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Exploring the Transition to a Low-Carbon Electricity System — Using Agent-Based 
Modeling 
JINXI YANG 
Department of Space, Earth and Environment 
Chalmers University of Technology 
 

ABSTRACT 

The ability to produce electricity has profoundly shaped human lives. Over time, 
the sources used for electricity generation have undergone several transitions. 
Currently, we are navigating a pivotal shift in the electricity system – 
decarbonization – a journey fraught with a myriad of challenges. A key challenge 
is that shifting to a low-carbon electricity system necessitates vast investments. 
The capital allocation decisions made today will influence global electricity 
production and associated emissions for the coming decades.  

In this thesis, we have developed and employed an agent-based model of 
investments in the electricity system, called the HAPPI model (Heterogeneous 
Agent-based Power Plant Investment). The HAPPI model underscores the 
importance of factoring in heterogeneity, uncertainty, financial feedback, risk 
aversion, and adaptivity when modeling investment decisions in low-carbon 
transitions. This thesis primarily analyzes the influence of five important factors 
on investment decisions: hurdle rate, future carbon price expectation, access to 
capital, risk-aversion level, and adaptability. The findings provide insights at 
both the system and individual agent (investor) levels. 

On the system level, the research explores the evolution of generation capacity 
mix, electricity prices, CO2 emissions, and the distribution of revenue across 
diverse technologies. Results show that, with growing carbon prices, there is a 
notable expansion in the capacity of wind, solar, and nuclear power plants, and 
a gradual phase-out of coal power plants. On the agent level, the research 
explores the investment decisions of heterogeneous investors and the associated 
financial outcomes. Key observations highlight that agents with lower hurdle 
rates or lower risk or loss aversion tend to invest more, thereby enhancing their 
profits. However, this increased investment rate is associated with elevated 
bankruptcy risks, underscoring the intrinsic risk-return trade-off. 

Moreover, the findings reveal that the low-carbon transition accelerates when 
investors have more access to capital. The transition is also expedited when 
uncertainty around future carbon prices is reduced, expectations for future prices 
are higher, and aversion to risk or losses diminishes. 

Keywords: low-carbon transition, agent-based modeling, energy system 
modeling, investment decisions, electricity market, open-source model 
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1. Introductifon 

 

1.1 Motivation and Aim 

        “Investment is the lifeblood of the global energy system. Individual decisions 

about how to direct capital to various energy projects… (combine to) shape 

global patterns of energy use and related emissions for decades to come…. 

Understanding the energy investment landscape today and how it can evolve to 

meet decarbonization goals are central elements of the energy transition…” – 

International Energy Agency and International Renewable Energy Agency 

(2017). 

 

        In response to climate change and energy security concerns, the electricity 

sector has embarked on a transition toward a low-carbon system. Across the globe, 

nations have set targets to significantly reduce their greenhouse gas emissions, as 

reflected in their Nationally Determined Contributions (NDCs) to the United 

Nations Framework Convention on Climate Change (UNFCCC secretariat 2022). 

        Despite these objectives, the path to this transition is fraught with challenges. 

According to the International Renewable Energy Agency (IRENA), achieving 

the climate goal of limiting global warming to 1.5 °C, will require investments in 

renewable power generation to surpass USD 1.3 trillion per year from 2023 to 

2030 (IRENA and CPI 2023). This stands in stark contrast to the current figure, 

which in 2022 was about USD 0.5 trillion. Despite the recent surge in investments 

in wind and solar technologies, a substantial investment gap remains. Given this 

gap and the urgency of transitioning to a low-carbon electricity system, a 

thorough analysis of the situation is vital. Several pressing questions need to be 

addressed, such as: 
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 Which technologies will be profitable and attractive to invest in? 

 How would these investments affect the system transition? 

 How can we realize and outline the steps for the transition? 

 Which factors influence investors' decisions in the energy sector? 

 How do climate policies affect investment decisions and transition speed? 

 How would this transition affect the profitability of investments in different 

technologies from an investor's perspective? 

        Investigating these questions requires a multidisciplinary research approach. 

