anonymous crew
are respected. The cost is typically measured in the working time, and a legal
pairing is a sequence of duties that consists of flight legs, typically represent-
ing one day of work, with rest and layovers in between. It starts and ends in
a crew base and adheres to a set of additional rules.

Crew Rostering, on the other hand, focuses on finding monthly personalized
rosters for each crew member such that all flights are covered, and the weekly
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Chapter 1 Introduction

and monthly rules for individual crew members are respected. The personal-
ized rosters for each crew consist of pairings generated in the Crew Pairing
phase and personal activities such as vacation, reserves, and training with
time off in between. The typical objective is to maximize the roster qualities
by fairness and/or requests from individual crew members. Crew Pairing is,
therefore, more important than Crew Rostering when it comes to increasing
profit.

Once there is a Fleet Assignment and/or Crew Scheduling solution in place,
individual tails, the numbers that identify aircraft, must be assigned to each
flight in the flight schedule while performing the required maintenance checks.
This problem is an Aircraft Assignment problem, and specifically here the
Tail Assignment problem [38]–[42]. The solution of Tail Assignment is a set of
maintenance feasible aircraft routes, that is, sequences of flight legs, assigned
to minimize the assignment cost.

Once all these problems are solved, the airline has successfully scheduled
its flights, aircraft, and crew to maximize profit while respecting all rules.
However, there are many uncertainties, as noted previously. As a result,
schedules can be disrupted by unforeseen circumstances. To manage this new
situation, it is often necessary to reevaluate the schedules, which is handled
in the Recovery Planning phase [43], [44].

Ch. 2 and 3 will explain further the mathematical models and solution
techniques commonly used.

1.2 Quantum Computing
Quantum mechanics [45] was discovered and developed during the first quarter
of the 1900s, introducing concepts such as quantum superposition, quantum
entanglement, and quantum measurement. The theory allowed for a greater
understanding of the universe throughout the century, as it correctly described
nature in regimes where classical mechanics failed.

The theory of computational complexity [46]–[48] and the performance of
the classical computer progressed at great speed during the latter half of the
1900s, following Moore’s law [49], [50] which says that the power of classi-
cal computers will double every two years. However, this law is currently
breaking down as the hardware components become so small that quantum
mechanical effects disturb their functionality. One possible way of further-
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1.2 Quantum Computing

ing our computing capability is to propose a new model of computation. In
1979-1981 Benioff [51], Manin [52], and Feynman [53] independently proposed
such concepts, namely a model of computation based on quantum mechan-
ics. Feynman argued that to simulate quantum mechanical systems, such a
model of computation might be required, as it seems to be intractable for
a classical computer to do exactly without exponential resources and time.
The idea was thus that a machine where information is embedded in quantum
mechanical systems might be more powerful than a machine where the infor-
mation is embedded in classical mechanical systems. Today we view quantum
superposition and entanglement as resources of this model that are distinctly
different from the resources of classical computation. Quantum entanglement
allows for non-local operations compared to classical computing and quantum
superposition allows the device to be in a superposition of all classical states.
Indeed, quantum computers stand today as a possible model of computation
that may violate the extended Church-Turing thesis, which says that a prob-
abilistic Turing machine can simulate any reasonable model of computation
in polynomial time. The principles of quantum computing can be found in
Ref. [54] but will also be introduced in Ch. 4.

Following the proposals by Benioff, Manin, and Feynman, much insight has
been obtained about controlling single quantum systems such as ion traps
and superconducting qubits, quantum information, quantum algorithms, and
how to construct a quantum computer [54], [55]. Deutsch showed in 1985
that universal quantum computing [56] is possible to realize in theory, along
with a problem that can be solved in constant time by a quantum algorithm
compared to linear time by a deterministic classical algorithm [57], albeit
a probabilistic classical algorithm also solves the problem in constant time.
Bernstein and Vazirani [58] were the first to show separation between quantum
computation and classical computation, as they gave a problem that a quan-
tum algorithm solves in constant time whereas linear time is required for both
the deterministic and probabilistic classical algorithm. They also proposed a
version of the quantum Fourier transform, which gives an exponential speed-
up compared to classical algorithms. Exponential speedup was also obtained
by Simon’s algorithm [59] shortly after, but what is now considered a defining
major breakthrough in the field was discovered by Shor [60], who presented
an algorithm, that uses the quantum Fourier transform as a building block,
that solves the discrete log problem and in extension the integer factoriza-
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Chapter 1 Introduction

tion problem. This quantum algorithm provides exponential speedup over the
best known classical algorithm, and is applicable to a problem we encounter
on a regular basis, namely the RSA encryption [61], which is broken by Shor’s
algorithm. Moreover, Grover presented an unstructured database search algo-
rithm with quadratic speedup [62], which has later also been used to propose
several algorithms to solve discrete optimization problems. However, these al-
gorithms rely on quantum error correction and hence fault-tolerant quantum
computers, which have yet to be shown experimentally viable. Furthermore,
some algorithms require specific oracle access, which is nontrivial to achieve
experimentally.

What has been proposed instead is to consider hybrid quantum-classical
variational algorithms such as the Quantum Approximate Optimization Al-
gorithm (QAOA) [63] and the Variational Quantum Eigensolver (VQE) [64] in
the so-called Noisy Intermediate-Scale Quantum [65] (NISQ) era of quantum
computers. We will discuss the quantum variational algorithms designed to
solve optimization problems further in Ch. 4.

Moreover, the idea of quantum computing has given rise to quantum com-
plexity classes. The complexity class of greatest interest to us is Bounded-
error Quantum Polynomial-time (BQP) [54], which is the quantum analog
of Bounded-error Probabilistic Polynomial-time (BPP) [47]. Finally, we note
that it has been shown that BPP⊆ BQP⊆PSPACE [58], but it is not known
if there is a separation BPP ̸=BQP, meaning that it is still not proven that
quantum computers are more powerful than classical computers. This can
be considered counterintuitive, as we just have mentioned quantum speedup.
However, for the problems and quantum algorithms presented, the speedup is
either given when we assume oracle access, which can’t separate the classes,
or when we do not know the hardness of the problem as in the case of integer
factorization.

1.3 Contribution
I assisted with the following work related to the papers appended and dis-
cussed in this thesis:

• Paper A: I derived problem instances of interest, performed all numerical
simulations, and was the main author of the manuscript
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1.4 Thesis Outline

• Paper B: I derived the problem instances and assisted with reviewing
the manuscript

• Paper C: I assisted in reviewing the manuscript and assisted in some
numerical circuit simulations

• Paper D: I presented the instances to consider and assisted in reviewing
the manuscript

1.4 Thesis Outline
In Ch. 2, the mathematical background is given for Multi-Commodity Net-
work Flow problems and solution methodologies. A further explanation of the
mathematical models used for the Aircraft Assignment problem Tail Assign-
ment is then given in Ch. 3. Ch. 4 gives a review of the model of quantum
computation and some quantum algorithms designed to solve integer program-
ming problems. The appended papers are summarized in Ch. 5, and finally,
we give our conclusions and suggestions for future research possibilities in
Ch. 6.
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CHAPTER 2

Network Flows and Mathematical Optimization

This chapter introduces the general minimum cost Multi-Commodity Network
Flow Problem (MCNFP) as it models many airline planning problems, some-
times with additional constraints. We also summarize solution methodologies
and focus on Dantzig-Wolfe decomposition, Column Generation, and in the
integrality case Branch-and-Price.

2.1 The Multi-Commodity Network Flow Problem
Surveyed in [66] and [67], the MCNFP [68] model optimization problems in
areas such as logistics, transportation, and telecommunication. The problem
consists of a directed graph G = (V,A) with a set of nodes V and arcs A.
In addition, we have a set of K commodities that, in essence, differentiates
the problem from the Single-Commodity Network Flow Problem (SCNFP).
The goal is to ship Bk units of each commodity k ∈ K across the graph from
source nodes sk to sink nodes tk such that the sum of arc costs ck

ij is as small
as possible, whilst respecting capacity constraints on each arc uij and arc-flow
variable xk

ij .
Thus, similarly to the SCNFP, we wish to move commodities from the source
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Chapter 2 Network Flows and Mathematical Optimization

to the sink subject to mass balance constraints, capacity constraints and a cost
minimization. However, here the capacity constraints link all commodities
together, which causes the MCNFP to be a more difficult problem to solve
than the SCNFP. In particular, if we have integral variables as the Linear
Programming (LP) relaxation [69] of the SCNFP, in this case, has integer
solutions, whereas the MCNFP does not. Clearly, if the linking constraints
are ignored, the MCNFP decomposes to |K| SCNFPs that can be solved
separately. There are two main formulations of these problems, an arc-flow
formulation, and a path-flow formulation. We will now discuss these.

