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A B S T R A C T   

Most computer models used in energy systems optimization modeling studies are formulated using linear 
equations. However, since linear formulations do not always well reflect real-world conditions, they may not 
always be adequate as policy and support tools. This is particularly the case for local system studies attempting to 
represent technologies at the individual scale, as in the case for local heating system modeling. Thus, the aim of 
this paper is to investigate differences in the resulting heating solutions and model solution times for a local 
expanding heating system. Three different investment cost structures for individual and district heating solutions 
for the heating of new housing are investigated using linear and mixed integer linear programming. The results 
show that the use of district heating is higher for the cost structures that use mixed integer linear programming 
than it is for the linear cost structures. This result is attributed mainly to the fact that individual air-to-water heat 
pumps benefit from the linear equation formulation due to its high coefficient of performance during summer-
time. This finding is important to consider when modeling local energy systems. The solution time is, however, 
significantly shorter for the linear formulations than for the mixed integer linear formulations.   

1. Introduction 

Energy systems are large and complex since they involve many types 
of plants and different energy carriers, the components involved often 
have long lifetimes; and the energy demand evolve with time. Computer 
models are, therefore, often used to study optimal investments and 
operation. Over the years, many different energy modeling frameworks 
have been used for such studies. Different computer tools available for 
studying renewable energy integration are investigated in Ref. [1] and 
trends in modeling of energy transitions in Ref. [2], in which it is 
concluded that it is not possible to develop at tool which can include all 
aspects affecting energy transitions. In recent years, there has also been 
a large increase in the use of urban and city energy system models [3]. 
Different kinds of energy models have different focuses [4] and are not 
equally well suited for all purposes. This results in a variety of models 
developed to address e.g. economics of the system, climate policy im-
pacts or energy security concerns. Energy models cannot, however, take 
every aspect into account as this would make the models too large to be 
solvable. Thus, the implementation of simplifications is necessary. 
Accordingly, energy models results differ depending on the features 
included [5]. 

1.1. Programming methods in energy system models 

Several different programming methods are available in energy 
systems modeling. In this section, linear programming (LP), mixed 
integer linear programming (MILP), and non-linear programming (NLP) 
will be introduced, as these are the most commonly used programming 
methods in energy systems studies. 

In LP models, the most widely used model type for investigations of 
energy systems, both at larger scale and at a more-local scale [4], all 
constraints and equations are linear. Usually, they can be solved rela-
tively rapidly compared to other model formulations, and it can be 
mathematically proven that the solution found is the optimal one. 
Solvers for LP problems are widely available, in both free-of-charge and 
commercial versions. However, linear models have some major draw-
backs when it comes to assessing real energy systems, in that some as-
pects cannot be considered or are difficult to consider. Examples of such 
aspects are economies of scale, minimum sizes of investments in new 
technologies, and varying efficiencies for plants operating at different 
output levels. These aspects mean that it is crucial to consider which 
simplifications are used in the modeling of local systems in which rep-
resentations of technologies at an individual scale are required. 
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MILP has been used in energy system studies to allow for integration 
of technical aspects that LP cannot handle. Thus, in local energy systems, 
e.g. local heating systems, aspects such as minimum loads of power 
plants [6–9] and minimum cost and size levels of new technologies [10, 
11] have been investigated using MILP. The use of MILP for commitment 
of district heating plants has been investigated in Ref. [12]. While 
commonly scenarios are used to handle uncertainties in models [13], in 
Ref. [14], stochastic methods was used for handling uncertainties in 
input data together with MILP for modeling of an electricity system. The 
computational power needed to solve MILP problems is a potential issue, 
since the same mathematical methods used to solve LP models cannot be 
used to solve MILP models. 

Different methods have been used to cope with the problem of the 
heavy computational burdens of MILP models. In Ref. [7], a “rolling 
planning horizon approach” has been applied that divides the investi-
gated period into several parts to reduce the computational time. A 
rolling horizon optimization approach has also been applied in 
Ref. [15]. Instead of solving the model in an optimal fashion, the relative 
optimality criteria has been set to >0 in another study [8]. Linearization 
of some parts of a MILP model has been performed by adding a “two--
variable” approach [9], enabling a representation of the minimum load 
levels in power plants using linear variables. 

Another option to handle this problem is to use machine learning 
[16], which was applied to pre-solved MILP optimization problems for 
wind power placements. It was found that machine learning could 
drastically shorten the solution times. However, still there is a need to 
solve some of the MILP problems beforehand, so the machine learning 
algorithm could use these as a training dataset. That machine learning 
can be significantly faster than other optimization techniques is pointed 
out in Ref. [17], but it is also noted that machine learning models are 
black-box models which cannot guarantee that a global optimum is 
found. 

A more advanced alternative to MILP is to use NLP, which can take 
into account even more-advanced features than is the case with MILP. 
NLP can, however, take much longer to solve than MILP [18,19], 
although the results obtained from MILP and NLP may be similar. In 
Ref. [19], LP and MILP formulations for the dispatch of plants in an 
existing DH system were compared. The results showed clear differences 
between these two programming methods. In two other studies [20,21], 
various simplifications of computationally heavy NLP models have been 
investigated for the dispatch of hydropower. Different levels of lineari-
zation of a detailed nonconvex hydro power model is investigated in 
Ref. [20]. In Ref. [21], aggregated equivalent models of large hydro 
power systems are developed and investigated. In Ref. [22], a MILP 
formulation for dispatch of a heating system in Berlin is compared with a 
merit order-formulation, which is simpler and easier so solve compu-
tationally. These studies concluded that simplifications that decrease the 
computation time while preserving the quality of the results can be 
made to the original NLP models. 