Scholars have applied diverse methodologies from psychology (see e.g. Huijts, 

Molin, and Steg 2012; Steg, Perlaviciute, and Van der Werff 2015), historical 

pattern analysis (see e.g. Fouquet 2010; Vinichenko, Cherp, and Jewell 2021), 

economic and financial analysis (see e.g.  Kost et al. 2013; Mazzucato and 

Semieniuk 2018) to shed light on these complex issues. Energy system models 

are an invaluable interdisciplinary tool in this context, drawing upon elements 

from mathematics, economics, computer science, environmental science, and 

policy studies. Numerous such models have been utilized and examined in 

scholarly work, as evidenced by the review literature (see e.g. Connolly et al. 

2010; Chang et al. 2021; Ringkjøb, Haugan, and Solbrekke 2018).  

       While energy system models serve as powerful instruments for informing 

energy policy (Süsser et al. 2021), many models adopt an optimization approach 

that is directed by a central planner with the aim of minimizing total system costs. 

However, in liberal markets, investments are usually driven by expected returns 

and risk profiles and the decisions are taken by heterogenous private entities 

rather than being taken in a centrally orchestrated plan where information on 

future prices and costs are perfectly known. Consequently, the energy transition 

emerges as a 'bottom-up' process led by individual investments. This context 

requires a modeling perspective that better reflects market complexities and more 

accurately captures the decision-making process of individual investors. 



3 
 

        In this context, agent-based models naturally emerge as a possible approach. 

An agent-based model is a simulation method where individual entities, called 

agents, act based on decision rules, often revealing emergent, system-wide 

behaviors. Existing literature utilizing agent-based modeling techniques indeed 

highlights 'bottom-up' action by individual investors in the energy sector (see e.g. 

Barazza and Strachan 2021; Jonson et al. 2020; Chappin et al. 2017; Chen et al. 

2018; Kraan, Kramer, and Nikolic 2018). However, the complex nature of the 

investment decision-making process, which is influenced by multiple factors, still 

necessitates further exploration. 

        Thus, based on existing literature, the main aim of this work is to develop 

agent-based modeling tools that better reflect the decision-making process of 

investors1 investing within the electricity sector. A second aim is to investigate 

how variations in assumptions surrounding this decision-making process affect 

investment choices and their subsequent influence on the low-carbon transition. 

Based on these aims we formulate the following objectives:  

 Develop the Heterogeneous Agent-based Power Plant Investment (HAPPI) 

model. 

 Utilize the HAPPI model to test and analyze how different factors impact 

investment decisions and the low-carbon transition of the electricity system.  

 In particular, we want to analyze the impact on features such as the 

generation capacity mix, electricity pricing, carbon dioxide (CO2) 

emissions, and the profitability of different types of technologies and 

investors. 

        Based on their significance to investment decisions in the electricity system 

and gaps in existing literature, five key factors affecting investment decisions 

 
1 In our study, investors are defined as entities who invest in, own and operate power plants. 
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have been examined across the papers that constitute this thesis. These five key 

factors are:  

- Hurdle rate (Paper I & Paper IV), 

- Future carbon price expectations (Paper I & Paper III), 

- Access to capital (Paper II), 

- Risk and loss aversion (Paper III & Paper IV), 

- Learning and adaptation (Paper IV). 

        Some of these factors function as parameterized inputs to the model, such as 

hurdle rate and access to capital, while others describe investors' behavior, 

including future carbon price expectations, risk and loss aversion, and learning 

and adaptation. For each factor, various assumptions have been evaluated within 

the model. Their effects have been analyzed at both macroscopic (system-wide) 

and microscopic (individual agents) levels as shown in Fig.1. The goal is to 

understand how changes to these factors would impact the outputs of the HAPPI 

model.  

 

 

Figure 1.  Overview of the thesis. This study utilizes the HAPPI model to analyze varying 
assumptions related to the five identified factors as model inputs. The resulting impacts are 
then assessed from two perspectives: a macroscopic viewpoint of the whole system and a 
microscopic look at individual agents. 
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1.2 Structure of the Thesis 

        This thesis comprises four papers, accompanied by an open-source model – 

HAPPI, which is available at https://github.com/happiABM. Each of the papers 

focuses on different aspects of model development and associated research 

questions: 

        Paper I presents the core model, investigating primary research questions 

related to the hurdle rate, future carbon tax expectations, agent heterogeneity, and 

the 'cannibalization effect' of wind energy. 

