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Abstract

Clouds are essential to the Earth’s energy budget and atmospheric circulation.
Despite this, many cloud parameters are poorly known, including the mass
of frozen hydrometeors. On the one hand, there will be specialized satellite
missions targeting such hydrometeors. On the other hand, existing satellite data
can be leveraged. There should be a particular interest in using geostationary
satellite observations since they provide continuous coverage. Traditionally,
retrievals of cloud ice masses from geostationary measurements require solar
reflectances, ignore any spatial correlations, and solely retrieve the vertically-
integrated ice mass density, known as the ice water path.

This thesis challenges the traditional approach by applying supervised
learning against CloudSat collocations, the only existing satellite mission
targeting ice clouds. A set of neural networks is assembled to compare the
performance of using different visible or infrared channels as retrieval input as
well as the added value of using spatial context. The retrievals are probabilistic,
in the sense that all neural networks predict quantiles to estimate the retrieval
irreducible uncertainty, and thus represent the state of the art for atmospheric
retrievals.

With several spectral channels, infrared retrievals are found to have a similar
performance compared to the peak accuracy offered by the combination of
visible and infrared channels. However, the infrared-only retrievals enable
a consistent diurnal performance. The use of spatial information reinforces
the retrievals, which is demonstrated by the ability to provide skilful three-
dimensional estimates of ice masses, known as ice water content, from only
one infrared channel. The latter retrieval scheme is supported by an extensive
validation with independent measurements.

These neural network-based retrievals offer the possibility to derive new
insights into cloud physics, reduce present ice cloud uncertainties, and validate
climate models. Ideally, such retrieval schemes will complement the sparse
measurements from specialized instruments. Finally, this thesis contains the
groundwork for executing retrievals on multidecadal geostationary observations,
offering unprecedented spatially and temporally continuous three-dimensional
data for the tropics and mid-latitudes. The implementation of these ongoing
retrievals is publicly released as part of the Chalmers Cloud Ice Climatology.
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1 Introduction

Presently, one of the key elements that contributes to progress in remote
sensing and geoscience are advances in machine learning. The wealth of obser-
vational datasets and developments in computational systems have catalysed
the exploration and implementation of data-driven algorithms. It suffices to
attend any conference, engage in scientific discussions or follow remote sensing
journals to notice that machine learning serves not only as a powerful tool for
statistical data processing but increasingly also for learning, understanding,
and extracting knowledge. This paradigm shift in modern remote sensing is
also the basis for this licentiate thesis.

Acquiring atmospheric information is one of the applications of remote
sensing. Clouds are an integral and dynamic part of the atmosphere. These
perceivable masses of particulate matter play a crucial role in the Earth’s
weather and climate systems. Clouds are critical for the radiation budget by
reflecting incoming sunlight, resulting in a cooling effect, and by retaining
outgoing heat radiated from the Earth’s surface, leading to a warming effect.
Therefore, changes in surface temperature are sensitive to the distribution of
clouds (Romano, 2020), including their shape, size, altitude, and constituents.
According to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change (2023), ‘the cloud feedback remains the largest contribution
to overall uncertainty’ in the global warming.

Meteorological satellites, in particular geostationary satellites, enable a
continuous monitoring of the atmosphere. They offer a larger spatial coverage
than ground-based instruments and, when several satellites observations are
combined, they can deliver near real-time measurements at a global scale.
Consequently, observations from geostationary satellites present themselves as
candidates to study cloud distributions, though their instruments cannot avoid
the common ill-posedness of atmospheric retrieval problems.

Particles of ice or water in the atmosphere are known as hydrometeors.
They are a predominant constituent of cloud distributions and can even be
the only component of clouds, depending on the definition of cloud (Spänkuch
et al., 2022). Multidecadal climate data records show that the global average
cloudiness exceeds 60% (Karlsson and Devasthale, 2018), while specialized
observations indicate that clouds composed solely of frozen hydrometeors can
surpass the global average cloudiness in tropical regions (Nazaryan et al., 2008).
Frozen hydrometeors are complex and challenging when compared to their
liquid counterpart (Kneifel et al., 2020).
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4 CHAPTER 1. INTRODUCTION

This thesis focuses on quantifying concentrations of frozen hydrometeors,
that is, atmospheric ice masses, from geostationary imagery. Unsurprisingly,
the scientific community has already addressed the challenge of retrieving
the vertically-integrated atmospheric ice mass, technically the ice water path
(IWP), as further explained in section 2.4. However, the standard technique for
quantifying IWP using geostationary images suffers from a major drawback:
it is only applicable during daytime. This implies that about half of the
observations are not used and downstream analyses, such as diurnal cycles, are
incomplete.

The primary goal of this thesis is to overcome this limitation when retrieving
IWP from geostationary imagery. This is achieved by identifying and employing
an appropriate machine learning approach capable of providing probabilistic
estimates for sophisticated downstream applications. Secondly, this thesis defies
the challenge of offering vertical atmospheric ice density estimates, technically
known as the ice water content (IWC), as well as complementary information,
also from geostationary images.

