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Pedestrian Behavior Prediction Using Deep
Learning Methods for Urban Scenarios: A Review

Chi Zhang

Abstract— The prediction of pedestrian behavior is essential for
automated driving in urban traffic and has attracted increasing
attention in the vehicle industry. This task is challenging because
pedestrian behavior is driven by various factors, including
their individual properties, the interactions with other road
users, and the interactions with the environment. Deep learning
approaches have become increasingly popular because of their
superior performance in complex scenarios compared to tradi-
tional approaches such as the social force or constant velocity
models. In this paper, we provide a comprehensive review of deep
learning-based approaches for pedestrian behavior prediction.
We review and categorize a large selection of scientific contribu-
tions covering both trajectory and intention prediction from the
last five years. We categorize existing works by prediction tasks,
input data, model features, and network structures. Besides,
we provide an overview of existing datasets and the evaluation
metrics. We analyze, compare, and discuss the performance of
existing work. Finally, we point out the research gaps and outline
possible directions for future research.

Index Terms— Pedestrian behavior prediction, trajectory,
intention, deep learning, neural networks, automated vehicles,
survey.

I. INTRODUCTION

CCORDING to World Health Organization (WHO)’s
report on road safety [1], about 1.35 million people
are fatally injured by road crashes every year. Pedestrians
constitute 23% of all road traffic deaths globally, which is
unacceptably high. As the most vulnerable road users, pedes-
trians are important participants and need protection. Given
that human errors are one of the main factors in most road
traffic crashes [2], automated vehicles (AVs) may have the
potential to reduce these figures and improve road safety.
Hence, it is essential to predict the behavior of pedestrians for
AVs to better understand the AV’s surroundings for making
better and safer driving decisions and preventing potential
hazardous situations. In recent years, the interest in AVs has
attracted increasing attention to research related to pedestrian
behavior prediction.
Predicting pedestrians’ behavior is a great challenge.
In contrast to the vehicles, whose behavior prediction has
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been well studied and reviewed by Lefévre et al. [3] and
Mozaffari et al. [4] for instance, pedestrians are more agile
and can change their speed and direction unexpectedly [5] with
unknown or hardly predictable moving patterns [6]. Pedestrian
behavior is driven by complicated influencing factors. These
factors include not only the properties of the pedestrians
themselves such as the motion states, destination, age, and
gender [7], but also the interactions with other pedestrians [§]
and vehicles [9], [10], [11]. Furthermore, the environment can
also influence the intention of pedestrians both explicitly and
implicitly. The non-linearity arising from pedestrian interac-
tions and the complexity of multiple influencing factors hinder
accurate prediction using conventional knowledge-based mod-
els such as social force [12] and constant velocity model [13].
Deep learning is a subset of machine learning based on
artificial neural networks with multiple layers. Inspired by
the biological neuron, artificial neural networks are composed
of nodes with linear weights and bias, and non-linear acti-
vation functions. Deep learning methods are powerful tools
that can be used to extract high-level features from data,
and can deal with the non-linearity of the data. Therefore,
researchers are exploring the potential of deep learning models
to represent and extract pedestrians’ behavior patterns in a
data-driven manner. In this paper, we analyze and categorize
existing research and discuss how current challenges have been
addressed so far.

As deep learning methods are data-driven, datasets are
important for developing models. The report on pedestrian
safety by WHO [14] has shown that about 70% of pedestrian
fatalities occur in urban areas in the European Union, and
in the United States, this number is about 76%. Pedestrian-
vehicle collisions occur more in urban areas than rural areas
in these countries, and hence, most of the publicly available
datasets for developing pedestrian behavior prediction models
used by researchers are collected in urban areas. Therefore,
we review prediction methods and datasets in urban scenarios.

The scope of this paper covers studies that predicted pedes-
trian behavior, including the future trajectory and crossing
intention. We focus on deep learning-based models. When
it comes to datasets and model inputs, we focus on urban
scenarios, and cover various inputs such as camera images,
light detection and ranging (LiDAR) point clouds, or the speed
of the ego vehicle to name a few. Various factors that influence
pedestrian behavior are covered, such as pedestrians’ own past
motion states, interactions with other pedestrians and vehicles,
and influences of the environment.

There are several published papers that reviewed existing
works on pedestrian behavior prediction. Hirakawa et al. [15]
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surveyed vision-based methods for pedestrian path prediction,
where deep learning-based methods were only covered by a
small extent. Rudenko et al. [16] reviewed the work related
to human motion trajectory prediction and categorized exist-
ing methods by the modeling approach and contextual cues.
Korbmacher and Tordeux [17] reviewed pedestrian trajectory
prediction methods, compared deep learning methods and
knowledge-based methods. These papers only covered the
trajectory prediction and omitted the important prediction of
intention that can be used for pedestrian-vehicle collision
avoidance. Shirazi and Morris [9] focused on pedestrian
intention at intersections and analyzed how crossing behavior
is influencing intersection participants. Ohn-Bar et al. [10]
provided a survey on interactions between humans and
autonomous vehicles. Rasouli and Tsotsos [11] reviewed
pedestrian behavior studies of both classical pedestrian—driver
interactions and more recent autonomous vehicles and pedes-
trian interactions, but mainly focused on analyzing human fac-
tors and interactions instead of deep learning-based behavior
prediction. Ridel et al. [18] reviewed and classified existing
pedestrian behavior prediction models, but they classified
previous works from only a single criterion, and many recently
suggested deep learning methods were not covered. Most of
the previous review papers focused on a single task, either
the analysis of trajectories [15], [16], [17] or intention [9],
or interactions between pedestrians and vehicles [10], [11],
which did not cover the aspects in this paper’s scope. More-
over, most of these papers classified the existing literature by
a single criterion [17], [18], and only include methods with
some particular input data [15].