        Paper II develops the model further, incorporating a financial module, 

stochastic fuel prices, and stochastic electricity demand. This paper focuses 

primarily on how different levels of access to capital impact the agents' 

investment decisions and economic performances, and how these aspects, in turn, 

affect the overall development of the electricity system. It also explores which 

investment strategies can yield strong economic performance (measured by return 

on equity and bankruptcy rate) under stochastic fuel prices and electricity demand. 

        Paper III adds a new layer to the model by considering investors' risk and 

loss aversion, and their investment decisions under carbon price uncertainty. This 

paper investigates the impact of uncertainty, and of risk as well as loss aversion, 

on agents' investment decisions and the electricity system's low-carbon transition. 

The paper also studies how different modeling representations of risk and loss 

aversion affect the modeling results. 

        Paper IV introduces adaptive behavior among investors into the model. In 

this study, agents annually update their hurdle rate based on the historical 

financial performance of each technology. More specifically: If a technology has 

proven profitable in the past, it is considered less risky for the investor, with the 

consequence that the risk premium is smaller and hence the hurdle rate is lowered 

when evaluating future investments. This paper investigates how investors' 
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adaptive behavior and varying loss-aversion levels impact their investment 

decisions. The paper also includes stochastic fuel prices, carbon prices, and 

electricity demand. 

        In summary, this thesis, through its four papers and the HAPPI model, 

explores a comprehensive modeling of investment decisions in the electricity 

system and their consequent impact on the low-carbon transition. With each paper 

adding a layer of complexity, we move from understanding the fundamental 

drivers of investment choices to factoring in elements such as financial 

constraints, risk aversion, and adaptive behavior. This approach is sheds light on 

the interplay between these factors and their influence on both micro-level 

investment decisions and the macro-level low-carbon transition in the electricity 

system. This development and application of the HAPPI model thus represent an 

innovative approach to understanding and potentially guiding the transition to a 

low-carbon electricity system. 

       The remaining sections of this thesis are structured as follows: section two 

offers a background on the transition of the electricity system, an overview of 

energy system modeling tools, and an exploration of some key input factors 

discussed in this thesis. Section three outlines the HAPPI model's development 

and its features, while also discussing the limitations inherent to our modeling 

approach. The fourth section presents key findings and a personal reflection and 

perspective on using agent-based models. The final section summarizes the thesis 

and offers concluding remarks. The four papers are appended at the end. 
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2. Background 

 

2.1 Transition of the Electricity System 

        The ability to produce electricity has profoundly impacted our lives in 

countless ways, revolutionizing the way we live, work, and communicate. Over 

the years, the energy sources used for electricity production have undergone 

several transitions.  

        In 1882, Thomas Edison opened the first commercial coal-fired power 

station, which provided electricity for lighting (Pain 2017). Throughout the late 

19th century to the early 20th century, coal was the primary energy source for 

electricity. During the mid-20th century, hydropower gained prominence, 

especially in regions rich in water resources. During the same period, there was 

also a shift towards utilizing oil for electricity production, which is noted for its 

higher energy density and cleaner combustion than coal (Melsted and Pallua 

2018). The advent of natural-gas and nuclear power in the late 20th century 

further diversified energy sources. Although nuclear power came with a promise 

of abundant and emission-free energy, its popularity declined due to concerns 

surrounding safety, waste disposal, and high-profile accidents, such as those at 

Chernobyl and Fukushima (Patel, Larson, and Harvey 2022). 

        Today, the electricity system is undergoing another major transition, 

characterized by an increased emphasis on reduction of greenhouse gas emissions 

and climate change mitigation. Currently, electricity production is a major source 

of CO2 emissions. According to the International Energy Agency (IEA), global 

CO2 emissions from energy and industrial processes in 2022 stood at 36.8 Gt, 

with 14.6 Gt originating from power production (IEA 2022a). To limit global 

warming by 2 °C above the preindustrial level, the IEA estimates that by 2050, 

nearly 95% of electricity would come from low-carbon sources (IEA 2017).  
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        Despite being a significant source of emissions, the electricity sector holds 

the potential to cost-effectively reduce emissions (Williams et al. 2012; IRENA 

2022). Renewable energy sources like wind and solar are increasingly being 

adopted thanks to technology advancements and supportive policy incentives, 

leading to their growing share in the global energy mix (IEA 2022c; IRENA 

2022).  

