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Leveraging supplier material data to inform LCA modelling and resource assessment in the 

automotive industry 

FELIPE BITENCOURT DE OLIVEIRA 

Division of Environmental System Analysis 

Department of Technology Management and Economics 

Chalmers University of Technology 

 

ABSTRACT 

This thesis investigates the application of supplier material composition data from the automotive 

industry's International Material Data System (IMDS) to inform sustainability assessments. A method 

is developed to systematically extract and process IMDS data for use in life cycle assessment (LCA) 

modelling. The implications of using IMDS data at varying levels of aggregation and completeness on 

the accuracy of LCA results are quantitatively evaluated through an LCA case study on an automotive 

engine. Compared to a highly detailed reference model, simplified modelling options reduced workload 

but compromised accuracy, especially for impacts related to resource use. A material mass cut-off of 

one percent of weight maintained reasonable precision while significantly decreasing effort. Decreasing 

the number of substances representing each material largely affected scores for most impact categories 

except a few, including the climate change category. Excluding manufacturing data notably impacted 

greenhouse gas emissions. 

Additionally, this thesis performs an in-depth compositional analysis focusing on metals present in two 

vehicle “gliders” (the car excluding the powertrain) with distinct equipment levels. Over 50 metals are 

documented, and their contributions to short and long-term metal scarcity are examined. Gold, copper, 

bismuth, lead, molybdenum, and certain rare-earth metals face substantial supply risks. The analysis of 

metals across the gliders subsystems and components indicates that equipment levels significantly affect 

short-term supply risks for some metals. Entropy analysis is used to gather insights into the effectiveness 

of different substitution and secondary metal recovery strategies revealing significant challenges for the 

recovery and substitution of certain metals like copper and rare earths. 

Overall, this thesis demonstrates the potential of leveraging IMDS data to expedite sustainability 

assessments in the automotive industry. However, balancing model complexity and precision remains 

essential. The extensive reliance of vehicles on diverse metals, even excluding the powertrain, 

highlights the sector's substantial resource dependence. This underscores the need for sustainable metal 

management in automotive manufacturing. 

 

 

 

 

 

 

 

 

Keywords: International Material Data System (IMDS), life cycle assessment (LCA), life cycle 

inventory (LCI), vehicle gliders, metal scarcity, metal availability, automotive industry. 



 

iv 

 

 

 

To all the humiliated and offended 

Exploited and oppressed 

Who tried to find a solution 

… 

Memory of a time 

Where to fight for your rights 

Was a defect that kills 

… 

But when the sun rises 

I want to see who will remember 

And when dawn comes 

I don’t want to forget 

This legion that sacrificed for a new day 

I want to sing this calloused hand 

That brought us so much joy. 

 

…Let’s keep going on! 

 

“Pequena Memória para um Tempo sem Memória” 

Luiz Gonzaga Jr. 
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1 Introduction 

The automotive industry is confronted with significant environmental challenges, particularly in 

reducing carbon dioxide emissions and effectively managing the utilization of critical and scarce 

materials in vehicles. These challenges have far-reaching implications throughout the entire life cycle 

of vehicles, spanning from material extraction from Earth’s crust to end-of-life treatment. 

Typically, driving-related exhaust emissions from vehicles with conventional combustion engines 

account for approximately 70% of their overall impact on climate change (Bieker, 2021). Car 

manufacturers have thus prioritized the reduction of carbon dioxide emissions, along with other 

pollutants, by improving drivetrain efficiency, minimizing parasitic losses, and implementing weight-

saving measures to reduce fuel consumption. 

To further reduce greenhouse gas emissions, extensive technological advancements are being 

pursued, with the goal of establishing electric power-driven vehicle fleets. This transformation aligns 

with other ongoing trends in the automotive industry, including the widespread adoption of 

lightweight materials and the increased incorporation of electrical and electronic equipment (EEE) in 

cars, prompted by evolving requirements for safety, comfort, digital connectivity, and automation 

(European Commission, 2022; Trovão, 2022). 

These concurrent trends have the potential to reshape the environmental landscape of the 

automotive sector. While electrification holds significant promise for reducing environmental impacts 

during the vehicle use phase, there is a corresponding shift of such impacts to other life cycle phases 

(Nordelöf, et al., 2014). Furthermore, the increasing reliance on critical and scarce materials, such as 

rare-earth metals (REMs), cobalt, lithium, among others, presents additional challenges (Söderman 

Ljunggren, et al., 2013). Beyond the environmental and social concerns associated with these 

materials, their strategic importance within the automotive industry is underscored by the high 

likelihood of supply disruption and limited viable alternatives (Field III, et al., 2017; European 

Commission, 2020a). Consequently, the increased utilization of scarce metals in vehicles not only 

amplifies environmental impacts in the upstream supply chain, such as mining and extraction, but also 

heightens supply risks for the automotive industry itself and other industrial sectors reliant on these 

materials. 

Addressing these environmental challenges effectively necessitates a comprehensive 

understanding of the material composition of vehicles, emphasizing the importance of robust and 

specific data on vehicle material composition. Traditionally, the automotive industry has relied on 

what are known as "internal databases" to gather this data, which are derived from technical drawings 

and component lists, and are the result of close collaboration between engineers within the company 

and component suppliers (Schweimer & Levin, 2000; Finkbeiner, et al., 2006; Koffler, et al., 2008). 

Vehicle teardown and disassembly guides have also served as methods for inventorying material data 

(Keoleian, et al., 1998; Danilecki, et al., 2016). 

However, as these approaches are time-consuming and difficult to replicate across multiple cars 

and models, more recently the industry has turned to the International Material Data System (IMDS). 

This web-based, industry-wide database, collaboratively developed by automotive manufacturers, 

houses data on all components and their material content present in finished vehicles, provided by 

over 150,000 registered suppliers (DXC Technology, 2017). The main goal of the IMDS is to assist 

manufacturers and their suppliers in meeting the obligations set by standards, laws, and regulations. 

With detailed material compositions of vehicle components available in a single database, the use of 

IMDS in environmental studies can significantly reduce the workload required for data inventorying, 

compared to using a patchwork of internal data sources or conducting teardowns (Koffler, et al., 2008; 

Yu & Kim, 2013). 
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However, the utilization of material composition data from IMDS in environmental studies is not 

a straightforward task. Harnessing this information necessitates a series of steps to transform it into 

usable data. Consequently, a central aim of this thesis is to develop a method for extracting vehicle 

material composition data using IMDS and to explore how IMDS could expedite data inventorying in 

environmental studies within the automotive industry. 

1.1 IMDS data and life cycle assessment: opportunities and challenges 

There are different tools and methods used to assess the impacts of human action on the natural 

environment. Among them, life cycle assessment (LCA) is used to assess the impacts of goods and 

services from a life cycle perspective, by quantifying the environmentally relevant flows between the 

technosphere and the environment. It has been utilized by the automotive industry for over two 

decades mainly on the identification of environmental hotspots and to assist in prioritizing areas for 

product innovation (Kaniut, et al., 1997; Sullivan, et al., 1998; Warsen, et al., 2013). However, 

applying LCA on complex products poses a challenge due to its comprehensive nature. Vehicles, for 

example, composed of thousands of components, necessitate a large amount of data for the 

compilation of the life cycle inventory (LCI), making LCA studies both costly and time-consuming 

(Koffler, et al., 2008; Yu & Kim, 2013). 

To streamline this process, some procedures have been developed that utilize IMDS data to 

expedite LCI modelling of complete vehicles (ibid.). This approach has significantly reduced the time 

and effort required for inventory modelling. These streamlined models use IMDS information to 

identify the most suitable background inventory data available in internal, openly published, or 

commercial LCA-databases to represent the material composition of the components. 

Real-world experiences from Volvo Car Corporation (hereinafter Volvo Cars) demonstrate that 

such streamlining approaches have indeed expedited the execution of LCA studies for various 

purposes, including carbon footprint assessment. This has helped establish LCA as a standard tool 

within the company. However, from our practical observations, specific material datasets are often not 

readily available in commercial LCA databases like Ecoinvent (Wernet, et al., 2016) or Sphera 

(Kupfer, et al., 2021). Instead, generic LCI data for broad material categories must be employed. 

It is essential to highlight that IMDS provides a level of detail that allows for more intricate LCI 

modelling. IMDS contains specific information on the substances present in every material, enabling 

LCA to be used as a tool for in-depth analysis of iterative design improvement and internal work on 

component requirements, in line with IMDS Terms of Use (DXC Technology, 2022). Materials and 

their constituent substances can be modelled with varying degrees of accuracy. In some instances, the 

LCI model may need to be supplemented with data that cannot be entirely derived from IMDS. 

While the advantages and challenges of using IMDS data in LCA studies have been examined in 

previous research (Koffler, et al., 2008; Yu & Kim, 2013), the field still lacks quantitative 

assessments of the influence of IMDS on LCA outcomes. IMDS data can be employed and classified 

with differing levels of aggregation, completeness, and accuracy, and may require supplementation 

with data not available within the IMDS itself. Given that enhancing the level of detail in the 

modelling and including supplementary data demands additional work hours, it becomes crucial to 

understand how various approaches to utilizing IMDS data influence the exactness of LCA findings. 

Hence, there is a need for an evaluation of the trade-off between the effort put into modelling when 

employing IMDS data at different levels of aggregation and completeness, and the precision of the 

LCA outcomes. 
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1.2 Metal demand in the automotive industry 

Transitioning from the discussion on the importance of detailed understanding the use of IMDS 

material data in LCA studies, we delve into the specifics of one such category of materials – namely 

metals. The automotive industry is a significant consumer of natural resources globally (Field III, et 

al., 2017; Ortego, et al., 2020). Beyond the usage of "industrially mature" base metals such as iron, 

aluminium, and copper, modern vehicles incorporate a diverse array of scarce, rare, and minor metals. 