Arc-flow Formulation

The arc-flow formulation of the minimum cost MCNFP is the following

z∗ = minimize
∑

k∈K

∑

(i,j)∈A

ck
ijx

k
ij , (2.1)

subject to
∑

(i,j)∈A

xk
ij −

∑

(j,i)∈A

xk
ji = bk

i , ∀i ∈ V, ∀k ∈ K, (2.2)

∑

k∈K

xk
ij ≤ uij , ∀(i, j) ∈ A, (2.3)

xk
ij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K, (2.4)

where

bk
i =





Bk if i = sk

−Bk if i = tk

0 otherwise
. (2.5)

The decision variables xk
ij represent the flow of commodity k on each arc

(i, j) ∈ A in the directed graph. Eq. (2.1) is the linear cost function with cost
coefficients ck

ij associated with sending commodity k across arc (i, j). There
are |V ||K| mass balance constraints, sometimes referred to as continuity con-
straints, in Eq. (2.2). Here the supply, demand, and continuity are secured
by the coefficients bk

i for each node and commodity. Each commodity has
its own source node sk and sink node tk, and there can in general be several
source and/or sink nodes, but here we only consider the case when we have
a single source node and a single sink node for each commodity. The linking
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2.1 The Multi-Commodity Network Flow Problem

constraints of the commodities are given by the upper bound on the arc ca-
pacity uij in Eq. (2.3). Clearly these |A| constraints are forcing us to solve the
problem in this form, whereas if these constraints are ignored, it is possible
to decompose the problem into |K| separate problems.

Path-flow Formulation
We can reformulate the arc-flow formulation as a path-flow formulation. Since
there are for each commodity k a set of P k possible simple directed paths from
sk to tk, we can associate the flow on each path with a decision variable fp.
We can then relate the arc-flow decision variable to the path-flow decision
variable accordingly

xk
ij =

∑

p∈P k

δij(p)fp, (2.6)

where δij(p) is 0 if arc (i, j) is not in path p and 1 otherwise. We can also
express the cost of a path p for commodity k as ck

p =
∑

(i,j)∈A δij(p)ck
ij .

Regarding the mass balance constraints, we can remove some, as we require
that the sum of all directed paths from source to sink for each commodity
to deliver Bk units. Lastly, the capacity constraints are easily expressed in
path-flow variables by replacing the arc-flow variables. Since we require that
each arc-flow variable is non-negative, we also require this for the path-flow
variables. The path-flow formulation is thus

z∗ = minimize
∑

k∈K

∑

p∈P k

ck
pfp, (2.7)

subject to
∑

p∈P k

fp = Bk, ∀k ∈ K, (2.8)

∑

k∈K

∑

p∈P k

δij(p)fp ≤ uij , ∀(i, j) ∈ A, (2.9)

fp ≥ 0, ∀p ∈ P k, ∀k ∈ K. (2.10)

We now have an equivalent formulation of the problem where we have reduced
|V ||K| + |A| constraints in the arc-flow formulation to |K| + |A| constraints,
but we have increased the number of variables from |A||K| to

∑
k∈K |P k|

which is in general exponential in the size of the directed graph.
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Chapter 2 Network Flows and Mathematical Optimization

2.2 Solution Approaches

The solution approaches to MCNFP [68, Chapter 17] are typically classified
into three categories: price-directive decomposition, resource-directive decom-
position, and partitioning methods.

The price-directive decomposition decomposes the problem into a main
problem and |K| subproblems where prices are put on the linking constraints.
The mass balance constraints and individual arc flow constraints define the
subproblems for each commodity along with an objective function to be mini-
mized. The objective function is the original arc cost for a path with additional
prices added. The role of the subproblems is to find improving paths for the
main problem. The main problem sets the prices and connects the individual
subproblems via the linking constraints. This is often done via Lagrangian de-
composition, Dantzig-Wolfe decomposition and/or Column Generation. The
two latter approaches will be presented in the following sections.

The idea of resource-directive decomposition is that we view the problem as
a capacity allocation problem. We then separate the MCNFP into a resource
allocation problem and |K| additional minimum cost flow problems that de-
pend on a fixed resource vector r. This decomposition changes the arc-flow
formulation to the following two problems

z∗ = minimize
∑

k∈K

zk(r), (2.11)

subject to
∑

k∈K

rk
ij ≤ uij , ∀(i, j) ∈ A, (2.12)

rk
ij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ K, (2.13)

and

zk(r) = minimize
∑

(i,j)∈A

ck
ijx

k
ij , (2.14)

subject to
∑

(i,j)∈A

xk
ij −

∑

(j,i)∈A

xk
ji = bk

i , ∀i ∈ V, (2.15)

0 ≤ xk
ij ≤ rk

ij , ∀(i, j) ∈ A. (2.16)

These problems are solved iteratively, where we reallocate capacities such that
the solution is improved in each iteration.
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2.2 Solution Approaches

For partitioning methods, one uses the fact that the MCNFP is an LP with
embedded single-commodity network flow problems. One useful method that
has been developed for SCNFP is that spanning tree solutions are basic feasible
solutions in the simplex algorithm [70]. By generating improving spanning
trees, the SCNFP can be solved. This idea is expanded upon for MCNFP,
where additional arcs are required to ensure that the linking constraints are
satisfied.

To summarize, all three categories of solution approaches to the MCNFP
share the fact that we separate the problem into several problems, that each
only considers one commodity. In this thesis, we focus on a price-directive
method, namely the Dantzig-Wolfe decomposition and Column Generation.
Our motivation for this choice is that we consider the current state-of-the-art
implementation to solve problems of interest in the airline planning process.

Dantzig-Wolfe Decomposition
The Dantzig-Wolfe decomposition was first presented in [71], and constitutes
a method for decomposing a linear program such that we obtain a formulation
based on extreme rays and points in domains that are defined by constraints
in the original formulation. If we consider the linear program

minimize cT
1 x1 + cT

2 x2 + · · ·+ cT
N xN , (2.17)

subject to D1x1 +D2x2 + · · ·+DN xN ≤ d, (2.18)



A1x1
A2x2

. . .
AN xN


 ≤




b1
b2
...

bN


 , (2.19)

x1, x2, . . . ,xN ≥ 0, (2.20)

where all variables are linked by the Di matrices, and the Ai matrices are
separate constraints for each vector xi.

Assume for a moment that we want to formulate a problem with only the
constraints in Eq. (2.18) involving the linking constraints. This means that we
somehow wish to remove the rest of the constraints. Let us begin by defining
the sets

Xi = {xi ≥ 0 | Aixi ≤ bi} ∀i = 1, . . . , N. (2.21)
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Chapter 2 Network Flows and Mathematical Optimization

If these sets are convex and nonempty, a point xi ∈ Xi can be written as a
convex combination of the extreme points x̄p

i ∈ Pi and a conical combination
of extreme rays x̃r

i ∈ Ri [72, Chapter 3]

xi =
∑

p∈Pi

λp
i x̄p

i +
∑

r∈Ri

λr
i x̃r

i ,
∑

p∈Pi

λp
i = 1, λl

i ≥ 0, l ∈ Pi ∪Ri. (2.22)

It is then possible to express the original linear program by substituting in
Eq. (2.22), which gives us the following equivalent formulation

minimize
N∑

i=1
( ∑

p∈Pi

λp
i cT

i x̄p
i +

∑

r∈Ri

λr
i cT

i x̃r
i), (2.23)

subject to
N∑

i=1
Di( ∑

p∈Pi

λp
i x̄p

i +
∑

r∈Ri

λr
i x̃r

i) ≤ d | π⃗, (2.24)

∑

p∈Pi

λp
i = 1, i = 1, . . . , N | qi, (2.25)

λl
i ≥ 0, ∀l ∈ Pi ∪Ri, i = 1, . . . , N. (2.26)

We have at this point successfully removed the constraints we desired in our
formulation by considering the extreme points and rays in the polyhedrons Xi.
The reformulated problem now has decision variables λl

i, and we will denote
this problem as the Master Problem (MP).