To address the goals, the works in this thesis make virtually no physical
assumptions in its foundation, although the different data sources contain
assumptions. Therefore, these assumptions are inherited. Artificial neural
networks (NNs) are trained with geostationary imagery to best reproduce
retrievals from CloudSat, a sun-synchronous satellite that has been the standard
for profiling ice clouds globally and is a usual reference for IWP and IWC.
The information supplied to the NNs is chosen through exploration of the
available geostationary data and the targets at stake, for example, consistent
diurnal retrievals by considering only infrared measurements. The choices are
guided by black-box experimental results rather than physical models. The
NNs used also vary in size and predefined skills, for example, the ability to
leverage spatial information, but all follow the same machine learning method
capable of offering probabilistic estimates: non-linear quantile regression.

This framework also sets the limitations of this thesis. It is not considered
to explore the explainability of the NNs and, therefore, the retrievals are simply
treated as the output of a black-box. Although different NNs have been used,
no exhaustive survey is conducted to find an optimal architecture, albeit it can
be argued that such an optimization would consume plenty of resources for
slight improvements. The lack of suitable probabilistic reference data hinders
the validation of retrieval uncertainties. Therefore, the probabilistic nature of
the retrievals is limited to the evaluation of the internal consistency with the
training data, in the sense of comparing the distribution of random samples
with the training data distribution.

Overall, the work presented in this thesis offers the possibility of getting a
more complete picture of atmospheric ice masses from geostationary observa-
tions than the corresponding standard methods. A better understanding of
the changing climate and repercussions of clouds in human activities can be
facilitated by retrievals of this kind, which provide new information on the
distribution and evolution of clouds.



2 Background

2.1 Physical principles

Figure 2.1 shows the ranges in the electromagnetic spectrum in which the
remote sensing instruments used here measure. Naturally, measurements in
different regions can capture distinct and complementary information. As an
example, ice clouds strongly absorb radiation at λ = 1.64 µm, but measurements
at 94GHz can interact much better with ice clouds, in the sense that they can
provide better estimates, for instance, of cloud thickness. These characteristics
are explained by the emission, absorption, and scattering properties of clouds,
which are determined, among others, by their shape, density, and composition.

An important concept used throughout this thesis is the brightness temper-
ature TB. This parameter indicates the intensity of the thermal radiation of
a physical body at a given wavelength. It is obtained by solving the Planck
radiation law. That is, the brightness temperature is not necessarily equivalent
to the actual temperature of the elements measured. Nevertheless, the use
of brightness temperatures provides an intuitive interpretation when hand-
ling measurements across various wavelengths, in particular at the infrared
and microwave regions; ice clouds exhibit a lower thermal emission than its
background when seen from space, the Earth’s surface, which results in lower
brightness temperatures.

As exemplified above, the various regions of the electromagnetic spectrum,

—————— infrared —————— ——— microwaves ———

geo satellites CloudSat

100 nm 1 µm 10 µm 100 µm 1 mm 10 mm 100 mm

wavelength

1 PHz 100 THz 10 THz 1 THz 100 GHz 10 GHz

frequency

Figure 2.1: Part of the electromagnetic spectrum with the region measured by
geostationary satellites highlighted in orange and the frequency of CloudSat in
blue. The visible part of the spectrum is also illustrated.
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6 CHAPTER 2. BACKGROUND

and more precisely different wavelengths, may not offer the same performance
for retrieving a geophysical parameter. The atmosphere is a complex medium
consisting of many species of gas, liquid, and solid particles. In general,
longer wavelengths penetrate better the atmosphere than shorter wavelengths,
specifically in the presence of liquid or solid particles. This phenomenon
is a consequence of the scattering and absorption properties of the various
atmospheric constituents. Therefore, longer wavelengths, such as microwaves,
are commonly preferred over infrared to retrieve the vertical distributions of
frozen hydrometeors. This is relevant, for example, for thick ice clouds or in
the presence of multilayer clouds.

2.2 Geostationary satellites

The geostationary orbit is located about 35 786 km above the equator. Satellites
in gravitational equilibrium in this orbit are geostationary satellites. Their
main characteristic is that they remain stationary relative to a fixed point
on the Earth’s surface. Meteorological geostationary satellites accommodate
instruments that measure in the visible and infrared regions of the spectrum.
One motivation for measuring in these regions is purely practical: the size
required for the antenna. Although microwave geostationary imagers are
possible (Lambrigtsen et al., 2022), the antenna size required to capture
microwave signals is theoretically much larger than that of an antenna for
visible or infrared signals. As an example, a rough calculation1 indicates
that achieving a resolution of 3 km at the sub-satellite point necessitates an
antenna with a 0.13m diameter for a wavelength of 11 µm, while for 94GHz it
is required a diameter of 38m, almost 300 times larger. Therefore, placing and
maintaining an instrument to capture microwaves at an altitude of 35 786 km
is a cumbersome challenge.

Combining different geostationary satellites in a constellation, hereinafter
referred to as a geo-ring, offers the possibility to have quasi-global continuous
observations in the infrared region, only limited in latitude by the field of view
of these satellites. The imagers on-board each satellite can differ in spatial
resolution, revisit time, or measured wavelengths, among others. On the one
hand, and as an example, the imager on-board Meteosat-9, the data source for
paper I, located at the prime meridian during the time of the analysis, provided
a 3 km resolution with a full-disc revisit time of 15min for 11 spectral channels.
On the other hand, the imager on-board the coexisting operational satellite
GOES-11 (Menzel and Purdom, 1994), located at −135◦, offered only five
spectral channels, with resolutions between 1 and 8 km and a worse full-disc
revisit time in the routine mode.

