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Abstract
Motivation: Molecular docking is a commonly used approach for estimating binding conformations and their resultant binding affinities.
Machine learning has been successfully deployed to enhance such affinity estimations. Many methods of varying complexity have been devel-
oped making use of some or all the spatial and categorical information available in these structures. The evaluation of such methods has mainly
been carried out using datasets from PDBbind. Particularly the Comparative Assessment of Scoring Functions (CASF) 2007, 2013, and 2016 data-
sets with dedicated test sets. This work demonstrates that only a small number of simple descriptors is necessary to efficiently estimate binding
affinity for these complexes without the need to know the exact binding conformation of a ligand.

Results: The developed approach of using a small number of ligand and protein descriptors in conjunction with gradient boosting trees demon-
strates high performance on the CASF datasets. This includes the commonly used benchmark CASF2016 where it appears to perform better
than any other approach. This methodology is also useful for datasets where the spatial relationship between the ligand and protein is unknown
as demonstrated using a large ChEMBL-derived dataset.

Availability and implementation: Code and data uploaded to https://github.com/abbiAR/PLBAffinity.

1 Introduction

The early stages of drug development rely on finding promising
lead compounds. Computational approaches are increasingly
utilized to identify such compounds, and molecular docking is
a widely used tool for this purpose. Molecular docking deploys
different algorithms to generate potential ligand binding poses
and resultant affinity estimations within a target binding site
(Kroemer 2007). These affinity estimations can be improved
using machine learning. A range of scoring methods have been
published on the use of machine learning for predicting the re-
sultant binding affinity from a protein–ligand complex (Liu
and Wang 2015, Li et al. 2020). These methods are dependent
on knowing the exact ligand binding conformation in the bind-
ing site since they rely on encoding the spatial relationships be-
tween protein and ligand atoms. Alternative methods for
calculating protein–ligand binding affinity without spatial in-
formation does exist, but to the best of our knowledge, have
not been applied to the Comparative Assessment of Scoring
Functions (CASF) benchmark datasets (Öztürk et al. 2018,
Gao et al. 2018, Karimi et al. 2019, Tsubaki et al. 2019).

Previous studies have made use of the spatial relationship be-
tween the ligand and protein constituents in their lowest energy
conformation (Jiménez et al. 2018, Nguyen and Wei 2019a,b).

Currently, one of the latest and most successful descriptors is
the extended connectivity interaction fingerprint (ECIF)
(Sánchez-Cruz et al. 2021). The idea behind this fingerprint is
to count pairs of interacting protein and ligand atom types, de-
fined by their specific state and environment. However, ECIFs
does not discriminate between close- and long-range contacts,
or indeed includes any additional distance information except
the tally of all contact pairs within a set distance threshold.
Paired distance ECIF (PDECIF) sought to improve upon ECIF
by demonstrating that discriminating between close- and long-
range interactions would improve predictions. The improve-
ments were indeed significant but not as substantial as one may
have expected (Orhobor et al. 2022).

These results led us to ask what we could achieve using
nonspatial descriptors. Previous studies have highlighted the
benefits of adding basic ligand descriptors when predicting
binding affinity from a protein–ligand complex (Boyles et al.
2020, Sánchez-Cruz et al. 2021). Such features are often asso-
ciated with quantitative structure–activity relationship, a
well-established machine learning based methodology where
features related to structural, chemical, and physical aspects
of ligands are exploited to predict compound biological activ-
ity towards a target (Hansch and Fujita 1964, Muratov et al.
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2020). In this work, we demonstrate that only a small subset
of such ligand related features along with basic protein se-
quence information is required to achieve state of the art
results for binding affinity prediction on the CASF datasets.