Column Generation

If it is possible to find all extreme points and rays and the number of extreme
points and rays is not too large, the problem obtained from the Dantzig-
Wolfe decomposition can be solved directly. However, this is not the case in
general. Rather, the number of extreme points and rays can be very large,
even exponentially large in the input size. We, therefore, seek a method where
we only consider some subset of all variables. This is where the Column
Generation algorithm [73] becomes essential.

The problem with only a subset of variables R′
i ⊂ Ri and P ′

i ⊂ Pi for
i = 1, . . . , N is called the Restricted Master Problem (RMP). By solving the
RMP, the optimal primal and dual variables can be obtained. Additionally,
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the reduced cost of variables λp
i and λr

i for given dual variables π⃗ and qi are

c̄p
i = cT

i x̄p
i − (Dix̄p

i )T π⃗ − qi and c̄r
i = cT

i x̃r
i − (Dix̃r

i )T π⃗, (2.27)

respectively. Since a variable with negative reduced cost can improve the
solution of the RMP, we wish to find the smallest by solving the Pricing
Problem (PP)

minimizexi∈Xi
(ci −DT

i π⃗)T xi − qi, (2.28)

which is equivalent to solving the following two minimization problems

min(minimizep∈Pi
(ci −DT

i π⃗)T x̄p
i − qi, minimizer∈Ri

(ci −DT
i π⃗)T x̃r

i).
By solving the problems, we can find a column that can enter the basis (i.e.,
the RMP) which will either be an extreme point




cT
i x̄p

i

Dix̄p
i

1




or an extreme ray 


cT
i x̃r

i

Dix̃r
i

0


 .

When there are no variables p ∈ Pi or r ∈ Ri in any pricing problem i =
1, . . . , N with a negative reduced cost, the optimal RMP has been found, and
also the optimal solution to the original problem presented in Eq. (2.17)-(2.20).

The Column Generation algorithm viewed from a Dantzig-Wolfe decompo-
sition perspective is explained as iteratively solving the RMP and the 2 · N
pricing problems based on the dual variables. If we then solve each pricing
problem, and we find new extreme points or rays with negative reduced cost,
we introduce these variables in the basis (the RMP). Repeating this process
will generate an improved solution in each iteration. When no extreme point
or ray with a negative reduced cost is found, the problem is solved optimally.
However, we are not necessarily restricted to using Dantzig-Wolfe decompo-
sition to employ the Column Generation algorithm for a problem, and it is
possible to use it on the MCNFP directly where we have |K| pricing problems
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with the form

z∗
k = minimize

∑

(i,j)∈A

(ck
ij − πij)xk

ij − σk, (2.29)

subject to
∑

(i,j)∈A

xk
ij −

∑

(j,i)∈A

xk
ji = bk

i , ∀i ∈ V, (2.30)

xk
ij ≥ 0, ∀(i, j) ∈ A, (2.31)

and the Master Problem in the path-flow formulation of the MCNFP.

Branch-and-Bound and Branch-and-Price
Given that we have an MCNFP where the variables are continuous, linear
programming based techniques work well. However, it is often the case that
we have integer valued variables. In this case, we do not accept fractional
solutions nor is the domain convex.

One standard method used to find integer solutions is Branch-and-Bound [74],
[75]. Consider here that we are applying Branch-and-Bound to an integer lin-
ear program

ILP = min
{

n∑

i=1
cixi : x⃗ ∈ S

}

where S =
{
x⃗ ∈ Zn

+ :
∑n

i=1 ajixi ≥ bj ∀j = 1, . . . ,m
}

. First, we consider
what happens if the variables are relaxed to be continuous. We know from lin-
ear programming theory that we will obtain either a lower bound, an integer
solution, or that the problem is infeasible.

If we find either an integer solution or an infeasible solution, we have either
obtained the optimal solution or found that there is no integral solution, and
we can stop. However, if we obtain some fractional solution x0, we have
obviously not reached our goal. In Branch-and-Bound we, therefore, choose
to create k ≥ 2 subproblems, where we choose the subproblems to be in
disjoint domains S1, . . . , Sk that exclude the solution x0.

One way of creating disjoint domains with respect to the fractional variables
in solution x0 is to add constraints for fractional variables in our solution xj ≤
⌊x0

j⌋ in one of the subproblems and xj ≥ ⌈x0
j⌉ in another. The original problem

and subproblems can be visualized as a tree, where the nodes represent the
optimization problems, with one parent and two or more children.
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2.2 Solution Approaches

Since we now have two or more new problems to explore, we again meet a
similar situation as for our relaxed ILP, but for the newly created subproblems.
This means that if a subproblem is found to be infeasible, the node is pruned,
i.e., the node representing one of the subproblems is not explored further as we
do not create any more subproblems. Instead, we choose a new subproblem to
explore that has been generated previously, and we say that the node is pruned
by infeasibility. If we find that a solution to a subproblem is integral, we also
do not create any further subproblems and prune this node. As we have found
an optimal partial solution, a candidate incumbent zi, for this specific region
and instead choose a new subproblem to explore. Imagine now that we also
have access to some other feasible solution to the ILP, which we denote z∗ and
call the incumbent. If we find that a subproblem yields a fractional solution
greater or equal to z∗, this region cannot contain any integer solutions that
would improve upon the one we already have, and there is no point in creating
more subproblems to the node we are currently exploring. This particular
node is thus pruned by bound, and we choose a new subproblem to explore
that has been generated previously. On the other hand, if the fractional
solution is smaller than the incumbent, we create new subproblems, before we
pick a new node to explore.

With these ingredients, we can state the Branch-and-Bound algorithm. The
algorithm begins by first initializing a list L with the node N0 that represents
our relaxed ILP. We also initialize an incumbent z∗ = ∞. We then pick a
node in our list and attempt to solve this problem. If there are no feasible
solutions, we pick another node from our list as this node is pruned by in-
feasibility. If we obtain an integral solution the node is also pruned, now by
integrality, and if the integral solution is less than our incumbent, we update
it. We then pick a new subproblem from the list. If we obtain a fractional
solution worse than our incumbent, we prune this node by bound. Finally,
if a subproblem can not be pruned by infeasibility, bound or integrality, the
subproblem is partitioned into k ≥ 2 nodes representing k subproblems, which
are children to the current subproblem we are exploring in the tree. The k
subproblems are then added to a list L of unexplored subproblems and a new
subproblem is chosen to be explored. When there are no unexplored subprob-
lems left, the algorithm terminates and returns the incumbent solution and
the corresponding assignment.

We remark that the Branch-and-Bound algorithm is exponential in the
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Chapter 2 Network Flows and Mathematical Optimization

worst case. However, exhaustive search is avoided by pruning nodes of the
tree, giving more acceptable running times in practice. Finally, when we
solve each node with the Column Generation method, the algorithm is called
Branch-and-Price [76].
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CHAPTER 3

Airline Scheduling Models

Mathematical optimization models for airline scheduling problems can differ
significantly depending on the type of network, planning horizon, network
representation, uncertainties, objective function, and considered constraints.
Indeed, it does not seem surprising that depending on the assumptions made
for a problem at hand in the airline planning process that we end up with very
different mathematical models for something we categorize as approximately
the same problem. Furthermore, a so-called good model depends very much
on how well the model represents reality and how fast a sufficiently good
solution can be obtained. Therefore, we must consider at least the trade-off
between the time spent to find a solution versus the solution quality, and we
must be aware that the models typically vary for different airlines, and can
change if the industry changes.