 

 

2.2 Energy System Models and Agent-based Modeling  

        Computational models are commonly employed by scholars to address 

research questions about future electricity systems. Several review studies affirm 

the widespread use of models in probing future low-carbon electricity systems 

(see e.g. Bazmi and Zahedi 2011; Pfenninger, Hawkes, and Keirstead 2014; Tao 

et al. 2021). Computational models also serve as crucial tools for policy makers 

seeking to make informed decisions. For instance, the European Commission 

utilized the PRIMES (PRice-Induced Market Equilibrium System) model for its 

Energy Roadmap 2050 (European Commission 2011). The MARKAL (MARKet 

ALlocation) model has been influential in molding the UK's energy and climate 

policy (Taylor et al. 2014). The TIMES (Integrated MARKAL-EFOM1 System) 

model has been employed to support the formulation of national climate policy, 

as demonstrated in the case of Sweden (Krook-Riekkola 2016). Similarly, the U.S. 

Energy Information Administration has developed the NEMS (National Energy 

Modeling System) model for generating its Annual Energy Outlook (EIA 2023).  

        Prior research offers multiple paradigms for modeling energy system 

transitions, including optimization models, system dynamics models, and agent-

based models (ABMs). Each paradigm offers unique strengths and capabilities, 

and may be better suited to particular kinds of problems. Here, we briefly 
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summarize these three modeling approaches and elucidate our rationale for 

selecting ABM for this research. 

        Optimization models, as mathematical tools, seek optimal solutions within 

predefined parameters and constraints. An optimization model incorporates an 

objective function (to be maximized or minimized), and decision variables, and 

typically also has constraints that demarcate feasible solutions. Some well-known 

energy system optimization models include the above-mentioned 

MARKAL/TIMES (Loulou, Goldstein, and Noble 2004; Loulou et al. 2005), as 

well as PyPSA (Python for Power System Analysis) (Brown, Horsch, and 

Schlachtberger 2018), and OSeMOSYS (Open Source Energy Modeling System) 

(Howells et al. 2011; Niet et al. 2021). While optimization models excel at solving 

linear or convex problems, they fall short in simulating individual decision 

making with imperfect rationality, adaptive responses, feedback mechanisms, 

and emergent phenomena.  

        System dynamics models, on the other hand, are simulation techniques adept 

at analyzing complex dynamical systems. Comprising stocks, flows, and 

determinants of these flows, these models leverage feedback loops and time 

delays to examine system behaviors over time (Barbrook-Johnson and Penn 

2022). They articulate the dynamic interactions among multiple system 

components, which can manifest as reinforcing or balancing feedback loops. 

From a mathematical standpoint, such a model is represented by a system of 

differential equations (Borshchev and Filippov 2004). Within the energy system 

modeling domain, applications of these models can be found in studies by Ahmad 

et al. (2015); Pereira and Saraiva (2011); and Yu et al. (2020). While potent for 

studying feedback mechanisms, the system dynamics model predominantly 

focuses on aggregate system dynamics, thereby offering limited insight into 

individual behaviors and heterogeneity among individuals (Borshchev and 

Filippov 2004; Köhler et al. 2018). 
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        In contrast with the aforementioned modeling approaches, ABMs enable the 

simulation of individual entities' actions (decision making) and interactions. 

Agent-Based modeling is a simulation method commonly used to study complex 

systems composed of individual entities or "agents." These agents are 

autonomous and adaptive, governed by their decision-making processes and rules 

(Bonabeau 2002). Classic examples of ABMs include Schelling’s segregation 

model (Schelling 1971) and the Sugarscape model (Epstein and Axtell 1996). 

ABMs have also been employed in recent studies to model phenomena such as 

infectious disease transmission, as evidenced by studies like Chang et al. (2020); 

and Rockett et al. (2020). 

        In our research, we perceive the low-carbon transition as an emergent 

outcome resulting from individual agents' actions and interactions, especially 

concerning investment decisions and their interaction with the electricity market. 

For an effective simulation of these elements, our chosen modeling tool must 

encapsulate individual actions while capturing heterogeneous and adaptive 

behaviors, alongside the path-dependency of the transition. Given its alignment 

with these requirements, ABM stands out as the appropriate tool for our purposes. 

