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Abstract—Container orchestration platforms like Kubernetes
(K8s) allow easy deployment and management of cloud native
services. When deploying their services, service providers need
to specify a proper amount of resources to K8s, so that the desired
Quality of Service (QoS) to their users can be maintained. To cope
with the varying traffic demand coming from users, they can
rely on the K8s Horizontal Pod Autoscaling (HPA) mechanism.
To ensure that enough resources are available when needed, the
standard HPA mechanism relies on resource overprovisioning. In
this way, the required QoS is achieved most of (or all) the time
but at the expense of additional resources that are allocated (and
charged for), while they may stay idle for significant periods of
time. A way to reduce overprovisioning is provided by the soft
resource isolation of K8s, which allows services to compensate
for a temporary lack of resources with shared resources, i.e., idle
resources of the machines where services are running. However,
during traffic spikes, these idle resources may not be enough to
serve the whole demand, degrading the QoS. The HPA, which
is not aware of how much demand could not be served, is
not always able to correctly estimate the required additional
resources, further degrading the QoS. To overcome this, service
providers need to leverage overprovisioning, limiting the use of
shared resources. In this paper, we propose a novel mechanism
for autoscaling resources in K8s that relies on service-related
data to avoid the additional degradation introduced by the HPA.
The proposed strategy also offers a way to tune overprovisioning
and shared resources. Simulation results show that our approach
can reduce idle resources by up to 60% compared with the HPA
mechanism.

Keywords—Cloud native services, QoS, service degradation, Pod
autoscaling, Kubernetes, Shared resources, Pod as a Service.

I. INTRODUCTION

The advent of containers and related orchestration plat-
forms enabled the possibility to develop and deploy cloud
native services [1]. Kubernetes (K8s), an example of a widely
used platform, offers easy and automatic container deployment
and management [2]. Thanks to K8s, service providers can rent
collections of containers, called Pods, from cloud providers in
a Pod-as-a-Service fashion. Service providers usually specify
the amount of resources (e.g., memory and CPU) assigned to
each Pod so that a required Quality of Service (QoS) is offered
to the users. If the resources are insufficient to satisfy the user
demand over time, users may experience QoS degradation, e.g.,
in the form of an increased application response time. This,
in turn, may result in a loss of revenue for service providers
[3]. A common way to alleviate this is to overprovision
resources/Pods, which increases costs for service providers

who need to pay for resources even during the time when
they are not used (idle).

K8s provides a scaling mechanism called Horizontal Pod
Autoscaling (HPA). The HPA reads the current CPU load over
the running replicas and scales the Pods when a threshold
is exceeded, in a reactive way [4]. However, the process of
scaling is not instantaneous as it takes some time (usually
referred to as scaling delay) to create replicas, update the
necessary components, and set up the service(s) within the
Pod. During this time, resources may not be enough to cope
with traffic variations, causing degradation, usually compen-
sated with overprovisioning. A possible alternative to reduce
degradation without relying too much on overprovisioning is
to leverage the soft isolation provided by K8s. Thanks to soft
isolation, resources can be shared among other Pods that run
on the same machine (either physical or virtual). In this way,
a service/Pod can temporarily use idle resources of another
service/Pod to compensate for a lack of resources, mitigating
degradation. During service deployment, a service provider
can specify the amount of dedicated and shared resources the
Pods can access. In [5], we leverage the HPA mechanism to
show that using shared resources allows service providers to
reduce the number of required CPUs, leading to significant
cost savings. Even though this approach provides benefits, the
HPA relies on a scaling mechanism that is not designed to
work with shared resources. In fact, when a service relies
on shared resources to cope with spikes in the demand, it
is possible that part of the needed resources is not available,
causing degradation. In this situation, the HPA will scale the
Pods to cope with the lack of resources but at a rate that might
be too slow, causing additional degradation. This is because
the scaling decisions made by the HPA are based not on the
total number of resources needed to accommodate the extra
demand, but only on whether or not the resources used by
Pods exceed the value set by the threshold.

Different works tackle the HPA inefficiencies by leverag-
ing Artificial Intelligence (AI) and Machine Learning (ML)
techniques to learn characteristics of the system and adjust the
number of replicas accordingly [6]–[11]. However, all these
works rely on dedicated resources and overprovisioning. They
do not consider the possibility to leverage soft isolation and,
therefore, do not provide a way to balance shared and dedicated
resources.