Now, since the papers discussed in Ch. 5 have only considered a variant
of Aircraft Assignment called Tail Assignment, we will restrict the coming
section to Aircraft Assignment and elaborate on Tail Assignment specifically.
Even though we disregard the details of the other problems in the airline
planning process, we note that the problems Fleet Assignment, Crew Pairing,
and Crew Rostering have, in many cases, in common with Aircraft Assignment

21



Chapter 3 Airline Scheduling Models

the property that they can be modeled as networks, which we must send either
crew or aircraft through, and that the problems are large. Therefore, the
model types and solution approaches for the problems are similar.

3.1 Aircraft Assignment and its Variations
As mentioned previously, many aspects of Aircraft Assignment can vary, lead-
ing to several names being used, both in industry and academia. Four common
names are Aircraft Routing [77]–[81], Aircraft Maintenance Assignment [79],
[82]–[92], Through Assignment [93]–[97] and Tail Assignment [38], [42], [98].
The name Aircraft Assignment is the common denominator, in the sense that
Aircraft Routing, Through Assignment, Aircraft Maintenance Assignment,
and Tail Assignment can be considered to be an Aircraft Assignment problem
since we wish to assign flights, i.e., routes, to aircraft. In contrast, a gen-
eral Aircraft Assignment model does not necessarily capture all the modeling
aspects of Tail Assignment.

Having different modeling considerations leads of course to the fact that
the mathematical models differ, to varying degrees. The models can differ
in the ultimate goal, as some airlines consider Aircraft Assignment to be a
feasibility problem, whereas others consider it to be an optimization problem.
Here, robustness, which refers to how sensitive the solution is to disruptions,
might also be more or less important to consider. A typical case of feasi-
bility is Aircraft Maintenance Assignment, where it is often only required to
find maintenance feasible routes assigned to aircraft while disregarding the
cost of the assignment. Through Assignment, on the other hand, ignores
many of the maintenance constraints, and the goal is instead to maximize the
through values. The through values are defined as the desirability of one-stop
services, i.e., multi-leg flights without aircraft changes. By maximizing this
quantity, we minimize the number of aircraft changes for desirable connec-
tions, which allows the airline to raise the ticket price and increase the profit.
Aircraft Routing refers to when we consider both maintenance requirements
and through values.

Often, these three problems are considered earlier in the planning process
than Tail Assignment as we do not always expect to obtain an executable
solution without some manual changes, whereas Tail Assignment focuses on
being able to produce a solution that can be executed without extra ma-
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nipulation. For example, it can be desirable to solve Aircraft Maintenance
Assignment directly after Fleet Assignment to show that it is possible to find
at least some assignment that respects a subset of maintenance rules before
considering crew scheduling.

Regardless of what variant of Aircraft Assignment we consider, one further
example of diverging models is when we consider cyclic problems, which are
problems where the flight schedule is approximately repeated each week or
day. Here, it can be sufficient to require the aircraft to land at maintenance
stations at the end of each day. Thus complying with some maintenance con-
straints without explicitly having them in the model, but implicitly enforcing
them via the network structure [79]. With this assumption, once a solution is
obtained, the schedule can be repeated to get a solution with a longer time
horizon. The solutions are then often modified for dated problems, i.e., prob-
lems with distinct start and end dates, to consider deviations and improve
some feasibility and/or optimality issues. If, on the other hand, the flight
schedule has no such regularity, solving cyclic problems is not very useful, and
we instead consider only the dated problems. Here it is usually impossible to
model all maintenance requirements via the network structure, and we need
to have explicit constraints in our model1.

Another consideration is flexibility, meaning that the model can be adjusted
according to what priorities an airline have depending on when they solve it,
i.e., if we are several months, weeks, or days away from day-of-operation.

To reiterate, we generally wish to assign all flights to aircraft. Since this
assignment corresponds to aircraft routes, we also want these routes to be,
at the very least, maintenance feasible in some sense2. The maintenance
requirements are given by aviation authorities3, aircraft manufacturers, and
airlines, which typically provide stricter constraints compared to the former
two sources of constraints.

Tail Assignment
In Tail Assignment, the goal is to assign each flight exactly once to aircraft
such that the operational cost is minimized and all operational constraints

1Maintenance are often modeled as restricted resources in the network.
2This means that if Through Assignment is solved, additional changes are most likely

required to comply with maintenance constraints.
3Federal Aviation Administration in case of the USA.
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such as maintenance, preassigned activities, and prohibited activities are re-
spected. One notable difference is that this problem considers tail (aircraft)
specific constraints, which models such as Aircraft Routing often do not con-
sider. Furthermore, even though we have spoken about flight legs so far, Tail
Assignment plan in its model something we call activities. Activities can be
flight legs, sequences of flight legs, maintenance, and other ground activities.
To note, one strength of Tail Assignment is that the model can capture aspects
ranging from Aircraft Routing to Aircraft Maintenance Assignment, Through
Assignment, Fleet Assignment, and Recovery Planning. Although Aircraft
Assignment is typically separated for each fleet type, Tail Assignment is more
general and allows multiple fleet types which can be required for the final
feasibility of the solution. To model all requirements, Tail Assignment only
solves dated problems but has, in principle, no limit on the time horizon. This
means that Tail Assignment does not capture cyclic problems, which can be
considered a weakness of the model. However, in terms of flexibility, scope,
and preciseness in the sense that the solution should be executable without
extra manipulation, the model is very well-suited for real-world problems.

In [38] Tail Assignment is presented for two different formulations, one
which is path-flow based and exponentially large in the number of variables,
or rather feasible routes, and linear in the number of constraints, i.e., the
number of constraints are the number of flight legs given as input4. The
second model is arc-flow based where the number of variables is quadratic
in the number of activities and linear in the number of aircraft but has more
constraints, and the constraints are viewed as complex. Furthermore, although
the number of variables is polynomial in the size of the input, the model
becomes for practical problems very large. The two models are related via
methods described in Ch. 2 as the latter model is classified as a resource-
constrained integer minimum cost MCNFP and given explicitly in Eq. (3.1)-
(3.7). We can consider the model below to be represented by a directed graph
where each node represents a connection between activity i and j for each
aircraft. In the network, we use five different types of sets to model our
problem. T is the set of aircraft, F is the set of flight legs, Pt is the set of
preassigned activities for tail t, Rt are the forbidden activities for tail t and
M is the set of maintenance activities. The 0-1 decision variables in Eq. (3.7)
represent which activities and thus connections the aircraft should cover where

4Here we are disregarding some vertical constraints compared to the model in practice.
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each decision variable xijt is associated to a cost cijt, giving us the objective
function in Eq. (3.1) to minimize. Constraint in Eq. (3.2) is a continuity
constraint that ensures that a path is associated with an aircraft, albeit the
requirement on the source and sink for each aircraft needs to be added such
that exactly one aircraft is sent on each path. The covering constraint is given
in Eq. (3.3) and ensures that all flight legs are covered exactly once. Then,
the requirement for preassigned activities and forbidden activities for each
aircraft are given in Eq. (3.4)-(3.5).

minimize
∑

i∈F

∑

j∈F

∑

t∈T

cijtxijt, (3.1)

subject to
∑

j∈F

xjit −
∑

j∈F

xijt = 0, ∀i ∈ F, ∀t ∈ T, (3.2)

∑

j∈F

∑

t∈T

xijt = 1, ∀i ∈ F, (3.3)

∑

j∈F

xijt = 1, ∀i ∈ Pt, ∀t ∈ T, (3.4)

∑

j∈F

xijt = 0, ∀i ∈ Rt, ∀t ∈ T, (3.5)

rim ≤ lm, ∀i ∈ F, ∀m ∈M, (3.6)
xijt ∈ {0, 1}, ∀i ∈ F, ∀j ∈ F, ∀t ∈ T. (3.7)

The most complex constraints for the model are, unexpectedly, associated
with the maintenance in Eq. (3.6). These are defined recursively for each
variable xi′it = 1 where

rim =





rt
m if i is carry-in activity for aircraft t
sim if maintenance m possible between activities i′ and i

sim + ri′m if maintenance m not possible between activities i′ and i

.