2 Materials and methods

CASF 2007, 2013, 2016, and 2019 datasets were acquired
from PDBbind (Cheng et al. 2009, Li et al. 2014, Su et al.
2019). All datasets have a subset of structures included in a ‘re-
fined set’ based on quality-related thresholds. For 2007, 2013,
and 2016 versions, the refined datasets have dedicated core
sets which conventionally function as test sets, the training sets
consists of the remaining structures in the refined datasets. The
refined sets for 2007, 2013, 2016, and 2019 contain 1300,
2959, 4057, and 4852 protein–ligand complexes, respectively.
The core sets for 2007, 2013, and 2016 contains 210, 195, and
285 complexes, respectively. As the 2019 version lacks a core
set, we applied 5-fold cross validation (CV) to test the perfor-
mance of our descriptors on this dataset.

For each protein structure, a count of the amino acids fea-
tured in its active site was performed. The authors of the
CASF datasets provide pdb files for all their binding sites,
these files include amino acids within 10 Å of the bound
ligands. For every protein, each amino acid type was encoded
into a vector with the number of occurrences as its corre-
sponding value. Only standard amino acids were considered
generating a 20-unit amino acid vector. In addition, eighteen
ligand properties were calculated using RDKit (https://www.
rdkit.org), these features are listed in Supplementary Table
S1. A separate vector containing these calculated values was
constructed. Finally, the amino acid and ligand property
vectors were concatenated and used as the input data for our
machine learning experiments. The target values used were
the –log(Kd/Ki) activity values provided in the index files that
accompany the CASF datasets.

At the outset, many CASF ligands were incompatible with
RDKit’s sanitation protocol which is used when converting
ligands into workable Mol objects. Hence, we first parsed
them through PubChem’s standardization service (using PUG
REST) (Hähnke et al. 2018). This resulted in a nearly com-
plete compatibility with RDKit. The few structures considered
invalid by the PubChem standardization process were con-
verted into sybyl mol format using Open Babel (O’Boyle et al.
2011). Supplementary materials contain lists of structures in-
compatible with pubchem’s standardization service for each
dataset (Supplementary Table S2).

We performed our experiments using the machine learning
method extreme gradient boosted trees in R (https://www.
r-project.org). The hyperparameters were optimized using a
grid search, and kept all but the number of rounds, max
depth, and learning rate as default values, where number of
rounds ¼ (500, 1000, 1500, 2000), max depth ¼ (2, 4, 6, 8),
and learning rate ¼ (0.001, 0.01, 0.1, 0.2, 0.3). We used inter-
nal 5-fold CV on only the training sets to identify the best
hyperparameter combination. We report the mean Pearson’s
correlation coefficient (R), along with the root mean squared
error (RMSE) from 5-fold CV. It is worth noting here that
this 5-fold CV is different from the internal CV used on the
training sets to determine the best hyperparameters.

ChEMBL experiments: amino acid counts were performed
for all protein pockets and chains in CASF v.2019 as de-
scribed above. If a protein had more than one structure

present in the dataset, the mean count for these entries was
used. Proteins from CASF v.2019 were cross referenced with
the ChEMBL database (v.24, 01 May 2018). Ligand proper-
ties for RDKit-compatible small molecules (<700 kDa) were
calculated using RDKit. Where more than two entries for the
same protein–ligand pair were present, only the last entry was
kept. �log(Ki/Kd) was set as the target value and hence, only
samples with an associated Ki/Kd value was included. The re-
sultant dataset consisted of 63 281 compatible ligands across
325 unique proteins. Machine learning was applied as de-
scribed for the previous experiments. Predictions were per-
formed using the ligand properties, the amino acid counts as
well as the two features combined. As the number of drugs
per protein is heavily skewed towards a few targets, different
thresholds on maximum number of ligands for including tar-
gets in the datasets were applied (250, 500, and no limit).
Datasets and results are available in a GitHub repository
(https://github.com/abbiAR/PLBAffinity).

