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Interpretable Battery Cycle Life Range Prediction
Using Early Cell Degradation Data

Huang Zhang, Yang Su, Faisal Altaf, Torsten Wik, Sebastien Gros

Abstract—Battery cycle life prediction using early degradation
data has many potential applications throughout the battery
product life cycle. For that reason, various data-driven methods
have been proposed for point prediction of battery cycle life
with minimum knowledge of the battery degradation mecha-
nisms. However, managing the rapidly increasing amounts of
batteries at end-of-life with lower economic and technical risk
requires prediction of cycle life with quantified uncertainty,
which is still lacking. The interpretability (i.e., the reason for
high prediction accuracy) of these advanced data-driven methods
is also worthy of investigation. Here, a Quantile Regression
Forest (QRF) model, having the advantage of not assuming any
specific distribution of cycle life, is introduced to make cycle life
range prediction with uncertainty quantified as the width of the
prediction interval, in addition to point predictions with high
accuracy. The hyperparameters of the QRF model are optimized
with a proposed alpha-logistic-weighted criterion so that the
coverage probabilities associated with the prediction intervals are
calibrated. The interpretability of the final QRF model is explored
with two global model-agnostic methods, namely permutation
importance and partial dependence plot.

Index Terms—Lithium-ion battery, cycle life early prediction,
quantile regression forest, prediction interval, interpretable ma-
chine learning.

I. INTRODUCTION

L ITHIUM-ION (Li-ion) batteries have become the main
choice of energy storage in electric vehicles (EVs), with

a rapidly growing market that is spurred by governmental
policies and subsidies with the aim of enhancing energy
sustainability and carbon emission reduction [1] [2]. However,
Li-ion batteries degrade with time due to both calendar aging
and cyclic aging, which leads to a deterioration of their
performance [3]. Understanding these aging processes, and
providing a reliable cycle life prediction of Li-ion batteries
based on early degradation data would enable many new
possibilities throughout the battery life. We give five examples
of such possibilities here. Firstly, the total driven distance of
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an EV battery can be translated into a number of equivalent
full cycles [2]. Reliable cycle life prediction of Li-ion batteries
using early degradation data would facilitate automotive com-
panies to quickly adjust their warranty policy for new batches
of Li-ion batteries from suppliers, while greatly reducing time
and cost of long aging experiments. Secondly, warranty and
pricing based on prediction of cycle life in a battery second life
application as energy storage strongly affect how the second
life battery market will evolve in the future, and reducing the
uncertainty associated with cycle life prediction will reduce
the cost of battery deployment [4]. Thirdly, accurate and
reliable cycle life prediction with high accuracy also facilitates
predictive maintenance by reducing the sudden failure rate
and the maintenance costs of battery-based applications [5].
Fourthly, an early-prediction model can also be combined with
a design parameter optimization algorithm to identify high-
cycle-life charging protocols [6]. Lastly, accurate prediction
of the battery life with early degradation data is of crucial
importance for improving the battery development and manu-
facturing processes [7].

Unfortunately, accurate battery cycle life early prediction
using relatively little degradation data that covers a limited
range of lifetime is challenging, because the degradation
process of Li-ion batteries is highly nonlinear with negligible
capacity fade at early cycles, and influenced by not only
the operating conditions, but also variances due to imperfect
manufacturing tolerances. These factors contribute to the com-
plexity of battery cycle life prediction [8]. This complexity and
the importance of battery cycle life early prediction with high
accuracy have made this an intense research area. Throughout
the literature, the prediction methods can be generally divided
into three categories - model-based methods, data-driven meth-
ods and hybrid methods.

The model-based methods, in turn, can be roughly classified
into three categories. In the first one, a physics-based model,
such as an electrochemical model (EM), is incorporated into a
recursive filter framework, such as the extended Kalman filter
[9] or a particle filter [10], in which internal parameters are
updated from measured data. However, computational com-
plexity in terms of high memory requirements and long com-
putation time inevitably limits their applicability in real-time
battery management system (BMS). In the second category,
empirical models are identified based on cell characterization
data from lab experiments. To improve their accuracy in on-
board vehicle applications, model parameters can be adapted
by the on-board BMS using measurement and state estimation
data in a Bayesian filtering framework. This can include a
range of Kalman filters [11], dual fractional-order extended
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Kalman filters [12], and particle filters [13]. The prediction
accuracy of empirical models with a recursive filter highly
depends on the fitted model. In addition to these two model-
filter-based models, a third category of semi-empirical models
have also been developed to capture the direct relationship
between the operating conditions and the battery state-of-
health (SoH), by interpolating and fitting experimental data.
The only difference between empirical and semi-empirical
model is that the former does not use any physical relation
in the model structure whereas the latter uses some level
of physical insights in the model formulation. Most semi-
empirical models in the literature study the battery calendar
aging and cyclic aging separately, and then combine both to
make predictions under various operating conditions [14] [15]
[16]. Although it is easier to implement semi-empirical models
than the model-filter-based methods described, semi-empirical
models are open-loop approaches where the model parameters
are determined by data fitting.

Data-driven methods for battery cycle life prediction are
generally black-box models developed based on machine
learning or deep learning approaches to capture the mapping
between inputs (e.g., features extracted from incremental ca-
pacity curves [17]) and desired outputs (e.g., SoH). These
methods can be either non-probabilistic or probabilistic. Non-
probabilistic data-driven methods include autoregression (AR)
based models [18] [19], artificial neural network (ANN) [20]
[21] [22] and support vector machine (SVM) [23] [24]. Despite
the high accuracy of these non-probabilistic data-driven meth-
ods on cycle life point prediction, they are unfortunately not
able to provide any uncertainty estimate of their predictions.
The uncertainty level of predictions can enable a system or
a user to make risk-informed decisions [25]. For this reason,
probabilistic data-driven methods like Gaussian process regres-
sion (GPR) [26] [27] and relevance vector machine (RVM)
[28] [29] can be a better choice, as they have the ability to
output a probability density function (PDF), and predict both
the cycle life and the associated confidence interval.

Hybrid methods aim at leveraging the advantages of several
different models. With the hybrid data-driven and model-
based approach, a physics-based model is incorporated into
a recursive filter framework (e.g., particle filter[30] [31],
Kalman filter [32]), and the model parameters are identified
and updated with measurements. Remaining useful life (RUL)
is obtained by projecting estimated internal state to the future
until a pre-defined end of life (EOL) threshold is reached.
The data-driven model in this hybrid approach has been used
for estimating the battery internal state from measurement
data [30], extrapolating the measurements beyond the range
of currently available measurements [30] [32] and as a re-
placement of a degradation model [31] in the physics-based
model prediction case. The aforementioned studies have shown
that hybrid methods have the potential to improve prediction
accuracy further in comparison with one single data-driven
model. However, they are difficult to use in online applications
in a BMS due to its high computational complexity.

As illustrated by Severson et al. [5], cycle life for bat-
tery cells does not follow a normal distribution, which is a
presumption of many probabilistic data-driven methods (e.g.,

GPR, RVM) that provide uncertainty information associated
with the predictions. While advanced data-driven methods
offer high prediction accuracy of battery cycle life in spite of
minimum knowledge of the battery degradation mechanisms,
interpretability of machine learning models is still under-
explored in the literature. Extracting relevant battery aging
knowledge from a machine learning or deep learning model in
terms of underlying relationships, either in data or learned by
the model, can provide valuable insights into battery aging.
These insights can then be used to guide discoveries of
aging mechanisms, improvements of battery manufacturing,
and development of fast-charging protocols.