Although there have been studies that have had as explicit goals to 
investigate the impacts (in terms of results and computation times) of 
different programming methods and simplifications [19–22], none of 
the studies compare how different programming methods or model 
simplifications affect long-term local energy systems models where in-
vestments in new production technologies are necessary. 

1.2. Local heating systems modeling 

Heat can be supplied through either communal or individual solu-
tions. Communal solutions, often in the form of district heating (DH), 
consist of central power plants that produce heat, which is then 
distributed by the transportation of hot water through underground 
pipes. Individual solutions consist of technologies that are installed in 
each individual building and that can only provide heat to that specific 
building. As individual DH plants may be sufficiently large to cover a 
large share of the DH demand, the representation of individual plants is 

of importance for local heating systems. In general, DH is used in more- 
densely populated areas whereas individual solutions are more preva-
lent in less-densely populated areas. As every local heating system has 
distinctive building density characteristics, it is important to consider 
the local conditions when investigating the development of such 
systems. 

The role of DH in decarbonizing energy systems has been investi-
gated for the EU [23], for Sweden [24] and for Denmark [25]. Although 
DH can be highly efficient and contribute to decarbonization, its climate 
impact can depend heavily on the size of the DH system, and individual 
heating solutions may have a lower climate impact than DH solutions 
[11]. This further highlights the importance of taking local conditions 
into consideration when investigating local heating systems. 

Current heating systems are closely connected with the electricity 
sector, as heating system can both consume and produce electricity. 
Various aspects of interactions of the electricity sector with the local 
heating system have been covered by Refs. [6,7,26,27]; e.g. the impacts 
of a limited electricity connection to a city [26] and how the optimal 
operation of a combined heat and power (CHP) plant depends if the 
operation shall be optimized on regional or city level [27]. However, in 
these studies the DH demand was set beforehand without consideration 
of other heating solutions. By considering other heating solutions in 
systems modeling, as in Refs. [10,11], the interactions of different 
heating options with other parts of the energy system can be better 
understood. Considering both the demand and supply of heat in a local 
system has also been done with the DH supply in focus [28] and with the 
resulting heating solution of new housing in focus [29]. 

Recently, there has been a dramatic increase in the use of air-to- 
water heat pumps (HPs) in Sweden [30], as well as in the EU as a 
whole [31]. This increase is attributed to decreased cost, improved ef-
ficiency, and the fact that HPs are relatively easy to install. Air-to-water 
HPs differ from other heating solutions due to its seasonally dependent 
coefficient of performance (COP). The technical characteristics and 
performance of air-to-water HPs have been investigated in several pre-
vious studies [32–35] but the use of such HPs has not been investigated 
previously on a systems level. Thus, this aspect is included as a novelty 
in the present study. 

1.3. Research gap and questions 

When investigating large energy systems, such as national or inter-
national systems, the use of certain simplifications in the modeling can 
be acceptable, and is often necessary, as the finer details within the 
system are of minor importance. However, when investigating local 
systems, the types of simplifications that it is reasonable to use in larger 
systems can have severe effects on the results for the local systems in 
which individual technologies are of high importance. Studies 
comparing the different programming methods and how the resulting 
energy system solution and solution time are affected, are lacking. This 
can be problematic when investigating local systems such as individual 
or small communities of end-users, for which there can be limitations as 
to how new technologies can be installed and used, which means that 
such systems cannot be investigated in detail. This is of significant in-
terest e.g. due to the steadily increasing use of air-to-water HPs, with 
their inherent seasonal dependent COP, as individual heating solution as 
this type of technology has not been investigated on a systems level. 

Based on the identified research gaps, the main aim of this paper is to 
investigate how using LP or MILP affects the resulting system solution 
for a system where investments into new technologies are necessary. A 
local heating system developing over time in which both large-scale 
power plants connected to distribution grids and individual heating 
solutions are available is considered in this paper. Since it has been 
identified that MILP implies a computational burden, the solution time 
will also be addressed. The following questions are thus guiding this 
paper: 
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- How do technology investment cost and size restrictions affect the 
long-term cost-optimized solutions of a local heating system?  

- How do LP and MILP model formulations, corresponding to cost and 
size restrictions, influence the resulting modeled heating solutions 
and the model solution time? 

The paper attempts to contribute with knowledge that actually may 
guide the choice of modelling formulations in long-term studies of local 
energy systems. Thus, the paper is focusing on the type of models 
commonly used for these types of studies even if there are other, more 
advanced model formulations that potentially could be used. The 
commonly used LP and MILP methods are therefore tailored in this study 
for being able to investigate local energy systems over long time period 
where investments into new heating technologies are necessary. As LP 
formulations encourages mixing of technologies compared to MILP, this 
aspect is of high importance to consider for local energy systems, which 
has previously not been investigated in long term studies for these types 
of systems. 

2. Method 

The methodology presentation is divided into five sections (technical 
data together with assumptions are presented in a separate chapter, 
Chapter 3). First, in Section 2.1, ways in which investments can be made 
in new technologies, termed investment cost structures, corresponding to 
the use of LP and MILP formulations, are presented. Then, Section 2.2 
presents how the modeling is carried out, as well as the optimal solution 
criteria and solution times. An overview of the modeled heating system 
is presented in Section 2.3. Section 2.4 presents the technical details of 
how the air-to-water HPs have been modeled, and, lastly, Section 2.5 
presents a sensitivity analysis. 