        Even though ABMs are less commonly applied in energy system models 

than traditional energy-economy modeling techniques (Fernandez-Blanco-

Carramolino et al. 2017), more and more studies have effectively used ABMs to 

study the transition of the electricity system (as will be demonstrated in the 

forthcoming paragraphs), highlighting their potential to incorporate diverse 

aspects for which traditional energy-economy models are less suited.  

        Various studies have utilized ABMs to model investment decisions in the 

power sector and their consequent impacts on the development of the overall 

electricity system. These models take into account investors’ heterogeneity and 

adaptability, and the intricate interplay between the individual investors and the 
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overall market. For instance, Botterud et al. (2007) simulated investment 

decisions of power generators in Korea, with agents employing the decision trees 

method to account for different scenarios in terms of load growth, hydropower 

conditions, and competitors' investment plans. Chappin et al. (2017) introduced 

the model EMLab (Energy Modelling Laboratory), a long-term agent-based 

modeling framework, to assess the effects of different policy instruments and 

market designs on investments in power generating capacity. This model 

accounts for investors' different asset portfolios and varying interest rates and 

forecasting horizons, while capturing the evolution of the electricity system over 

time. Safarzyńska et al. (2017) examined the feedback dynamics among the 

energy, technology, and financial sectors. Their model analyzes the interactions 

among consumers, electricity producers, power plants, and banking institutions 

within interconnected networks. This study further investigated the implications 

of energy policies on investment levels in renewable energy, as well as their 

influence on interbank connectivity and the potential for bank failures. Chen et 

al. (2018), studied power companies with heterogeneous risk profiles and 

technology preferences, analyzing their individual investment choices and their 

effect on the low-carbon transition of the electricity system in China. In another 

study, Kraan, Kramer, and Nikolic (2018) modeled investors with diverse 

expectations about the future, requiring different returns on capital and therefore 

using different discount rates for evaluating future cash flows. They found that 

incorporating heterogeneous investor behavior results in a large range of possible 

transition pathways within the power sector.  Moreover, Fraunholz, Keles, and 

Fichtner (2019) applied an ABM called PowerACE to study generation and 

storage expansion planning in interconnected electricity markets. They used 

Nash-equilibrium to determine investment decisions and found that capacity 

remuneration mechanisms and cross-border effects influence investment 

incentives. Jonson et al. (2020) conducted an examination of a stylized electricity 

system under the influence of a progressively growing carbon tax. Within their 
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model, agents are power companies making investments in new capacities. These 

agents project the potential profitability of various investment alternatives. The 

study subsequently contrasted these findings with results from a corresponding 

optimization model. Finally, Barazza and Strachan (2021) examined how 

historical path-dependency and imitation of successful investment behavior affect 

investments in electricity generation in the UK, Germany, and Italy. Their 

findings indicate that historical path-dependency reinforces the position of 

incumbent companies, while imitation promotes the diffusion of PV and entry of 

new actors into the electricity market. 

        To summarize, as highlighted in the aforementioned existing literature, 

ABMs are well-suited for studying the emergent behavior of a system (e.g., 

energy transitions) by modeling the behavior and interactions of individual agents 

(e.g., investors, producers, and consumers on the electricity market). In addition, 

agent-based models are suited for capturing the heterogeneity and complexity of 

decision-making processes among individual agents (e.g., different investors 

have different preferences regarding risks and technology choices). ABM can 

also represent the learning and adaptation processes of the agents (e.g., investors 

adapt their investment strategies according to market conditions).  

        However, the application of ABMs also comes with noteworthy challenges. 

Primarily, ABMs require modeling behavior at the individual level, demanding 

comprehensive data on agent behaviors and interactions. Unfortunately, such 

granular, individual-level data is often scarce. The lack of accurate data can pose 

challenges in constructing a representative model. 

        Moreover, the inherent complexity of ABMs, accentuated by the often 

unpredictable nature of agent behavior, can make the models challenging to 

validate (Windrum, Fagiolo, and Moneta 2007). The limitations specific to this 

thesis will be further explored in sections 3.3 and 4.7. The subsequent sections 
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2.3 to 2.5 will provide background information about the investigated parameters 

and variables. 