These are present in a multitude of components, contributing to passenger safety and an improved 

driving experience. 

The extensive diversity of metals found in vehicles, coupled with the high-volume production of 

passenger cars – over 80 million units annually – places considerable stress on the global demand for 

these resources (Drive Sustainability, 2018; Öko-Institut, 2018; OICA, 2021). As such, various metals 

integral to modern cars have been deemed strategic or even critical to the automotive industry, 

prompting a rising interest in identifying metals of concern within the sector. 

This interest is particularly crucial from the perspective of automotive manufacturers who need to 

understand, for strategic reasons, the spectrum of metals used in cars, their quantities, and their 

distribution across different parts and components. Indeed, recent years have seen a significant 

expansion in the portfolio of metals used by the automotive industry, largely driven by increasingly 

stringent safety and environmental regulations (Lewis, et al., 2019; Restrepo, et al., 2019; European 

Commission, 2022; Trovão, 2022). 

For example, in response to lightweighting strategies, aluminium alloys have become prominent 

substitutes for iron in components like engine blocks, wheels, and body-in-white (Arowosola & 

Gaustad, 2019; Lewis, et al., 2019). Several minor metals, such as niobium, molybdenum, and 

vanadium, are integrated as alloying elements in advanced high-strength steels (Theyssier, 2015). The 

industry's move towards electric powertrains has notably increased the demand for metals like 

lithium, cobalt, nickel, and various REMs (Pehlken, et al., 2017; Lee, et al., 2020). This trend is also 

mirrored in the increased use of palladium, tantalum, silver, and gold in a variety of electrical and 

electronic equipment (EEE), driven by evolving requirements for safety, comfort, digital connectivity, 

and automation in cars (PwC, 2013; Restrepo, et al., 2017; Nguyen, et al., 2020; Trovão, 2022). 

Recent studies focusing on scarce metals in passenger cars often emphasizes comparisons 

between traditional internal combustion engine (ICE) vehicles and their electrified counterparts. 

These studies, often utilizing vulnerability assessments and exergy analysis, underscore that the shift 

towards electric powertrains – given the material demands of traction batteries and electric motors – 

stands as a principal driver of amplified demand for potentially scarce metals in the automotive sector 

(Ortego, et al., 2018; Knobloch, et al., 2018; Iglesias-Émbil, et al., 2020; Bhuwalka, et al., 2021). 

While the push for electrification is undeniably prominent, it is vital to remember that other 

factors, such as lightweighting and the proliferation of EEE in cars, are also important in driving the 

heightened demand for several scarce, rare, and minor metals in modern vehicles. These, risk being 

overshadowed by the current focus on electrification. Therefore, there is a need to investigate how the 

metal demand in the automotive industry is influenced by these other ongoing trends. In this thesis, 

this gap is filled by assessing the content of metals and metalloids in two vehicle “gliders”, i.e., all the 

subsystems of the vehicle except the propulsion system. By excluding the most frequently 

investigated parts of today’s vehicles from the study and assessing two gliders with different 

equipment levels, we aim to pinpoint a demand for automotive metals that otherwise often gets 

overlooked. 
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2 Research questions 

To address the research gaps discussed earlier, the following research questions (RQs) were 

formulated: 

RQ1: How can a method be developed to extract material data from the IMDS that also 

facilitates expedited data inventorying in environmental studies within the automotive industry? 

RQ1 was formulated to address a central aim of this thesis – to develop a method that not only 

extracts material composition data from the IMDS but also streamlines the process of data 

inventorying for environmental studies in the automotive industry. This question is addressed in Paper 

I and it serves as a central methodological investigation for both papers, providing a foundation for 

the subsequent analyses. 

Transitioning from the methodological aspects to the practical application of the data obtained, we 

formulated RQ2. 

RQ2: How do the level of data aggregation and degree of completeness of an LCI model 

employing IMDS data affect the precision of environmental impact assessment results and the effort 

necessary to develop such models? 

RQ2 was formulated to investigate the implications of data granularity and model completeness 

on the accuracy of life cycle impact assessments. This question is also addressed in Paper I, where we 

analyse the trade-offs between precision and the effort required to build comprehensive LCI models 

using IMDS data. 

Having established a method for data extraction and explored the effects of data aggregation and 

model completeness in LCA results, we then sought to delve deeper into the specific aspects of 

resource use and potential scarcity in Paper II by analysing two vehicle gliders with different 

equipment levels. Thus, we formulated the following research questions: 

RQ3: What is the metal composition of vehicle gliders and how does it differ between different 

equipment levels? 

RQ4: How do vehicle gliders contribute to short and long-term potential primary metal scarcity? 

RQ5: How does the distribution of metals across subsystems and components in gliders influence 

the relative complexity of substitution and secondary metal recovery? 

RQ3-5 were formulated to explore resource use in the automotive industry, focusing on the metal 

composition of vehicle gliders, their contribution to metal scarcity, and the potential for metal 

substitution and recovery. These questions are addressed in Paper II, where we apply the method 

developed in Paper I to perform a detailed analysis of metal usage in vehicle manufacturing. 

In summary, the research questions formulated for this study are designed to address both 

methodological and practical aspects of using IMDS data for environmental studies in the automotive 

industry. The findings from these investigations provide important insights for improving current 

sustainability practices in the sector. 
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3 Methodology 

This section provides detailed explanations of the methodologies employed in Paper I and II. A 

shared methodological approach in both papers is the use of the IMDS to extract material composition 

data. This extraction process forms a pivotal part of both papers, supplying critical data for the 

investigation and evaluation of material and environmental impacts. Due to its significant role in both 

studies, this process is delineated separately in Section 3.1, despite being an approach originally 

developed for Paper I. 

Section 3.2 delves into the application of IMDS data at varying degrees of aggregation and 

completeness, which forms the basis of an LCA study on a vehicle combustion engine in Paper I. In 

Section 3.3, the methodology of Paper II is described. While this paper utilizes the same 

methodological approach as Paper I to extract material composition data from IMDS, the subsequent 

analysis of that data diverges. The focus here shifts from the influence of data completeness and 

aggregation on LCA results to a more comprehensive exploration of the material composition of 

vehicles and its potential implications for metal scarcity. 

3.1 Extracting vehicle material composition data from IMDS  

It comes as no surprise that the IMDS serves as a comprehensive repository of data for material 

composition of vehicles. This database houses information on materials and substances embedded in 

all individual components present in each vehicle manufactured at Volvo Cars, ranging from small 

items like screws to larger components such as oil pumps. Despite not being originally intended for 

environmental studies, the IMDS presents a wealth of data that can be harnessed for such 

investigations, given the appropriate methodological approach. 

Extracting material composition data from the IMDS requires a sequence of steps before useful 

information can be produced. Figure 1 shows the overall structure of these steps employed in this 

thesis. 

 

 

Figure 1. Overview of the steps employed in this study to extract material composition data from the IMDS. 

The first step involves the creation of the list of components, which is obtained from Volvo Cars’ 

Vehicle Construction Database. This internal database provides information for each individual 

component of a vehicle, including its name, identification number, quantity present in the vehicle, 

mass, and the function group to which it is associated. At Volvo Cars, the organization of components 

into broader assemblies and subsystems is delineated using these function group levels. These levels 

facilitate a hierarchically structured representation of the entire vehicle and its distinct parts, thereby 
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providing a detailed, organized map of the vehicle's composition. Table 1 provides an illustrative 

example of this structure for a complete vehicle. 

Table 1. A vehicle is composed of several parts, all providing specific functions. Each part can be described at several levels 

of aggregation, known as function group levels. E.g., function group 2000 represents the complete engine at level 1. It is 

composed of sub-parts reported at level 2, by function groups 2100-2800. Function groups 2110-2890 report component 

groups at level 3, and there is also a fourth level for single components, specified by the fourth digit (2XXX). 

 Function group level of aggregation 

C
o
m

p
le

te
 

v
eh

ic
le

 

Level 1 –  

Complete part 

Level 2 –  

Sub-parts 

Level 3 –  

Component groups 

Level 4 –  

Components 

2000 – Engine 

complete 

2100 – Engine 

(block) 

2110 – Cylinder head e.g., 2116 – Gasket 

2120 – Cylinder block e.g., 2125 – Flywheel  

21x0 – … 21xx – … 

2x00 – … 2xx0 – … 2xxx – … 

2800 – Ignition 

system 

2810 – Ignition coil e.g., 2813 – Spark plug 

28x0 – … 28xx – … 

2890 – Miscellaneous e.g., 2899 – Other 

x000 – … 
x100 – … x1x0 – … x1xx – … 

xx00 – … xxx0 – … xxxx – … 

8000 – Body, 

interior and 

exterior 

8100 – Body 

framework 

8110 – Floor / Wheel 

housing 

e.g., 8113 – Floor, rear 

81x0 – … 81xx – … 

8x00 – … 8xx0 – … 8xxx – … 

 

However, since the list of components does not inherently contain material composition 

information, the next step involves adding this data for all components. This is achieved via an 

automated process where an algorithm exports material composition data stored in the IMDS for each 

component. This process generates what we call the component material data list, which is essentially 

the list of components supplemented with material composition information. 