This work tries to tackle the aforementioned problems
by introducing a quantile regression forest (QRF) model for
reliable cycle life range prediction of Li-ion battery cells. The
prediction intervals (PIs) are constructed by using a quantile
regression method that estimates quantiles of the response
variable given values of the input variables [33] [34]. The
advantages of the QRF model over other probabilistic models
are that asymmetric PIs can be estimated without assuming
any specific distribution (e.g., Gaussian) of the output variable,
i.e., the cycle life. Additionally, the QRF model is a non-
parametric model, which means that the number of parameters
automatically adapts to the complexity of the training data.

The novelty and contributions are summarized as follows:
• This work proposes the first application of QRF model to

provide battery cycle life point prediction and uncertainty
range prediction. It is shown that the QRF model not
only provides point prediction with high accuracy but
also cycle life range prediction with high probability
without assuming any specified distribution for the cycle
life. The performance of the proposed QRF model is
demonstrated on a public dataset that includes various
operating conditions in terms of realistic charging current
profiles. Its point prediction performance is benchmarked
to the Elastic Net model, whose exceptional early pre-
diction performance was successfully demonstrated by
Severson et al. [5] and its range prediction performance
is compared with two popular probabilistic models, i.e.,
GPR, RVM.

• An alpha-logistic-weighted criterion is proposed for op-
timizing hyperparameters of the QRF model and its
effectiveness of improving the coverage probability of the
final QRF model is demonstrated. The proposed criterion
can also be used for optimizing hyperparameters of other
regression models that are capable of providing range
predictions.

• To statistically interpret the width of battery cycle life
range prediction, two hypothesis tests are conducted.
As a result, there is sufficient evidence in the first test
that width of range prediction is highly correlated with
absolute mean prediction error at a significance level
of 0.05, which suggests that width of range prediction
may provide more information for decision-making under
uncertainties than we get from point predictions alone;
there is also sufficient evidence in the second test that
the width of range prediction is highly correlated with
6 input features at a significance level of 0.05, which
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suggests that the width of the range prediction is mainly
affected by values of these 6 input features.

• To interpret the final QRF model for cycle life prediction,
and reveal the underlying relationships in data learned by
the QRF model, permutation importance and partial de-
pendence plot are employed as model-agnostic methods
to rank individual feature importance and quantitatively
show the marginal effect each feature has on the predicted
battery cycle life. Subsequently, an electrochemical inter-
pretation is given to support what has been revealed by
these two model-agnostic methods.

• In an application of selecting the high-cycle-life charging
protocol, the expected battery cycle life of a charging
protocol can be determined with consideration of both
point predictions and the uncertainty associated with the
predictions. It is demonstrated that the final QRF model
facilitates decision-making to select the high-cycle-life
charging protocol that reduces the occurrence of unac-
ceptably short cycle life.

II. THEORETICAL BACKGROUND

A. Quantile Regression Forest

The random forest regression models approximate the con-
ditional mean by a weighted sum over all the observations.
Instead of averaging over all observations in every leaf of
every tree, one could use all observations from each tree to
construct an empirical cumulative distribution function of the
response variable. Therefore, QRFs use full information of all
the obsevartions via combining quantile methods and random
forest. For simplicity, firstly, we denote the τ -th quantile of
Y given X = x by qτ (Y |X = x), where X is the input
random variable, possibly high-dimensional, and Y is the real-
valued output random variable. The conditional cumulative
distribution function F (y|X = x) is defined as the probability
of Y smaller than y given X = x, i.e.,

F (y|X = x) = P (Y ≤ y|X = x). (1)

For a continuous conditional cumulative distribution function
F (y|X = x), as defined above, the τ -th quantile qτ (Y |X =
x) is defined such that the probability of Y less than or equal
to qτ (Y |X = x) is equal to τ for a given X = x, i.e.,

qτ (Y |X = x) = inf{y : F (y|X = x) ≥ τ}. (2)

During the inference, for an input X = x, the leaf of the t-th
regression tree that contains x is denoted by l(x,θt), where
θt is the parameter vector that determines how the t-th tree is
grown, for example, input variables that are considered in each
node split. The weight wi(x,θt)) from each tree is calculated
by

wi(x,θt) =
1{xi∈l(x,θt)}

#{j : xj ∈ l(x,θt)}
, i = 1, ..., N, (3)

where N is the total number of the observations, and
1{xi∈l(x,θt)} is an indicator function equal to 1 if xi ∈
l(x,θt) and otherwise equal to 0. #{j : xj ∈ l(x,θt)}
denotes the total number of observations that are in the leaf
l(x,θt).

Therefore, the weight from the whole random forest is
defined as the average of wi(x,θt) over all the T regression
trees grown, which reads as

wi(x) =
1

T

T∑
t=1

wi(x,θt). (4)

Furthermore, the constructed conditional cumulative distri-
bution function of the QRF model is expressed as

F (y|X = x) = E(1{Y≤y}|X = x), (5)

where 1{Y≤y} is an indicator function and equal to 1 if
Y ≤ y and otherwise equal to 0. E(1{Y≤y}|X = x) can
be approximated by the weighted sum over the observations
of 1{Y≤y}. Thus, an empirical conditional probability function
F̂ , given X = x, can be obtained as

F̂ (y|X = x) =

N∑
i=1

wi(x)1{yi≤y}, (6)

where the weights wi(x) are the same as defined in (4) and
the indicator function 1{yi≤y} determines whether the weight
will be counted or not, depending on the condition yi ≤ y.

Finally, the estimated τ -th quantile q̂τ (Y |X = x) is
obtained by replacing F (y|X = x) in (2) with F̂ (y|X = x)
in (6), i.e.,

q̂τ (Y |X = x) = inf{y : F̂ (y|X = x) ≥ τ}. (7)

In addition, based on the standard random forest grown in
the QRF model, the conditional mean of Y given X = x can
also provide point predictions by,

f̂(x) =

N∑
i=1

wi(x)yi, (8)

where the weights wi(x) are defined in (4).

B. Prediction Interval

The PIs can be constructed from the conditional quantiles
estimated by the QRF model. Specifically, the (1−α)×100%
PIs for output variable Y , given X = x, is constructed by

Î(x) = [q̂α/2(Y |X = x), q̂1−α/2(Y |X = x)]. (9)

For example, the 95% PI for the output Y is estimated by
Î(x) = [q̂.025(Y |X = x), q̂.975(Y |X = x)], which should be
interpreted as; given X = x, a new observation of output Y
is in the interval Î(x) with a probability of 95%.

C. Permutation Importance

In order to understand the underlying battery degradation
process, the goal of battery cycle life prediction should not
only be limited to learn a regression function f̂ that is capable
of making battery cycle life predictions with high accuracy,
but also to identify input variables from feature engineering
that are the most important for the prediction accuracy of
the learned model. A tool like variable importance can be
helpful for identifying which input variables that are the
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most important and therefore should be measured with high
precision [35].