In this paper, we propose a novel Service Aware Pod
Autoscaling (SAPA) mechanism that leverages service-related



information (e.g., user requests) to calculate the desired num-
ber of Pods. Conversely to the HPA, this allows also taking
into account the unserved demand and scaling accordingly to
the demand variations even when some of the traffic cannot
be served. In addition, this mechanism offers the possibility
to control the balance between resource overprovisioning and
shared resources by tuning a parameter. Simulation results
show that the SAPA mechanism is able to reduce up to 60% of
the idle resources compared to the K8s HPA mechanism with
shared resources while not introducing significant degradation.

II. RELATED WORK

In the literature, different solutions have been proposed to
improve the HPA mechanism. The authors in [6] predict the
load of the Pods in advance and adjust the number of replicas
accordingly. The paper in [7] proposed a reinforcement learn-
ing approach to automate and guide the scaling based on online
and continuous learning of the system. The works in [8]–[11]
adopts service-related metrics to improve the HPA. In [8], the
authors use service latency as a metric to drive the scaling
process, instead of CPU usage. The authors in [9] proposed
a proactive scaling procedure based on burst predictions to
satisfy QoS requirements while optimizing resource utilization
for containers in K8s. In [10], the authors propose a proactive
scaling engine that leverages user demand predictions. The
authors in [11] operate microservices with different objectives
such as end-to-end delay bounds on service requests, through-
put, and service differentiation. The resources are prioritized
among the microservices to ensure the performance objectives.

All these works represent significant advancements with
respect to the HPA as resources are used more efficiently.
However, the proposed solutions still rely on resource over-
provisioning to compensate for sudden traffic spikes and/or
prediction inaccuracies. All the works focus on the case of
services that run on dedicated resources, i.e., resources that
the service provider pays for regardless of how much they are
used. Such resources can be accessed at any time during the
service operation. With soft isolation, instead, service providers
are required to decide not only on the amount of dedicated
resources but also on the number of shared resources to rely on.
The existing strategies are, therefore, not suitable for this case.
The HPA could be used, but it does not provide an efficient
way to scale with shared resources. Therefore, a novel scaling
strategy is needed to alleviate the issues of the HPA in the
presence of shared resources.

III. AUTOSCALING WITH SHARED RESOURCES

Cloud resources (e.g., CPUs and memory) are assigned
by K8s to Pods/services in two different ways: dedicated and
shared [12]. Dedicated resources are guaranteed, i.e., they are
assigned to Pods/services and paid for regardless of their use,
and can be accessed by the Pods/service at any time during the
service operation. Conversely, shared resources are assigned
on a best-effort basis depending on their availability, and are
paid for only when used. In the following, we will refer to
dedicated and shared resources as request and limit resources,
respectively. The service provider, who rents compute and
memory resources from the cloud provider, can specify how
many dedicated and shared resources each Pod can use by
means of resource request and limit of K8s, respectively [12].

The number of Pods is automatically adjusted by K8s over time
via an HPA mechanism. It creates or terminates Pod replicas
to cope with service demand variations, allowing service
providers to pay only for the resources needed to operate
their services. The HPA mechanism periodically monitors the
average CPU load among the Pods and compares this value
with a scaling threshold, i.e., the amount of CPUs that triggers
the creation of new Pod replicas if exceeded. Thus, the scaling
threshold also represents the maximum desired average CPU
load across all Pods of a service. The desired number of
replicas (des. #replicas) is calculated based on the current
number of replicas (cur. #replicas), the current metric value
(cur. metric value), and the desired metric value (des. metric
value), according to the following formula [4]:

des. #replicas =
⌈

cur. #replicas · cur. metric value
des. metric value

⌉
. (1)

In this work, we consider CPU usage as the metric driving
the scaling process. In this case, the current metric value is
the average CPU usage over all active Pods and the desired
metric value corresponds to the scaling threshold. In K8s, the
threshold is expressed as a percentage of the request and is
converted into the corresponding CPU amount in (1).