Here, sim is the resource consumption of maintenance m for activity i, rt
m is

the initial maintenance consumption for maintenance task m and aircraft t,
rim is the total resource consumption up to activity i, and lm is the upper
bound on maintenance m.
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Notably, in [98] the constraints are clarified such that

rjmt = sjmt +
∑

i∈F

vijmtrimtxijt ≤ lmt

where vijmt is 1 if maintenance m is not possible for aircraft t between flight
leg (or activity) i and j. The consequence is that there is a constraint for
each activity, maintenance, and aircraft which can lead to some simplifica-
tions. However, the resource maintenance consumption rjmt is still defined
recursively and remains complicated.

For both versions, it is possible to decompose the problem via, e.g., Dantzig-
Wolfe decomposition discussed in Ch. 2. The decomposition method presents
us the master problem, which is an LP relaxed Set Partitioning problem and
|T | pricing problems, where each pricing problem is a resource-constrained
shortest path problem. Explicitly, the first model we mentioned for Tail As-
signment is obtained by modifying the decision variables to path variables,
i.e., route variables xr, giving us the Set Partitioning model below

minimize
∑

r∈R

crxr, (3.8)

subject to
∑

r∈R

afrxr = 1, ∀f ∈ F, (3.9)

xr ∈ {0, 1}, ∀r ∈ R. (3.10)

This model associates each route with a route cost cr in Eq. (3.8) and ensures
that each flight is covered exactly once in Eq. (3.9). The number of variables
is in the worst case exponential in the size of flight legs, but since we require
that all routes must be feasible according to constraints in Eq. (3.2), (3.4),
(3.5), (3.6), and (3.7) this number is reduced. However, explicit enumeration
is typically intractable still and a well-known issue for these types of problems.

Finally, we note here that to find feasible integer solutions, via standard
methods such as Branch-and-Price, we are faced with two NP-hard optimiza-
tion problems.
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CHAPTER 4

The Model of Quantum Computation and Quantum
Optimization

The previous chapters are aimed at giving a solid understanding of classical
algorithms and modeling considerations typically considered in the airline in-
dustry. However, since this thesis is concerned with how quantum algorithms
can be employed for such problems, we now present a foundation of quantum
computing [54] in Sec. 4.1 and following that we present, in Sec. 4.2, the two
quantum algorithms that have been explored in the appended papers.

4.1 Model of Quantum Computation

Two popular models of quantum computation are the quantum circuit model [99]
and the quantum Turing machine [56], [58]. The models are equivalent since
they can simulate each other in polynomial time [100]. Here we will present
the quantum circuit model since it corresponds relatively straightforwardly
with algorithms such as QAOA.
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Quantum States and Qubits
The quantum mechanical systems we study in this thesis are of some finite
dimension N . For such a quantum system, we can express its state as a
column vector of l2-norm 1 in a N dimensional complex linear space CN ,
i.e., a Hilbert space H. We can fix an orthonormal basis |0⟩ , |1⟩ , . . . , |N − 1⟩,
using the Dirac notation1 and express a pure state2 as a superposition of the
basis states

|ψ⟩ =
N−1∑

i=0
αi |i⟩

where the l2-norm requirement means that
∑N−1

i=0 |αi|2 = 1. A quantum bit
is the typical building block of a quantum circuit and is the quantum analog
of the classical bit. The quantum bit is a two-dimensional quantum system
with states in C2, the orthonormal basis is most commonly chosen to be

|0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)
,

which means that a general state of a quantum bit is expressed as |ψ⟩ =
α0 |0⟩ + α1 |1⟩, where α0 and α1 are complex numbers. The vector space we
consider has the inner product

⟨ϕ|ψ⟩ =
N−1∑

i=0
β∗

i αi

where ⟨ϕ| is the conjugate transpose of |ϕ⟩ =
∑N−1

i=0 βi |i⟩, i.e., ⟨ϕ| = (|ϕ⟩)†.
Suppose now that we have two distinct quantum mechanical systems in

Hilbert spaces H1 and H2 of dimensions N1 and N2 with orthonormal ba-
sis {|i⟩1}N1−1

i=0 and {|j⟩2}N2−1
j=0 , respectively. We can describe the composite

quantum system by the tensor product of the two Hilbert spaces H1⊗H2 and
obtain an orthonormal basis via tensor products3 accordingly

|ij⟩12 = |i⟩1 ⊗ |j⟩2 , ∀i = 0, . . . , N1 − 1 ,∀j = 0, . . . , N2 − 1.

1In the Dirac notation we call the column vector a ket vector and the row vector a bra
vector.

2A mixed state is a probability distribution of pure states.
3Typically we abbreviate the tensor product |i⟩ ⊗ |j⟩ as |i⟩ |j⟩ or |ij⟩.
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Clearly, the dimension of the composite system’s Hilbert space is N1 × N2.
We can express a general quantum state for the composite system in exactly
the same manner as for a single system in the basis of the composite system

|ϕ⟩12 =
N1−1∑

i=0

N2−1∑

j=0
αij |i⟩1 |j⟩2 .

If we consider qubits again, in this case two qubits, we get the orthonormal
basis |0⟩ = |0⟩ ⊗ |0⟩ , |1⟩ = |0⟩ ⊗ |1⟩, |2⟩ = |1⟩ ⊗ |0⟩ and |3⟩ = |1⟩ ⊗ |1⟩.

In order to describe a composite system that consists of n quantum me-
chanical systems with dimensions N1, N2, . . . , Nn we need a Hilbert space of
dimension N1 × N2 × · · · × Nn. In the case where we consider n qubits the
Hilbert space is of dimension 2n and the states are column vectors in C2n with
orthonormal basis {|i⟩}2n−1

i=0 where |i⟩ is a column vector where the entries are
zeros, except in position i+ 1 which has entry one.

Unitary Evolution of Quantum States
Unitary transformation is one of the basic operations a closed quantum sys-
tem can undergo. This means that we describe the evolution in time of a
closed quantum system with unitary operators, where a unitary operator U is
such that U†U = 1 when we take its matrix representation4. Consequently,
time evolution and any unitary transformation preserve the norm of quantum
states, and evolution is reversible. The unitary time evolution operator relates
a state |ψ⟩ at time t1 to the state |ψ′⟩ at time t2 as

|ψ′⟩ = U |ψ⟩ .

In Dirac notation, we can express the unitary operator via the outer product
of the orthonormal basis |i⟩ ⟨j|. The unitary operator then has the following
matrix representation

U =
N−1∑

i=0

N−1∑

j=0
uij |i⟩ ⟨j| , (4.1)

and each column ui describes how the operator acts on basis state |i⟩. In the
case when time is continuous, the evolution is governed by the Schrödinger

4Here we use the convention of 1 being the identity matrix.
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equation
iℏ
∂ |ψ⟩
∂t

= H |ψ⟩ , (4.2)

where H is the Hamiltonian of the quantum system and ℏ is Planck’s constant
divided by 2π. We can relate the differential equation to the unitary operator
easily when the Hamiltonian is time-independent, giving us

U = e−iH(t2−t1)/ℏ. (4.3)

Finally, we note that we can express any unitary operator as U = eiA for some
Hermitian5 operator A.

Quantum Gates
Quantum gates constitute the second building block element of quantum cir-
cuits and are unitary operators that evolve the quantum system in time. Com-
mon one qubit gates are the Pauli-gates

σx =
[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
and σz =

[
1 0
0 −1

]
.

As well as the Hadamard-gate, phase-gate, and π/8-gate below

H = 1√
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
, and T =

[
1 0
0 eiπ/4

]
.

Common two-qubit gates are controlled-U gates that act on a control qubit
and a target qubit 



1 0 0 0
0 1 0 0
0 0 u00 u01
0 0 u10 u11


 .

This gate does not change the state if the control qubit is in the state |0⟩, but
if the control bit is in state |1⟩ it applies a gate

U =
(
u00 u01
u10 u11

)

5A hermitian matrix A is such that A† = A.
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to the target qubit. The CNOT-gate is a controlled-U gate where U is the
σx-gate. A universal quantum gate set is CNOT, Hadamard (H), phase (S)
and π/8 (T ) according to the Solovay-Kitaev theorem [54, Appendix 3], as it
is possible to approximate any other unitary gate arbitrarily well.