Figure 2 describes the structure of the component material data list. Materials, as per the IMDS, 

are physical items characterized by a homogeneous structure – no layers or visible differentiation are 

perceptible (e.g., steel, thermoplastic), and can be made up of multiple basic substances. These 

substances may be a chemical element (e.g., iron, copper), a standard compound (e.g., acrylic resin, 

iron oxide, glass fibre), or in cases where confidentiality is required, a wildcard (e.g., “miscellaneous, 

not to be declared”). The IMDS also utilizes the VDA material classification system (Verband der 

Automobilindustrie, 1997), which groups material entries into broad categories based on a 

combination of their content, properties, and applications.1 

 
1 The “VDA material classification system” was developed by the German Association of the Automotive 

Industry (Verband der Automobilindustrie). It was designed to categorize materials in an easily understandable 

structure, and its application is mandatory for all material entries in the IMDS.  
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consists
of

Component Material(s) consists
of

Basic 
substance(s)

Information 
present1:  
•   Function group
•   Component-ID
•   Number of 

components
•   Component 

weight

Information 
present2:  

•   Material-ID
•   VDA Material 

classification   
•   Material(s) 

weight (share of 
component 
weight)

Information 
present2: 

•   Basic subst.-ID  
•   Basic 

substance(s) 
weight (share of 
material weight)

1
Original information present in the list of components

2
Information added from IMDS in order to produce the component material data list  

Figure 2. Structure of the component material data list and information present for every component entry in the list. 

In this manner, the IMDS serves as a key tool in the extraction and utilization of material 

composition data, enabling a detailed investigation into the environmental impacts of various 

components in the automotive industry. The methodologies established in Paper I and II, centred on 

this use of the IMDS, lay the groundwork for the broader investigation undertaken in this thesis. 

3.2 Assessing impact of IMDS data on LCA results 

In Paper I, our goal was to examine how various uses of IMDS data impact the precision of LCA 

results. To achieve this, we conducted an LCA of a vehicle component using material composition 

data drawn from IMDS. We strategically chose an internal combustion engine as the subject of our 

assessment to constrain the volume of data needed for the modelling process. As an item composed of 

both bulk materials and an array of smaller components, an engine exemplifies much of the variability 

inherent in a complete vehicle while avoiding excessive complexity. 

Our study was designed around eight modelling options, one serving as a reference model with an 

aspiration for a high level of detail, and seven others featuring simplified degrees of data aggregation 

and completeness. We evaluated the level of aggregation in each model by compiling IMDS data for 

the engine as either a "black box" (without differentiation between components or sub-parts) or by 

compiling it for distinct engine sub-parts such as the cylinder block, lubrication system, etc. Data 

completeness was assessed by the variation of three parameters: 1) altering the number of materials 

representing the engine and its sub-parts by using IMDS data with or without a mass cut-off; 2) 

varying the number of substances representing each material; and 3) incorporating data outside the 

scope of IMDS, such as component manufacturing. 

The functional unit of the study was defined as one manufactured unit of the engine at the 

"factory gate". Our assessment in Paper I focuses on the production phase of the engine, 

encompassing raw material extraction, material transformation, and assembly, while excluding the 

utilization and disposal phases. The type of LCA performed was attributional, meaning that we 

modelled the impacts of producing the engine as a fraction of the impacts of the current or recent 

historical production system. Consequently, our study relied on average data and resolved allocation 

problems in multi-input or output processes by partitioning. Foreground system data, which includes 

the material composition and assembly of the engine, was compiled internally at Volvo Cars for all 

options, using data from IMDS and other complementary sources detailed in Paper I. 

The data representing background systems, like upstream material extraction and manufacturing, 

electricity generation, and transport, was primarily sourced from the Ecoinvent database (Wernet, et 

al., 2016) version 3.7.1, which represents global or regional average supply (process inputs in general) 

or national supply (electricity). Additional data was obtained from the GaBi professional database 

(Kupfer, et al., 2021) and from literature such as peer-reviewed articles, reports, and patents. 

Regarding geography, we utilized site-specific data for assembly at Volvo Cars’ engine factory in 
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Skövde, Sweden, while data on material extraction and manufacturing processes were selected to 

represent regional averages. Transportation from suppliers to the assembly site was not included. 

However, in instances where the origin of materials could be identified, we used country-specific or 

market data representing broader regions. A comprehensive list of the background datasets used in the 

assessment can be found in the Supporting Information of Paper I. 

A life-cycle impact assessment (LCIA) was utilized to explore how the modelling options identify 

and quantify potential contributions to various environmental impacts. The LCIA allowed us to 

calculate impact scores for sixteen different impact categories using midpoint characterization 

methods, as recommended in the European framework of the Environmental Footprint (EF 3.0) 

(Biganzioli, et al., 2018). More information on the impact categories assessed can be found in Paper I. 

The employment of IMDS material data in the calculation of the life cycle inventory (LCI) 

necessitates a series of steps before the data can be evaluated in the LCIA phase (Figure 3). The 

generation of comprehensive LCI models for our technical example – the engine – began with the 

creation of the component material data list as outlined in Section 3.1. Subsequently, materials present 

in this list and their associated manufacturing and assembly processes were matched to suitable 

background system datasets. These datasets, primarily selected from commercial LCA databases, 

contained information on elementary flows which could be translated into environmental impacts in 

the LCIA phase. 

 

 

Figure 3. Overview of the steps employed in this study to develop the modelling options for the engine representation. 

The component material data list developed for the engine contained 2,156 unique material 

entries, each composed of one or more basic substances, with a total of 654 unique basic substances 

identified. In this assessment, these basic substances were matched to background datasets to account 

for the production of material constituents. Further processing required to achieve finished materials 

and formed components was accounted for as "manufacturing processes" in the LCI model.  

For instance, a material classified as a thermoplastic, composed of polypropylene, glass fibre, and 

plasticizer, would be matched to background datasets suitable for modelling the production of these 

three basic substances. This matching process allowed us to account for all the substances that 

compose every material in the component material data list. Once this matching of the thermoplastic's 

constituents was done, additional background datasets were incorporated into the models to represent 

relevant manufacturing processes that combined the basic substances into the more complex material. 

In the case of thermoplastics, this included compounding, followed by injection moulding. 
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This two-step matching process allowed us to strive for a higher level of detail in our model by 

accounting for both the substances that compose materials according to the IMDS data, as well as the 

manufacturing steps required to transform them into finished materials. 

For the final assembly of the engine, we compiled data from Volvo Cars’ engine factory in 

Skövde, Sweden. Most engine parts arrive at this facility in their final form, ready for assembly, 

except for a few components that undergo specific machining processes on-site, with the engine block 

being the primary example. The mapping of processes involved and the subsequent linking to 

background datasets were based on an aggregated data list compiled internally at Volvo Cars. This list 

contained information on energy consumption (i.e., electricity, heat), auxiliary materials (e.g., cutting 

fluid), as well as waste and material losses. 

It is important to note that, unlike the detailed information on materials and basic substances, data 

on manufacturing and engine assembly processes, including material losses related to these activities, 

is not explicitly included in IMDS. In Paper I, we referred to this data as "complementary data", i.e., 

data which is not directly reported by the component material data list but is essential for the 

completeness of the LCI model.  

A summary of all LCA modelling options assessed in Paper I is presented in Table 2. These 

options, including the reference option and an additional seven simplified options, differed in their 

levels of detail. They captured unique combinations of three modelling choices: (i) the function group 

level employed, which was either "high" or "low" as a means of varying the level of aggregation of 

IMDS data; (ii) mass cut-off at the material level; and (iii) the number of basic substances 

representing each material. Both (ii) and (iii) were utilized as a means of varying the level of 

completeness of the resulting LCI. 

Table 2. Summary of the different LCA modelling options assessed in this study. 

 MODELLING CHOICES  

MODELLING 

OPTIONS 

Function group 

level* 

Mass cut-off 

(of total) 

Basic substance per 

material 

Option name as 

used in Paper I 

#0 (most detailed) 2 (Sub-parts) None many A100-high 

#1 1 (Complete engine) None many A100-low 

#2 2 (Sub-parts) 1 % many A99-high 

#3 1 (Complete engine) 1 % many A99-low 

#4 2 (Sub-parts) None one B100-high 

#5 1 (Complete engine) None one B100-low 

#6 2 (Sub-parts) 1 % one B99-high 

#7 (least detailed) 1 (Complete engine) 1 % one B99-low 

* Only aggregation levels 1 and 2 are used in this study. See Table 1 for further information on the different function group 

levels of aggregation. 

The modelling options shown in Table 2 were abbreviated in Paper I for conciseness. However, 

for improved clarity in this thesis, they will be described fully without abbreviations in the following 

sections. The most detailed modelling option, used as reference, included all engine components, 

materials, and substances from IMDS, without applying any mass cut-offs (option A100-high in Paper 

I). This ensured a highly comprehensive representation of the engine’s composition. We also assessed 

simpler models with varying degrees of aggregation and completeness compared to the reference 

case. 

One approach was to model the engine as a single unit (the “low” options in Paper I) rather than 

separate parts. Other options excluded materials below 1% of the total mass, applied either for the 

whole engine (A99-low/B99-low options) or for each of the engine’s sub-parts (A99-high/B99-high 

options). Limiting the number of substances representing materials, such as only including the main 
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constituent element, also reduced model complexity (the “B” options). This simplification strategy 

was applied solely (B100 options) or alongside other strategies. The least detailed option combined all 

strategies simultaneously (B99-low in Paper I). 

Additionally, we explored the influence of complementary data (i.e., data for manufacturing and 

assembly processes, as well as related material losses) on the results, by running scenarios with and 

without this information.  

In total, we assessed multiple modelling options capturing different combinations of aggregation 

level, mass cut-offs, substance limitations, and complementary data inclusion. By comparing the 

results to the detailed reference model, we could assess accuracy losses and workload reductions from 

the various simplification choices. The findings provided insights into suitable trade-offs based on the 

specific goals and scope of LCA studies. 