The characteristics of each instrument will depend on the agencies respons-
ible for the satellite and, inevitably, the technological knowledge during their
design phase. It should come as no surprise that data products tailored for
one family of imagers cannot be applied directly to others. Nevertheless, ob-

1Following the formula diameter = altitude · wavelength/resolution. See, for example,
Physical Principles of Remote Sensing (Rees, 2012) for details.
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Figure 2.2: A 11µm GridSat observation. According to the GridSat file
metadata, the geo-ring consists of GOES-17 (−137.2◦), GOES-18 (−137.0◦),
GOES-16 (−75.2◦), Meteosat-11 (0.0◦), Meteosat-9 (45.5◦), and Himawari 9
(140.7◦); approximate field of view of each satellite indicated in dashed black
lines.

servations from a geo-ring can be combined onto a predefined grid through
selecting shared spectral channels and applying intersatellite normalization.
Figure 2.2 illustrates this with a sample from GridSat (Knapp et al., 2011),
which is a long record of globally gridded geostationary satellite observations.
Consequently, these observations can be used to develop data products for the
global scale.

2.3 CloudSat

In 2006 a new satellite joined the A-Train constellation (L’Ecuyer and Jiang,
2010) of Earth observing satellites: CloudSat (Stephens et al., 2002). Its single
instrument is a radar operating at 94GHz, a frequency determined to be an
optimal compromise between maximizing sensitivity to cloud reflectivities and
atmospheric attenuation. Radiation at this microwave frequency interacts well
with clouds and, consequently, the main application is to provide reflectivities
of cloud profiles and derive products from them. Figure 2.3 illustrates one
application: retrievals of IWP and IWC. According to Stephens et al. (2018),
the new dimension offered by CloudSat has aided in updating the interpretation
of radiance observations as well as provided new insights and understanding of
cloud processes.

CloudSat has been the gold standard for global cloud profiling. However,
it has four characteristics that can be considered limitations for the study of
cloud distributions on a global scale. They are listed and discussed in the
following paragraphs.
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Figure 2.3: An example of atmospheric ice mass retrieval by the CloudSat
product 2C-ICE (Deng et al., 2015).

Spatial sampling. The CloudSat radar provides vertical information at a
500m resolution from the ground level up to 30 km. This should not be inter-
preted as any drawback. However, the limitation is in the planar dimensions:
the cross-track effective field of view is approximately 1.4 km, which is also
its cross-track coverage. This narrow coverage is akin to taking a slice of the
atmosphere along the CloudSat orbit. Consequently, it is difficult to completely
assess any spatial variability with the CloudSat reflectivities alone.

Sun-synchronous orbit. CloudSat is in a sun-synchronous orbit, that is,
it always crosses the equator at the same time, specifically after 13:30 local
solar time in ascending orbit. This implies three limitations. Firstly, CloudSat
observations will be discontinuous for any location on Earth, although the
observations will always be at the same local time. Secondly, its repeat cycle
is 16 days. These two limitations, jointly with its narrow field of view, cause
a third limitation, which is its spatial coverage and revisit time. Figure 2.4
illustrates the issue: a considerable portion of the atmosphere is unobserved by
CloudSat. For most locations observed, the revisit time is 16 days. However,
for fortunate locations it is 8 days, consisting of a day and a night observation,
always at the same local mean solar time.

Temporal coverage. The concluding sentence in the previous paragraph
applies only from its launch in mid 2006 through the first quarter of 2011.
Thereafter, CloudSat has only acquired data in sunlit portions of its orbit
due to a battery anomaly (Nayak, 2012). CloudSat has been operational
until the time of writing, exceeding its three-year design life (Parkinson et al.,
2006, p. 128), and has bypassed a series of unfortunate events, leading to its
repositioning to the graveyard orbit of its partner satellite, which established
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Figure 2.4: One full CloudSat repeat cycle for a region centred at 0◦ latitude
and longitude. The cross-track field of view is not to scale, therefore even a
larger part of the region is unobserved by CloudSat. The colours indicate the
elapsed time since a hypothetical start time of observation.

the C-Train (Braun et al., 2019). Nonetheless, its expected end of life in late
2024 (World Meteorological Organization, 2023) will bring the time period
containing CloudSat observations to an end.

The EarthCARE satellite (Illingworth et al., 2015) is the successor to
CloudSat, containing also a 94GHz cloud profiling radar. The Metop-SG B
satellite will carry the Ice Cloud Imager (Bergadà et al., 2016; Kangas et
al., 2014), a radiometer that will be used to derive data on the bulk ice
mass from a new spectral range in space observations (Eriksson et al., 2020).
However, both of these satellites will orbit in a sun-synchronous orbit, therefore
presenting challenges similar to those of CloudSat, and they remain yet to
be launched. Later upcoming missions will suffer from similar limitations.
Consequently, observations from a geo-ring will persist as the unique source for
a spatiotemporal, quasi-global continuous monitoring of cloud distributions.