2.1. Investment cost structures and investment cost structure schemes 

How investments can be made in technologies in real systems due to 
different cost allocations between equipment cost and installation cost 
are reflected in this paper by the term investment cost structures. Three 
different investment cost structures are used in this paper:  

- Linear investment. This cost structure implies a linearly increasing 
cost with increasing capacity. There is no requirement regarding 
minimum size for any heating solution.  

- Starting cost. In the starting cost structure, there is a fixed starting cost 
for any size of investment in the specific technology. The starting cost 
is assessed as the percentage of the investment cost that is attributed 
to installation costs in the dataset of the Danish Energy Agency [36]. 

- All-or-nothing. In the all-or-nothing cost structure, the specific tech-
nology can only be installed at one size, which is sufficient to cover 
the full heat demand throughout the year. 

The cost to install a certain technology that is sufficiently large to 
supply all the required heat at all times is the same for all three cost 
structures (Fig. 1). 

Formulation of a model in which the investment cost of installing a 
technology increases linearly with the installed capacity can be achieved 
using LP. However, as stated in the Introduction, there may be reasons 
why, in real systems, the installation sizes of new technologies cannot be 
increased with a linearly increasing cost with no restriction on the 
minimum installation size. To reflect this aspect in a model, it is possible 
to use MILP, which makes it possible to restrict the minimum sizes of 
new installations. Linear investments is implemented using LP, while 
starting cost and all-or-nothing, are implemented using MILP. 

Since heating investments consist of a combination of technologies, 
each with different investment cost structure characteristics, the heating 
technology alternatives are combined into different sets, here referred to 
as investment cost structure schemes. In each investment cost structure 

scheme, each new heating technology follows a specific investment cost 
structure. Six different such investment cost structure schemes are 
investigated, as presented below and in Table 1. 

Two kinds of heating options are available for new housing: indi-
vidual heating, and communal heating. For individual heating, there are 
five different technologies available: biomass boilers, electric boilers, 
air-to-water HPs, ground source HPs and ventilation HPs. The 
communal technology, DH, requires both substations and piping. Thus, 
each investment cost structure scheme consists of the three components: 
individual heating technologies, DH substation and DH piping. 

In Scheme 1, all heating technologies can be installed according to 
the linear investment cost structure. For DH piping, most of the invest-
ment cost is associated with the burying of the piping. DH piping is, 
therefore, only investigated using linear (Scheme 1) or all-or-nothing 
investment cost structures (Schemes 2–6). 

The individual heating technologies are widely available on the 
market in different sizes, while DH substations do not have the same 
range of available sizes. Furthermore, a DH substation has a higher share 
of the investment costs associated with the installation cost, relative to 
the equipment cost. This difference is investigated in Schemes 3 and 4, in 
which the individual heating technologies use the linear investment cost 
structure, while the DH substations follow the starting cost structure or 
all-or-nothing cost structure. In Schemes 5 and 6, both the individual 
heating technologies and the DH substations follow the same cost 
structures. 

The schemes have been numbered according to the assumed solution 
time, where a higher number indicates an assumed longer solving time 
as the model becomes increasingly non-linear due to additional binary 

Fig. 1. Investment cost structures for investments in heating solutions for new 
housing. The cost of installing a specific technology depends on the size of the 
investment in the linear investment and starting cost investment structures, 
while in the all-or-nothing cost structure the technology can only be installed at 
a size that can always cover the full demand. The starting cost starting value 
differs between technologies. The value for each technology is presented in 
Table 2 in Chapter 3. 

Table 1 
Investment cost structure schemes with their corresponding cost structures for 
each heating technology used for new housing.  

Scheme 
number 

Individual heating 
technologies 

DH 
substation 

DH piping 

1 Linear Linear Linear 
2 Linear Linear All-or- 

nothing 
3 Linear Starting cost All-or- 

nothing 
4 Linear All-or- 

nothing 
All-or- 
nothing 

5 Starting cost Starting cost All-or- 
nothing 

6 All-or-nothing All-or- 
nothing 

All-or- 
nothing  
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variables. Schemes 3 and 4 have the same number of binary variables, as 
do Schemes 5 and 6. 

2.2. Modeling framework and optimal solution criteria 

This study uses a cost-optimizing, bottom up-model of a type often 
used for energy and heating system studies (the TIMES modeling 
framework). Supply and demand are treated simultaneously and 
together throughout the entire modeling period. This dynamic systems 
approach, as previously used in Refs. [28,29], has major value when 
investigating developing systems in which the system components have 
long lifetimes. This paper investigates the system over a long time-scale, 
in this case up until Year 2050. In TIMES, a cost-optimizing model, the 
total cost of the system for the entire investigated period is minimized, 
while fulfilling the demand during all time periods [37]. 

The developed TIMES model is solved using the CPLEX optimization 
software, developed by IBM [38]. The solver options, with the exception 
of optcr, and their values used in this paper are presented in Appendix A. 
The optcr option states how close the best solution found must be to the 
best bound before the solver stops. The optcr option is computed in 
CPLEX according to the following equation: 

optcr =
|bestbound − bestinteger|

10− 10 + |bestinteger|

This means that optcr is decreased either by improving bestbound or 
by improving the solution bestinteger. Improving the solution or the best 
bound may require extensive computational power and time. Conse-
quently, the equation gives that even though different optcr criteria are 
used for different runs with the same input data, the solution found may 
not necessarily be improved by applying additional computational time, 
since with that extra time, the computer may be able to improve best-
bound but not bestinteger. The running times required to fulfill three 
different optcr solution criteria, 0.1%, 0.01% and 0% respectively, are 
investigated in this paper. The maximum solution time was set to 6 h. 
The hardware and software specifications of the computer used are lis-
ted in Appendix A. 