Quantum Measurements
Quantum mechanics prohibit us to observe a quantum state |ψ⟩ =

∑N−1
i=0 αi |i⟩

in the sense that we can determine all amplitudes αi. What quantum me-
chanics allows for instead are measurements that constitute a third element
required for a quantum computational model. If we measure the state |ψ⟩ in
its orthonormal basis6 we will observe an outcome i with probability |αi|2 and
the system will be in the state αi

|αi| |i⟩ after the measurement.
Measurement is the second elementary operation a quantum system can

undergo and is not described by a unitary operator. Instead, we can describe
a measurement in the computational basis, or any other basis, with projective
operators. A projective measurement is described by an observable M , which
is a Hermitian operator with eigenvalues λm, m = 1, 2, . . . ,K. The observable
is related to projection operators {Pm}K

m=1. Each projective operator Pm is a
projection onto the eigenspace corresponding to eigenvalue λm. We write the
observable with respect to the different outcomes m as the sum

M =
K∑

m=1
λmPm s.t.

K∑

m=1
Pm = 1 and PmPm′ = δmm′Pm.

Assuming that the system was in state |ψ⟩ prior to the measurement of the
observable, we have a probability

P (m) = ⟨ψ|Pm |ψ⟩

that outcome m is observed and if outcome m is observed the state collapses
to

|ψ′⟩ = Pm |ψ⟩√
⟨ψ|Pm |ψ⟩

.

A measurement in the computational basis is a projective measurement and
therefore given by the projection operators Pi = |i⟩ ⟨i| , ∀i = 0, 1, . . . , N − 1.

6Usually referred to as the computational basis.
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In the one qubit case, where we measure σz, this corresponds to

P0 =
(

1 0
0 0

)
and P1 =

(
0 0
0 1

)

with eigenvalues +1 and −1, respectively.

Quantum Circuits
A classical circuit [47] is a finite directed acyclic graph G = (E, V ) with n

input nodes that take the input bit values, m output nodes, and internal nodes
that each is one of the gates AND, OR, and NOT. The edges of the graph,
also called wires, each carry one bit. Each internal node performs logical
operations on the bits. Here, we note that the gates AND and OR have fanin,
the number of incoming edges, two and fanout, the number of outgoing edges,
one. The NOT-gate, on the other hand, has fanin one and fanout one. We
note that for classical circuits, we are permitted to copy a bit, which is not
allowed in quantum circuits due to the no-cloning theorem. Such a circuit G
implements a function f : {0, 1}n → {0, 1}m, and is a boolean circuit in the
case when there is a single output node. This is the classical circuit model.

The quantum circuit model, see an example of a quantum circuit in Fig. 4.1,
is defined similarly to the classical circuit model. The classical bits are re-
placed by quantum bits, the edges of the graph carry qubits, and quantum
gates replace the classical gates. Moreover, fanin must be the same as fanout.
Finally, quantum measurements are required to be added in order to observe
the outcome such that we obtain the classical output bits.

|0⟩⊗2
H

U

Figure 4.1: Quantum circuit with two input qubits in state |00⟩ where we first
apply a controlled-U gate, second the Hadamard gate, and finally both
qubits are measured giving two classical bits as output

For the classical circuit model, we can define the notion of efficiency. We
say that the size of the circuit is the number of nodes in the circuit, and the
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circuit is considered efficient if there exists a polynomial-sized circuit with
respect to the input size that computes a function. Similarly, for the quantum
circuit model, we use the same notion of efficiency, and we require that the
size of the quantum circuit is polynomial in the input size, where each gate
acts on at most three qubits7.

4.2 Quantum Optimization Algorithms
As mentioned previously, various types of optimization problems frequently
appear in industry and academia. Examples beyond logistics and transporta-
tion are the kidney swap problem in health care, social network optimization
on graphs, and quantum transpilation. We, therefore, consider it valuable,
both from a theoretical standpoint and in practice, to understand if quantum
algorithms can improve upon classical algorithms designed to solve integer
programs. However, since it was shown in [62], [101] that the best speedup we
can expect for NP-complete problems is quadratic in the black box setting, we
should perhaps consider approximate or heuristic quantum algorithms rather
than exact algorithms.

Nonetheless, one can roughly categorize quantum optimization algorithms
into two categories. The first category is nonheuristic algorithms. These al-
gorithms have provable complexity behavior with respect to time and space
and solution quality. In this category, we have Grover’s algorithm and ex-
tensions where Grover’s algorithm is embedded in a classical algorithm. The
second category is heuristic algorithms, such as the Quantum Annealing Al-
gorithm and the Quantum Approximate Optimization Algorithm, which we
will discuss in the coming sections.

Adiabatic Quantum Computation and Quantum Annealing
Adiabatic quantum computation [102] is a universal paradigm of quantum
computing proven to be as powerful as the circuit model discussed in Sec. 4.1
and is based on the adiabatic theorem [103]. The adiabatic theorem describes
what happens to a quantum system, initialized in a non-degenerate eigenstate
of an initial Hamiltonian H0, that is changed continuously and adiabatically,
or infinitely slowly, to a final Hamiltonian H1. One example of such a situ-

7There exists a universal gate set that includes the Toffoli gate.
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ation is when an external magnetic field is changed slowly for an interacting
quantum spin system but has also been used to construct a whole separate
paradigm of computation.

We can explicitly construct a time-dependent Hamiltonian that describes
this situation as

H(t) = (T − t)
T

H0 + t

T
H1, (4.4)

where T is a measure of how fast the system changes and governs the evolution
time from H0 to H1. Assuming that the two Hamiltonians H0 and H1 act
on an n qubit system, H0 and H1 do not commute, that the instantaneous
eigenenergies E0(t) < E1(t) < · · · < E2n−1(t) of H(t) are distinct for the
evolution time and the system is initialized in the ground state |e0(0)⟩ of
H(0) = H0, we have the following bound on the time required to ensure that
the evolution is adiabatic

maxs∈[0,1]| ⟨e1(s)| ∂sH(s) |e0(s)⟩ |
mins∈[0,1]|E1(s)− E0(s)|2 ≪ T,

where s = t/T . The bound above tells us that as long the bound is respected,
the initial state |e0(s = 0)⟩ has evolved to |ψ⟩ = |e0(s = 1)⟩ after the evolution
time t = T .

Now we direct our attention to the fact that the adiabatic theorem can
be used to construct an algorithm for solving discrete optimization prob-
lems [104], which we refer to as the Quantum Adiabatic Algorithm8 (QAA).
Solving some discrete optimization problem is achieved by encoding the prob-
lem as the final Hamiltonian H1 such that its groundstate is the optimal
solution and choosing an initial Hamiltonian H0 where the groundstate is
known, easy to construct, and does not commute with H1. Most common is
the choice H0 = −∑n

i=1 σ
x
i with groundstate |+⟩ =

√
2−n

∑2n−1
i=0 |i⟩, which

we can prepare easily.
The caveat with QAA is that we require the evolution time to be at most

polynomial in the input size n but knowing the instantaneous eigenenergies
of the time-dependent Hamiltonian H(t) is often as challenging as solving
the optimization problem itself. It is therefore unknown for many problems
what kind of speedup is possible, or if there even is a speedup, over classical

8The quantum adiabatic algorithm is used synonymously with the term adiabatic quantum
computation.
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algorithms.
The issue of analyzing the instantaneous eigenenergies has resulted in the

approximate version of QAA called Quantum Annealing (QA), where the
evolution time is not guaranteed to ensure adiabatic evolution. One resulting
difference between QA and QAA is that we now consider the overlap p =
| ⟨ψ∗|ψ⟩ |2 between the state |ψ⟩ we have obtained after evolving the system
for some time T and the desired solution |ψ∗⟩. By repeating the QA algorithm

k = ln(1− ptarget)
ln(1− p)

times, i.e., the process of initializing the system in the ground state of the
initial Hamiltonian and evolving the system for some time T to the final
Hamiltonian, the probability of finding the solution can be increased to ptarget.
To date, it is also unknown for many problems if QA can provide speedup or
any significant advantage over classical algorithms, but it remains nonetheless
an interesting heuristic to explore.