2.4 Algorithms for visible and infrared imagery

The findings of Nakajima and King (1990) can be regarded as foundational for
the retrieval of IWP from visible and infrared satellite imagers. Nakajima and
King identified relationships between two spectral channels and two parameters,
the cloud optical thickness τ and the effective droplet radius re. The first
parameter quantifies the efficiency in preventing light from passing through a
medium, while re is an average size parameter for the particles in the medium.
It is worth noting that there are several different formulations of re for ice
particles (McFarquhar and Heymsfield, 1998). Nakajima and King established
that reflectances at 0.75 µm are primarily sensitive to τ , while reflectances at
2.16 µm are more sensitive to re.
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Several algorithms, listed in paper I, retrieve IWP from visible and infrared
radiances by adapting the Nakajima and King method. These algorithms
estimate IWP as a function of τ and re, given by

IWP ∝ τre (2.1)

following Stephens (1978), and where the missing constant depends on each
algorithm. However, this method presents three main shortcomings for the
retrieval of IWP. Firstly, simplifying the particle size distribution to only re
can render the relationship in eq. (2.1) incomplete for ice clouds (Mitchell
et al., 2011). Secondly, it requires discriminating the ice cloud phase from
the water phase, discouraging retrievals for mixed-phase clouds. Thirdly, the
dependence on a visible channel to retrieve τ makes this method only applicable
during daytime observations. There exists at least one technique that aims to
address this last shortcoming by using infrared-only radiances (Wielicki et al.,
1995). However, its application in eq. (2.1) should be considered experimental
according to Minnis et al. (2011). The shortcomings of this physics-based
approach may be overcome with machine learning. Few works, also listed in
paper I, use machine-learning techniques for the retrieval of IWP. However,
they face either a suboptimal choice of reference data when training the model
for IWP retrieval or combine microwave and infrared observations, which makes
the method inapplicable for geostationary imagers alone.

De Laat et al. (2017) and Yost et al. (2018) proposed physics-based al-
gorithms to retrieve high IWC events from visible and infrared radiances.
However, the method from de Laat et al. relies on eq. (2.1) and solar radiation.
Arguably, it suffers from the shortcomings listed above. On the other hand, Yost
et al. use a different approach by switching the method applied as a function
of the solar radiance. In any case, both methods limit themselves to indicate
the presence of IWC above a fixed threshold in the pixel of the geostationary
image. In other words, they do not retrieve the vertical distribution of IWC.

2.5 Reshaping of the retrieval landscape with
machine learning

The word retrieval has not been introduced in this thesis. In this context, it
can be defined as the acquisition of information about a geophysical parameter
through indirect measurements. Therefore, and mathematically, the measure-
ments are functional results of the geophysical parameter. The inversion of
such functions constitutes a retrieval.

The classical approach to solving remote sensing inversion problems starts
with modelling the forward function. This function defines the perfect relation-
ship between the measurements, the geophysical parameter, other parameters,
and, depending on the interpretation used, experimental errors. That is, the for-
ward function contains any physics necessary to relate the geophysical parameter
to the measurement. Modelling the forward function correctly is fundamental
to a successful retrieval method. Unsurprisingly, designing a forward model
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that accurately matches the forward function can be difficult: the real physics
may be too complex, or the level of detail required can still be uncertain. In
addition, a forward model needs to be numerically efficient, particularly when
large amounts of data are processed, as in the case of geostationary imagery.

Provided a forward model, one can design a retrieval method by mathem-
atically inverting it. However, it is likely that this inversion is algebraically
difficult or that it returns a non-unique solution, yielding an ill-posed problem.
Variational methods can solve the inversion problem by finding the minimizer
of a cost functional based on the forward model, but in their naive formulation
they lack important information: the uncertainty of the retrieval. It is of little
value to retrieve a quantity without a corresponding measure of error, partic-
ularly for sophisticated applications. Furthermore, in this context, external
parameters or measurement noise can influence the retrieval and are a source
of uncertainty.

One solution for this need is to consider the retrieved parameter as a random
variable instead of a point estimate, and the measurement as a realization
of another random variable. The Bayesian framework is well suited for this
task, where the idea is that the measurement refines previous knowledge or
assumptions of the parameter, yielding a posterior knowledge distribution for
the parameter. The optimal estimation method (OEM, Rodgers, 2000) is widely
used for solving atmospheric retrieval problems using the Bayesian framework.
One characteristic of OEM is that it is an iterative method, since it repeatedly
evaluates the Jacobian of the forward model. Therefore, one has to define
the convergence criteria, which should include the possibility that there is no
convergence. Furthermore, OEM is inherently limited to Gaussian statistics. In
addition, this method also requires initial conditions, the formal specification of
prior knowledge, and that the linearization of the forward model is reasonable,
which all can have a substantial impact in the retrieval.

Although OEM has a solid statistical foundation, its reliance on a forward
model, iterations that can be expensive, and predefined convergence criteria
can render the retrieval sub-optimal. More general methods, such as Markov
chain Monte Carlo, are computationally heavy. On the other hand, machine
learning can be employed to execute efficient retrievals that overcome such
inconveniences at the expense of a costly training step. The straightforward
approach in this other paradigm is to program a machine to directly retrieve the
geophysical parameter from the measurement. Therefore, solving the retrieval
problem diverts from physical modelling and becomes instead a data-driven
task, though it can be argued that the machine could mimic the inversion of a
physical forward model.