By providing the developed model with input data, the output of the 
model is the cost-minimized heating solution over the whole modeling 
horizon, including investments in and dispatch of the different available 
technologies. This includes the heating solution for the new housing and 
how investments are made in the DH supply side. 

2.3. Modeled heating system 

In the model, instead of having one total heat demand, the total heat 
demand is disaggregated into multiple demands, where each demand 
corresponds to one housing area, consisting of one housing type, built in 
a specific year. This separation of housing types ensures that in-
vestments in technologies made in previous years cannot be used for the 
new housing, but instead the heating solution must be found for each 
housing area. Therefore, it becomes clear what investments are made in 
different heating solutions in different years for the same type of hous-
ing, depending on when it is built. DH and the individual heating options 
presented in Section 2.1.2 are available for all housing types. 

The buildings already present in the heating system that use DH from 
the beginning are assumed to continue to use DH also in the future, 
without any change in the heat demand. 

Housing constructed in a specific year has the same heat demand 
throughout the modeling period. However, for each year, the housing 
built in that specific year has a slightly decreased annual heat demand 
compared to the housing built the year before to represent energy effi-
ciency improvements (only space heating, not hot tap-water). This has 
the effect that in addition to decreasing the total heat demand, the heat 
demand profile becomes slightly flatter each year since the hot tap water 
demand is constant throughout the year. 

In the model, there is a DH system already in place that consists of 

DH supply plants, a DH grid, and connections to already existing 
buildings. All plants are dismantled when they reach their respective 
end of technical lifetime, but investments into new plants can be made at 
any point. 

2.4. Integrating air-to-water heat pumps into heating systems modeling 

The relatively low installation cost and high seasonal coefficient of 
performance (SCOP) make air-to-water HPs a viable heating solution for 
future housing, although the seasonally dependent COP of air-to-water 
HPs should be taken into account as the COP is lower during colder 
seasons when the heating demand is higher. The precise COP at different 
ambient temperatures of an air-to-water HP is, however, seldom stated 
in the technical documentation of the specific HP; instead, it is the SCOP 
that is most often the parameter that is presented. Due to the seasonal 
variability of the COP, the SCOP needs to be broken down into season-
ally dependent COPs to allow investigations of how the varying COP 
values affect the heating solution. 

The procedure employed in this study for computing the COP for the 
air-to-water HPs is inspired by the EN 14825 standard and is presented 
in detail in Appendix B. Briefly, measured data related to how a real air- 
to-water HP performs under different temperatures are used. If it is 
assumed that that this HP is used to cover the full heat demand for the 
whole year, the amount of electricity that is used can be estimated, and 
thus the SCOP can be calculated by dividing the annual heat demand by 
the amount of electricity used. In this way, a SCOP can be mapped to a 
seasonally dependent COP. 

2.5. Sensitivity analysis 

For every investment cost scheme, two parts of the input data are 
varied: the heat source availability for the DH HPs; and the electricity 
price. As shown by Ref. [28], it can be cost-efficient to use DH HPs, 
although the heat source for such HPs may have limited availability, 
since sewage water is often used for such HPs. In addition, the devel-
opment of the electricity price affects the technologies in different ways, 
with potentially significant impacts on the resulting heating system. 

3. Data and assumptions 

The input data and assumptions, such as the heat demand distribu-
tion, electricity and fuel prices, and available heating technologies, are 
presented in this section. 

Initially, the heating demand side, which consists of several different 
types of housing, is presented. This is followed by a presentation of the 
available heating technologies for new housing. Then, the DH supply 
system is outlined, including two cases of heat source availability for DH 
HPs. Finally, the electricity price cases, heat demand profiles and fuel 
prices are presented. 

All investment cost structure schemes are investigated for all three 
electricity price cases and for the two DH HPs heat source availability 
levels. 

3.1. Heating demand side 

The total heat demand is disaggregated into multiple demands, 
where each demand corresponds to one specific housing area, built in a 
certain year, in which one type of new housing is built. Six new housing 
types are used:  

- Two types of apartment buildings of different sizes, but with the 
same annual heat demand per m2;  

- Two types of single-family housing of different sizes, with a high heat 
demand per m2; and  

- Two types of single-family housing of different sizes, with a low heat 
demand per m2. 
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In total, there are 181 housing areas: 30 each for the six new housing 
types (one new area for each housing type is added annually from Year 
2021 up to Year 2050) and one area for the already existing housing. 

3.2. Heating technologies for new housing 

The available heating technologies for new housing are summarized 
in Table 2. The calculation of the specific investment costs for the 
technologies follows the same procedure as described previously [28, 
29]. In short, the specific costs for individual heating technologies are 
calculated by taking the total cost for installing a specific technology and 
dividing it by the capacity stated in the data from the Danish Energy 
Agency [36]. 

The same procedure is carried out for the installation of a DH sub-
station and piping, although the total cost of installing a DH connection 
is the same for all types of single-family housing (even though they have 
different peak heat demands), while the total cost is the same for all 
types of apartment housing. This procedure is the same as that in Refs. 
[28,29], except that the piping and substation in this paper are separated 
into two different investments with different costs and technical life-
times. As a consequence, the cost per kW of installing DH is different for 
the different types of housing. 