The scaling process takes some time, referred to as scaling
delay, needed to instantiate the new Pod(s) and to start all the
included service components. During this process, degradation
is experienced if the allocated resources are not enough to
satisfy the demand. Degradation is therefore a lack of CPUs
to serve the demand, lowering the QoS for the users. A
service provider can decide to rely only on request resources
to provide its services. In this case, the service provider can
tune the scaling threshold to control the degradation by means
of resource overprovisioning. If the scaling threshold is low
(e.g., 70%), the HPA keeps the average CPU load per Pod
equal to this value. Hence, a lot of request resources are idle
(e.g., 30% of the resources are idle). This case is shown in
Fig. 1a, where an example of service deployment with Pods
with 1 request CPU and a threshold set to 70% is depicted. In
particular, the figure shows the request resources that are either
used or idle, and the degradation in [CPUxTU]. The Pods
are not allowed to use limit resources in this case. To reduce
idle request resources, the service provider can decide to set
a higher scaling threshold. However, an excessive increase in
the threshold may lead to degradation as the resources may not
be enough to satisfy changes in user demand. This is shown
in Fig. 1b, where the scaling threshold has been increased
to 85%, and we can notice a substantial degradation when the
user traffic fluctuates. An alternative for service providers is to
use limit resources, instead of overprovisioning, to compensate
for the degradation. In this case, idle resources of other Pods
running on the same machine, or idle resources of the machine
itself, can be used to temporarily increase the Pod resources.
By doing so, the service provider can keep a high scaling
threshold, with limited overprovisioning, and rely on limit
resources to compensate for the degradation, betting on the
fact that those resources will be available when needed. An
example of this is depicted in Fig. 1c for a service that can
leverage limit resources with a scaling threshold set to 85%.
Compared to Fig. 1a, the degradation is similar but with a



0 500 1000 1500
Time step [TU]

0

20

40

60

80

100

N
um

be
r o

f C
PU

s

Idle
Degradation
Limit
Used

(a) Request resources only, scaling threshold 70%.
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(b) Request resources only, scaling threshold 85%.
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(c) With limit resources, scaling threshold 85%.

Fig. 1. Example of a cloud native service operated using K8s without and with limit resources. The used, idle, degradation, and limit resources for three
different settings are reported. Time is discretized and expressed in Time Units (TUs).
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(a) HPA with limited overprovisioning.
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(b) HPA with large overprovisioning.
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(c) SAPA with limited overprovisioning.

Fig. 2. Sample case showing the result of operating a cloud native service using K8s HPA and SAPA mechanism. Time is discretized and expressed in Time
Units (TUs).

much lower amount of idle resources. Compared to Fig. 1b,
the amount of idle resources is similar but the degradation is
compensated by limit resources.

Relying on the scaling mechanism of the HPA to control
shared resources is not efficient. In fact, to be able to use
limit resources, a service provider must set a high scaling
threshold. In this situation, there is a risk that part of the
limit resources required to serve the demand is not available,
causing degradation. The HPA mechanism based on (1) relies
only on the information on the load and is not aware of how
much demand could not be served. Consequently, the number
of desired replicas computed with (1) may be underestimated.
An example of this is represented in Fig. 2a, with the HPA
that is set to work with a scaling threshold of 91% and
Pods with 1 request CPU. It is possible to notice that, after
the demand increases (at 49 [TU]), the HPA computes (with
(1)) a desired number of replicas that is lower than what is
actually needed. During the scaling delay set to 4 [TU] in this
example, the system is able to partially compensate for the
lack of resources with limit resources, and some degradation
is experienced. At time instant 54 [TU] the number of running
replicas is adjusted, but still not enough to satisfy the demand.
The HPA computes a new desired number of replicas, which
is achieved after the scaling delay at time 59 [TU]. During this
time, additional degradation is experienced. To cope with this
issue, the service provider must lower the scaling threshold,
increasing the overprovisioning. An example is reported in

Fig. 2b where the threshold is lowered to 75% for the same
CPU demand. It can be seen that, due to the lower scaling
threshold, the number of desired replicas obtained with (1) is
higher than in the previous example (in Fig. 2a). Degradation is
lower and is experienced only during the scaling delay between
time 49 [TU] and 54 [TU]. Fewer limit resources are used
and the idle is higher, due to the large overprovisioning. This
example shows that with the HPA it is difficult to leverage limit
resources without increasing the degradation. To solve this
issue, we propose a Service Aware Pod Autoscaling (SAPA)
mechanism that makes the scaling system aware of the entity
of the unserved demand to better estimate the desired replicas.
An example of the outcome of this strategy is reported in Fig.
2c for the same CPU demand. In this case, the scaler at time
49 [TU] is aware of the entity of the demand and adjusts
the number of replicas accordingly, after the scaling delay
(time 54 [TU]). Compared to the case in Fig. 2a, the service
experiences less degradation with a similar idle. Compared to
Fig. 2b, the service experience the same degradation while
leveraging more limit resources and lowering the idle. In the
next section, we describe in detail the SAPA architecture and
scaling mechanism.