The Quantum Approximate Optimization Algorithm
QAOA is a variational hybrid quantum-classical algorithm, parameterized by
the positive integer p that determines the depth of the quantum algorithm9.

Although the algorithm is capable of universal quantum computing [105]–
[108], the most common goal is to find approximate solutions to minimization
(or maximization) problems. One property of QAOA discussed in [63] is
that the solution quality is monotonically increasing with the parameter p,
assuming the angles γ⃗ and β⃗ in Eq. (4.5) are optimal10 and an ideal quantum
computer. Furthermore, in [63] it was shown that under the assumption that
the angles are small if p → ∞ the algorithm becomes exact and finds the
optimal solution (if the QAA can find the optimal solution).

A QAOA circuit creates, in an ideal setting, the state

|γ⃗, β⃗⟩ =
p−1∏

i=0
Um(βp−i, Hm)Uc(γp−i, Hc) |ϕ⟩initial (4.5)

9The algorithm depth of QAOA is also called the number of layers in literature.
10The angles are required to be the optimal solution to the problem defined in Eq.(4.7)-

(4.9). Hence for a minimization problem Mp ≤ Mp−1.
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where we, for each layer i, first apply the unitary cost operator Uc and sec-
ond the mixer operator Um that acts on n qubits. The most common choice
of operators has been Um = e−iβHm and Uc = e−iγHc , where we refer to
Hm and Hc as the mixer and cost Hamiltonian, respectively. Since NP-
complete problems can be encoded into an Ising spin glass Hamiltonian [109],
the cost Hamiltonian is often given explicitly in this form, that is, Hc =∑

i∈V hiσ
z
i +

∑
{i,j}∈E Jijσ

z
i σ

z
j . Moreover, we note that the goal of finding

the solution to a minimization problem is the same as the goal of finding the
ground state of the cost Hamiltonian. Here, we view Hc as representing an
undirected graph G = (V,E) with vertex set V and edge set E. For each
edge {i, j} ∈ E, there exists a weight Jij , and for each vertex i ∈ V there is
an associated weight hi. In some ways, this makes various problems defined
on undirected graphs particularly intuitive since we must, for example, trans-
late an integer linear program to the Ising spin glass Hamiltonian, and it is
not always straightforward how properties of the integer linear program are
connected to graph properties. For example, we can state that we consider
QAOA for a MaxCut problem with three regular graphs and the underlying
graph to the cost Hamiltonian has that specified property.

Next, we will discuss the choice of mixer Hamiltonian. The choice is, in
principle, free but the mixer operator should somehow be capable of connect-
ing the initial state to states we accept as a solution. The most commonly11

seen mixer Hamiltonian is Hm =
∑n

i=1 σ
x
i and a natural initial state is then

|+⟩ =
√

2−n
∑2n−1

i=0 |i⟩. However, other choices of mixer Hamiltonian and ini-
tial state can be beneficial, as discussed in [110], by restricting QAOA into
some subspace of the whole Hilbert space.

By considering the expectation value function

Ep(γ⃗, β⃗) = ⟨γ⃗β⃗|Hc|γ⃗β⃗⟩ (4.6)

11When choosing this mixer Hamiltonian, the algorithm is sometimes called vanilla QAOA
and refers to the paper by Farhi et al. [63]. Furthermore, the initial state chosen with
this mixer Hamiltonian is |+⟩ and is the ground state of −Hm that is typically the initial
Hamiltonian in the Adiabatic Quantum Algorithm.
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and the non-linear continuous optimization problem

Mp = minimize Ep(γ⃗, β⃗), (4.7)
subject to γ⃗ ∈ Dγ , (4.8)

β⃗ ∈ Dβ , (4.9)

for some fixed p, the probability of obtaining a string that is either the op-
timum or some distance away when measuring is high provided that p is
sufficiently large and that the optimization problem in Eq. (4.7)-(4.9) can be
solved. Thus, if a measurement is performed in the computational basis, we
obtain a solution candidate string z⃗ ∈ {−1,+1}n, which can be evaluated for
the cost Hamiltonian. I.e., if the process of (1) constructing the QAOA state
with optimal angles and (2) measuring the state in the computational basis
is repeated sufficiently many times, we should obtain a solution string that is
near the expectation value function for the fixed angles.

We also note that for the mixer operator Um =
∏n

i=1 e
−iβσx

i the domain
defined in Eq. (4.9) becomes [0, π]×p and if the cost Hamiltonian has integer
eigenvalues the domain in Eq. (4.8) is [0, 2π]×p. A priori, what depth of the

Algorithm 1 QAOA
Input: p ≥ 1

(γ⃗, β⃗)← solve Eq. (4.7)-(4.9)
Construct the state |γ⃗, β⃗⟩
Measure |γ⃗, β⃗⟩ in the computational basis
Repeat two former steps N times

Output: Best solution string found

algorithm is sufficient is not known for many optimization problems, which
can cause issues when noise is present in the system. In practice, we might
therefore need to increase the algorithm depth until some condition holds.
However, the QAOA algorithm can be simply stated as in Alg. 1.

The issue of solving Eq. (4.7)-(4.9) appears daunting, as this problem is
NP-hard [111] and we plan to solve it with a classical algorithm that queries
a quantum computer to get values Ep(β⃗, γ⃗) for angles in their respective do-
mains.

We can consider a few different solution approaches. One approach is to ob-
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tain a closed-form expression of the expectation value function. In that case,
we can either find good angles by numerical optimization methods without
a quantum computer or possibly determine good angles without using nu-
merical optimization techniques by analyzing the closed-form expression [63],
[112]. A second approach is to approximately simulate a quantum computer
with, for example, matrix product states and tensor networks as in [113]. A
third approach is to utilize machine learning techniques [114]–[116] and other
numerical optimization techniques where each query of the expectation value
function is obtained by using a quantum computer. Here there have been
proposals that can reduce the number of queries we require by finding good
angles for small instances and using them for larger instances and/or unseen
instances and interpolating angles [117] for larger algorithm depths. Many
of these proposals use the fact that the angles of QAOA appear to concen-
trate for certain problems and distributions, see [112], [118]. In this thesis, we
have focused on the interpolation strategy, and note that since this problem
is NP-hard, in general, we might not expect to have access to optimal angles.

At the time of writing this thesis, it seems that we are not sure if QAOA
is capable of solving problems better and/or faster than the best classical
algorithms. Although we have strong evidence that a classical computer can’t
simulate QAOA exactly [119], this does not say anything about what problems
QAOA can solve or how much resources, with respect to time, the algorithm
requires. Some interesting performance results have indeed shown that a
classical algorithm outperforms QAOA or achieves the same approximation
ratio for problems such as MaxCut [120]–[122] and MAX-3-XOR [123]. On
the other hand, QAOA was observed to outperform a classical algorithm for
MAX-k-XOR when k > 4 [124]. Furthermore, Farhi has been able to analyze
QAOA extensively for Maximum Independent Set [125] and the Sherrington-
Kirkpatrick model [112]. Results like these are vital for our understanding of
the algorithm, and more such results are desirable. Notably, many of these
results are restricted to constant algorithm depth or logarithmic depth in the
number of qubits n. Negative results with restricted algorithm depth and
restricted graphs are thus not excluding QAOA from outperforming classical
algorithms for greater algorithm depths and other graph structures, and the
ultimate question of whether QAOA can be advantageous is still open.

Finally, we would like to mention the issue of noise for QAOA [126]–[130].
If we indeed need to have logarithmic or polynomial algorithm depth, as we
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increase the algorithm depth, noise will be more important to consider as
shown in [131], [132] where noise deprecates QAOA’s performance. It also
seems likely that establishing error mitigation techniques can be helpful or
required [133].
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CHAPTER 5

Summary of Papers

In this chapter, we give a summary of the appended papers. Papers A, C, and
D are concerned with the algorithm QAOA. Paper B, in contrast, is related
to the algorithm Quantum Annealing.