The concept of variable importance was first introduced by
Breiman [36] for random forests, in which variable importance
of an input variable is measured by the decrease in predication
accuracy when the values of this input variable are randomly
permuted/shuffled in out-of-bag samples and then dropping
the out-of-bag samples down the corresponding trees. Louppe
et al. [37] characterized an alternative measure of variable
importance based on the Mean Decrease Impurity (MDI).
Impurity is quantified by the splitting criterion of the deci-
sion trees (e.g., mean squared error for continuous outputs).
However, variable importance based on MDI method favors
high cardinality input variables over low cardinality input
variables, such as binary variables or categorical variables with
a small number of possible categories. Furthermore, variable
importance based on the MDI method can only be calculated
on the training set during growth of trees. Therefore, there are
possibilities that the MDI method gives high importance to
input variables that may not be predictive on unseen data when
the model is overfitted [37]. With the aim of mitigating those
limitations of variable importance based on the MDI method,
permutation importance is developed as a generalized model-
agnostic method for measuring the importance of an input
variable by calculating the increase of prediction error after
permuting values of the input variable [35]. An input variable
is considered to be important if shuffling its value leads to
an increase of the model error and vice versa. Permutation
importance can be computed on both the training set and
the test set, which makes it possible to identify features that
contribute the most to the generalized prediction power of
the fitted model. The permutation importance algorithm below
describes how the measure is calculated.

Algorithm 1 Permutation importance algorithm

1: Input: Learned model f̂ , training or test set G, and error
score function s (e.g., R2 score)

2: Compute the reference error score s0 of the learned model
f̂ on dataset G

3: for each input variable j = 1, 2, . . . , p do
4: for each repetition m = 1, 2, . . . ,M do
5: Randomly shuffle the values in the column corre-

sponding to input variable j in the dataset G to generate
a corrupted version of the dataset, G̃

6: Compute the error score sj,m of the learned model
f̂ on corrupted version of the dataset G̃

7: end for
8: Compute importance Imj for input variable j defined

as Imj = s0 − 1
M

∑M
m=1 sj,m

9: end for
10: Sort input variables in descending order of variable im-

portance.

D. Partial Dependence Plot

After the most important input variables have been iden-
tified, the next step is to understand the dependence of the

approximation f̂(X) on the joint values of the input variables
[38].

Consider the subvector XS of length ` < p of the input
vector X = (X1, X2, ..., Xp)

T , indexed by S ⊂ {1, 2, ..., p}.
Let C be the complement set, with S ∪ C = {1, 2, ..., p},
and XC the corresponding subvector. In principle, the ap-
proximation f̂(X) depends on all of the input variables, i.e.,
f̂(X) = f̂(XS ,XC). However, if the variables in XS do not
have strong interactions with those in XC , then the average,
or partial dependence, of f̂(X) on XS is approximately

f̂S(XS) = EXC [f̂(X)] = EXC [f̂(XC ,XS)]. (10)

In practice, the partial dependence function f̂S(XS) can
therefore be estimated by

f̄S(XS) =
1

N

N∑
i=1

f̂(XS ,xiC), (11)

where {x1C ,x2C , ...,xNC} are the values of XC occurring in
the training set, and N is the total number of samples in the
training set.

E. Performance Evaluation Metrics

1) Evaluating Point Prediction Quality: There are various
performance evaluation metrics that can be used to evaluate
the accuracy of point predictions. The most common ones are
root mean squared error (RMSE), mean absolute percentage
errors (MAPE) and coefficient of determination (R2), defined
as follows:

RMSE(yi, ŷi) =

√√√√ 1

NT

NT∑
i=1

(yi − ŷi)2 (12)

MAPE(yi, ŷi) =
1

NT

NT∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (13)

R2(yi, ŷi) = 1−
∑NT
i=1(yi − ŷi)2∑NT
i=1(yi − ȳ)2

(14)

where NT is the number of samples to be evaluated (i.e., all
samples in the test set), ŷi = f̂(xi) denotes the estimated mean
cycle life predicted by the model, yi denotes the corresponding
observed cycle life, and ȳ = 1

NT

∑NT
i=1 yi is the average cycle

life for a total of NT samples in the test set.
2) Evaluating Range Prediction Quality: Two commonly

used metrics for range predictions are prediction interval cov-
erage probability (PICP) and mean prediction interval width
(MPIW) [39].

The PICP shows the percentage of output values covered
between the lower and upper bounds of the PIs and as such
assesses the calibration of the range predictions. A larger PICP
means that more output values will fall in the constructed PIs,
and vice versa. The PICP is defined as,

PICP =
1

NT

NT∑
i=1

ci × 100%, (15)
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where ci = 1, if the output value yi is covered by the
interval from the lower bound Li to the upper bound Ui of
the constructed PI; otherwise ci = 0.

In a practical application, such as the battery cycle life
prediction in the present work, the width of constructed PIs
is of equal importance as the coverage probability since it
does not make much sense to have PIs with high coverage
probability and large width at the same time. For a narrower
PI, the prediction is clearly more informative than for a wider
PI. Therefore, there is also a need to assess the sharpness of
range predictions, which can be done via MPIW, defined as,

MPIW =
1

NT

NT∑
i=1

|Ui − Li|. (16)

Theoretically, it is desirable to have PIs with a PICP value
close to their nominal coverage (e.g., 95%) and a small MPIW
value.

Both PICP and MPIW only assess PIs from one aspect.
A comprehensive measure of both coverage probability and
width of PIs at the same time is the averaged interval score
(AIS), proposed in Ref. [40], which is defined as

AIS =
1

NT

NT∑
i=1

((Ui − Li) +
2

α
(Li − yi)1{yi<Li}

+
2

α
(yi − Ui)1{yi>Ui}).

(17)

The AIS defined above rewards narrow PIs and penalizes
intervals missed by the observation with a weight depending
on α, as defined in Eqn. (9). The AIS is used for standard
QRF training.

III. METHODOLOGY AND PROBLEM FORMULATION

A. Feature Engineering and Selection

Generally, feature engineering can be divided into two
categories - manual feature engineering based on domain
knowledge [41] [42] and automatic feature engineering, such
as auto-encoders [43], and restricted Boltzmann machine [44].

In this work, manual feature engineering based on battery
domain knowledge is adopted. More specifically, 33 features
were extracted from data of the first 100 cycles, at which point
most batteries have not yet exhibited any significant capacity
degradation. The 33 features are divided into five groups and
listed in Table. I.

To reduce the computation time, and improve the per-
formance of learned models, a feature selection method is
employed which selects an effective subset of features by
reducing irrelevant and redundant features [45]. For this, a
random-forest-based recursive feature elimination with cross-
validation (RF-RFE-CV) is employed, which selects a subset
of features by recursively removing features with the least
importance in the current feature set. Only the training set is
used for feature selection to avoid introducing optimistically
biased performance estimates. As a result, 12 features were
automatically selected as a feature subset and then fed into the
QRF and Elastic Net models for battery cycle life prediction.

B. Problem Formulation

The battery cycle life early prediction problem can be
formulated as a regression problem with the goal of learning
a mapping f from a random input vector (a term we will
use interchangeably with features) X = (X1, X2, ..., Xp)

T

in the space X ⊆ Rp to a random output (a term we will
use interchangeably with response) variable Y in the space
Y ⊆ R+, f : X → Y , given a training set D = {xi, yi}Ni=1,
where N is the number of assumed independent and iden-
tically distributed samples in the training set. In the present
case, xi ∈ X represents p features extracted from the first 100
cycles, and yi ∈ Y is the observed battery cycle life.

To learn the mapping function f , the conditional mean min-
imizing the expected squared error loss, with the assumption
that squared error loss function is symmetric around zero, is
used,

E(Y |X = x) = arg min
f(x)

E{(Y − f(x))2|X = x}. (18)

In practice, the approximation of the conditional mean is
achieved by minimization of a squared error type loss function
over the training set D, and the resulting learned regression
function is denoted as f̂ .