3.3. District heating supply side 

The DH supply side is based on the current DH system of the City of 
Gothenburg. The supply mix includes several types of supply plants, 
including those involving industrial excess heat (EH), waste incineration 
CHP, biomass CHP, biomass heat-only boilers, HPs and electric boilers. 
It is assumed that waste incineration and industrial EH will continue to 
be available throughout the modeling period, although the installed 
capacity cannot be increased. 

No climate gas emissions are allowed after Year 2025, except for the 
waste incineration. The use of electricity and biomass is treated as car-
bon-neutral. 

The cost data used for making investments in and the running of the 
DH supply plants have been acquired from the Danish Energy Agency 
[40]. 

The HPs in the current DH system of Gothenburg use sewage water as 

their heat source. As this heat source may have limits regarding avail-
ability, two different availability levels are investigated in this paper. 
The availability is set either as unlimited, indicating that other similar 
heat sources are locally available, or as the maximum output of the DH 
HPs installed in Year 2020. 

No ramp up or ramp down times, startup or shut down costs, or 
minimum load levels are considered for any of the supply plants in this 
study. This is due to the limited time resolution of the model. Further, 
the CHP plants are assumed to have constant α-values (ratio between 
produced heat and electricity). 

3.4. Electricity price profiles, heat demand profile and fuel prices 

Three different electricity price cases are investigated in this paper: 
high, low and varying. All price cases start with the same price profile in 
Year 2020 but is changed each year by a certain amount after Year 2020 
for each price case. The price profile in Year 2020 has been acquired 
from Ref. [28]. The price profiles are shown in Fig. 2. 

The high price case increases the price by 50% in Year 2050 
compared to Year 2020, for all seasons. 

The low price case decreases the price by 50% in Year 2050 
compared to Year 2020, for all seasons. 

The varying price case decreases the price by 50% during the sum-
mer months, increases it by 100% during spring and fall, increases it by 
150% during winter and increases it by 200% during the peak season. 

The different electricity price cases are not based on any specific 
outlook or assumptions but are included because the electricity price 
development is deemed to be one of the most-important aspects 
affecting the development of the heating sector. 

The heat demand profile is shown in Fig. 2. The heat demand is 
separated into space heating and hot tap-water demands. For new 
housing, built in the future, with lower heat demands due to improve-
ments in energy efficiency, the space heating demand is decreased, 
while the hot tap-water demand remains unchanged. Thus, this results 
in a flatter heat demand profile for future housing. The heat profile has 
been acquired from real measurements of an area with housing that has 
low heat demands. The highest peak is calculated by assuming that there 
is an extra cold period during which the demand is the highest. The heat 
demand during the highest peak is set at 50% higher than the second 
coldest period. 

The costs for available fuels have been acquired from Ref. [28]. It is Table 2 
Summary of the available heating technologies for new housing. The installation 
costs are used in investment cost Schemes 3 and 5, in which there are starting 
costs for installing new technologies (see Fig. 1 and Table 1).   

Notes Technical 
lifetime 

Installation cost 
of total 
investment cost 

DH Requires both piping and 
substation on the housing 
side. Requires plants on the 
supply side. 

Piping: 50 
years 
Substation: 
25 years 

Piping: 100% 
Substation: 
30% for 
apartments 
52% for single- 
family housing 

Ventilation 
HP 

Maximum recovery limit of 
40% for apartment 
buildingsa 

15 years 25% 

Biomass 
boilers 

Electricity price- 
independent 

20 years 22% 

HP ground 
source 

COP assumed to be 
independent of season 

20 years 33% for 
apartments 
25% for single- 
family housing 

HP air-to- 
water 

COP dependent upon season 16 years 25% 

Electric 
boilers 

– 30 years 30%  

a The limit on apartment ventilation HPs was inspired by Ref. [39], but has 
increased somewhat due to new apartment buildings having improved energy 
efficiencies. 

Fig. 2. Heat demand profiles and electricity price profiles. The heat demand 
profile in this figure is for a house with a specific heat demand of 60 kWh/m2. 
For houses with other specific heat demands, only the space heating demand 
(SH) is changed per m2. The hot tap-water demand (HTW) remains unchanged 
per m2. This results in a higher relative heat use during the colder seasons for a 
house with a higher heat demand. All electricity price cases use the Year 2020 
electricity profile as the starting electricity price in Year 2020, although the 
price is gradually changed annually for each season for each electricity 
price case. 
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important to note that the fuel costs and electricity prices are based on 
data and calculations made before the beginning of Year 2022, at which 
time-point the prices for many fuels increased significantly in Europe 
[41]. 

4. Results 

In this section, the cost-optimized modeling results for the different 
investment schemes are presented initially. Even though the investment 
schemes directly affect only investments in technologies on the demand 
side, the DH supply side can be affected because the supply and demand 
are connected. For this reason, the results for the DH supply side are also 
presented. 

The solution times for all the cases are presented for the different 
schemes in the last part of this section. 

For both the resulting heating solutions and the solution times, the 
focus here is on the differences between the investment cost structure 
schemes, thus reflecting the different programming methods. 

4.1. Differences in the modeling results with respect to the heating 
solutions for the different investment schemes 

The modeling results for the different investment schemes for the 
heating solutions are presented in this section. The heating solutions for 
large apartment buildings built in Year 2020 are presented in Section 
4.1.1, as this housing type shows the largest differences between the 
investment schemes. 

As the modeling results for the high and low electricity price cases 
are similar for most of the schemes, the results for the low electricity 
price case are not presented in this section. 

The heating solutions for the remainder of the housing are presented 
together in Section 4.1.2. 

The DH solution supply mix is presented for each electricity price in 
Section 4.1.3. 