 

 

2.3 Hurdle Rate 

        A hurdle rate is the minimum rate of return on an investment required by an 

investor (Kenton 2023). It plays a pivotal role in discounted cash flow analysis, 

used by investors to determine the net present value (NPV) or for comparisons 

with the investment’s internal rate of return (IRR) (IPF 2017). As such, the hurdle 

rate is instrumental for assessing the economic viability of an investment and 

deciding whether to pursue a project.  

        In the real world, factors such as the weighted average cost of capital 

(WACC), perceived risk, target return, and historical performance are taken into 

consideration when determining a project’s hurdle rate (IPF 2017). However, 

reliable data on actual hurdle rates and WACCs are often confidential and hence, 

not readily available to researchers. Various methods have been used to estimate 

the cost of capital, such as deriving data from financial markets, modeling auction 

results, consulting industry experts, and eliciting private party input (Steffen 

2020). 

        A report from Europe Economics (2020) estimated that in the UK in 2018, 

hurdle rates were 5% for solar PV, 5.2% for onshore wind, 7.5% for combined-

cycle gas turbines (CCGT), and 7.4% for coal plants with retrofit technologies. A 

survey conducted in 2019 across the US and Europe discovered that institutional 

investors’ hurdle rates ranged from 10% to 11% for solar and wind, and 16% to 

40% for new coal mines (Fattouh, Rahmatallah, and West 2019). According to a 

NERA (2015) study, UK nuclear hurdle rates fluctuated between 9.7% and 13.6% 

in 2015 and were projected to vary from 10.5% to 17.4% in 2030. The IEA (2022b) 
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presented the WACCs for various technologies across countries. In Brazil, for 

instance, the WACC for solar PV varied between 7.3% and 15.1% in 2019 and 

6.6% to 18% in 2021. Meanwhile, in South Africa, the WACC ranged from 6.6% 

to 17.1% in 2019 and shifted to 5.8% to 18.1% in 2021. It's worth noting that 

these data indicate considerable variability in hurdle rates across different 

countries, technologies, investors, and timeframes.  

        García-Gusano et al. (2016) demonstrated the significant impact of the 

choice of discount rate2 on the selection of technology for investment in energy 

optimization models. This thesis, particularly in Paper I and Paper IV, examines 

the influence of the hurdle rate's value on investment decisions in an ABM setting. 

In addition, in contrast to many model studies, these two papers also seek to 

capture the heterogeneity and the dynamic nature of hurdle rates and analyze how 

the choice of hurdle rate impacts investment decisions. 

 

 

2.4 Uncertainties, Risk Aversion and Loss Aversion 

        According to the classic distinction between uncertainty and risk by 

economist Frank Knight, uncertainty refers to situations in which the outcomes 

are not known, and the probabilities of these outcomes are not known and cannot 

be estimated, whereas risk refers to situations in which the possible outcomes and 

the probabilities of these outcomes are known or can be estimated (Knight 1921).  

        In the field of economics, risk aversion describes a preference for a 

guaranteed outcome over a risky choice with an equivalent expected outcome 

(Werner 2016). One commonly used framework to model behavior under risk is 

the Expected Utility Theory (EUT), attributed to Daniel Bernoulli in the 18th 

 
2 In finance, the terms "discount rate" and "hurdle rate" are often used in different contexts, however, when the 
hurdle rate is used as the discount rate in an NPV calculation, then it is effectively serving the same role as a 
discount rate. 
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century (Bernoulli 1954). EUT assumes that individuals are risk averse and make 

decisions to maximize a concave utility function. However, the theory has faced 

criticism for its reliance on assumptions that may not always align with real-world 

features. An alternative model, Prospect Theory, was proposed by psychologists 

Kahneman and Tversky (1979), to better describe how people actually make 

decisions under risk and uncertainty. Prospect Theory posits that individuals 

weigh the potential value of losses more than equivalent gains, introducing the 

concept of loss aversion. In contrast to the uniform concave utility function of 

EUT, Prospect Theory employs a utility function that is convex for losses and 

concave for gains.  

        In many cases, probability distributions are not known, and decision makers 

may form “subjective probability distributions” (Johansson-Stenman 2011; 

Savage 1954). Unlike objective probabilities, which are based on empirical data 

or a well-defined random process such as a coin toss, subjective probabilities are 

typically based on personal judgment, intuition, or belief. 