3.3 Metal composition and scarcity assessment of vehicle gliders  

In Paper II, we identified relevant metals, from a resource availability perspective, for two vehicle 

gliders and their subsystems. This task was accomplished by employing two indicators of short-term 

and long-term potential primary metal scarcity. Additionally, we explored the distribution of metals in 

glider subsystems and components. With this, we aimed to pinpoint substitution options and to 

evaluate the ease of recycling, thereby facilitating the assessment of the potential availability of 

secondary metals in the gliders. 

The assessed gliders were based on the same car model, a compact sport utility vehicle (SUV). 

They, however, differed in their equipment levels. One was an extra-equipped glider (EEG), featuring 

the highest available equipment level, while the other was a standard-equipped glider (SEG) furnished 

with basic-level equipment. 

The first step was to derive material composition data for the assessed vehicle gliders following 

the procedure described in Section 3.1. The process resulted in two lists, one for each glider. Once the 

component material data lists were established, we identified the metals present in the gliders by 

analysing their material constituent entries in the lists, referred to as the basic substances as described 

in Section 3.2. 

Subsequently, we assessed the metals from a supply risk perspective, considering both the short 

and long-term risks. The short-term supply risk indicator was developed specifically for the study, 

with the aim of identifying relevant metals in the gliders by assessing their potential scarcity. This 

indicator is defined as the ratio between the metal demand of a hypothetical glider fleet and the global 

primary production of the same metal. The hypothetical glider fleet was designed to approximate the 

annual worldwide production of passenger cars. Hence, this indicator aims to demonstrate how much 

of the global primary metal would be required if either the extra-equipped glider or the standard-

equipped glider options were the sole ones available in the market. We referred to the resulting metric 

as the “demand fraction of primary production” (DFP) for each metal. A high DFP suggests a 

potential risk of near-term shortage, with the automotive industry significantly contributing to this 

shortage. 

For assessing long-term metal availability in the gliders, we turned to the literature and utilized 

the crustal scarcity indicator (CSI) method (Arvidsson, et al., 2020). This mineral resource impact 

assessment method quantifies the decrease in resource stocks due to extraction, adopting a long-term 

global perspective on elemental scarcity. The method is premised on the average crustal concentration 

of elements in the Earth’s crust and, in terms of assessing long-term metal availability, offers several 

advantages over other resource impact assessment methods (Arvidsson, et al., 2020). The CSI is 

computed as the product of the crustal scarcity potential (CSP) of a given metal and its mass. In the 
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analysis conducted for Paper II, different metals were grouped according to their overall contribution 

to the total CSI of the glider; in other words, their share of the glider’s total CSI. 

To delve deeper into the distribution of metals, we divided the gliders into subsystems using an 

internal aggregation method adopted by Volvo Cars. This method combines components into larger 

assemblies performing similar functions, thus creating a hierarchical structure of the vehicle and its 

constituent parts.2 This approach aids in identifying subsystems that are more susceptible to supply 

risks and contribute more significantly to resource demand. In this study, we analysed a total of 21 

subsystems, encompassing various areas such as advanced driver assistance, body structures, brake 

system, and multimedia and communication. 

While assessing the distribution of metals in subsystems provides a valuable overview of their 

presence within the glider, a more detailed examination of the dispersion of metals across individual 

components can offer further insights. To this end, we investigated the distribution of metals at the 

component level using the concept of entropy, which serves as both an indicator of the state of 

disorder in a system and a measure of dispersion (Sethna, 2006). A higher entropy value suggests that 

a metal is distributed evenly over many components throughout the glider, while a lower value 

implies a more concentrated presence in specific components. 

The entropy information can prove beneficial in determining the effectiveness of various 

secondary metal recovery strategies. A more uniform distribution of metals may render the extraction 

of specific metals more challenging. In contrast, a more concentrated distribution is likely to make 

recycling easier and less costly. Substitution is presumably a more feasible option for scarce metals 

concentrated in a few components, as opposed to those evenly dispersed across thousands of 

components. 

 
2 The internal aggregation method used in this study is an updated variant of the function group classification 

described in Section 3.2. While similar in its aim to hierarchically combine components performing related 

functions, the specific aggregation rules differ between the two methods. 
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4 Results 

This section summarizes the results of Papers I and II. Further details are available in the 

respective papers. 

4.1 Extracting material composition data from the IMDS 

The extraction of material composition data from the IMDS for use in environmental studies 

represents a central methodological aspect of this thesis. To facilitate this process, we developed a 

methodology that has expedited data inventorying for an LCA study by the utilization of IMDS data. 

This methodology, detailed in Section 3.1, led to the creation of a comprehensive procedure to 

generate component material data lists, forming the foundation for all subsequent analyses. 

The application of this method yielded some key outcomes. Primarily, it established a systematic 

approach to extract and utilize data from the IMDS. This advancement overcame the limitations 

traditionally associated with manual data extraction, leading to expedited data inventorying for the 

assessments conducted in Papers I and II. Additionally, the detailed information contained within the 

component material data list not only enabled the identification of materials present in vehicles, but 

also provided insight into the constituent substances of these materials. 

Furthermore, the method serves as a foundation for further studies. The generated data lists can be 

utilized to analyse different aspects of vehicle design, manufacturing, and lifecycle environmental 

impacts. This broadens the scope of potential research within the industry, allowing for more 

comprehensive research. 

Initially introduced in Paper I, this method proved instrumental in addressing the research 

questions posed in both papers. This achievement underlines the potential of this methodology to 

inform future research and environmental strategies in the industry. 

4.2 Exploring the use of IMDS data in LCA 

4.2.1 Modelling options and workload 

In Paper I, we explored the use of IMDS data for life cycle assessment modelling of an 

automotive engine. The most detailed "reference" model included full component, material, and 

substance information from IMDS for the engine, and was established as a benchmark for assessing 

the quality of all other modelling options. This highly detailed model became a starting point for our 

work, and it was followed by the development of seven less detailed options. As a result, the 

groundwork done for the reference model, including the matching of basic substances to background 

datasets and the classification and grouping of material entries, was beneficial for all subsequent 

options. This led to a significant reduction in workload compared to if they had been developed 

independently from the reference option. 

Table 3 provides an indication of the relative workloads of the different modelling options. The 

primary factors affecting the workload were the number of materials and basic substances accounted 

for in the options, and whether complementary data was included. It was clear that a key workload 

factor for modelling was the careful identification and matching of background datasets to basic 

substances. This process was pivotal for the study outcome, and in some cases where no suitable 

background datasets could be found, it became necessary to collect new inventory data, which 

considerably increased the time required. 
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Table 3. Modelling options assessed in this study and an estimation of their relative workloads. The names in parentheses 

refer to the abbreviated options names used in Paper I. 

MODELLING 

OPTIONS 

Complementary 

data 

# of unique 

materials 

# of unique basic 

substances 

#0 (A100-high) Yes 2,156 654 

#1 (A100-low) Yes 2,156 654 

#0 (A100-high) No 2,156 654 

#1 (A100-low) No 2,156 654 

#2 (A99-high) Yes 671 295 

#3 (A99-low) Yes 539 243 

#2 (A99-high) No 671 295 

#3 (A99-low) No 539 243 

#4 (B100-high) Yes 2,156 274 

#5 (B100-low) Yes 2,156 274 

#4 (B100-high) No 2,156 274 

#5 (B100-low) No 2,156 274 

#6 (B99-high) Yes 671 114 

#7 (B99-low) Yes 539 86 

#6 (B99-high) No 671 114 

#7 (B99-low) No 539 86 

 

It is important to emphasize that the workload necessary to perform the LCI modelling was 

greatly reduced for all modelling options, once a significant number of materials entries and their 

inherent basic substances were classified, grouped, and matched to LCI datasets. This information, 

once compiled, can easily be employed in subsequent LCI modelling but requires continuous 

updating, as both IMDS data and LCI datasets are frequently updated. 

4.2.2 LCIA results 

In Paper I we examined different LCIA models with the level of data aggregation and 

completeness varying across the models. These models were then compared to a reference option, and 

the results are seen in Table 4. 

A key distinction between the models arises from their resolution. Some models assign impacts to 

specific engine sub-parts, providing a high-resolution view, while others allocate impacts to the 

engine as a whole, offering a low-resolution perspective. In cases where no material cut-off is applied, 

high- and low-resolution models produce identical numerical results (options #0 and #1 offer the same 

LCIA outcomes as do options #4 and #5). Overall, the primary advantage of the high-resolution 

models lies not in the quantitative outcomes but in the qualitative insights they offer, facilitating a 

more detailed analysis. 

Our findings suggest that when the sole simplification strategy applied is a high-resolution mass 

cut-off at the material level (#2), there is a smaller deviation in impact scores for most categories than 

in models where only the number of basic substances representing materials is simplified (#4 and #5). 

As expected, the most significant differences were observed across most impact categories when both 

simplifications were used simultaneously (#6 and #7). 

The application of the mass cut-off had varying effects based on the resolution level. For low-

resolution models, the cut-off was set for the entire engine with a specific mass threshold. 

Consequently, materials below this threshold were excluded from calculations. In contrast, for high-

resolution models, the cut-off was applied to individual engine sub-parts, with varying mass 

thresholds. This resulted in a higher number of materials being considered in the high-resolution 

models. 

 

Workload 
increases 

Workload 

decreases 
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Table 4. Impact scores normalised to the reference option. The colours in the cells vary from “green” (100%) to “yellow” 

(75%) to “red” (50% and lower). All categories are calculated with midpoint characterisation methods as recommended in 

the European framework of the Environmental Footprint (Biganzioli, et al., 2018). The names in parentheses refer to the 

abbreviated options names used in Paper I. 