The conditional mean only reveals one aspect of the con-
ditional distribution of a response variable Y and gives no
information about the uncertainty associated with the predicted
conditional mean. In our case, though, we are interested to find
the range of predicted battery cycle life in which the battery
will reach its end of life with high probability. We propose
QRF to handle this case, yielding both a point prediction as
well as its uncertainty. More specifically, its point prediction
is provided by the estimated conditional mean, given X = x,
i.e.,

f̂(x) =

N∑
i=1

wi(x)yi, (19)

where the weights wi(x) are defined in (4).
The corresponding range prediction, provided by a 95% PI

given X = x, is given by

Î(x) = [q̂.025(Y |X = x), q̂.975(Y |X = x)]. (20)

C. Proposed PI Evaluation Criterion

From a decision-making perspective, having point predic-
tions with a low RMSE and range predictions with a high PICP
together with a low MPIW is preferable. However, there is a
trade-off between maximizing PICP and minimizing MPIW.
The AIS defined in Eqn. (17) only assesses PIs over each
validation sample in the training set without consideration of
whether a preassigned nominal coverage probability (1−α)×
100% is satisfied or not on the training set. Therefore, it is
expected to propose a comprehensive measure that includes
both two properties of PIs. More importantly, the calibration
property is prioritized rather than the sharpness property of
the PIs. Thus, higher penalties should be given in case of
unsatisfactory nominal coverage probability (1 − α) × 100%
that is usually preassigned by a decision maker. To address
such problems, we propose an alpha-logistic-weighted (ALW)
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TABLE I
33 FEATURES IN 5 GROUPS

Groups Features
Charge-related Average charge time for the first 5 cycles [5].

Discharge voltage curve-related

Minimum, variance, skewness, and kurtosis of difference of the discharge voltage curve
between cycle 100 and cycle 10 (i.e., ∆Q100−10(V )) [5].
Amplitude and position shift of the highest peak in the discharge incremental capacity curve
between cycle 10 and cycle 100 (i.e., dQdV100−10).

Capacity-related

Slope of the linear fit to the capacity fade curve from cycle 2 to cycle 100 [5].
Intercept of the linear fit to capacity fade curve from cycle 2 to cycle 100 [5].
Discharge capacity at cycle 2 [5].
Discharge capacity at cycle 100 [5].
Difference between maximum discharge capacity within the first 100 cycles and discharge
capacity at cycle 2 [5].

Temperature-related

Minimum, variance, skewness, and kurtosis of difference in the discharge cell temperature,
as a function of voltage, between cycle 100 and cycle 10 (i.e., ∆T100−10(V )).
Minimum, maximum, mean, and variance of discharge cell temperature as a function of
voltage at cycle 10 (i.e., T10(V )).
Minimum, maximum, mean, and variance of discharge cell temperature as a function of
voltage at cycle 100 (i.e., T100(V )).
Difference in minimum, maximum, mean, and variance of discharge cell temperature,
as a function of voltage, between cycle 10 and cycle 100.

Internal resistance-related

Minimum internal resistance from cycle 2 to cycle 100 [5].
Maximum internal resistance from cycle 2 to cycle 100.
Internal resistance at cycle 2 [5].
Internal resistance at cycle 100.
Difference in internal resistance between cycle 100 and cycle 2 [5].

criterion based on the work by Khosravi et al. [39], which
reads as

ALW =
MPIW

σ(α,PICP)
, (21)

where σ(·) is the logistic function defined as,

σ(α,PICP) =
1

1 + e−
1
α (PICP−(1−α))

, (22)

where α is the same as in Eqn. (9). The terms 1
α and 1 − α

determine the growth rate and the midpoint of the logistic
curve, respectively. By inserting Eqn. (22) into Eqn. (21), Eqn
(21) can be rewritten as

ALW = MPIW(1 + e−
1
α (PICP−(1−α))). (23)

The ALW defined above rewards lower MPIW and exponen-
tially penalizes unsatisfactory PICP that is lower than nominal
coverage probability (1−α)×100% with a weight depending
on α.

D. Hyperparameter Optimization

In this work, the objective of hyperparameter optimization
is to find an optimal set of hyperparameters for the QRF
model that minimizes the value of AIS, defined in Eqn.
(17) or the proposed ALW defined in Eqn. (23), given a
training set at each train-test split. The leave-one-out cross
validation (LOO-XVE) method [46] is adopted for evaluating
the averaged performance of a QRF model given a set of
hyperparameters. The LOO-XVE is suitable for small datasets,
as in the present work, where prediction performance also
outweighs computational cost at the training stages. Optuna
[47], a Bayesian hyperparameter optimization framework, is
used to search for the optimal set of hyperparameters for the

QRF model given the training set. The final QRF model with
the optimal set of hyperparameters is learned on the whole
training set and is then evaluated on the test set at each train-
test split.

E. Proposed expected battery cycle life of a charging protocol

In an application of selecting the high-cycle-life charging
protocol, the expected battery cycle life (EBCL) of a charging
protocol can be calculated by averaging over all predicted
mean cycle lives of cells charged with this charging protocol
[6],

EBCL =
1

B

B∑
i=1

f̂(xi), (24)

where B denotes the total number of battery cells charged
with this charging protocol.

However, it will be a difficult selection decision to be
made when the expected battery cycle lives for two charging
protocols calculated using EBCL are very close to each other.
Therefore, we propose the expected battery cycle life range
(EBCLR) that helps facilitating decision-making in this case,

EBCLR = |U − L|, (25)

where U and L are the upper bound and lower bound re-
spectively of the expected battery cycle life range prediction.
Considering the relatively small dataset used in this work, we
adopt the median approach to combine PIs for each charging
protocols [48],

L = Median(L1, ..., LB); U = Median(U1, ..., UB), (26)

where L1, ..., LB are the lower bounds of battery cycle
life range predictions of a group of B cells that are charged



7

with the same charging protocol, and U1, ..., UB are the upper
bounds of battery cycle life range predictions of a group of B
cells that are charged with the same charging protocol.

IV. EXPERIMENTS AND RESULTS

A. Battery Dataset

The battery dataset used in the present work is originally
from the work of Toyota Research Institute in collaboration
with Stanford University and MIT [5]. An early-prediction
model developed in their work [5] was later used for selecting
high-cycle-life charging protocols [6]. There are 124 lithium
iron ferrous phosphate (LFP)/graphite cells in this dataset
with a nominal capacity of 1.1 Ah. The 124 cells are from
3 different test batches (i.e., the ”2017-05-12” batch, the
”2017-06-30” batch, and the ”2018-04-12” batch) with batch
date referring to the date the batch started. All the cells are
tested at a constant temperature of 30 ◦C in an environmental
chamber. The cells are charged with a one-step or two-step
fast-charging protocol and identically discharged at 4 C-rate.
Cells are charged from 0% to 80% state-of-charge (SoC) with
one of 72 charging protocols, for example, a charging protocol
”5.6C(36%)-4.3C” consists of a 5.6 C charging step from
0% to 36% SoC, followed by a 4.3 C step from 36% to
80% SoC. It is assumed that the lithium-ion batteries reach
their end of life (EOL) when their discharge capacity has
decreased to 80% of their initial nominal capacity. Time-
series voltage, current, and cell temperature were continuously
measured during cycling. The internal resistance was measured
per cycle during charging at 80% SoC by averaging 10 pulses
of ±3.6 C with a pulse width of around 30 ms.

