

Optical Network Automation and Programmability for 6G: State-of-the-Art, Vision, and Challenges

Carlos Natalino

Researcher

Optical Networks Unit

Department of Electrical Engineering

Chalmers University of Technology

https://www.chalmers.se/en/persons/carda/

Outline

Part 1

- Network generations
- 6G vision
- Use cases
- Representative architecture

Part 2

- Challenges
- State-of-the-art
 - Four representative works
- Concluding remarks

*The latest version of this slide set can be found here: https://research.chalmers.se/en/publication/537646

Network generations

From 5G to 6G

5G

From 5G to 6G

5G

5G+

From 5G to 6G

6G vision

*Wolfgang John, "The journey towards 6G: Going beyond connectivity services," IEEE NetSoft, Madrid, Spain, June 2023.
** European Vision for the 6G Network Ecosystem

Use cases

Representative architecture

End-to-end apps & optimization

AI/ML Network
Optimization

CHALMERS

Control & orchestration

Wireless Domain Controller(s)

IP/Packet Domain Controller(s)

. . .

Optical Domain Controller(s)

Cloud Domain Controller(s)

App connectivity

Traditional – Each domain switches at the packet layer to reach a centralized processing pool

Edge-based – Each domain switches at the packet layer

Access

Metro

Core

Carlos Natalino ♦ Th.A.1.T – Optical Network Automation and Programmability for 6G

Representative architecture

End-to-end apps & optimization

Control & orchestration

Wireless Domain Controller(s) IP/Packet Domain Controller(s)

. . .

Optical Domain Controller(s)

Cloud Domain Controller(s)

Network automation & programmability

*Achim Autenrieth, "Carrier Grade Al/ML for Network Automation", invited talk, OFC 2022, 9 March 2022

Outline

Part 1

- Network generations
- 6G vision
- Use cases
- Representative architecture

Part 2

- Challenges
- State-of-the-art
 - Four representative works
- Concluding remarks

Automatic provisioning and operation

Key aspects:

- Automatic provisioning
- Monitoring and response
- Distributed telemetry & control

Scalable SDN Controller

Automatic provisioning

*LI. Gifre, et al., "Demonstration of Zero-touch Device and L3-VPN Service Management using the TeraFlow Cloud-native SDN Controller, OFC, 2022

Automatic provisioning


```
OLS Ctrl configuration set used to populate TAPI data model templates:
```

<u>Key</u> <u>Value</u>

/service[svc-uuid] input_sip: SIP1, output_sip: SIP3,

layer_protocol_name: PHOTONIC_MEDIA,

direction, capacity_unit, capacity_value, ...

Packet router R1 configuration set used to populate OpenConfig data model templates:

```
Key
                                                         Value
/interface[13/2/1]
                                                         mtu: 1512
/interface[13/2/1]/subinterface[400]
                                                         vlan_id: 400, address_ip: 3.3.2.1, address prefix: 24
/net inst[svc-uuid]
                                                          type: L3VRF, route distinguisher: 65000:100
/net_inst[svc-uuid]/interface[13/2/1.400]
                                                         interface: 13/2/1, subinterface: 400
/net inst[svc-uuid]/proto[DIRECT CONN]
/net inst[svc-uuid]/proto[STATIC]
/net inst[svc-uuid]/proto[BGP]
                                                          as: 65000
/net inst[svc-uuid]/table conn[DIRECT CONN][BGP][IPV4]
/net inst[svc-uuid]/table conn[STATIC][BGP][IPV4]
/routing policy/bgp[rt import]
/routing policy/bgp[rt import][route-target:65000:333]
/routing policy/definition[import]/statement[3]
                                                         ext_community: rt_import, match: ANY, policy: ACCEPT_ROUTE
/net inst[pkt-svc-uuid]/inter instance policies[import]
   [last 4 repeated for export policies]
```

*LI. Gifre, et al., "Demonstration of Zero-touch Device and L3-VPN Service Management using the TeraFlow Cloud-native SDN Controller, OFC, 2022

Monitoring and response

The network must respond to failures and threats

- Physical layer attacks
- Misconfiguration
- Failures

Monitoring and response

Representative results

p → Target loop time

Time taken to diagnose all lightpaths

^{*} C. Natalino et al., "Flexible and scalable ML-based diagnosis module for optical networks: a security use case [Invited]," JOCN, 2023.