For both the heating solution for new housing, as well as for the DH 
supply mix the results are very similar in Scheme 1 and Schemes 2–4, 
while Scheme 5 is very similar to Scheme 6 for each electricity price 
case. Thus, the results presented here focus on the results for Schemes 1 
and 6. 

4.1.1. Large apartment buildings 
The heating solutions for large apartment buildings built in Year 

2020 are shown in Fig. 3. It is clear that the share of DH is higher for 
Scheme 6 than for Scheme 1 in all the cases. The greater use of DH 
mainly corresponds to a lower use of air-to-water HPs. 

The increase in the number of air-to-water HPs in Scheme 1 
compared to Scheme 6 stems from the fact that the COP of the air-to- 
water HPs is very high during summer, which is also the time period 
during which the distribution losses of DH are highest. This makes it 
economically beneficial to install and run small air-to-water HPs. In 
Scheme 6, the installation of small air-to-water HPs is not allowed, with 
the result that the combination of ventilation HP and DH is more 
beneficial economically. 

For the low electricity price case, there is greater use of air-to-water 
HPs when the heat source availability is limited, although the trend 
whereby Scheme 6 has a greater use of DH than Scheme 1 is also present 
in the low electricity price case (not shown). 

4.1.2. Small apartment buildings and single-family housing 
In general, for all housing types, the use of DH is lower for housing 

built after Year 2030 for the high and low electricity price cases. These 
results are linked to the facts that: 1) the DH supply plants available at 
the beginning of the investigated period have reached their end of 
technical lifetime in Year 2030; and 2) it is more expensive to make 
investment in both DH connections and supply plants for buildings that 
are constructed later on. 

A noteworthy finding is that for the housing built after Year 2030, 
there is an increase in the use of DH in Scheme 1 compared to Schemes 
2–4 for the high and low electricity price cases (not shown). This reflects 
that being able to invest in laying down only a small pipe underground is 
cost-beneficial, whereas paying the full cost is too expensive. Laying 
down the piping is arguably associated with a cost that is difficult to 
reduce by having smaller pipes. Thus, a fully linear model could over-
estimate the use of DH compared to requiring a certain price to lay down 
the piping. 

The results are, however, different in the varying electricity price 
case, where DH is an economically feasible solution for all types of 
housing, except for single-family housing with low heat demands. There 
is, however, investment in air-to-water HPs in Schemes 1–4, which de-
creases the use of DH compared to Schemes 5 and 6. 

4.1.3. District heating supply side 
The DH supply mix is shown in Fig. 4. The total DH heat production is 

slightly higher for Scheme 6 than for Scheme 1 for all electricity price 

Fig. 3. Modeling results for heating solutions in Years 
2025, 2035 and 2045 for large apartment buildings 
built in Year 2020 for Schemes 1 and 6. Schemes 1–4 
show similar results, while Schemes 5 and 6 show 
similar results; Schemes 2–5 are therefore left out of in 
the figure. The designation noHPLimit indicates 
schemes in which the heat source availability for HPs 
in the DH network is unlimited, whereas HPLimit de-
notes schemes in which the heat source capacity for 
HPs is limited to the Year 2020 level.   
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cases, as most of the DH production is used for heating the system 
already in place at the start of the modeling period. There is, however, 
an increase in the total DH production, indicating that new housing is 
connected to the DH system. This increase is significantly smaller for the 
high electricity price if the heat source availability for HPs is limited. For 
the varying electricity price, Scheme 6 has a higher level of DH heat 
production regardless of the DH HP heat source availability, as biomass 
CHP plants are instead built and used to supply heat, leaving the DH HP 
heat source with an untapped potential in most of the seasons. 

4.2. Modeling solution time 

In Table 3, the solution times for the different electricity price cases 
and schemes are presented. The solution time generally increases when 
the model becomes more non-linear. The number of binary variables 
increases from Scheme 1 up to Scheme 6, whereas the number of binary 
variables is the same for Schemes 3 and 4, and Schemes 5 and 6 have the 
same number of binary variables. 

Some trends are evident for the solution times. The most-linear 
model can be solved with an optimal solution within 1 h for all the 
electricity price cases. For the models with more binary variables, the 
high electricity price cases are more often solved more rapidly than the 
low electricity price cases if there is no heat source limit. If there is a heat 

source limit, the converse is true. 
The varying electricity price case seems more difficult to solve than 

either the high or low electricity price cases. This seems to stem from the 
fact that in the varying electricity price case, there are investments in 
new biomass CHP plants for which the restrictions related to minimum 
plant size make it more difficult to solve, as both the supply and demand 
sides require a high number of binary variables, thereby significantly 
increasing the solution time. Moreover, the percentage of housing that 
uses DH is higher in this electricity price case than in the other two cases. 

The bolded values are those not solved for a gap of maximum 0.1%, 
but instead showing the achieved relative gap after 6 h. 

5. Analysis and discussion 

The results clearly show that the choice of programming method 
used for the modeling is important for the studied system. Heating so-
lution results are shown to be sensitive to whether LP or MILP is used, as 
LP implementation encourages mixes of technologies, in contrast to 
MILP implementation. This finding is of significance because the mixing 
of technologies within the same building is uncommon; there may be 
technical reasons why mixes are not viable. Furthermore, when there is 
a starting cost associated with installing new individual technologies in 
new housing, this may discourage mixing for economic reasons alone. 
This further supports the conclusion of [19], in which it is concluded 
that too simple representations can result in solutions infeasible in real 
systems. Previous studies have not fully investigated how different 
programming methods affect local energy systems. The scientific 
contribution of this article is thus the systematic investigation of how the 
different programming methods affect the long-term cost-optimal 
technology choices showing that there are significant differences 
resulting from the application of the LP and MILP formulations. This 
highlights the need to consider which programming method to use for 
long-term investigations of cost-efficient local energy systems. With a LP 
formulation, there is a higher risk, compared to a MILP formulation, that 
the model results show an optimal technology mix that is actually 
infeasible in real systems. 