 Modelling options 

Impact categories 
#0 & #1 

(A100) 

#2 

(A99-high) 

#3 

(A99-low) 

#4 & #5 

(B100) 

#6 

(B99-high) 

#7 

(B99-low) 

Acidification 100% 89% 87% 88% 77% 75% 

Climate change 100% 95% 92% 93% 88% 86% 

Ecotoxicity, 

freshwater 
100% 81% 79% 75% 57% 55% 

Eutrophication, 

freshwater 
100% 83% 81% 94% 78% 76% 

Eutrophication, 

marine 
100% 92% 89% 90% 82% 79% 

Eutrophication, 

terrestrial 
100% 91% 89% 84% 75% 73% 

Human toxicity, 

cancer 
100% 97% 97% 73% 71% 71% 

Human toxicity, non-

cancer 
100% 91% 90% 82% 74% 72% 

Ionising radiation 100% 97% 96% 98% 96% 95% 

Land use 100% 94% 93% 73% 68% 66% 

Ozone depletion 100% 96% 93% 50% 48% 44% 

Particulate matter 100% 96% 95% 79% 75% 74% 

Photochemical ozone 

formation 
100% 93% 90% 91% 83% 81% 

Resource use, energy 

carriers 
100% 94% 93% 95% 90% 88% 

Resource use, 

mineral and metals 
100% 91% 88% 41% 34% 32% 

Water scarcity 100% 98% 97% 100% 98% 97% 

 

Table 4 also showcases differences across the various LCIA categories. For four impact 

categories, including climate change, the calculated impacts decrease by less than 15% between the 

reference and the most simplified model. However, for the majority of the impact categories, 

deviations of more than 25% are observed, with the largest discrepancy being 68% for resource use, 

mineral and metals. 

For deeper insights into the impacts of each modelling option, a contribution analysis focusing on 

two impact categories – climate change and resource use, mineral and metals – is shown in Figure 4. 

These categories hold strategic importance not only to Volvo Cars but also for the broader automotive 

sector. Detailed contribution analysis for other impact categories can be found in the Supplementary 

Information of Paper I. 

The analysis indicates that when a mass cut-off is applied at a high resolution as the only 

simplification strategy, it shows the least deviation in impact scores for climate change and resource 

use categories compared to our reference model. Predominant contributors to these categories, like 
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steel and aluminium alloys for climate change and steel, aluminium alloys, and copper alloys for 

resource use, remain largely unaffected by this rule. However, lighter materials such as ceramics, 

glass, and specific metals like silver, gold, platinum, cobalt, and tungsten are notably impacted by the 

mass cut-off. This results in a significant reduction in their contributions to the overall impact scores. 

In the modelling approach where only the number of substances representing materials is 

simplified, both the engine's mass and the number of materials included in the model align with the 

reference model. However, the exclusion of alloying or filler elements in these models introduces 

notable variations in LCIA outcomes. For instance, in the resource use category, omitting alloying 

elements from materials such as steel, cast iron, and aluminium, along with the absence of fillers in 

polymeric materials, results in a marked reduction in relative impact scores compared to our reference 

model. Conversely, in the climate change category, the lack of these alloying elements leads to a less 

pronounced, yet still noticeable, deviation, particularly for materials such as steel and cast iron.  

The modelling strategy where both simplifications - mass cut-off and substance representation - 

are applied concurrently deviates considerably from the reference model, not just in the number of 

materials representing the engine but also in the count of substances representing these materials. This 

approach results in the most noticeable differences in LCIA outcomes, not just for climate change and 

resource use, but across various impact categories. Generally, when both simplifications are applied, 

materials with a lower overall weight in the engine are notably impacted, similar to the strategy where 

only a mass cut-off is employed. In contrast, heavier materials are typically affected by the reduction 

in the number of substances representing them, as seen in models where only substance representation 

is simplified. 

 

Figure 4. Normalised contribution analysis for two selected impact categories. The material category “special metals” 

comprises precious and scarce metals. “Other materials” comprises material entries which did not fit into any other 

material category. “Material losses”, “manufacturing” and “assembly” refer to complementary data as described in 

Section 3.2. All impact categories are calculated with midpoint characterisation methods as recommended in the European 

framework of the Environmental Footprint (Biganzioli, et al., 2018). The names in parentheses refer to the abbreviated 

options names used in Paper I. 

A key consideration on the influence of data completeness on the precision of LCIA results is the 

inclusion of complementary data in the LCI models. As stated before, this data, representing 
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information on manufacturing and assembly processes, is absent in IMDS. These processes typically 

consume substantial amounts of energy, either in the form of electricity for machinery operation or 

fuel combustion for heat generation. As a result, the integration of this complementary data 

significantly impacts categories sensitive to electricity production and combustion-related emissions, 

e.g., climate change. 

Delving into the details, the final assembly of the engine makes a minor contribution to most 

impact categories, with a maximum of 5% across fourteen categories for all modelling options. 

Conversely, the manufacturing processes of components and sub-parts have a more substantial 

impact, contributing over 10% across twelve categories for all modelling options. Material losses, 

which are an intrinsic part of manufacturing and assembly activities, are also factored into the total 

environmental burden calculation of the engine. The effect of these material losses on impact scores is 

capped at 11% for the majority of impact categories (13) across all modelling options. 

4.3 Assessing metal use and scarcity impacts of vehicle gliders 

The analysis carried out in Paper II revealed the presence of a broad range of metals in the 

assessed vehicle gliders: 55 metals in the extra equipped and 54 in the standard-equipped glider. 

Notably, gadolinium (Gd) was unique to the extra-equipped glider. While most metals saw increased 

concentrations in the extra-equipped variant, potassium (K) was an exception. Its reduced 

concentration in the glider is attributed to decreased mica usage. This extensive diversity of metals 

highlights the considerable metal requirements of modern vehicles beyond just the powertrain 

components.  

Figure 5 illustrates the mass variations of metals in the extra-equipped glider compared to its 

standard-equipped counterpart. A detailed observation shows that for nearly half of the metals (27 out 

of 55), the variation is minimal, remaining below 10%. The vast majority (48 metals) have variations 

below 100%. However, a specific group of metals, including dysprosium (Dy) and terbium (Tb) 

gallium (Ga), and germanium (Ge), exhibit much larger variations, with differences reaching up to 

25,000%.  

 

 

Figure 5. Metals and metalloids in the extra-equipped glider, with mass variation relative to the standard-equipped variant. 

While potassium (K) appears in reduced quantities in the extra-equipped version, gadolinium (Gd) is absent in the standard-

equipped glider. 
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The results showed that iron and aluminium accounted for around 90% of the total metal mass in 

the gliders, due to their widespread use in structural and mechanical components. However, the 

remaining 10% metal mass was distributed among 53 different metals, most of which were present in 

small quantities. For instance, in the extra-equipped glider, 35 of the 55 metals weighed less than 100 

grams each and 19 weighed less than 1 gram. 

In Figure 6, we present a dual assessment of metals identified in the extra-equipped glider, with 

each data point representing a unique metal in this glider. The y-axis plots the short-term scarcity, 

denoted by its DFP value. This measure captures the portion of global primary metal production a 

theoretical global glider fleet would demand, reflecting the annual worldwide vehicle production. 

Conversely, the x-axis depicts the long-term scarcity, indicated by its CSI value, which derives from 

average crustal concentrations of the respective elements. 

Metals identified in the extra-equipped glider are categorized into four distinct groups for ease of 

visualization: “Red”, “Orange”, “Yellow”, and “Grey”. Metals labelled "Red" face pronounced supply 

risks in both short and long-term contexts, exemplified by elements such as gold, lead, and copper. 

The distinction between “Orange” and “Yellow” revolves around their respective CSI shares, though 

both reflect notable short-term supply concerns. Finally, the “Grey” category denotes metals 

presenting the least short-term supply risks in this assessment.3 

Gold, although present in minor quantities (few grams) in the extra-equipped glider, has a 

substantial impact on the glider’s CSI. In this assessment, gold emerges as the metal with the highest 

risk of long-term scarcity. As for lead and copper, both are found abundantly in the glider. If such 

compositions were universal, a fleet of extra-equipped gliders would demand a considerable fraction 

of global primary production of these metals. 

Even with bismuth's low mass content, it plays a notable role in the glider's CSI, displaying 

elevated potential long-term geological risk. Molybdenum's CSI contribution is similar, even though it 

has a more abundant presence in the glider – its mass is nearly four times that of bismuth in the extra-

equipped glider. When evaluating short-term risks, bismuth has the third largest DFP of all metals 

assessed, while molybdenum presents a more moderate risk. 

A review of rare-earth metals (REMs) in the glider reveals most falling under the “Grey” group, 

suggesting a reduced supply risk. However, specific metals like terbium (Tb), neodymium (Nd), 

dysprosium (Dy) and praseodymium (Pr), positioned in the “Yellow” group, indicate potential short-

term supply challenges. 

 
3 For additional details on the colour-coded groups, refer to Paper II. 
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Building upon our earlier discussions on exposure to supply risks, we have undertaken a detailed 

analysis of the distribution of metals within the extra-equipped glider's various subsystems. Table 5 

elucidates this distribution for metals that fall within the “Red”, “Orange”, and “Yellow” categories, 

with the provided percentages reflecting the relative mass of each metal within the glider. 

From the 23 metals under consideration, more than half are predominantly concentrated in the 

“Multimedia and communication” subsystem, each with proportions surpassing 10%. Remarkably, 

REMs such as terbium (Tb), dysprosium (Dy), neodymium (Nd), and praseodymium (Pr) showcase 

significantly elevated mass shares within this subsystem. The principal application of these metals is 

in the formulation of permanent magnets, predominantly located within the glider's sound system. 