B. Train-Test Split

There are 72 different charging protocols in this battery
dataset with nominal charging time from 0% to 80% SoC
ranging from 9 to 13.3 minutes. For the purpose of reducing
the possibly large sampling error due to the small dataset used
in this work, the stratified random sampling method [49] is
employed to randomly split the dataset into a training set that
contains 80% of the total dataset (99 samples) for optimizing
model hyperparameters and learning the final model, and a
test set that contains 20% of the total dataset (25 samples) for
evaluating the performance of the final model. At each split,
equal ratios of fast-charged (i.e., less than 10.5 min) cells,
medium-charged (i.e., between 10.5 and 11.7 min) cells, and
slow-charged (i.e., greater than 11.7 min) cells are maintained
in the training and test set. Moreover, in order to reduce the
random effect of the selected split, stratified random sampling
is repeated 5 times, and then the results of 5 train-test splits
are averaged.

C. Performance Evaluation and Results

For a fair comparison, the optimal sets of hyperparameters
for the QRF model and other benchmark models (i.e., Elastic
Net regression model, GPR, and RVM) are obtained using the
hyperparameter optimization method described in the previous
section, given the same training set at each train-test split. The

optimal sets of hyperparameters for the QRF model and the
other models are reported in Table II.

The final QRF model and other models with their optimal
sets of hyperparameters are learned on the same training set,
and then evaluated using the same test set at each train-test
split, with evaluation metrics for point predictions or range
prediction. The results of 5 train-test splits are averaged and
reported in Table III and Table IV, respectively.

To compare the point prediction and range prediction results
between the QRF model and other models, the performance
improvement in percentage is calculated with Elastic Net
model as benchmark in the point prediction comparison, and
with QRF using AIS defined in Eqn. (17) as PI evaluation
criterion in LOO-XVE as benchmark in the range prediction
comparison. In terms of point prediction, it can be seen from
the results in Table III that the QRF outperforms Elastic Net
regression model, GPR, and RVM, evaluated by all three
performance measures, i.e., RMSE, MAPE and R2. In terms
of range prediction, it can be seen from the results in Table IV
that even though the QRF model using the proposed ALW as
PI evaluation criterion in LOO-XVE has a 11.2% worse MPIW
value than the QRF model using the AIS as PI evaluation
criterion in LOO-XVE, it has a 4.9% better PICP value that is
much closer to the nominal coverage probability 95%, and its
overall evaluation of PIs via AIS is 10.3% better than those
by the QRF model using AIS. Notably, the GPR model has
the best PICP value over all other models, but is not able to
compete with the QRF model measured by MPIW or AIS.

In summary, these results suggest that the QRF model is
capable of providing at least 20% higher point prediction
accuracy than Elastic Net model whose effectiveness was
demonstrated in the work of Severson et al. [5]. A possible
explanation would be that, as a non-parametric model, the
QRF model is more flexible than parametric models (e.g.,
the Elastic Net model) to extract complex patterns in the
battery data without necessarily incurring severe overfitting.
Moreover, by using the proposed ALW as PI evaluation
criterion in LOO-XVE, the range prediction performance
by the QRF models has indeed improved: higher coverage
probability that is closer to the preassigned nominal 95%
coverage probability guarantees higher reliability of the final
QRF model. Even though GPR provides the best coverage
probability, the QRF model outperforms GPR in terms of
width of PIs evaluated by MPIW and comprehensive measure
of both coverage probability and width of PIs by AIS. The
final QRF model using the proposed ALW as PI evaluation
criterion in LOO-XVE is the one used for later analyses.

D. Correlation Analysis and Results

To statistically interpret the width of battery cycle life
range prediction, hypothesis tests using Pearson’s correlation
coefficient are conducted. More specifically, we determine
whether there is a linear correlation between width of range
prediction and variables under investigation. The first step
is to define the null hypothesis (i.e., H0 - width of range
prediction does not linearly correlate with the variable under
investigation) and the alternative hypothesis (i.e., H1 - width
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TABLE II
OPTIMAL MODEL HYPERPARAMETERS

Models Model hyperparameters
Optimal values

5 train-test splits

Elastic net

α - the relative weight of
the L1 and L2 penalties;
λ - the regularization parameter.

α1 = 0.42, λ1 = 0.0572;
α2 = 1.00, λ2 = 0.0313;
α3 = 0.01, λ3 = 0.0218;
α4 = 0.01, λ4 = 0.0333;
α5 = 0.57, λ5 = 0.0945.

GPR
(Sum of a radial basis

function kernel and
a white noise kernel)

σl - the length scale;
σ2
f - the signal variance;

σ2
n - the noise variance.

σl1 = 8.1393, σ2
f1

= 976.3646, σ2
n1

= 17508.5982;

σl2 = 8.7730, σ2
f2

= 983.8729, σ2
n1

= 26238.2269;

σl3 = 10.5000, σ2
f3

= 989.1063, σ2
n3

= 20682.1931;

σl4 = 8.1573, σ2
f4

= 947.8936, σ2
n4

= 13712.8706;

σl5 = 7.2395, σ2
f5

= 787.9068, σ2
n5

= 20715.8807.

RVM
(Radial basis

function kernel)
γ - the kernel scale;
β - the inverse noise variance.

γ1 = 0.01002, β1 = 0.00003;
γ2 = 0.01003, β2 = 0.00003;
γ3 = 0.01009, β3 = 0.00003;
γ4 = 0.01189, β4 = 0.00004;
γ5 = 0.01397, β5 = 0.00003.

QRF+AIS

ntree - the number of trees;
mtry - the number of random features
in each split;
lnode - the minimum number of
samples at a leaf node.

ntree1 = 213, mtry1
= 9, lnode1 = 1;

ntree2 = 1393, mtry2
= 12, lnode2 = 2;

ntree3 = 1776, mtry3
= 12, lnode3 = 3;

ntree4 = 110, mtry4
= 6, lnode4 = 1;

ntree5 = 191, mtry5
= 11, lnode5 = 4.

QRF+ALW

ntree - the number of trees;
mtry - the number of random features
in each split;
lnode - the minimum number of
samples at a leaf node.

ntree1 = 1184, mtry1
= 8, lnode1 = 4;

ntree2 = 982, mtry2
= 8, lnode2 = 6;

ntree3 = 1072, mtry3
= 12, lnode3 = 6;

ntree4 = 1753, mtry4
= 8, lnode4 = 1;

ntree5 = 854, mtry5
= 10, lnode5 = 4.

TABLE III
BATTERY CYCLE LIFE POINT PREDICTION PERFORMANCE

Models
Point prediction

evaluation Performance improvement (%)
RMSE (cycles) MAPE (%) R2 RMSE (cycles) MAPE (%) R2

Elastic net 196 20.2 0.70 / / /
GPR 216 14.0 0.63 -10.2% -30.6% -10.0%
RVM 226 16.0 0.60 -15.3% -20.8% -14.3%

QRF+AIS 142 10.9 0.85 27.6% 46.0% 20.0%
QRF+ALW 158 12.0 0.81 19.4% 40.6% 15.7%

TABLE IV
BATTERY CYCLE LIFE RANGE PREDICTION PERFORMANCE

Models
Range prediction

evaluation Performance improvement (%)
PICP (%) MPIW (cycles) AIS (cycles) PICP (%) MPIW (cycles) AIS (cycles)

GPR 96.0 677 984 6.7% -54.6% -50.9
RVM 94.4 731 1602 4.9% -66.9% -145.7%

QRF+AIS 90.0 438 652 / / /
QRF+ALW 94.4 487 585 4.9% -11.2% 10.3%
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of range prediction linearly correlates with the variable under
investigation). A p-value less than a significance level of 0.05
allows to reject the null hypothesis, which indicates that width
of range prediction highly correlates with the variable under
investigation [50].