3 Results

Across all datasets, ligand descriptors alone resulted in similar
performance, R �0.68–0.71. Amino acid descriptors per-
formed exceptionally well with the CASF 2007 dataset
(Table 1). For the remaining datasets the performance of these
amino acid descriptors alone is closer to that seen with ligand
properties. The combination of the two descriptors improves
the results to varying degrees. For CASF 2007, where amino
acid vectors already perform very well, the addition of
ligand descriptors only provides a comparatively modest im-
provement. For CASF 2013, the effect of the combination is
more pronounced resulting in a significant improvement,
R¼ 0.777, RMSE¼ 1.480 (Table 1).

A significant improvement in performance for the CASF
2016 dataset was also seen when the two descriptors are com-
bined, the performance of 0.844 (RMSE¼ 1.233) outper-
forms all but one of the state-of-the-art approaches (compare
with ECIF and AGL score’s R¼ 0.841 and 0.833, respec-
tively, with the same training data) (Nguyen and Wei 2019a,
Sánchez-Cruz et al. 2021), it also outperforms the well-
known method KDEEP which stands at R¼0.82 (Jiménez
et al. 2018) (see Table 2). PDECIF shows a similar perfor-
mance with R¼ 0.844 and an RMSE of 1.246 (Orhobor et al.
2022). However, this method does result in a slightly lower
RMSE (cf. 1.233 and 1.246) and given the set of 38 simple
features our method appears highly efficient.

Five-fold CV on the CASF 2019 dataset, which does not
have a dedicated test set, reveals that the ligand properties
and amino acid counts perform consistently well (Table 3).
Again, the combination of these feature vectors results in a
significant improvement.

In order to investigate the performance of this approach for
predicting affinities for a wider range of ligands, we

Table 1. Mean predictive performance of 18 ligand and 20 protein

descriptors on the CASF datasets.

Benchmark RDKit Amino count RDKitþamino

CASF-2007 0.713/1.730 0.775/1.583 0.832/1.365
CASF-2013 0.675/1.700 0.646/1.722 0.777/1.480
CASF-2016 0.715/1.551 0.706/1.543 0.844/1.233

a The descriptors are shown separately and in combination (Pearson
R/RMSE).
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performed additional experiments. First, we matched protein
pockets from the CASF v.2019 dataset with targets in
ChEMBL. The available ligands for these ChEMBL targets
had their properties calculated using RDKit. Along with
the amino acid counts for the pockets, this resulted in a new
dataset consisting of 63 281 samples representing unique pro-
tein–ligand pairs. Figure 1 illustrates the number of ligands
associated with each protein. Since the number of ligands per
protein varies significantly, we measure the performance of
our descriptors with different thresholds for maximum num-
ber of ligands allowed for a single protein (Table 4). Our
method appears highly efficient.

The results from the ChEMBL dataset further underscores
the usefulness of combining a simple vector representing the
amino acid count of the target binding site with ligand prop-
erties, when predicting binding affinities. The exact amino
acids included in the pockets in this case is not ‘tailored’ to
each ligand like they are in the CASF datasets, and they still
appear to significantly improve predictions. For many of these
proteins, datapoints are limited. For instance, of the 325 pro-
teins, 160 proteins have �30 data points available.

Taking the descriptors and the outcomes into account, it is
likely that our approach simply makes use of sequence con-
stituent homology rather than estimating a putative binding
energy based on amino acids involved in the binding site, and
the corresponding potency of ligands based on their descrip-
tors. To investigate this, the experiments using the ChEMBL
dataset, which relies on the amino acid count of the active
site, were performed again, with the significant difference that
the amino acid count was based on the entire protein chain in-
stead of the binding site alone (Table 5).

4 Discussion

There are many approaches for predicting protein–ligand
binding affinity from structural complexes. In this article, we

have demonstrated that only a small subset of information
along with a tree-based machine learner is required to surpass
all but one of the current state-of-the-art approaches in this
task using the CASF datasets and a ChEMBL-derived dataset.
We used 18 basic ligand features pertaining to structure and
chemical properties along with an amino acid count of the
polypeptide chain or the active site.