“Multimedia and communication” and “Driver controls” exhibit pronounced concentrations of 

palladium (Pd), tantalum (Ta), and ruthenium (Ru). This can be attributed to the extensive presence of 

electronic components in these areas. Further, “Electrical infrastructure” subsystem is characterized 

by the highest mass shares of metals such as copper (Cu) and tin (Sn). Here, copper primarily forms 

wire harnesses, while tin is a prevalent soldering material. 

Silver (Ag), gold (Au), and indium (In) are predominantly housed within the “Exterior visibility” 

subsystem, utilized for their light-reflecting properties on external mirrors. Pertaining to 

lightweighting efforts, aluminium (Al) is majorly found in parts such as the wheels, bonnet, bumpers, 

pillars, and suspension components of the glider. In contrast, most of the glider’s magnesium (Mg) 

content can be attributed to talc (magnesium silicate) used in plastic components and as magnesium 

oxide in windscreens. 

The dominance of molybdenum (Mo), Niobium (Nb), and Vanadium (V) in the “Body structures” 

and “Suspension, frames & mountings” subsystems is notable, accounting for nearly 80% of their 

total mass content in the glider. Their main application is as alloying agents in high-strength steel for 

structural components. The “Power supply” subsystem houses almost the entirety of the glider’s lead 

(Pb) content, due to the presence of the lead-acid battery. Meanwhile, bismuth (Bi) is primarily used 

in paint as a surface treatment for the glider’s exterior, falling under the “Body structures” subsystem. 
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The importance of metal distribution in components plays an important role in influencing the 

ease of substitution and effectiveness of metal separation in end-of-life vehicles (ELV) prior to 

implementing recovery approaches like reuse and recycling. In Paper II, the concentration of metals in 

individual components was analysed using entropy as an indicator, seen in Figure 7. 

 

Figure 7. Calculated entropy for selected metals in the extra-equipped glider and the number of components in which these 

metals are present. 

A key observation from Figure 7 is the notably high entropy of copper, found in over 700 

components, predominantly as wire harnesses. This implies that its recovery presents significant 

challenges. Lead offers an interesting contrast. Even though it is part of over 500 components, its 

entropy is significantly lower than copper, primarily because it is heavily concentrated in the lead-acid 

battery. Consequently, the separation process for most of the lead becomes more straightforward. 

It is worth noting that while some REMs face potential supply disruption risks, their recovery rate 

from ELVs is currently negligible. Figure 7 hints at the possibility of efficient recovery of certain 

REMs since they are predominantly found in a limited number of components. For instance, almost 

all terbium in the extra-equipped glider is confined to merely three components. Hence, focusing on 

the retrieval from these specific components might enhance the overall recovery rates of such metals. 

The metals bismuth (Bi), platinum (Pt), and caesium (Cs) display lower entropy, but their primary 

uses in applications like paint, conductive paste, and flux pose challenges to their effective recovery. 

Similarly, gold (Au), silver (Ag), and indium (In) used in mirror coatings present their unique 

challenges, especially given their widespread distribution and minute overall presence in gliders.  

The analysis in Paper II also showed that short-term supply risks varied notably for some metals 

between the gliders. While the metals in the “Red” and “Orange” groups remained constant despite 

the gliders’ equipment level, the “Yellow” group displayed variance. Notably, metals with reduced 

quantities in the standard-equipped glider compared to the extra-equipped option display a noticeable 

decline in their short-term potential scarcity and their global production value contribution, as 

visualized in Figure 8. 
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Figure 8. Differences between gliders for selected metals. The metals depicted in the figure are those whose DFP value 

becomes less than 5% in the standard-equipped glider, i.e., metals which “migrate” from the “Yellow” group in the extra-

equipped glider to the “Gray” group in the standard-equipped variant. 

As prime examples, dysprosium (Dy), terbium (Tb), and gallium (Ga), saw a significant drop in 

their short-term primary metal availability indicator when comparing standard-equipped gliders with 

extra-equipped gliders. For context, a hypothetical global fleet of the latter would necessitate the 

entirety of the global terbium production, while a fleet of the former would need less than 1% of this 

global output. These metals, mainly present in permanent magnets in the “Multimedia and 

communication” subsystem, are substantially more abundant in the extra-equipped glider. Finally, 

strontium (Sr) transitions from the “Yellow” category in the extra equipped to the “Grey” group in the 

standard equipped. Unlike dysprosium, terbium and gallium, strontium does not have a significant 

mass discrepancy between the two glider types, which explains its elevated DFP value in the 

standard-equipped gliders. 
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5 Discussion 

With the key findings of this thesis presented, this section will synthesize the insights gained and 

situate the research within the broader context. First, the posed research questions will be revisited to 

demonstrate how the methods and analyses undertaken have addressed the aims of this thesis. 

Subsequently, our work will be positioned among other studies and the implications of the findings 

will be discussed for relevant stakeholders. Finally, potential avenues for future research will be 

outlined. 

5.1 Addressing research questions 

RQ1: How can a method be developed to extract material data from the IMDS that also 

facilitates expedited data inventorying in environmental studies within the automotive industry? 

To address RQ1, we demonstrated a systematic methodology to extract material composition data 

from the IMDS database for use in environmental studies. The key steps included extracting a list of 

all components for the vehicle from Volvo Cars’ vehicle construction database, adding material 

composition data by linking to the IMDS database via an automated algorithm, generating a 

component material data list with materials and their constituent substances, and finally classifying 

materials and substances and matching them to appropriate LCI datasets (in the case of LCA studies). 

This streamlined approach overcomes limitations of manual data extraction, allowing expedited 

creation of detailed LCI models. The material data lists also support additional analyses beyond LCA. 

Overall, the method enables leveraging IMDS for accelerated environmental assessments within the 

automotive industry. 

However, it is important to acknowledge certain challenges and limitations associated with this 

methodology. In Paper I, one primary concern arose during the modelling work, where matching basic 

substances to background datasets became intricate. The IMDS typically reports substances in their 

refined form as present in finished vehicle components (e.g., chromium, nickel). However, in real-

world production processes, many substances, especially those used as alloying elements in steels, are 

introduced in their unrefined forms, such as ferrochromium (for chromium) or ferronickel (for nickel). 

When these unrefined forms are not accurately represented, it can result in overestimations of 

environmental impacts due to the additional processing steps involved in refining them. Moreover, the 

IMDS does not provide details about material production routes or the recycled content share. This 

omission can lead to potential misestimations in environmental impacts, as different materials 

undergo diverse processing steps with varied recycled content ratios. Gathering precise data on 

recycled content is further complicated by the myriad of suppliers involved, often resulting in 

estimates that might not reflect the real situation.  

While this method excels in detailed resource use assessment, it may introduce uncertainties in 

other impact categories. These uncertainties may arise due to the large impact that specific material 

production routes have on the amounts of emissions (e.g., electric-arc furnace vs blast-oxygen furnace 

in steel production). The extent of this uncertainty is tied to the (limited) availability of datasets when 

matching IMDS data to background data.  

In Paper II we faced another challenge. In the assessment, we examined the metal content in 

gliders down to the elemental level. Metals that were identified as part of compounds had their 

quantities estimated using molecular formulas from their respective CAS (Chemical Abstracts 

Services) registries in the IMDS. When a registry was missing, experts had to make judgments, which 

could introduce uncertainties into the findings. Despite of the method’s strengths in accelerating 

environmental assessments, it is crucial to remain aware of its limitations. 
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RQ2: How do the level of data aggregation and degree of completeness of an LCI model 

employing IMDS data affect the precision of environmental impact assessment results and the effort 

necessary to develop such models? 

For RQ2, we performed LCA modelling of an engine using IMDS data with different levels of 

aggregation and completeness to assess precision and workload trade-offs. A 1% mass cut-off at the 

material level maintained reasonable precision for most impact categories while greatly reducing 

modelling workload. Limiting the number of substances representing materials caused larger 

deviations across many impact categories but also substantially reduced workload. Unsurprisingly, the 

simultaneous application of both simplification strategies saved further workload but culminated in 

the most substantial variances in LCIA outcomes for most of the impact categories examined. Mineral 

and metal resource utilization emerged as one of the most compromised categories with this method, 

showing nearly a 70% discrepancy. In contrast, the climate impact exhibited less variation, with 

deviations under 15%. This combined approach could be reasonable in e.g., a “screening” study 

looking only at potential contribution to global warming. However, for assessments focused on metal 

resource use, a higher level of detail is required. 

Incorporating manufacturing and assembly data importantly influenced climate change and other 

energy-related impacts. Modelling with high resolution data offers enhanced comprehension of LCIA 

results but in most cases did not considerably improved results quantitatively. Moreover, it is crucial 

to align choices regarding IMDS data aggregation and completeness with the specific LCA goal and 

scope, as higher detail improves precision but increases workload. 

Another important point to highlight is how we measured the modelling workload. Our work 

started with the modelling of the most detailed modelling option, used as reference. Because of this, 

models with less detail took advantage of the work already done for the detailed model, making them 

easier and quicker to develop. Consequently, we were not able to quantitatively assess the time spent 

on each modelling option and had to base our assessments on reasoning. If exact time measurements 

were to be done, it would be necessary to use another approach. So, it is worth noting that our 

estimates on workload are only qualitative estimates. 

RQ3: What is the metal composition of vehicle gliders and how does it differ between different 

equipment levels? 