When all new heating solutions have a starting installation cost or 
can only be installed in an all-or-nothing manner (Schemes 5 and 6, both 

Fig. 4. Modeling results for the DH supply in Years 
2025, 2035 and 2045 for Schemes 1 and 6. Schemes 
1–4 show similar results, while Schemes 5 and 6 show 
similar results; Schemes 2–5 are therefore left out in 
the figure. The noHPLimit designation indicates 
schemes in which the heat source availability for HPs 
in the DH network is unlimited, whereas HPLimit de-
notes schemes in which the heat source capacity for 
HPs is limited to the Year 2020 level. The original DH 
production level indicates the DH production level 
that is required to supply the existing DH system with 
heat. Any increase above this level means that new 
housing has been connected to the DH system.   

Table 3 
Solution times, in seconds, for the modeling of the different electricity price 
cases and schemes.  

Scheme 1 2 3 4 5 6 

High electricity price 
No HPlimit 2399 2379 4745 3874 3715b 5677b 

HP limit 651 2495 2981 4302 0.17% 0.35% 
Low electricity price 
No HP limit 909 3531 2462a 5781a 0.12% 2375b 

HP limit 702 702 1221 782 0.11% 10,411b 

Varying electricity price 
No HP limit 1229 9627a 9572b 16,226a 6096b 7831b 

HP limit 2034 15,435a 0.16% 15,847b 1.73% 1.86%  

a Solution gap of maximum 0.01%. 
b Solution gap of maximum 0.1%. 
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of which use MILP), there is an increase in the use of DH solutions for all 
electricity prices. The extents to which the LP and MILP formulations 
reflect how investments can be made in housing in real systems are of 
high importance to consider. This is evident in the results of this study, 
in that the individual heating technology mainly benefiting from a 
decrease in DH when using LP (compared to MILP) are air-to-water HPs. 
This is because, in the model, small installations can be installed and 
utilized during the summertime when the COP is highest. Air-to-water 
HPs were added as a novelty to this study, and the results highlights 
the importance of considering this technology in future local energy 
system studies. In the schemes where MILP formulations are used also 
for individual heating technologies, the starting cost or full installation 
cost is too high to be economically feasible. Therefore, the combination 
of low installation cost and high COP benefits air-to-water HPs while 
decreasing the use of DH in the model. 

Limiting the heat source availability for DH HPs does not seem to 
affect significantly the resulting heating solution for the varying elec-
tricity price case, in which there are investments in new CHP plants. For 
the high and low electricity price cases, there is a difference, especially if 
the heating solutions can only be invested in, as in Schemes 5 and 6. 

The solution time for the model varies substantially depending on the 
electricity price profile. The varying electricity price case has, in gen-
eral, a longer solution time than the other two electricity price cases. 
One of the main differences between the varying price case and the high 
and low price cases is that there are investments in new CHP plants only 
in the varying case. Another important difference is that more heat is 
produced and distributed by DH in the varying electricity price case. 
Since supply and demand are treated together in this paper, it seems that 
the combination of the result that new CHP plants are economical, 
which in turn makes it more economical to use DH for new housing, 
which makes the model more difficult to solve. In the model used, CHP 
plants have restrictions regarding minimum size. As a consequence, 
binary variables must be used in the model, which can increase the so-
lution time. It is important to note here, however, that CHP plants 
generally have a higher power-to-heat ratio when they are large and 
benefit from economies of scale. Simplifying the investments in CHP 
plants into fully linear equations could, therefore, be a too-large 
simplification of how investments can be made in real systems. More-
over, CHP plants often have ramp times and minimum load levels which 
have not been included in this study. Adding these aspects could further 
increase the computational time due to the associated binary variables 
needed to consider such aspects, as shown in Ref. [19]. Although those 
aspects are arguably mostly of importance in models with a high time 
resolution. 

When a DH HP limit is applied, the solution times are higher in 
Schemes 5 and 6 for all electricity price cases. This is also the case for the 
varying electricity price case for which the solution is unaffected by the 
DH HP limit. To improve the solution time, it may be worthwhile to rule 
out heating technologies that are not feasible, technically or economi-
cally, instead of just providing the input data to the model and hoping 
for the best. However, answering the question as to which technologies 
are feasible (or not feasible) beforehand is not a simple task, as one of the 
goals of using energy system modeling is to try to answer such questions 
in the first place. Without making any simplifications, models would 
become too hard to solve but simpler models can give similar results as 
more complex models while having a dramatically reduced model 
solving time [20–22]. 

From the results, it is clear that disaggregating the housing into 
separate demands provides insights into which types of housing use 
which forms of heating solution. However, a drawback is that the so-
lution time increases with the heat demand separation, as much more 
data need to be supplied to the model and more binary variables are 
needed if any of Schemes 2–6 is used. Determining where best to draw 
the line regarding how high the resolution needs to be for this type of 
modeling is challenging. Nevertheless, by categorizing the housing built 
in different years it becomes clear that the competitiveness levels of 

different heating solutions may be affected with respect to future 
housing. The results do, however, show that new single-family housing 
with low heat demands never uses DH as the heating solution. Therefore, 
omitting this type of housing when investigating whether to use DH or 
other options for new housing could reduce the solution time, as less 
data and fewer binary variables would need to be included in the model. 