Achieving similar performance using an amino acid count
of the full polypeptide chain rather than of the active site
alone, makes it likely that protein homology (on an amino
acid constituent basis) is leveraged in the learning (cf.
Tables 4 and 5). Taken together with the outstanding perfor-
mance of this simple approach compared with other pub-
lished methods on the CASF datasets (cf. Tables 1 and 2), we
conclude that it is very useful for estimating ligand–protein
binding affinity. It is further noteworthy that its utility
extends to cases where the spatial relationship between pro-
tein and ligand is unknown. However, further investigation is
required to delineate the benefits of this approach to specific
protein targets.

The fact that our suggested descriptors can be leveraged to
such an extent across the CASF datasets does suggest that
there is a critical need to design new datasets for the task of
predicting protein–ligand complex affinity using machine
learning. Such datasets should ensure that predictions are
based on correlations between specific interactions between
protein and ligand within the binding site. Other studies have
also observed the tendency of machine learning models to per-
form well using nonspatial features when trained on the
CASF datasets (Yang et al. 2020, Volkov et al. 2022). They
attribute this fact to bias in the datasets with regards to both
proteins and ligands, with one suggested solution to this prob-
lem being the construction of larger and less biased datasets.

Future studies employing our proposed approach may
adopt more robust datasets derived from ChEMBL and other
sources with regards to inclusion criteria of proteins and
ligands to reduce any potential bias. However, this study sim-
ply set out to demonstrate that the combination of ligand
properties and an amino acid count improves affinity predic-
tion for protein–ligand complexes. The attraction of this ap-
proach is its simplicity. The predictions presented herein are
likely to improve further by the addition of nontrivial infor-
mation about ligand, protein, or their interaction.

Supplementary data

Supplementary data are available at Bioinformatics online.

Table 2. Comparison with other scoring methods on the CASF 2016

dataset.

Method Pearson R RMSE

This work 0.844 1.233
PDECIF 0.844 1.246
ECIF 0.841 1.252
AGL-score 0.833 1.271
KDEEP 0.82 1.27
PLEC-nn 0.817 1.258
DVINA-RF20 0.816 1.26
DVINAXGB 0.796 1.32
Bapplþ 0.71 1.57

a ECIF and PDECIF make use of additional ligand properties in their
predictions.

Table 3. Individual results from a 5-fold CV over the CASF-2019 dataset.

Benchmark RDKit Amino count RDKitþamino

Fold 1 0.674/1.444 0.723/1.349 0.781/1.220
Fold 2 0.701/1.407 0.747/1.311 0.797/1.191
Fold 3 0.667/1.448 0.728/1.332 0.775/1.227
Fold 4 0.675/1.470 0.729/1.360 0.774/1.260
Fold 5 0.667/1.474 0.712/1.390 0.768/1.266
Average 0.677/1.449 0.728/1.348 0.779/1.233

a The descriptors are shown separately and in combination (Pearson
R/RMSE).

Figure 1. Number of ligands measured per protein in the ChEMBL

dataset.
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Table 4. Prediction results for the ChEMBL dataset using amino acid counts based on active sites.

Ligands present Unique
proteins

Samples RDKit Amino count
(active site)

RDKitþamino

<250 255 10 987 0.663/0.993 0.562/1.096 0.782/0.825
<500 293 24 518 0.679/0.953 0.525/1.105 0.784/0.807
No threshold 325 63 281 0.642/0.961 0.455/1.115 0.775/0.793

a Results presented are the average Pearson R from a 5-fold CV, as well as the RMSE.

Table 5. Prediction results for the ChEMBL dataset using full protein chain sequence counts.

Ligands present Unique
proteins

Samples RDKit Amino count
(active site)

RDKitþamino

<250 255 10 987 0.663/0.993 0.562/1.096 0.782/0.827
<500 293 24 518 0.679/0.953 0.525/1.105 0.785/0.806
No threshold 325 63 281 0.642/0.961 0.455/1.115 0.773/0.794

a Results presented are the average Pearson R from a 5-fold CV, as well as the RMSE.
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