The metal composition of vehicle gliders is complex. The analysis of two distinct glider options, 

with different equipment levels, reveals the presence of around 80% of all naturally occurring metals, 

which is comparable to complete vehicles when the powertrain is included (Iglesias-Émbil, et al., 

2020). This highlights that systems beyond the powertrain contribute significantly to the broad metal 

demands of the automotive industry.  

Iron and aluminium constitute approximately 90% of the total metal mass of the gliders. 

Interestingly, the remaining 10% is distributed over many different metals (>50 metals), mostly in 

very small quantities (<100 grams). For half of the metals present in the gliders, the mass variation is 

under 10% between the standard equipped and the extra-equipped glider. However, four elements – 

dysprosium, terbium, gallium, and germanium – are found in significantly larger quantities in the 

extra-equipped option, with variations exceeding 1,000%. Of these, dysprosium and terbium exhibit 

the most pronounced mass variations: over 25,000% and 18,000%, respectively.  

Gadolinium is exclusively present in the extra-equipped glider and potassium is the only metal 

with a lower concentration in this glider. Overall, while most metals do not vary significantly, some 

specific metals tied to additional features do show large differences based on equipment levels. This 

indicates that higher equipment levels may exacerbate supply risks for those metals. 
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It is important to provide context to these findings based on our study's observations. The gliders 

we examined might be considered “over-equipped” when compared to other vehicles in the same 

segment. Yet, prevailing trends in the automotive industry are showing a rise in equipment levels 

across vehicles (Restrepo, et al., 2017; European Commission, 2022; Trovão, 2022). This trend is 

driven by factors such as advancements in safety, growing preferences for comfort, the demand for 

digital connectivity, and the push for automation. As a result, the difference in metal use between 

standard and more equipped cars may become smaller. Furthermore, this increased equipment 

demand could lead to the automotive industry relying more on potentially scarce metals. 

RQ4: How do vehicle gliders contribute to the short and long-term potential primary metal 

scarcity? 

Vehicle gliders, with their diverse metal composition, have a significant impact on the short and 

long-term scarcity risks of many metals. As cars continue to evolve with features like automation, 

connectivity, and electrification, the demand for these metals is expected to grow, increasing their 

scarcity risks (European Commission, 2020a; European Commission, 2022; Trovão, 2022). Therefore, 

it is also important to consider the usage trends of such metals in the automotive industry and other 

sectors, to further understand the potential impact of these risks. 

Gold, copper, lead, molybdenum, and bismuth face high risks of becoming scarce in both the 

short- and long-term perspective. Although only a small amount of gold is present in the gliders, it 

accounts for around 45% of their long-term scarcity risk. And with more cars using gold in electronic 

components, this could accentuate long-term supply risks.  

Copper and lead demand from a theoretical extra-equipped glider fleet would constitute around 

10% and 28% of global production, respectively. The surge in the automotive application of copper, 

especially for electrification components, could further strain its supply chain. While lead shows high 

recycling rates, still about 40% of the world's lead comes from primary sources (ILZSG, 2022). The 

sustained reliance on lead-acid batteries in the foreseeable future could potentially exacerbate both its 

short and long-term scarcity concerns (ITRI, 2017). 

For most REMs, the study does not reveal significant long-term supply risks. However, short-term 

risks are high for some like terbium where an extra-equipped glider fleet would demand its entire 

global production. Contrarily, standard-equipped gliders show lower scarcity risks for metals like 

dysprosium, terbium, and gallium. This is because they have fewer permanent magnets than their 

extra-equipped counterparts. 

RQ5: How does the distribution of metals across subsystems and components in gliders influence 

the relative complexity of substitution and secondary metal recovery? 

The distribution of metals in gliders strongly influences the complexity of metal substitution and 

secondary metal recovery strategies, as delineated by the entropy assessment presented in this thesis. 

Entropy serves as an indicator of the spread or "randomness" of metals across the components of a 

glider. 

Copper exhibits one of the highest entropies. It is found in over 700 components in the gliders, 

mainly wire harnesses, which poses significant recovery challenges. In fact, a substantial portion of 

copper in ELVs is not functionally recycled and ends up lost or as contaminants in other recycled 

metal streams (Center for Automotive Research, 2006; Simic & Dimitrijevic, 2012; Fonseca, et al., 

2013; Tasala Gradin, et al., 2013). Our analysis indicates the difficulties in copper separation from 

diverse material streams, particularly given its extensive distribution in wire harnesses. New 

techniques for recycling of copper from wire harnesses are being explored to enhance yields (Lu, et 

al., 2019; Xu, et al., 2019). 
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Contrasting copper, lead showcases a much lower entropy. Its primary concentration in the lead-

acid battery simplifies its separation from the glider. With a well-established recycling process for 

lead-acid batteries, lead emerges as one of the most recycled metals globally (Ballantyne, et al., 

2018).  

Although bismuth, platinum and caesium are mostly concentrated in few components, their 

primary utilization in dissipative applications, including paint and conductive paste, complicates their 

recovery. Our assessment emphasizes the challenges in segregating these metals from larger 

concentrations and their recovery inefficiencies due to dissipative uses. 

Our assessment also indicates challenges in recovering specific metals such as precious metals 

and REMs from ELVs. Precious metals, although economically valuable, face recovery challenges 

primarily due to their low overall masses and their high dispersion across various components. In 

contrast, REMs not only have low masses but also exhibit relatively low market prices. This does not 

technically hinder the recycling process, but it does challenge the economic rationale behind recycling 

especially when considering the costs versus the potential benefits. In fact, REMs recovery from 

ELVs remains minimal (Andersson, et al., 2017; Restrepo, et al., 2017). In such scenarios, targeted 

recovery strategies, such as focusing on printed circuit boards (PCBs) for precious metals and on 

permanent magnets for specific REMs, could potentially enhance their retrieval. 

5.2 The results in a wider research context 

5.2.1 Using IMDS data in LCA 

While our work represents a novel quantitative assessment of the implications of using IMDS data 

in LCA, prior studies have recognized the potential of IMDS as an efficient data source and developed 

systematic approaches for data extraction and processing. Koffler, et al. (2008) and Yu & Kim (2013) 

put forth methodologies to extract material composition information from IMDS and match it with 

LCI datasets, with the goal of streamlining and expediting LCA modelling compared to manual 

approaches. There are clear similarities in the overarching aim to leverage IMDS to reduce LCA 

workload. Additionally, both studies utilize IMDS to compile detailed component and material 

information as the foundation for LCA inventory data, through automated processes. 

However, a key distinction to our work is the attempt to quantitatively evaluate the impacts of 

using IMDS data on LCA results, by assessing different levels of data aggregation and completeness. 

These studies have not examined this aspect in such detail. While they present efficient methods for 

IMDS data extraction, we take an additional step to provide clearer guidance for practitioners on 

suitable data usage strategies based on study goals. This was achieved through the engine case study, 

where we analysed the trade-offs between modelling effort and result accuracy under different IMDS 

data usage scenarios. Therefore, our work builds upon and extends prior research on IMDS in LCA by 

providing a quantitative perspective on the implications of data quality, completeness and aggregation 

on LCA outcomes. 

More recently, Accardo, et al. (2023) performed a similar investigation on simplification 

strategies for LCA modelling using IMDS data, but with a driver's seat as their case study. This 

provides a useful complementary automotive component to analyse compared to our engine study. 

The authors developed a reference LCA model using the full detailed list of materials and substances 

from IMDS, mirroring our approach. However, they employed a different set of midpoint 

characterization methods (CML baseline), analysing 11 impact categories as opposed to our 16. They 

then assessed the impacts of five cut-off scenarios, a VDA classification scenario, and a one-

substance-per-material scenario. The cut-off and one-substance strategies aligned directly with the 

simplifications we studied. The VDA scenario specifically utilized the material classifications from 

IMDS to categorize substances, which we did not examine. 
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Interestingly, their findings on the impacts of mass cut-offs reinforce our conclusions. They found 

that cut-offs introduced significant deviations in certain impact categories, e.g., abiotic depletion, even 

at 1%. However, for climate change impacts, mass cut-offs up to 5% did not affect results 

substantially. This aligns with our finding that small cut-offs maintain reasonable accuracy for carbon 

footprint assessments. The one-substance approach in their study showed the most pronounced 

variation in the ozone depletion category. Conversely, other impact categories remained largely 

unaffected. This contrasts with our results, where the approach corresponding to their one-substance 

strategy led to significantly larger variations in multiple impact categories, notably in metal resource 

use. 

As for their VDA strategy, it led to a neglection of around 20% of the environmental impacts in 

the abiotic depletion category, with negligible variation in the other impact categories. Regarding 

manufacturing data, their results show that material processing stage contributes significantly, over 

20%, to climate change impacts. This aligns with our finding that incorporating manufacturing and 

assembly data importantly influenced climate change and other energy-related impacts. Their overall 

conclusions complement our findings in demonstrating the clear trade-offs involved in using 

simplified IMDS data for LCA modelling. 

5.2.2 Scarcity assessments in the automotive sector 

Several studies have explored the material and metal composition of passenger vehicles. While 

many of these studies share the objective of identifying and assessing different aspects of metal 

scarcity, their approaches and data sources differ. Like Iglesias-Émbil, et al. (2020) and Bhuwalka, et 

al. (2021), we also base our assessment on detailed primary data from automotive manufacturers. 

However, whereas their focus was on complete vehicles – encompassing both ICE and electrified 

models – our attention is specifically on gliders, excluding the powertrain. 