This thesis followed the straightforward machine learning approach, but
which is in principle consistent with general Bayesian methods. It is important
to note that this approach relies on the quality of the data used to train the
machine. Intuitively, the relationships learnt between inputs to the model and
the corresponding expected outputs will be affected by the variability in the
data representing these relationships. In the context of this thesis, the natural
variability of the data is large and, therefore, strongly drives the uncertainty of
the retrievals. Mathematical arguments are given in section 4.2.
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In any case, the use of machine learning facilitates incorporating valuable
features into the measurement, for example, spatiotemporal information. Fur-
thermore, it is relatively easy to increase the capacity and expressivity of
machine learning models. This is not only because there exist flexible models,
but also because of the software and learning methods available as well as its
vibrant scientific community. Machine learning models are virtually unlimited,
including methods for obtaining uncertainties as in OEM. One of these methods
is non-linear quantile regression, used throughout this thesis and detailed in
section 4.2, which yields an equivalent of the posterior distribution obtained
with Bayesian methods for scalar retrieval targets.



3 Summary of appended papers

Figure 3.1 illustrates the scope and main targets of each paper. Paper II builds
upon the findings of paper I, as will be argued. The common methodology
followed in both papers is outlined later in chapter 4. The following sections
summarize each paper as well as selected results.

Paper I

Satellite used : Meteosat-9
Applicability : 2004 – present
Principal retrieval target : IWP
Focus:
– MLP vs CNN architectures
– Channel selection
Highlighted finding
↪→ skilful IR-only retrievals

Paper II
Satellites used : several (geo-rings)
Applicability : 1980 – present
Principal retrieval targets : IWP, IWC
Focus:
– Offering a large temporal coverage
– Vertically-resolved retrievals
– Extensive validation
Highlighted finding
↪→ skilful IR-only vertical retrievals

Figure 3.1: Summary of papers I and II. The shading indicates the areas
covered by the papers.

3.1 Paper I – Ice water path retrievals from
Meteosat-9 using quantile regression neural
networks

The Meteosat satellites are the operational satellites at the prime meridian.
For the last two decades Meteosats have carried the same imager: SEVIRI
(Aminou et al., 1997; Schmid, 2000). This paper proposes retrieving IWP from
SEVIRI images using quantile regression NNs trained against CloudSat IWP
retrievals. In particular, it focusses on Meteosat-9 observations that cover a
major part of the African continent, including a part of the Atlantic Ocean.

13
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In total, five NN candidates for the retrieval of IWP are considered. It is
first evaluated three candidates, where each consists of a pixel-wise multilayer
perceptron (MLP) with the same number of hidden layers and hidden neurons,
which were determined after an exploration with a development set. The
difference between the three candidates is the number of input features required:
one candidate required all SEVIRI spectral channels, that is, the 11 visible
and infrared channels, while the other two candidates only supported infrared
information that is known to not have any solar contamination, that is, thermal
infrared. The difference between the infrared-only NNs also resided in the
spectral channels used: one network required all seven SEVIRI thermal infrared
channels, while the other aimed to approximate the SEVIRI predecessor using
only two channels. These three candidates were trained and evaluated with
daytime-only observations to fully explore the potential of the NN using visible
and infrared radiances. As expected, this network best reproduced the retrievals
from a held-out test dataset. However, the infrared-only NN retrievals followed
closely, with better performance when more channels are used.

The satisfactory infrared-only retrievals encouraged to re-train the seven-
infrared-channels MLP with a larger dataset containing both daytime and
nighttime observations. The corresponding evaluation showed similar perform-
ance as the daytime-only trained NN. The fifth candidate consisted of a fully
convolutional neural network (CNN) using the same spectral information as
the seven-infrared-channels MLP. This CNN, grounded in similar retrieval
problems and tuned over a small hyperparameter space with a development
set, enabled incorporating spatial information into the retrieval. The lack of
suitable ground-truth data hinders any exhaustive evaluation, including the
probabilistic information of the retrieval method, but, in general, the CNN
offered more satisfactory retrievals.

Retrievals given by the CNN were compared with physics-based retrievals
from a readily available dataset, also derived from Meteosat-9. The comparison
was two-fold: agreement with CloudSat retrievals and an analysis of diurnal
cycles. Unsurprisingly, the machine-learning technique trained against CloudSat
retrievals better reproduced the CloudSat retrievals. However, since CloudSat
retrievals are considered an absolute ground truth, it was concluded that
the CNN retrievals compared favourably. Concerning the diurnal cycles, a
continental area and a maritime area, both expected to have a high IWP on
average, were analysed. In general, the machine-learning and physics-based
patterns of diurnal cycles correlate well, albeit they disagree in the IWP
magnitude. However, given its dependence only on thermal infrared radiances,
the NN has the advantage of providing the missing nighttime period in the
physics-based approach.
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3.2 Paper II – The Chalmers Cloud Ice Clima-
tology: retrieval implementation and valid-
ation

Figure 3.1 highlights a limitation of paper I: its geographically-limited coverage.
Paper II, also referred to as CCIC, extends the scope of these geostationary
retrievals: not only for full-disc retrievals, as suggested in paper I, but also for
a global coverage, only limited in latitude by the field of view of geostation-
ary satellites. Consequently, more observations than those from SEVIRI are
required; two datasets of globally gridded geostationary satellite observations
are used as input data to a neural network. These datasets, which can be
considered to complement each other, also cover a larger time period: one
extends back to 1980, spanning more than forty years.

The larger coverage of the global datasets, both in the geographical and
temporal domains, poses a principal challenge: harmonizing spectral inform-
ation from different satellites. Consequently, paper II only uses the 11 µm
radiances provided by these datasets. Given this limited information and the
favourable retrievals by the CNN in paper I, another quantile regression CNN
was adapted for this goal.