6. Conclusions 

In the present study, different mathematical programming methods, 
corresponding to different investment cost schemes, have been applied 
to the long-term, cost-optimization modeling of an expanding local 
heating system. The modeling results differ clearly depending on 
whether the LP formulation or MILP formulation is used for investments 
in new capacity of heating technologies in new housing. The resulting 
amount of DH used in new buildings is higher if MILP is used for all the 
investments, corresponding to a case in which all the technologies have 
a starting cost or can only be installed at a size that can cover the full 
heat demand. If LP is used for investments in individual heating solu-
tions, the use of DH is decreased while the use of air-to-water HPs is 
increased. The result that air-to-water HPs is a prominent heating so-
lution in future housing highlights the importance to include this tech-
nology, which has been added as a novelty in this study, in further 
studies focusing on local heating systems. 

The increased use of DH for the cases in which MILP is used for all 
technologies indicates that fully linear models potentially underestimate 
the economic viability of DH, whereas they overestimate the viability of 
individual HPs. This finding is important to consider when deciding on 
whether to use LP, MILP or some other programming method in energy 
system modeling, especially for local systems where the representation 
of individual technologies is of high importance. Due to the local nature 
of heating systems, together with the fact that different heating tech-
nologies are seldom mixed within individual buildings, there is signifi-
cant risk that using LP models for investigating cost-efficient options for 
expanding heating systems can result in heating solutions which do not 
properly reflect the costs and best options of real systems. 

There are significant differences in the model solution time 
depending on whether LP or MILP is used for new installations. The use 
of MILP increases the number of binary variables, which corresponds to 
an increased solution time. Most of this time seems, however, to be used 
to prove that the solution is within a certain deviation from the optimal 
value, rather than to enhance the solution itself. This leads to the 
conclusion that very strict optimal criteria do not affect the solution in 
any significant way, as compared to a slightly relaxed solution criterion. 
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Appendix A 

Cplex solver options: 
rerun yes 
iis yes 
lpmethod 0 
baralg 1 
barcrossalg 0 
barorder 3 
epgap 0. 
THREADS = 7 
probe 3 
mipdisplay 4 
cuts 3 
covers 3 
cliques 3 
disjcuts 2 
liftprojcuts 3 
localimplied 2 
memoryemphasis 1 
names no. 
Computer and software specifications: 
CPU: Intel Core i7-8650U (4 cores, 1.90 GHz, 8 logical processors). 
RAM: 16 GB DDR4 2400 MHz. 
CPLEX version: 22.1.0.0. 
Veda 2.0, application version 1.248.1.2. 
TIMES version: 4.6.0. 

Appendix B 

The COP computation procedure presented in this appendix is inspired by the EN 14825 standard in which the HPs shall provide a certain amount 
of heat with different ambient air temperatures and for different amounts of time. This is used to calculate the SCOP, which provides a better rep-
resentation of how efficient the HP is over a full year. 

According to Ref. [35], the COP of a real air-to-water HP can be calculated approximately as: 

COP= 0.0023⋅T2
increase − 0.2851⋅Tincrease + 10.677  

when the target temperature is 55 ◦C and Tincrease is between 35 ◦C and 65 ◦C. 
In the model, there are five temperature periods, and to calculate the COP during the different periods, the outside temperature is needed. It is 

assumed that the outside temperature is proportional to the space heating demand. 
Using data from SMHI, the mean outside temperature is calculated to be 15 ◦C during the summer months. Since the heat demands and lengths of 

all the seasons are known, this can be used to calculate the mean outside temperatures of the other seasons as follows: 
Tsummer = 15 ◦C. 
Tspring/fall = 6.6 ◦C. 
Twinter = 3.4 ◦C. 
Tpeak_low = − 4.1 ◦C. 
Tpeak_high = - 16.7 ◦C. 
All these temperatures, except for Tpeak_high, are within the defined range of − 10 ◦C–20 ◦C, where the above formula can be used to calculate the 

COP for each season. 
For the Tpeak_high, the temperature lies too far outside the defined range to be deemed reliable. This value has instead been assessed by looking at 

various models available on the market and their specific COPs for low-temperature values (see below when discussing SCOP). 
The acquired COPs of the different seasons is with this method computed as: 
COPsummer = 2.95. 
COPspring/fall = 2.25. 
COPwinter = 2.10. 
COPpeak_low = 1.85. 
COPpeak_high = 1.40.With the COP for each season, s, the amount of electricity needed in each season can be calculated, and thereby compute the 

total amount of electricity needed for a whole year. By dividing the total heat demand by the total electricity demand, a SCOP of 2.26 is derived. 
Lastly, the SCOP defined in the technical specification for an air-to-water HP in a certain year is used to scale the COP for each season. Thus, if the 

SCOP is specified as 3 for a HP, the COP for each season is multiplied by 1.33 (=3/2.26). 
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SCOP=

∑

s
ΔTs⋅lengths

∑

s

ΔTs⋅lengths
COPs  

ΔTs =TIndoor − TOutdoor 

The resulting COPs for each season for an air-to-water HP with a SCOP of 3 therefore become: 
COPsummer = 3.9. 
COPspring/fall = 3. 
COPwinter = 2.8. 
COPpeak_low = 2.5. 
COPpeak_high = 1.85. 
The value for COPpeak_high is close to the values found in the technical specifications of air-to-water HPs with a SCOP of around 3. 
It is assumed that improvements in the SCOPs of future installations will improve all seasons equivalently. 
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