The first hypothesis test is performed to decide whether
there is a linear correlation between width of range prediction
and absolute mean prediction error (i.e., the distance between
the point prediction and the observation) on the test set over
5 train-test splits. The second hypothesis test is performed to
decide whether there is a linear correlation between width of
range prediction and each of the 12 input features on the test
set in the 5 train-test splits.

For the first hypothesis test, the Pearson’s correlation co-
efficient is found to be 0.71 with a sufficiently low p-value
that allows to reject the null hypothesis (p-value < 0.05). We,
therefore, conclude that there is sufficient evidence that width
of range prediction and absolute mean prediction error are
highly correlated.

For the second hypothesis test, the Pearson’s correlation
coefficient values and corresponding p-values between width
of range prediction and the 12 input features are listed in Table
V, where the results are sorted in ascending order of their p-
values. It can be seen from the results in Table V that in
total 6 input features are highly correlated with width of range
prediction, and that the variance and minimum of difference
of the discharge voltage curve between cycle 100 and cycle 10
(i.e., ∆Q100−10(V )) have the largest effect on the predicted
range.

E. Computational Aspects

The whole experiment in this work runs on a laptop with an
intel Core i5 CPU and 16 GB memory. The hyperparameter
optimization for the QRF model during the training stage takes
approximately 10 hours at one train-test split. Then the final
QRF model with the optimal set of hyperparameters is learned
on the training set. At the inference stage, it takes the final
QRF model approximately 150 ms to predict the cycle life of
a battery cell given its input feature realization from its early
degradation data.

For the real application of the final QRF model, we must
first investigate the viability of embedding the final QRF model
on a BMS, for example, memory requirement of a final QRF
model implementation on a BMS. If the final QRF model is
heavy then we will prefer to implement a large part of it in the
cloud whereas preprocessing of data and feature engineering
can be done on-board so that we do not have to send high
frequency data to the cloud via vehicle’s telemetry gateway.
Moreover, the main purpose of this model is to perform early
prediction of cycle life. Since aging is a slow process, the final
QRF model does not need to run in real-time. We may run
it periodically or in an event-triggered manner in the cloud
based on preprocessed data from on-board BMS.

V. MODEL INTERPRETATION

Permutation importance is computed on the training set as
shown in Fig. 1a. The two most important features identified

are related to the ∆Q100−10(V ) curve, i.e., the discharge
capacity change as a function of voltage between cycle 100
and cycle 10, which was selected in the cycle life prediction
model developed by Severson et al. [5]. This ∆Q(V ) curve
is of great interest because the curve itself and its derivatives
contain rich information for degradation diagnosis [51] [52]
[53]. Based on the training set, the most important feature is
the variance of ∆Q100−10(V ) curve (see [5] for the definition
of this feature), which means that the QRF model relies
on this feature the most for making predictions. However,
measuring the feature importance on the training set on which
the QRF model is trained is not as informative as that on
the unseen data. If the QRF model is overfitted, the feature
importance measured on the training set may mislead us to
believe that the wrong features are important. Therefore, the
feature importance is also measured on the test set. It is shown
in Fig. 1b that the most important feature is still the variance
of ∆Q100−10(V ) curve, which means that this feature does
indeed contribute the most to the prediction performance of
the QRF model.

In order to further illustrate how the most important feature
affects the predicted cycle life, a one-dimensional partial
dependence plot (PDP) is computed on the training set (see
Fig. 2). A lower bound of the predicted battery cycle life as
a function of variance of ∆Q100−10(V ) is provided by the
.025 quantile curves, while the .975 quantile curve provides
an upper bound of the predicted battery cycle life as a
function of variance of ∆Q100−10(V ). The median value of
the predicted battery cycle life is provided by the .50 quantile
curves. The histogram on the x-axis shows the distribution
of the observations of the variance of ∆Q100−10(V ) in the
training set. The quantile curves flatten out in the regions
of sparse observations of the variance of ∆Q100−10(V ) in
the training data, thus not providing much information. In
the region of dense distribution of variance of ∆Q100−10(V )
in training set, battery cycle life rapidly decreases when the
variance of ∆Q100−10(V ) increases from 10−5 to 10−3, which
indicates that a small increase of variance of ∆Q100−10(V )
during discharge has a large effect on battery degradation rate.
The physical meaning of the variance of ∆Q100−10(V ) is
associated with the dependence of discharge energy dissipation
on voltage. The variance of ∆Q100−10(V ) reflects the degree
of non-uniformity in the discharge energy dissipation with
voltage [5]. Thus, the larger the value of the variance of
∆Q100−10(V ) the larger the degree of non-uniformity in
the discharge energy dissipation under galvanostatic condi-
tions, which is consistent with the monotonic relationship
between the variance of ∆Q100−10(V ) and cycle life (Fig.
2a). The second most importance feature is the minimum of
∆Q100−10(V ), for which battery cycle life decreases with
increasing value of the minimum of ∆Q100−10(V ), but not
to the same extent as for the variance of ∆Q100−10(V ).

The PIs to the left in Fig. 2a and on both ends (i.e., left
and right) of the x-axis in Fig. 2b are larger than those in
the middle of the x-axis. The reason is that observations are
lacking on both ends of the x-axis, and therefore, the learned
QRF model is not confident to make predictions on these two
zones, which leads to larger prediction uncertainty represented
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TABLE V
HYPOTHESIS TEST RESULTS OF CORRELATION BETWEEN WIDTH OF RANGE PREDICTION AND INPUT FEATURES

Input features
Pearson’s correlation

coefficient values p-values Decisions
var dQ 100 10 -0.563 1e-11 rejected H0

minimum dQ 100 10 -0.545 1e-10 rejected H0

IR 2 -0.279 0.0016 rejected H0

variance dT 100 10 -0.275 0.0019 rejected H0

intercept lin fit 2 100 -0.239 0.0072 rejected H0

maximum IR 2 100 -0.215 0.0160 rejected H0

peak amplitude dQdV 100 10 -0.172 0.0551 Failed to reject H0

diff maximum T 100 10 -0.166 0.0643 Failed to reject H0

peak position dQdV 100 10 -0.155 0.0848 Failed to reject H0

diff mean T 100 10 -0.136 0.1299 Failed to reject H0

minimum T 10 0.129 0.1521 Failed to reject H0

diff IR 100 2 -0.008 0.9255 Failed to reject H0

0.0 0.1 0.2 0.3 0.4
Feature importance value

peak position dQdV 100 10
peak amplitude dQdV 100 10

intercept lin fit 2 100
minimum T 10

diff IR 100 2
diff maximum T 100 10

diff mean T 100 10
maximum IR 2 100

IR 2
variance dT 100 10

minimum dQ 100 10
variance dQ 100 10
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es

(a) Permutation importance ranking on the training set

0.0 0.1 0.2 0.3 0.4
Feature importance value

peak amplitude dQdV 100 10
peak position dQdV 100 10

intercept lin fit 2 100
diff maximum T 100 10

diff IR 100 2
minimum T 10

variance dT 100 10
diff mean T 100 10
maximum IR 2 100

IR 2
minimum dQ 100 10

variance dQ 100 10
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ur
es

(b) Permutation importance ranking on the test set

Fig. 1. Permutation importance ranking of 12 selected features.
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(a) Variance of ∆Q100−10(V )
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(b) Minimum of ∆Q100−10(V )

Fig. 2. PDPs for the cycle life prediction w.r.t. variance of ∆Q100−10(V ) and minimum of ∆Q100−10(V ). Histogram at the bottom shows observations
of the feature, with scale to the right.

by the width of PIs.
Furthermore, we would like to point out that data uncertain-

ties are not considered in the present work, and it is assumed
that all measurements are accurate and taken as if they were
true.