Ice water path is not the only retrieval target in CCIC. The same CNN
targets a vertical resolution of the retrieval by providing IWC estimates, un-
common for retrievals from geostationary imagery. Additionally, CNN also
provides estimates of cloud probabilities as a function of altitude, including
the cloud class. The reference data to train the CCIC model was also derived
from CloudSat products.

The evaluation of the retrievals against a held-out test dataset showed
reasonable agreement. CCIC-retrieved IWP correlates well with CloudSat-
retrieved IWP, as well as the corresponding zonal means. The performance of
the CCIC-retrieved IWC is observed to be relatively worse than the performance
of IWP retrieval. However, this should come as no surprise as determining the
vertical distribution of the ice mass is, intuitively, a more complex problem
than solving for IWP. This argument remains applicable to the retrieval of
cloud classes. In any case, the vertically-resolved retrievals exceed expectations,
as there is no suitable published reference for comparison, taking into account
the limited penetration capability of 11 µm radiances.

The CCIC work goes beyond an evaluation against a held-out dataset. The
IWP and IWC CCIC retrievals were compared with completely independent
measurements outside the time period used for training the NN. These meas-
urements, which cover different and distant regions, are taken from two series of
flight campaigns as well as one ground-based cloud radar. All flight campaigns
incorporated in-situ measurements of total hydrometeor water content, which
consists of the mass of both frozen and liquid hydrometeors. However, most
of the measurements were sampled in glaciated environments, and thus the
in-situ measurements were considered here a proxy for IWC. It is observed that
the CCIC IWC displays reasonable alignment with the in-situ measurements.
Furthermore, observations from cloud radars on-board two of the flight cam-
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paigns were processed to retrieve IWP and IWC. CCIC retrievals demonstrated
similar agreement with the radar retrievals as with the in-situ measurements.
Finally, CCIC retrievals were found to also exhibit reasonable performance
when compared with ground-based radar IWC and IWP retrievals.



4 Methodology

Neural networks are at the core of the papers included in this thesis. Using
statistical notation, this section outlines the common methodology followed to
train NNs, an overview of their principles of operation, and the leading factors
for some decisions. This section assumes a certain degree of familiarity with
machine learning concepts, covered, for example, by Goodfellow et al. (2016).

4.1 Labelling the geostationary observations

The works in this thesis aim to reproduce CloudSat retrievals, here considered an
absolute ground truth. Therefore, it is natural to frame the tasks in a supervised
learning process, mainly as a regression problem, even though a classifier is
required for the cloud class estimation in paper II. Supervised learning consists
of maximizing the performance of an algorithm when mapping input data points
x to known associated outcomes y. Consequently, any supervised learning
task will require a training dataset Dtraining = {(xk,yk)}mk=1 generated from
a distribution PX,Y on X × Y. Note that the dimensionality of x and y
will depend on the problem addressed. In this context, X are geostationary
observations and Y CloudSat retrievals. The ideal situation is that a database
D generated from PX,Y is readily available. However, D had to be constructed
for each paper. In other words, the CloudSat retrievals had to be collocated
with geostationary observations.

There is no unique way to construct D: differences in projections of the
data products and spatiotemporal resolutions make the collocation process
challenging. The works in this thesis used more advanced approaches than
a nearest neighbour search for the spatial collocation. This is hypothesized
to improve the quality of D, and consequently the quality of Dtraining ⊂ D
used to guide the algorithms. Temporal collocation was determined by the
temporal resolution of the geostationary observations. Finally, the existence
of two distinct CloudSat products that target the same variables, DARDAR-
cloud (Delanoë and Hogan, 2010) and 2C-ICE (Deng et al., 2015), raised the
question of which one to employ. The dataset of physics-based retrievals used
for comparison in paper I was validated against DARDAR by the dataset
authors. This data product was also the reference data in paper I. However,
paper II used 2C-ICE, mainly motivated by a data policy.

17
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4.2 Quantile regression

The goal of a neural network fθ is to learn optimal values for the learnable
parameters θ such that fθ can accurately map inputs from X to outputs in
Y, according to the underlying distribution. In the context of this thesis, the
optimal fθ will not have a one-to-one correspondence: the limited sensitivity in
the satellite instruments already introduces a degree of irreducible uncertainty.
Therefore, it is appropriate to address this ill-posed problem by formulating fθ
as the estimation of a conditional probability distribution PY |X.

Koenker and Bassett (1978) introduced linear quantile regression. This
method provides a more comprehensive relationship between two variables, an
endogenous variable y and an exogenous x, than the common least squares
regression. It achieves a better description by estimating conditional quantiles.
Given the cumulative distribution function FZ for a distribution PZ , the quantile
zτ at level τ ∈ [0, 1] is defined to be the value such that zτ = inf{z : τ ≤ FZ(z)}.
The quantile loss function is defined as

Lτ (zτ , z) =

{
τ |z − ẑτ | if ẑτ < z
(1− τ)|z − ẑτ | otherwise

. (4.1)

It can be proven that the expectation EZ∼PZ
[Lτ (ẑτ , Z)] is minimized when

ẑτ = zτ (Koenker, 2005, pp. 5–9).
A quantile regression neural network (QRNN) is a non-linear extension

of quantile regression, suitable for the non-linear nature of remote sensing
retrievals. Therefore, using the notation in this thesis, a QRNN seeks fθ able
to minimize EY∼PY |X [Lτ (fθ(x), Y )], where x are realizations of the random
variable X.