IV. THE SERVICE AWARE POD AUTOSCALING (SAPA)
MECHANISM

This section introduces the novel scaling mechanism named
SAPA that provides the means to control the amount of limit
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resources to be used by relying on service-related information.
More specifically, we assume that the service provider knows
how many user requests per unit of time each Pod can process
using request resources without degrading the QoS. Figure
3 shows the architecture of the proposed SAPA mechanism.
Service requests enter the system and arrive at a load balancer,
which is a software entity in charge of forwarding requests to
different Pod replicas. Service requests are then processed by
the Pods. While the HPA relies on CPU load measurements,
the SAPA relies on data from the load balancer. This allows for
more accurate computation of the desired number of replicas
by considering the total traffic, i.e., both the served and
unserved service demands.

Figure 4 reports the main steps of the SAPA mechanism.
An autoscaler evaluates periodically the need for scaling. First,
the offered traffic in terms of the number of requests (Nreq)
is obtained. This value can be either the current value or a
prediction of the service requests that are expected after a
number of TUs. In the latter case, the prediction can be used

0 250 500 750 1000 1250 1500 1750
Time step [TU]

0

10

20

30

40

50

60

C
PU

 D
em

an
d 

[C
PU

xT
U

s]

Fig. 5. CPU demand over time [7].

to reduce degradation during the scaling delay, as the system
is able to start the scaling procedure in advance. The specific
prediction strategy to be adopted is out of the scope of this
paper, because only the value of Nreq is needed by SAPA. The
number of desired Pod replicas (NPods) is computed based on
the following formula:

NPods =

⌈
α · Nreq

Mreq

⌉
, (2)

where α is a parameter to allow for underdimension-
ing/overdimensioning of the Pod replicas and Mreq is the
maximum supported request rate per Pod without degrading
the QoS. Nreq/Mreq provides the number of replicas that are
required to satisfy the demand with the Pod request. By tuning
the value of α, the value of NPods can be changed allowing
overloading or underloading of the Pods. This, in turn, changes
the share between the Pod request and limit to be used.

After NPods is computed, the current number of Pod repli-
cas (Ncur) is obtained. NPods and Ncur are then compared
and, if they are not equal, a number of Pod replicas are
created/terminated to increase/decrease the Ncur up/down to
the value of NPods. Then, the system waits until the next
scaling cycle.

V. NUMERICAL RESULTS

To prove the benefits of the proposed approach, we per-
formed simulations showing the benefits of SAPA against a
conventional scaling procedure leveraging HPA. We developed
a Python-based custom simulator that mimics Kubernetes
monitoring, load balancing, and scaling behavior. Periodically
(with a period of 1 TU) we evaluate the demand of each service
deployed and compute the number of desired replicas applying
three approaches: HPA, SAPA using instant demand to drive
the scaling (without predictions), and SAPA with predicted
service requests. In the following, we show results where
resources are measured in [CPU×TUs].
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Fig. 6. Degradation (in [CPUxTU]) as a function of different values of the
scaling coefficient α for HPA, SAPA without predictions (SAPA w/o pred.),
and SAPA with predictions (SAPA w/ pred.).