The PDP results further illustrate how the variance of
∆Q100−10(V ) and the minimum of ∆Q100−10(V ) affect the
predictions of battery cycle life quantitatively. Similarly, PDPs
can be computed for all other features used as inputs to the
QRF model on the training set.

Severson et al. [5] rationalized highly predictive features ex-
tracted from early-cycle discharge voltage curves (i.e., the vari-
ance of ∆Q100−10(V ) and the minimum of ∆Q100−10(V ))
by experimentally investigating degradation modes that do

not lead to immediate capacity fade but are manifested in
the discharge voltage curves. They found out that loss of
active material of the delithiated negative electrode contributes
to a shift in the discharge voltage curve, with no change
in capacity fade at early cycles. At high number of cycles,
loss of active material of the delithiated negative electrode
induces lithium plating, which irreversibly accelerates capacity
loss. This degradation behavior is consistent with the high
feature importance of variance and minimum of ∆Q(V ), as
shown in Fig. 1. Throughout the literature, this degradation
behavior is widely observed at various ambient temperature
(e.g., 23 °C [54] [55], 30 °C [56], and 45 °C [57]) when the
negative electrode capacity is larger than that of the positive
electrode, as in case of LFP cells that we used in this work.
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Therefore, if these two features, (i.e., minimum and variance
of ∆Q100−10(V )) are extracted from early degradation data
under different ambient temperatures other than 30 °C, then
the resulting learned QRF model based on this training dataset
may still provide accurate cycle life point and range prediction.

VI. APPLICATION CASES

Based on predicted quantiles, PIs of battery cycle life can
be constructed. To examine the prediction performance of the
final QRF model by using it in a more intuitive way, we show
in Fig. 3 the 95% PIs and the mean predictions made by QRF
on the test set at one split. There are 24 out of 25 observed
cycle life samples within the PIs resulting in 96% PICP, close
to nominal 95% coverage probability. This indicates that the
constructed PIs with 95% coverage probability exhibits good
coverage probability of the observed cycle life values, which
is required for a reliable battery cycle life range prediction.

The upper bound of the 95% PI is the 97.5% quantile
prediction of cycle life, which means that battery cycle life
may exceed the upper bound with a probability of around
2.5%. Correspondingly, the lower bound of the 95% PI is the
2.5% quantile prediction of battery cycle life, which means
that battery cycle life may fall below the lower bound with
a probability of around 2 .5%. The lower bound of the PIs
would facilitate conservative decision-making while the upper
bound would facilitate optimistic decision-making on battery
applications.
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Fig. 3. The 95% PIs and mean predictions by QRF.

To demonstrate how the learned QRF model facilitates
decision-making when the expected battery cycle life that
is calculated using (Eqn. 24) under two different charging
protocols are very close to each other, two groups of cells
are selected where each group contains three cells from the
same batch date and charged with the same charging protocol
(see Table VI).

The first group contains cell No.109, No.117 and No.121.
All of them are from the batch date ”2018-04-12” and charged
with the charging protocol ”5.6C(36%)-4.3C”. As one can
see in Fig. 4a, three cells exhibit different capacity fade
curves. The true battery cycle life of this charging protocol
is calculated as the averaged observed cycle lives of three

cells, i.e., 853 cycles. The second group contains cell No.94,
No.96 and No.116. All of them are from the batch date ”2018-
04-12” and charged with the charging protocol ”5.6C(19%)-
4.6C”. As one can see in Fig. 4b, cell No.94 and No.96
exhibit very similar capacity degradation curve while the
cell No.116 exhibits longer cycle life. The true battery cycle
life of this charging protocol is calculated as the averaged
observed cycle lives of three cells, i.e., 909 cycles. Therefore,
based on the true cycle lives of two charging protocols, the
charging protocol ”5.6C(19%)-4.6C” should be selected as the
high-cycle-life charging protocol. The expected battery cycle
life of the charging protocol ”5.6C(36%)-4.3C”, calculated
using Eqn. (24), is equal to 911 cycles, while the expected
battery cycle life of the charging protocol ”5.6C(19%)-4.6C”,
calculated using Eqn. (24), is also equal to 911 cycles. With
point prediction alone, it is very difficult to select the high-
cycle-life charging protocol out of two charging protocols
as they have the same expected battery cycle lives. How-
ever, with additional range prediction, the expected battery
cycle life range of each charging protocol can be calculated
using Eqn. (25), i.e., 434 cycles for the charging protocol
”5.6C(36%)-4.3C” and 392 cycles for the charging protocol
”5.6C(19%)-4.6C”. Therefore, the second charging protocol
(i.e., ”5.6C(19%)-4.6C”) is chosen here as the preferred among
two due to lower uncertainty (and hence lower economic risk)
around the expected battery cycle life.

In the two examples given above, it can be seen how
the discrepancy between predicted mean cycle life and the
observed cycle life of a cell agrees with the width of range
prediction. The widths of range prediction may provide more
information for decision-making (for instance, when selecting
high-cycle-life charging protocol) under uncertainty associated
with cycle life prediction than we get from single point
predictions alone. Interestingly, the differences in observed
cycle life within each group can be quite remarkable (see
Fig. 4a and Fig. 4b), considering that they are expected to
have almost the same aging process. The reason why cells
from the same batch and charged with the same charging
protocols can have a very different cycle life is most likely
due to production-related factors (e.g., the variance of material
properties and process parameters). Apparently, in this case,
the cell-to-cell variations caused by the production process are
quite significant, and these variations are indeed captured by
the model via the extracted features.

VII. CONCLUSION

In the present paper, we have proposed a quantile regression
forest (QRF) model for Li-ion battery cycle life prediction
using early degradation data. To the best of our knowledge, it
is the first time that the QRF model is introduced to battery
cycle life range prediction even though it has been used in
predictions of drug effect, crop yield etc. The proposed PI
evaluation criterion in LOO-XVE can be used for optimizing
hyperparameters of other regression models that are capable
of providing range predictions so that high prediction interval
coverage probability (PICP) value, which satisfies a preas-
signed nominal coverage probability, as well as low mean
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Fig. 4. Selected two groups of cells.