Pfreundschuh et al. (2018) analysed the performance of QRNNs as an
alternative to estimating the posterior distribution of Bayesian remote sensing
retrievals. Their work can be considered foundational for this thesis, as QRNNs
are the unique method used here for the retrieval of ice masses. The actual
implementation of QRNNs also follows the approach of Pfreundschuh et al.:
fθ is designed to estimate a set of quantiles at fixed levels T . That is, the loss
function of QRNNs for a sample (x, y) is given by

L ((fθ(x), y) =
1

|T |
∑

τ∈T
Lτ (fθ(x; τ), y) (4.2)

where fθ(x; τ) indicates the estimated quantile at level τ . Given the finite set
T and the fact that the exact PY |X is not known, the output of the network
results in a quantile-parameterized distribution (QPD), as illustrated in fig. 4.1.
The distribution PY |X can then be approximated with, for example, a linear
extension of the predicted QPD.

It should be emphasized that the regular and bold font faces in this section
are not arbitrary. This formulation of quantile regression only allows for
scalar target variables. Consequently, it is only possible to obtain marginal
distributions for each variable constituting vector retrievals, as in the case of
IWC retrievals or spatial distributions for IWP. How to perform the so-called
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(a) QPD from quantile regression.
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Figure 4.1: Optimal quantile regression examples for arbitrary random variables
and quantile levels T = {0.1, 0.3, 0.5, 0.7, 0.9}. The orange curve is the true
cumulative distribution function FY |·, the markers indicate quantiles estimated
with quantile regression, therefore a QPD, and the blue curve the corresponding
linear interpolation of the QPD.

vector quantile regression to estimate joint densities is an active area of research
and is out of the scope of this thesis.

In any case, the essence of QRNNs consists of training NN to estimate
quantiles of the irreducible uncertainty, also known as aleatoric uncertainty.
These quantiles can be processed to obtain, for example, an estimate for the
expected value of a retrieval. The QRNN approach does not require assumptions
on the target variable and can be completely data-driven. In particular, it
is not required to determine a plausible family of distributions for the target
variable. This enables to obtain non-Gaussian uncertainties, which are expected
in atmospheric ice retrievals; in the hypothetical case that the retrieval returns
the distribution of the reference data, such distribution is far from being
Gaussian, as illustrated in fig. 4.2. It is also reasonable to assume a context of
heteroskedasticity in the works of this thesis, that is, that the uncertainties are
not constant. Intuitively, the uncertainty of an IWP retrieval for a cloud-free
pixel should be minimal when compared against a cloudy pixel. The non-
linear nature of QRNNs is well-suited for this challenge. In addition, quantile
regression has another property: invariability to monotonic transformations.
Figure 4.1(b) provides a graphical proof of this property, but mathematically:
if h is a non-decreasing function, then τ = Pr(Z ≤ zτ ) = Pr(h(Z) ≤ h(zτ )) = τ .
Finally, advanced network architecture components, for instance, convolutional
layers, are easily integrated into a QRNN.

4.3 Network architectures

The use of neural networks for the retrieval of ice masses from geostationary
observations is relatively novel. Therefore, there is a shortage of references to
help determine an appropriate neural network architecture. As a consequence, it
can be considered necessary to design the architecture from scratch. Given the
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Figure 4.2: Probability density function obtained binning one year of CloudSat
2C-ICE IWP retrievals. Note the logarithmic axes. The plot shows only half
of the distribution, since Pr(IWP ≤ 10−5 kgm−2) = 49.7%.

black-box nature of NNs, the design of an architecture will inevitably depend
on the intuition, creativity, and expertise of the designer. Effective training
algorithms can compensate for the use of excessively complex architectures,
but the use of superfluous operations will result in longer inference runtimes
or larger computational footprints. Therefore, it may be deemed necessary to
optimize the hyperparameters.

Paper I started with few assumptions about a suitable architecture. First,
several principles were gathered to propose a pixel-wise MLP as the QRNN
backbone. The hyperparameters of this MLP were tuned over a regular grid
to obtain a satisfactory performance. Although it can be argued that a grid
search is not as efficient as, for example, a Bayesian optimization, the search
space was small and manageable. Therefore, hyperparameter tuning for the
MLP was simple and straightforward.

The CNNs used for paper I and paper II consisted of many more parameters
and required more input data, that is, an image instead of a single pixel. This
posed a challenge: both hyperparameter tuning and designing architectures
from scratch can result prohibitive as well as distracting. Consequently, CNN
backbones hypothesized to work reasonably well for the retrievals of atmospheric
ice were used. Only paper I focused on the hyperparameter optimization for the
CNN, even though being quite limited when compared with the optimization
for the MLP.