A. Simulation settings

We consider 50 services with a CPU demand over time
according to the CPU demand pattern shown in Fig. 5 [7].
We assume that Mreq = 1 and that the CPU demand in Fig.
5 is equivalent to Nreq, to have a fair comparison with the
HPA. The different service traces are obtained by shifting the
demand pattern over time. At each time step, we add a random
uniform value in the interval of ±20% to each sample of the
workload to mimic user traffic variations. For each service, we
divide the CPU demand equally among the running replicas,
simulating a perfect load-balancing scheme. The scaling delay
and time for prediction are set to 4 TUs to account for the
time needed to create/terminate Pods, update load-balancing
components, and set up/terminate the services. The obtained
results are an average of 10 simulations with a confidence
interval always within ±1% with a confidence level of 95%.
For each Pod, we assume that the Pod request CPU is 1 while
the Pod limit is set to a large value, so that each Pod can access
up to all unused (or idle) CPUs on the machine in which they
are deployed. We consider a cluster with machines of 24 CPUs
each. The HPA is set to scale with a threshold of 85%, which
is the largest value that guarantees that the degradation is not
significant (e.g., below 0.001%) and is considered to be the
benchmark. The SAPA with prediction is fed by the original
workload before applying the random traffic variation, which
mimics inaccuracy in the prediction process.

B. Simulation results

Figure 6 depicts the total degradation (i.e., the amount of
CPUs that was required by user demand but could not be pro-
vided) for different values of α for the three different strategies,
averaged over the services. It is possible to observe that HPA
with 85% threshold does not introduce significant degradation.
On the other hand, the SAPA degradation depends on the
specific setting of α. The SAPA without predictions (denoted
as SAPA w/o pred.) is able to obtain the same degradation
as HPA when α = 1.1. The SAPA with predictions (denoted
as SAPA w/ pred.), even though is subject to inaccuracies,
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Fig. 7. Idle resources (in [CPUxTU]) as a function of different values of the
scaling coefficient α for HPA, SAPA without predictions (SAPA w/o pred.),
and SAPA with predictions (SAPA w/ pred.).
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performs better than the SAPA without predictions. More
specifically, degradation matches the one provided by HPA
when α = 1.05.

Figure 7 reports the number of idle CPUs for the HPA,
SAPA without predictions, and SAPA with predictions, aver-
aged over the services. This metric directly relates to resources
that were paid for but remained unused. From the figure, it is
possible to notice that the idle resources increase with α, as
increasing α makes the number of desired Pods larger, hence
leading to overprovisioning. Let us compare the cases where
the three approaches do not provide significant degradation.
The SAPA with predictions (at α = 1.05) achieves a reduction
of almost 60% idle resources compared to the HPA, while the
SAPA without predictions (at α = 1.1) achieves a reduction
of around 30%. This confirms that, by selecting a proper
value for α, the proposed approach can achieve the targeted
degradation level (or QoS) while reducing idle resources



compared to the overprovisioning in a conventional strategy
based on HPA. Reducing the overprovisioning in HPA would
require increasing the scaling threshold. However, it would also
increase the probability that the demand cannot be satisfied,
hence it would lead to higher degradation. This is due to the
fact that if degradation is experienced, the K8s scaling formula
(1) is not always able to correctly estimate the desired number
of replicas. This error propagates over time as the incorrect
desired number of replicas becomes the new current number
of replicas in the subsequent calculation.

Figure 8 shows the average amount of total (i.e., the sum
of used, idle, and limit) resources per service, needed by the
three approaches. As for the idle resources, also the total
resources depend on the value of α. Moreover, the HPA is
always outperformed by the SAPA. More specifically, the
SAPA with predictions and α = 1.05 requires the least amount
of resources to achieve the same low level of degradation
as the HPA, followed by the SAPA without prediction and
α = 1.1. In this case, the SAPA without and with predictions
requires 6% and 11% fewer resources compared to the HPA,
respectively, to run a service.

VI. CONCLUSION

In this paper, we focus on the trade-off between resource
overprovisioning and degradation from a service provider
perspective in cloud native services based on K8s. In partic-
ular, we propose the novel SAPA mechanism that relies on
limit resources and service-related information from the load
balancer to optimize resource usage. In contrast to the K8s
HPA, which relies on the average CPU usage, the proposed
mechanism is able to account for the unserved service demand
during the scaling process and provides a simple way to tune
the amount of limit resources. This results in more efficient use
of resources, reflected in reduced overprovisioning. Simulation
results show that the proposed SAPA mechanism offers much
lower degradation than the HPA, as well as reducing idle
resources by around 60% and 30% in the case with and without
user request predictions, respectively. Although the proposed
approach represents a substantial step towards eliminating
idle resources, further studies are necessary to eliminate idle
resources completely. In future work, we are planning to
evaluate the proposed mechanism in a real setup.
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