5.1 Paper A
In this work, we proposed a hybrid quantum-classical heuristic algorithm that
augments the classical Branch-and-Price algorithm. Branch-and-Price is aug-
mented in a similar fashion as in [134] with the classical integer program solver
PAQS [135]. The main distinction here is that we propose to use a quantum
algorithm to solve the current integer program, which is the integer version of
the RMP. Although the heuristic is believed to be useful for several real-world
problems as it is tied to Branch-and-Price, we naturally explored the method
for extracted and simplified Tail Assignment RMP instances, as the focus of
this thesis is quantum algorithms for airline scheduling problems.

Consequently, the problems we considered were both Exact Cover and Set
Partitioning, and QAOA was the considered quantum algorithm. The results
were obtained for an ideal quantum computer via numerical simulations of
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QAOA circuits. It was found that balancing the objective and constraint parts
of the Hamiltonian is important to reach a better performance for QAOA when
attempting to solve Set Partitioning and that setting the penalty unnecessarily
high can lead to an increased requirement on the algorithm depth.

It was also found for Exact Cover that QAOA, in general, requires lower
algorithm depth as the number of feasible solutions increases. This coincides
with the fact that the average node degree of the underlying graph decreases.
In particular, we also observed this effect for the Set Partitioning problem,
where we only accepted the optimal solution. In Paper C, it was found that
a higher average node degree coincided with a worse performance of QAOA.
This means that the numerical results in both papers point to the fact that
the node degree can affect the performance of QAOA.

5.2 Paper B

This paper evaluated RMP instances extracted from Tail Assignment ranging
from small to intermediate size for the Quantum Annealing algorithm on the
D-wave machines Advantage and 2000Q. 2000Q and Advantage were com-
pared for instances up to 100 decision variables, which is considerably larger
than the instances we studied in Paper A. Instances with 120 decision variables
were also studied with Advantage, but not possible to solve with 2000Q. The
instances were both sparsely connected and close to fully connected, allowing
us to analyze how the graph density and instance size affect the performance
of both machines.

The results show that the new and larger machine Advantage solves the
integer program instances in close to half the time required by 2000Q, with
respect to programming and readout time. In Fig. 3, the annealing time is var-
ied from 1-2000 µs against the success rate, for which Advantage outperforms
2000Q for most of the instances (with the exception of some of the smaller
sparse graphs), meaning that the annealing time is shorter for Advantage com-
pared to 2000Q. The results indicate that the connectivity of the machine’s
topology, which is higher in Advantage compared to 2000Q, is one important
factor that enables Advantage to be superior to 2000Q. Thus, showing that
quantum annealing could be useful in practice when the hardware is scaled
up in size.
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5.3 Paper C
Here, we studied the success probability of QAOA for Exact Cover instances
with exactly one solution derived from Tail Assignment. The results were
obtained for an ideal quantum computer via numerical simulations of quantum
circuits. It was shown that the interpolation strategy presented in [117] could
be utilized for the Exact Cover instances and that QAOA could, in the ideal
case, give near unit success probability for an algorithm depth that was smaller
than the number of qubits (i.e., instance sizes). It was also found that the
performance of QAOA decreased for instances with a high average node degree
compared to instances with a lower average node degree.

5.4 Paper D
Here, we implemented QAOA on a quantum processor consisting of supercon-
ducting transmon qubits for Exact Cover instances with two decision variables.
We experimentally investigated the algorithm and processor for one and two
layers, demonstrating that the success probability increased, as expected, as
the algorithm depth increased. The maximum probability obtained was 96.6%
for algorithm depth 2, where theory predicted 96.3% when gate fidelities were
considered, compared to the ideal case, which predicted 100% success proba-
bility. Thus, the results show agreement between experiments and theory in
the energy landscapes and algorithm performance, indicating low error rates.
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CHAPTER 6

Concluding Remarks and Future Work

This chapter summarizes the conclusions, starting with Paper A and C since
they are highly connected. We then give the conclusions for Paper B and D
that consider existing devices. Finally, we discuss future opportunities related
to Multi-Commodity Network Flow problems.

6.1 Paper A and C
Although the numerical results indicate that we, in many cases, can find
feasible solutions and even the optimal solution for small instances of Set
Partitioning and Exact Cover with polynomial algorithm depth, we recognize
that these sizes are orders of magnitude smaller than the problems solved in
practice. Our results can, therefore, not be compared to classical solvers in
any meaningful way yet, nor can they arbitrarily be extrapolated to larger
instance sizes.

To understand what algorithm depth is required for larger instances, a larger
quantum device and/or constructing a mathematical proof of the required
algorithm depth is needed. This feat has been achieved in [125] and [136]
for Maximum Independent Set, for example. Such problems fall into the
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category of Ising models where all hi terms are zero and all edge terms Jij

are one. As we, and others as far as we know, have yet to be successful in
analyzing the behavior of QAOA by analytical means in a more general setting,
it would be a highly valuable result to obtain. One possible avenue to achieve
this is to find characteristics in Set Partitioning and Exact Cover that are
related to characteristics of the underlying Ising spin glass Hamiltonian graph.
Another possible method is to explore if Exact Cover and Set Partitioning
have the overlap gap property, as this is exploited in the proof for Maximum
Independent Set.

Whilst understanding the performance of QAOA for a general Ising spin
glass Hamiltonian in the ideal setting remains an important open question,
there is one important aspect that can depreciate the performance of QAOA,
and that is noise. Furthering the understanding of noise as in [126]–[130],
gives more insight into if QAOA truly is, or can be, noise resilient.

Other variants of QAOA as the Quantum Alternating Operator Ansatz [132],
warm starting QAOA or RQAOA can also be interesting to investigate. We
can, for example, view RQAOA [122] as an error mitigation technique as it
reduces the instance size in each iteration and can possibly shorten the al-
gorithm depth, beyond the fact that some evidence has been presented that
RQAOA also can outperform QAOA for a certain problem of any size. Intro-
ducing further constraints as is done in the Quantum Alternating Operator
Ansatze by fixing the Hamming weight of the solution string can also prove to
be fruitful for some problems. We believe that constructing new initial states
and mixing operators will continue to be an interesting research direction.

Finally, it would be interesting to understand the amount of entanglement
that exists in QAOA circuits, this has to some extent been studied in [137],
[138], but remains an important open question.

6.2 Paper B
The benchmark results obtained from both Advantage and 2000Q demon-
strated that Quantum Annealing machines can solve intermediate-sized in-
teger programs. The results also showed that QA machines perform better
when they are scaled up in size and have improved connectivity. However, we
are still lacking knowledge regarding the instantaneous energy gap for prob-
lems such as Exact Cover. This could be a future research possibility as well
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as conducting further empirical studies for average cases of Set Partitioning,
Exact Cover, and Set Cover. In particular, if we in the future can embed
problems with nearly 1000 decision variables, more interesting and realistic
distributions are possible to study.

6.3 Paper D
The demonstration of toy problems on a superconducting quantum processor
showed the quality of the device. It does not, however, say anything about the
performance of any problem of interest. A future research possibility could be
to use larger systems available, e.g., IBM’s quantum processor, and possibly
introduce some error correcting scheme as discussed in [132].

6.4 Quantum Algorithms and Integer Network
Flows

Thus far, we have focused on the near-term gate-based algorithm QAOA and
quantum annealing to some extent. However, the nature of many airline
scheduling problems is such that there exist a vast number of constraints,
and the number of variables is large, both in a Branch-and-Price augmented
scheme and in an arc-flow formulation. It might accordingly be worthwhile
to question the usefulness of variational algorithms for such large problems
in the long-term development of quantum computers. It can therefore be
interesting to consider fault-tolerant algorithms, such as Montanari’s Branch-
and-Bound algorithm [139], or other algorithms that are based on Dürr and
Hoyer’s search algorithm [140]. Such algorithm ideas have been presented
by Ambainis for maximum flow in networks in [141], which of course is not
applicable to multi-commodity network flows at this point.

To summarize, more effort is required to understand simple multi-commodity
network flow problems in relation to quantum algorithms in various decom-
positions as these problems model airline scheduling problems.
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