The CNN backbones are fully CNNs. This is a type of network that
preserves the spatial dimensions of the input data. Therefore, it enables one
retrieval per input pixel. Furthermore, fully CNNs support different input
sizes. The two papers in this thesis use slightly different backbones, mainly
motivated by new machine learning papers and discussions. However, they share
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Figure 4.3: Schema of a U-Net-like architecture.

a common idea: the use of a U-Net-like architecture (Ronneberger et al., 2015).
Figure 4.3 depicts a U-Net-like backbone in a QRNN. The U-Net architecture
was specifically designed for semantic segmentation tasks, that is, pixel-wise
classification; semantic segmentation with an infinite number of classes can
be seen as a proxy for quantile regression. In a U-Net-like architecture, the
encoder path is hypothesized to be able to extract high-level features, while the
decoder path recovers the original spatial size and merges low- and high-level
features, aided by skip connections.

Figure 4.3 is a simplistic representation of the network in paper I, in which
the network head also follows a fully CNN. The network in paper II also follows
the schema in Figure 4.3. However, it contains multiple heads, one per target
variable; in this case, not all network heads lead to solve a quantile regression
problem, since there are categorical target variables.

4.4 Training

The training of the networks followed standard machine learning practices: using
a training, validation, and test split of D, normalization of the inputs as well as
throughout the network, mini-batch stochastic gradient descent, non-constant
learning rates for the parameter updates, and data augmentation techniques,
among others. In addition, log-based transforms were applied to the reference
data, empirically observed to improve retrieval performance. These transforms
leverage the property of invariability to monotonic transformations of quantile
regression, given that both the transform and its inverse are monotonic.

The network in paper II outputs several variables using the same backbone.
In this case, the loss function minimized was the sum of the losses for each
variable. Using this definition, the errors for one variable might lead the
parameter optimization of the backbone, resulting in better performance for this
variable. Nevertheless, it was not considered to use more complex approaches,
for example, introducing a scaling factor for each term; the straightforward
approach already provided skilful retrievals.

Regardless of the number of output variables, the training was monitored not
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only by the loss curve, but also by summary statistics, such as the mean squared
error of the retrieval expected value. Monitoring these auxiliary parameters
offered a physical interpretation for the training curve. However, the success of
the training was only determined after visual examination of more descriptive
tools, such as scatter plots. This resulted in a tedious process. Consequently,
the final network models were chosen as a trade-off between the time needed for
their implementation, training, and evaluation, and the retrieval performance.

One important requirement throughout the trainings was access to spe-
cialized hardware, which makes the learning process efficient, in particular
powerful general purpose graphics processing units (GPUs) as well as fast
storage systems. GPUs excel at matrix multiplication in parallel. Therefore,
neural networks, which contain substantial linear algebra operations, make
GPUs a natural fit for their optimization. Goodfellow et al. (2016, section
12.1.2) elaborate on this compelling argument. Fortunately, high-level machine
learning libraries simplify working with such systems. This was particularly
beneficial for paper II, were the PyTorch (Paszke et al., 2019) implementa-
tion of distributed data parallel training (Li et al., 2020) was used to train
using four GPUs. In this technique, each GPU has a copy of the model and
optimizer. Different inputs are sent to each GPU to compute the gradients for
the parameter updates. However, the gradients will be different in each GPU
as the inputs are different. Distributed data parallel training aggregates and
synchronizes all gradients before applying the optimizer, resulting in the same
updated copy across GPUs.



5 Contributions to the field and
conclusion

This thesis could be categorized as the application of machine learning for
remote sensing retrievals. The principal focus is on retrievals of atmospheric
ice masses from spaceborne instruments. In particular, the use of geostationary
satellites for this goal is motivated, since they offer an extensive record of
spatially and temporally continuous observations. However, geostationary
satellites measure a region of the electromagnetic spectrum that hinders the
retrieval of atmospheric ice masses. One main contribution of this thesis,
based on paper I, shows that through machine learning methods one can
obtain retrievals that compare favourably to existing, physics-based methods.
In particular, infrared-only retrievals demonstrate an unprecedented level of
performance, and this retrieval scheme is applicable regardless of the time of
day.

The continuous record of geostationary satellite observations can be lever-
aged to analyse local, regional, or global patterns in cloud distributions. This
thesis makes two more significant contributions with paper II. Firstly, it is
possible to provide skilful three-dimensional retrievals of cloud ice masses from
one single infrared channel, partly owing to the use of spatial information in
the retrieval. Secondly, the retrieval scheme developed for CCIC is applicable
to most geostationary satellites and, therefore, addresses a global scale, limited
in latitude by their field of view. The CCIC work can target a broad range of
applications, such as long-term climate analyses, studies of cloud processes, or
even applications for the aviation industry. Ongoing work involves comparing
CCIC with other retrievals and formulating a study based on CCIC.

An intentional by-product of CCIC was to facilitate executing CCIC re-
trievals by the scientific community. Consequently, a software package has been
developed. It has been designed to require no more computational power than
any modern workstation. The software package also includes, among others,
options to tailor the retrievals to regions of interest and an efficient output file
size through a custom compression algorithm.

The machine learning models presented in this thesis can probably benefit
from more advanced architectures, training schemes, or additional features, for
example, a time dimension to incorporate cloud dynamics into the retrieval.
However, it is unclear where the performance limit is: there is an ultimate
constraint set by physics. Hence, other aspects could be improved, such as more
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efficient neural network architectures, the introduction of vector quantile regres-
sion, or a validation of the retrieval uncertainties, though adequate reference
data is lacking for an exhaustive validation. In any case, the contributions in
this thesis can, on the one hand, influence established algorithms and datasets,
and, on the other hand, complement retrievals from upcoming mission-specific
satellite instruments.
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