Distributed telemetry & control

- The network needs fast response to soft failures
 - Decision can be made locally
 - Outer loop (e.g., ML-based) can decide thresholds

Distributed telemetry & control

Proposed solution

^{*} F. Cugini, et al., "P4-based Telemetry Processing for Fast Soft Failure Recovery in Packet-Optical Networks," OFC, 2023, M1G.2.

Distributed telemetry & control

Performance assessment

^{*} F. Cugini, et al., "P4-based Telemetry Processing for Fast Soft Failure Recovery in Packet-Optical Networks," OFC, 2023, M1G.2.

Ubiquitous Al/ML

- Current way of building, deploying and maintaining Al/ML models is not scalable
 - Numerous empirical decisions
 - Per-task model engineering
 - Model-specific workflows

Ubiquitous AI/ML

AI/ML-as-a-Service

* C. Natalino, et al., "Machine-Learning-as-a-Service for Optical Network Automation," OFC, 2023, W4G.3.

Ubiquitous Al/ML

CHALMERS

Preliminary results

Open questions

How can we make *network* services more accessible to the customers?

How can we fully realize **self-driving multi-layer multi-domain networks**?

How can we ensure the **security and privacy of the control plane** when adding automation?

Can current open platforms and standards handle upcoming technologies?

How can we increase the added value of network services?

Final remarks

- Optical networks are the ultimate technology for network slicing
 - Important milestones have been achieved over the past few years
 - Complexities and specificities of the physical layer need attention

- The role of AI/ML needs to be better understood
 - Trustworthiness, explainability, accountability, etc.
- Open APIs need continuous updates
 - Follow latest device developments
 - Enable advanced use cases

Acknowledgements

- Paolo Monti
- Lena Wosinska
- Marija Furdek
- Nasser Mohammadiha
- Ashkan Panahi
- Ricard Vilalta
- Lluis Gifre
- Raul Muñoz
- Anders Lindgren
- Stefan Melin
- Achim Autenrieth
- Wolfgang John
- Ali Balador

- Celtic-Next projects AI-NET-PROTECT and AI-NET-ANIARA
- TeraFlow H2020
- Chalmers' ICT Area of Advance

Funded by the Horizon 2020 Framework Programme of the European Union

References and further reading

- Wolfgang John, "The journey towards 6G: Going beyond connectivity services," IEEE NetSoft, Madrid, Spain, June 2023.
- Whitepaper, "European Vision for the 6G Network Ecosystem," 5GPPP, 2021. DOI: 10.5281/zenodo.5007671.
- Achim Autenrieth, "Carrier Grade Al/ML for Network Automation", invited talk, OFC 2022, 9 March 2022.
- L. Gitre et al., "Demonstration of Zero-touch Device and L3-VPN Service Management using the TeraFlow Cloud-native SDN Controller," 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2022.
- E. Etezadi et al., "Deep reinforcement learning for proactive spectrum defragmentation in elastic optical networks," in Journal of Optical Communications and Networking, vol. 15, no. 10, pp. E86-E96, October 2023. DOI: 10.1364/JOCN.489577.
- C. Natalino et al., "Flexible and scalable ML-based diagnosis module for optical networks: a security use case [Invited]," in Journal of Optical Communications and Networking, vol. 15, no. 8, pp. C155-C165, August 2023. DOI: 10.1364/JOCN.482932.
- F. Cugini, et al., "P4-based Telemetry Processing for Fast Soft Failure Recovery in Packet-Optical Networks," OFC, San Diego, CA, USA, 2023. DOI: 10.1364/OFC.2023.M1G.2.
- C. Natalino, et al., "Machine-Learning-as-a-Service for Optical Network Automation," OFC, San Diego, CA, USA, 2023. DOI: 10.1364/OFC.2023.W4G.3.

*The latest version of this slide set can be found here: https://research.chalmers.se/en/publication/537646

Thank you! ©

This presentation

Chalmers profile

GitHub page

Thank you! ©

Optical Network Automation and Programmability for 6G: State-of-the-Art, Vision, and Challenges

Carlos Natalino

Researcher

Optical Networks Unit

Department of Electrical Engineering

Chalmers University of Technology

https://www.chalmers.se/en/persons/carda/

https://github.com/carlosnatalino

CHALMERS UNIVERSITY OF TECHNOLOGY