TABLE VI
TWO GROUPS OF CELLS WITH TWO CHARGING PROTOCOLS RESPECTIVELY

Batch date 2018-04-12
Charging protocol 5.6C(36%)-4.3C 5.6C(19%)-4.6C
Cell number No.109 No.117 No.121 No.94 No.96 No.116
Observed cycle life (cycles) 850 923 786 817 816 1093
Predicted mean cycle life (cycles) 884 989 860 879 845 1008
The lower bound of range prediction (cycles) 718 785 481 712 711 787
The upper bound of range prediction (cycles) 1128 1229 1152 1104 1069 1282
True battery cycle life of
a charging protocol (cycles) 853 909
Expected battery cycle life of
a charging protocol (cycles) 911 911
Expected battery cycle life range of
a charging protocol (cycles) 434 392

prediction interval width (MPIW) value can be available for
decision-making. Two global model-agnostic methods were
employed to interpret the final QRF model, and they can be
easily employed also for other advanced data-driven methods.
These interpretation techniques can reveal underlying battery
aging mechanisms and help finding features that have the
highest predictive power for cycle life prediction with data-
driven methods. There are, however, several improvements
that can be made in future work. First, the battery dataset
used for training and testing is relatively small with cells
tested at ambient temperature of 30 °C. A larger battery
dataset with cells tested at ambient temperatures other than
30 °C is desired for both validating prediction performance
of the proposed QRF model and effectiveness of the proposed
two interpretation techniques that may reveal the underlying
degradation process of cells tested at other ambient tempera-
tures. Second, permutation importance and PDP are the two
methods used in the present work to implicitly interpret the
model. Additional interpretation techniques can be introduced
in the future for further interpretation of other advanced data-
driven models. Thirdly, towards online application of the final
QRF model on a realistic BMS, several aspects need to be
investigated, including, for example, computational efficiency
and memory footprint of the final QRF model for real-time
embedded applications. Fourthly, it would be very interesting
to investigate the robustness of the QRF model with respect

to both varying operating conditions and measurement noise
in the data. Fifthly, our proposed method does not consider
calendar aging that happens during any dedicated resting pe-
riods for long time (e.g., battery storage, vehicle parking etc).
Since the calendar aging impacts the early capacity fade of a
cell, it is reasonable to expect that a QRF model trained using
calendric and cyclic aging data may still show good prediction
performance. However, this needs to be tested and verified in
our future work. Lastly, the hybrid data-driven method is also
an important category, one possibility of using a second data-
driven model to extrapolate values of important features can
be investigated so that even earlier or less degradation data is
needed for battery cycle life prediction with high accuracy and
reliability. Another possibility of using physics-based model
for plausibility check and rationalization of prediction output
from data-driven model can also be investigated. This may
help interpret confidence in the predictions by the data-driven
model.
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[8] T. Baumhöfer, M. Brühl, S. Rothgang, and D. U. Sauer, “Production
caused variation in capacity aging trend and correlation to initial cell
performance,” Journal of Power Sources, vol. 247, pp. 332–338, 2014.

[9] M. Huang, M. Kumar, C. Yang, and A. Soderlund, “Aging estimation of
lithium-ion battery cell using an electrochemical model-based extended
kalman filter,” in AIAA Scitech 2019 Forum, 2019, p. 0785.

[10] C. Lyu, Q. Lai, T. Ge, H. Yu, L. Wang, and N. Ma, “A lead-acid battery’s
remaining useful life prediction by using electrochemical model in the
particle filtering framework,” Energy, vol. 120, pp. 975–984, 2017.

[11] Y. Chang, H. Fang, and Y. Zhang, “A new hybrid method for the
prediction of the remaining useful life of a lithium-ion battery,” Applied
energy, vol. 206, pp. 1564–1578, 2017.

[12] X. Hu, H. Yuan, C. Zou, Z. Li, and L. Zhang, “Co-estimation of state of
charge and state of health for lithium-ion batteries based on fractional-
order calculus,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 11, pp. 10 319–10 329, 2018.

[13] L. Zhang, Z. Mu, and C. Sun, “Remaining useful life prediction for
lithium-ion batteries based on exponential model and particle filter,”
IEEE Access, vol. 6, pp. 17 729–17 740, 2018.

[14] E. Sarasketa-Zabala, E. Martinez-Laserna, M. Berecibar, I. Gandiaga,
L. M. Rodriguez-Martinez, and I. Villarreal, “Realistic lifetime predic-
tion approach for li-ion batteries,” Applied energy, vol. 162, pp. 839–852,
2016.

[15] M. Schimpe, M. E. von Kuepach, M. Naumann, H. C. Hesse, K. Smith,
and A. Jossen, “Comprehensive modeling of temperature-dependent
degradation mechanisms in lithium iron phosphate batteries,” Journal
of The Electrochemical Society, vol. 165, no. 2, p. A181, 2018.

[16] J. de Hoog, J.-M. Timmermans, D. Ioan-Stroe, M. Swierczynski,
J. Jaguemont, S. Goutam, N. Omar, J. Van Mierlo, and P. Van Den Boss-
che, “Combined cycling and calendar capacity fade modeling of a nickel-
manganese-cobalt oxide cell with real-life profile validation,” Applied
Energy, vol. 200, pp. 47–61, 2017.

[17] C. She, L. Zhang, Z. Wang, F. Sun, P. Liu, and C. Song, “Battery state of
health estimation based on incremental capacity analysis method: Syn-
thesizing from cell-level test to real-world application,” IEEE Journal
of Emerging and Selected Topics in Power Electronics, 2021.

[18] B. Long, W. Xian, L. Jiang, and Z. Liu, “An improved autoregressive
model by particle swarm optimization for prognostics of lithium-ion
batteries,” Microelectronics Reliability, vol. 53, no. 6, pp. 821–831,
2013.

[19] Y. Zhou and M. Huang, “Lithium-ion batteries remaining useful life
prediction based on a mixture of empirical mode decomposition and
arima model,” Microelectronics Reliability, vol. 65, pp. 265–273, 2016.

[20] J. Wu, C. Zhang, and Z. Chen, “An online method for lithium-ion battery
remaining useful life estimation using importance sampling and neural
networks,” Applied energy, vol. 173, pp. 134–140, 2016.

[21] X. Hu, S. E. Li, and Y. Yang, “Advanced machine learning approach
for lithium-ion battery state estimation in electric vehicles,” IEEE
Transactions on Transportation electrification, vol. 2, no. 2, pp. 140–
149, 2015.

[22] Y. Zhang, R. Xiong, H. He, and M. G. Pecht, “Long short-term memory
recurrent neural network for remaining useful life prediction of lithium-
ion batteries,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 7, pp. 5695–5705, 2018.

[23] A. Nuhic, T. Terzimehic, T. Soczka-Guth, M. Buchholz, and K. Di-
etmayer, “Health diagnosis and remaining useful life prognostics of
lithium-ion batteries using data-driven methods,” Journal of power
sources, vol. 239, pp. 680–688, 2013.

[24] T. Qin, S. Zeng, and J. Guo, “Robust prognostics for state of health es-
timation of lithium-ion batteries based on an improved pso–svr model,”
Microelectronics Reliability, vol. 55, no. 9-10, pp. 1280–1284, 2015.

[25] M. Kläs and A. M. Vollmer, “Uncertainty in machine learning appli-
cations: A practice-driven classification of uncertainty,” in International
Conference on Computer Safety, Reliability, and Security. Springer,
2018, pp. 431–438.

[26] R. R. Richardson, M. A. Osborne, and D. A. Howey, “Battery health
prediction under generalized conditions using a gaussian process transi-
tion model,” Journal of Energy Storage, vol. 23, pp. 320–328, 2019.

[27] D. Liu, J. Pang, J. Zhou, Y. Peng, and M. Pecht, “Prognostics for
state of health estimation of lithium-ion batteries based on combination
gaussian process functional regression,” Microelectronics Reliability,
vol. 53, no. 6, pp. 832–839, 2013.

[28] D. Wang, Q. Miao, and M. Pecht, “Prognostics of lithium-ion batteries
based on relevance vectors and a conditional three-parameter capacity
degradation model,” Journal of Power Sources, vol. 239, pp. 253–264,
2013.

[29] D. Liu, J. Zhou, D. Pan, Y. Peng, and X. Peng, “Lithium-ion battery
remaining useful life estimation with an optimized relevance vector
machine algorithm with incremental learning,” Measurement, vol. 63,
pp. 143–151, 2015.
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