       Investment in the energy sector is replete with uncertainties and risks, such 

as technological, economic, and regulatory factors. Higher levels of uncertainty 

and risk will likely increase the perceived subjective risk, significantly 

influencing decision-making processes, especially for risk- and/or loss-averse 

individuals. Uncertainties and risk, coupled with investors' risk and loss aversion, 

have a profound influence on shaping risk perceptions, expected returns, and 

financing costs associated with low-carbon technology investments. 

Consequently, these factors play an instrumental role in determining the success 

of the transition toward a low-carbon electricity system. 

        Despite its profound significance, there is a noticeable gap in the literature 

regarding the integration of uncertainty and risk and aversion to it into agent-

based energy system models. Only a handful of studies have adopted 
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methodologies such as EUT (see e.g. Anwar et al. 2022) and Prospect Theory 

(see e.g. Tao, Moncada, and Delarue 2023). 

        In this thesis, specifically in Papers III and IV, we explore these concepts by 

integrating the element of investment decisions under uncertainty, coupled with 

investors' risk and/or loss aversion. Paper III presents results using three 

distinctive approaches for modeling risk or loss aversion where the investors have 

subjective probability distributions for future carbon prices. The three approaches 

are (1) the mean-variance approach; (2) the Value-at-Risk (VaR) approach; and 

(3) the risk-adjusted discount rate approach. 

       The mean-variance approach (or the modern portfolio theory) is an 

investment or portfolio selection method that takes into consideration both the 

expected returns and the associated variances of those returns for investment 

assets. This dual focus allows investors to optimize their portfolios for maximum 

return while minimizing risk. Within this framework, an investor may opt for a 

portfolio that offers a higher anticipated return for a specified level of risk, 

measured as variance, or, alternatively, may select a portfolio with minimized 

variance for a specified level of expected return (Bodie, Kane, and Marcus 2010). 

The mean-variance approach can be derived from the expected utility approach, 

where the utility function can be approximated by using mathematical techniques 

such as Taylor expansion (Pulley 1981). Based on this approximation, it can be 

shown that there is a trade-off between the expected return and the variance of 

the return.  

      Value at Risk (VAR) is a risk-management metric often used in financial 

applications. Functioning as a statistical measure of prospective losses, VaR 

offers an estimate of the worst-case scenario for a given investment portfolio. 

More formally, VaR quantifies the worst loss over a target horizon that will not 

be exceeded with a given level of confidence (Jorion 2007). Investors might 

demand different VaR limits depending on their individual loss-aversion levels.  
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        The risk-adjusted discount rate approach posits that the greater the perceived 

risk, the higher the discount rate demanded by investors, implying that a more 

substantial expected return is necessitated by these investors (Lewellen 1977). 

 

 

2.5 Learning and Adaptation  

        Learning can be characterized as “the activity of obtaining knowledge”, 

while adaptation refers to “the process of changing to suit different 

conditions”(Cambridge Dictionary 2023a, 2023b). 

        Learning and adaptation are fundamental behaviors observed in biological 

and social systems, acting as the drivers of evolution and progress. From viruses 

to humans in complex societies, those entities that demonstrate the greatest 

aptitude for learning and adapting to their environments are most likely to 

succeed. This concept is encapsulated by Charles Darwin's principle of 'Survival 

of the Fittest,' which suggests that the most adaptable are the most likely to thrive. 

        The fundamental behaviors of learning and adaptation have transformative 

implications, not only in natural systems. In the study of artificial systems in 

computer science, an instance is reinforcement learning, a branch of machine 

learning where an agent learns to make optimal decisions by performing actions 

that maximize cumulative rewards in an environment (Sutton and Barto 2018). 

Prominent applications of reinforcement learning are seen in projects like 

AlphaGo, which mastered the intricate board game Go and outperformed human 

champions (Silver et al. 2016). Similarly, Generative Pre-trained Transformer 

(GPT) models like ChatGPT employ reinforcement learning techniques to 

generate human-like text (Brown et al. 2020). These models demonstrate the 

immense potential of integrating learning and adaptation in artificial systems, 
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allowing solutions to complex problems as well as decision-making capabilities 

that, in some areas, surpass human skills. 