Iglesias-Émbil, et al. (2020) conducted an in-depth analysis of 60 metals across a conventional 

ICE vehicle and a battery electric vehicle. The scope of their study aligns closely with ours, both in 

the number of metals assessed and the detailed examination of metal distribution within vehicle 

subsystems. Their adoption of an exergy indicator offers a contrasting perspective to our emphasis on 

short and long-term scarcity metrics. Their findings underscored that the most exergy-intensive 

metals, including cobalt, nickel, lithium, copper, and aluminium, are predominantly found in the high-

voltage battery, electric motor, charger, and power module. This highlights the dominance of 

powertrain-related components in the metal scarcity assessment of complete vehicles. 

Other authors applied a vulnerability assessment to metals present in conventional and electrified 

vehicles. Knobloch, et al. (2018) assessed 27 metals, and their findings identified, among others, 

dysprosium, neodymium, terbium, and praseodymium as vulnerable metals, which resonates with our 

results. Bhuwalka, et al. (2021), on the other hand, took a more expansive approach by examining 76 

elements, encompassing most metals. Their study highlighted the changing material demands due to 

vehicle electrification, emphasizing metals such as cobalt, copper, nickel, aluminium, and 

neodymium. 

As mentioned before, one distinct difference between our study and others is our particular 

emphasis on gliders versus complete vehicles. This unique perspective offers an alternative approach 

into the significance of metals across different components and systems beyond the often-discussed 

powertrain. In fact, this difference in scope might be a significant factor causing variances in the 

identified critical metals between our findings and those of other studies. Notably, our findings reveal 

the importance of various metals in subsystems like safety, entertainment, communication equipment 

and structural components, which often go underrepresented in broader studies. Additionally, our 

utilization of an entropy indicator aids in gauging the feasibility of metal recovery and substitution. 
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5.3 Implications for stakeholders 

Based on the assessments in Paper I and II, several implications for the automotive sector and 

other stakeholders emerge. 

Use of IMDS data and LCA integration: Building on our discussion from the previous section, the 

methodology for extracting material composition data from IMDS holds significant value for Volvo 

Cars. Its broader applications are not limited to streamlining data for LCA studies, as evidenced by 

the metal scarcity study. While IMDS is invaluable for easing LCA inventory tasks, aligning data 

extraction and modelling to individual study objectives remains crucial. 

Minor materials and result accuracy: While the strategic approach to data simplification can ease 

modelling, omitting minor materials can jeopardize result accuracy in many impact categories. This 

especially applies when omitting specific alloying elements. 

The value of complementary data: Building on our earlier discussion, extending data sources 

beyond IMDS is essential. This could include manufacturing data, material loss information, 

production routes, and recycling content. For a more extensive approach, the automotive sector might 

consider developing comprehensive internal material databases. Instituting standards on minimum 

recycled content could enhance data quality. 

Increasing dependency and challenges in recovery: As vehicles increasingly integrate advanced 

technology, reliance on metals like gold, silver, palladium and REMs grows. This transition indicates 

a potential volatile supply chain, emphasizing the need for sustainable sourcing. Concurrently, the 

complexity of efficiently recovering these metals, thinly dispersed across multiple components, 

present noticeable challenges. The low economic value of certain metals adds another layer to the 

challenges associated to their recycling. 

Alternative material sourcing and substitution: The potential scarcity of precious metals, 

especially gold with its significant long-term scarcity risks, calls for a proactive search for 

alternatives. Substitution strategies like cladding base metals with gold alloys have been employed 

successfully to reduce gold usage in electronics (European Commission, 2020b). Beyond gold, the 

potential scarcity of metals like dysprosium, terbium, and gallium also demands attention. Strategies 

like the adoption of iron-based permanent magnets could mitigate supply risks. Manufacturers are 

advised to engage with material scientists and industry experts to scout for potential substitutes that 

can be seamlessly integrated into production processes without causing disruptions while delivering 

equivalent or superior functionality compared to the metals they replace. 

Evolving vehicle equipment levels: Differences in equipment levels present significant variations 

in the short-term potential scarcity of several metals. This could have immediate implications for 

automotive manufacturers who might need to adjust their manufacturing strategies (high vs low 

equipment levels) based on the availability and predicted scarcities of metals. However, in the long 

term, the trend of vehicles getting equipped with more advanced features combined with increasing 

electrification, implies that future vehicles might have a similar metal composition, irrespective of 

their segment or level of equipment. This could have large impacts on supply chains, urging 

automakers to re-evaluate their sourcing strategies and establish partnerships to ensure a steady 

supply. 

Geopolitical considerations: Indicated short term supply risks calls attention to a range of factors 

that might interrupt supply chains. Geopolitical factors, for example, adds additional risk beyond 

limited global supply that relate to the geographical and political distance between supply and 

demand. Hence, diversifying sourcing regions, establishing stronger trade relationships, and 

considering domestic metal reserves can serve as potential strategies to mitigate these risks. 
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5.4 Future research 

In our journey through this thesis, we have explored the potential of IMDS data for environmental 

assessments in the automotive industry. We tackle not only the complexities of LCA modelling but 

also delve deep into the metal compositions of vehicle gliders, focusing particularly on metal scarcity. 

Despite our broad approach there remain areas unexplored, suggesting interesting avenues for future 

research. 

In Paper I, we found that certain simplification strategies might work well when modelling 

vehicle parts made up of bulk materials, especially for carbon footprint assessments. These strategies 

seem to retain the accuracy of LCIA results for such assessments. However, the situation becomes 

more challenging when considering more complex components like power electronics and traction 

batteries. Our research did not provide detailed guidance for such parts. Accardo, et al. (2023) 

suggests that the simplification strategies they employed for a vehicle seat could potentially be 

extended to other components or even the entire vehicle. Yet, they do not offer conclusive evidence 

for their efficacy. There is a chance that the simplification strategies we used might have different 

effects on such complex components. This is a clear area for future research. Additionally, the 

potential of setting up detailed databases for automotive materials is a promising avenue. Such 

resources could fill in the gaps in material knowledge and make environmental assessments more 

comprehensive. 

In Paper II, we addressed the topic of metal scarcity by focusing on a specific aspect of supply 

risk. However, to achieve a more comprehensive understanding of the challenges associated with 

metal availability and use, one must delve deeper into both supply risk and the economic vulnerability 

of stakeholders. Discussing supply risks involves considering different variables, such as country 

concentration of production, political stability of producing nations, trade barriers, and recycling rates. 

Vulnerability, on the other hand, encompasses factors like material substitutability, recyclability, price 

volatility, and demand growth potential. Exploring these nuances in future research can offer a more 

comprehensive view of critical metals in the automotive sector. 

Throughout our research, various knowledge gaps have emerged, pointing to opportunities for 

further investigation. A key area focuses on LCA studies of vehicle gliders. Despite the detailed 

analysis presented in Paper II, there remains a need for more exhaustive evaluations of the 

environmental impacts of vehicle systems excluding the powertrain. In this regard, contrasting current 

impacts with historical data might provide insights into the environmental evolution of various vehicle 

parts, such as specific electronics or sensors. Furthermore, as advancements such as hydrogen-reduced 

steel become more prominent, it is crucial to consider potential changes in environmental footprints of 

future vehicles. Similarly, when assessing vehicles with all-electric propulsion systems, it is vital to 

comprehensively compare the environmental impacts of powertrains to the rest of the vehicle 

components. For instance, exploring the integration of innovative vehicle designs with emerging 

propulsion technologies, such as sodium-ion batteries or ferrite-based electric motors, could offer 

deeper insights into addressing sustainability challenges in the automotive industry. 

Finally, while this research has provided valuable insights on key aspects of environmental 

assessments in the automotive sector, it also sets the ground for broader, as well as more nuanced 

investigations in the future, taking inspiration from both our missed opportunities and planned 

projects. 
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6 Conclusions 

This thesis has underlined the potential of IMDS data in aiding environmental assessments within 

the automotive sector. The approach to extract material composition data from IMDS described in this 

thesis, enables highly detailed modelling in LCA studies. Yet, certain challenges in the data, such as a 

lack of information on material production routes and recycling content, may affect the accuracy of 

environmental impact estimations. 

While IMDS proves valuable for LCA, the balance between precision and modelling effort is 

evident when adopting different modelling simplification strategies. For instance, utilizing a mass cut-

off or representing materials by a single basic substance can lead to significant workload reductions. 

However, there is a trade-off in precision, which becomes especially pertinent when examining 

impacts related to e.g., mineral and metals resource use. 

The in-depth exploration of vehicle gliders' metal compositions underscores the significant 

influence of their vast metal requirements on the automotive manufacturing supply risks. The 

interdependencies between the automotive sector and other industries become more evident, as the 

risk in one can have cascading effects on the other. In our assessment, gold, copper, and certain REMs 

have emerged as particularly vulnerable to scarcity risks, especially with the growing trends of 

electronics integration. 

The challenges in metal recovery from ELVs, especially for precious metals, copper, and REMs, 

remain challenging. Factors such as distribution throughout the vehicle, low overall mass of some 

metals and low economic value make recovery complex. Novel techniques for recycling of wire 

harnesses can potentially improve copper recovery. Moreover, a better understanding of where 

specific metals are primarily used, like REMs in multimedia equipment and gold in electronic setups, 

allows for more focused recovery strategies. 

Our assessment notes that differences in equipment configurations lead to significant disparities in 

the short-term scarcity for some metals. Therefore, developing mitigation strategies like material 

substitution and efficient ELV recovery will prove critical for the automotive industry's long-term 

metal sustainability. 

Finally, the lessons derived from this research underscore the intricate relationship between data-

driven decision-making, like using IMDS, and real-world challenges in the automotive sector. Metal 

scarcity and recovery issues are intertwined with larger industrial trends, and it is imperative for 

automotive stakeholders to effectively synthesize this knowledge. Hopefully, the insights gained from 

this thesis can guide the industry toward a more sustainable use of resources, better equipping it for a 

more resilient future.
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