        In the evolving realm of energy systems, learning and adaptation are 

fundamental. Agents like investors, energy providers, consumers, and 

policymakers continuously interact with their environment and each other. They 

learn from past experiences and adapt their behaviors and strategies in response 

to system changes, such as fluctuating energy prices, geopolitical shifts, and 

advancements in technology. Incorporating learning and adaptation at the agent 

level in energy system models could provide a more detailed representation of 

system complexities and potentially lead to significant contributions. Some 

previous studies have demonstrated this application, cf. Perera and Kamalaruban 

(2021);  and Zhang, Zhang, and Qiu (2020). 

        In this thesis, specifically in Paper IV, we introduce a rudimentary learning 

and adaptation behavior into the HAPPI model. We examine how learning and 

adaptive behavior regarding the hurdle rate influences investors’ decision 

processes concerning investments in new generation capacity. 
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3. Method – The HAPPI Model 

 

        The HAPPI (Heterogenous Agent-based Power Plant Investment) model is 

used across all papers. The model is developed throughout these investigations, 

but its core structure remains consistent. The core model, derived from Jonson et 

al.'s (2020) study, forms the structural underpinning of this research. The model 

versions utilized in Papers I and II were implemented in Mathematica, while the 

models for Papers III and IV were developed in Python. The code for the models, 

made accessible under open-source provisions, can be found at 

https://github.com/happiABM. 

        The following sections first provide an introduction to the core model in 

Paper I and then proceed to elaborate on its development through each of the 

succeeding papers. 

 

3.1 Core Model Structure – the Model Used in Paper I 

        The overarching structure of the HAPPI model is visually depicted in Figure 

2. It comprises power companies, as well as the electricity system and consumers.  

        The power companies are referred to as 'agents' within this context. The 

agents, who invest, own, and operate power plants, seek to invest in technology 

with the highest profitability. They decide on both investments and power 

generation.  

        The electricity system component simulates an ideal market, where neither 

producers nor consumers make strategic bids to manipulate the market price. A 

power plant generates electricity as long as the electricity price is greater than or 

equal to its operating cost.  

        The consumer component of the model simulates the electricity demand.  



20 
 

        Electricity prices are set by where the demand equals supply, and they are 

influenced by several factors, including the installed capacity of electricity supply 

technologies, fuel costs, wind and solar conditions, as well as electricity demand. 

Additionally, this model simulates the dispatching of electricity production and 

computes both the CO2 emissions and revenues for each power plant.  

        In a feedback loop, the agents and the electricity system exert mutual 

influence. The investment decisions made by the agents impact various aspects 

of the electricity system, such as the generation supply mix, CO2 emissions, and 

electricity prices. The market conditions change over time and, in turn, shape the 

agents' future investment choices. 

          The scheduling of the model, as illustrated in Fig.3, is structured such that 

at the commencement of each year, power plants that have reached their 

operational lifespan are decommissioned one by one; simultaneously, the agents, 

in randomly assigned turns, evaluate investment options and make informed 

investment decisions. There are six potential technologies: coal-fired plants, gas 

combined-cycle plants (GCC), GCC with Carbon Capture and Storage (GCC with 

CCS)3, nuclear plants, wind, and solar photovoltaics (PV). Each agent, for each 

potential investment option, calculates a profitability index and invests in the 

technology yielding the highest expected profitability index. Should no 

technology present a positive profitability index, the agent opts out of investing 

during that round. This decision-making process continues until no more power 

plants are to be decommissioned in that year and no agents want to invest further. 

Subsequently, the model advances to the next year, and the whole scheduling 

process is repeated. 

 
3 Gas combined cycle with CCS (gas CCS) is included in Paper I and Paper II, but not in Paper III and Paper IV. 
While drafting Paper III in 2021, the authors felt that the rapidly evolving landscape of renewable energy 
technologies and climate policy warranted a focused exploration of a fossil-fuel-free energy system. Given this 
aim, and to streamline our analysis in this direction, we decided to exclude gas CCS from the current version of 
the model. 
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Figure 2. The overarching structure of the HAPPI model. This model can be mainly divided 
into two parts – the agents (the investors) part, and the environment (the electricity system) 
part. 

 

 

 

Figure 3. The overarching scheduling of the HAPPI model. At the beginning of each year, 
power plants that have reached their operational lifespan are decommissioned. Concurrently, 
agents assess investment opportunities and make new investment decisions. Agents will invest 
in the technology that offers the highest expected profitability index, as long as it is larger than 
zero. 