To overcome the drawbacks listed above, we review, catego-
rize, and analyze the existing research on pedestrian behavior
including both the trajectory and intention prediction in this
paper. We propose four criteria for classification to consider
existing works from different dimensions. The main contribu-
tions of this paper are:

« We present a detailed analysis of the existing literature
on pedestrian behavior prediction, including trajectory
prediction, intention prediction, and the joint prediction of
both. We categorize existing approaches from four criteria
including a) prediction tasks b) input data, c) the features
that are considered in existing models, and d) network
structures, and emphasize the advantages and drawbacks
of existing approaches.

o We include the most recently proposed existing publicly
available datasets and commonly used evaluation metrics.
We compare the trajectory and intention prediction tasks
on the most commonly used open datasets and present
state-of-the-art algorithms.

« We point out research gaps and outline the potential
directions for future works.

II. METHODOLOGY AND TAXONOMY
A. Methodology

Our methodology to find and collect existing papers is
based on direct search and snowballing. We used IEEE Xplore
digital library and Google Scholar for direct search to include
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Fig. 1. The number of papers over the years and the distribution of the

papers. The rising trend of the papers indicates the growing interest in deep
learning-based pedestrian behavior prediction. *Note that in 2021 only the
papers published in the first half of the year are included.

both scientific databases and open-access pre-prints. We used
“pedestrian behavior prediction” OR “pedestrian trajectory
prediction” OR “pedestrian intention prediction” filtered by:
“deep learning” OR “network”™ as initial search strings. We did
not set the time range explicitly, but after searching, the
results originated mainly from 2016 to 2021. Then we went
through the results to select relevant papers meaning that the
research targets are pedestrians instead of drivers or robots,
the research goal is behavior prediction instead of detection,
tracking, or vehicle/robot path planning, and the methods are
deep learning. We selected 50 papers from direct searching.
Then we did backward and forward snowballing (as proposed
in [19]) with their citations and references to include relevant
publications, and got 42 papers from snowballing. We review
92 papers in total, including 44 on trajectory prediction, 17 on
intention prediction, 6 on joint prediction, 18 on datasets and
benchmarks, and 7 on literature review. The number of papers
over the years' and the distribution of the papers is shown in
Fig. 1. The rising trend of the papers indicates the growing
interest in this field.

B. Taxonomy and Overview

We address our expansion of the taxonomy proposed by
Hirakawa et al. [15] and Rudenko et al. [16], and categorize
existing studies by the following four criteria. With the help
of this taxonomy, one can easily get started with a model’s
desired input and output, decide the features that they want to
consider in the model, and find a reasonable network structure.

1) Prediction tasks: The prediction tasks define the problem
that a model is addressing, and a model’s expected
output. We classify previous models by three kinds of
prediction tasks, including a) trajectory prediction, b)
intention prediction, and c) joint prediction that predict
both trajectory and intention.

INote that in 2021 only the papers published in the first half of the year
are included.
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2) Input data: The input data show the information provided
by sensors or annotations that are used as model inputs.
We classify previous models by three kinds of input data
that provide different types of information, including:
a) the past trajectories of pedestrians from annotations,
b) the information provided by sensors, and c) other
supplementary information such as the map information,
the information of the ego vehicle, etc.

3) Model features: There are many factors that influence
the future behavior of pedestrians. It is hard to consider
all factors, so previous studies tried to cover those
factors that influence pedestrians most as model features.
Model features are the observations and factors that were
considered by previous studies in models as stimuli to
the future behavior of pedestrians. We classify previous
models by three types of model features, including
a) the observed information of target pedestrians, b) the
information of other agents that interact with target
pedestrians, and c) the information of the environment.

4) Network structures: The network structures show how
previous studies learned the moving pattern from
observed information. There are several typical struc-
tures used in existing prediction models that can be
classified into sequential networks and non-sequential
networks.

We summarize the pedestrian behavior prediction frame-
work in Fig.2 and show how these four criteria are related.
We review and classify the existing works in detail from the
proposed categories: prediction tasks as in Sec. III, input data
as in Sec. IV, model features as in Sec. V, and network
structures as in Sec. VI. Then, we outline the evaluation
metrics and the datasets used in existing research in Sec. VII,
and compare the performances on publicly available datasets
to point out the research gaps and outlines potential research
directions in Sec. VIII. Finally, we present our conclusions in
Sec. IX.

III. PREDICTION TASKS

In this section, we classify previous studies based on predic-
tion tasks, including trajectory prediction, intention prediction,
and joint prediction that predicts both. We cover different
output representations and training strategies for each type of
task. Table I summarizes different types of prediction tasks,
model features, and input data of existing studies.

A. Trajectory Prediction

1) Task Definition: The trajectory prediction methods pro-
vide low-level information of pedestrian behavior with detailed
spatial and temporal information. This information can be used
for collision avoidance or helping autonomous vehicles to plan
their future path. We define the trajectory of a pedestrian as a
sequence of x-y coordinate positions including their temporal
order. A person’s position in a scene is represented by the
x-y-coordinate X = (x, y). Given a set of n pedestrians with
their observed positions over time steps t, X! = (x!, y!)
where i € {1,...,n}, 1 <t < T,, and other information
I such as the information of the surrounding environment
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and objects, we aim to predict the likely trajectories of the
target pedestrians ¥/ = (&/,3!) in the future time steps
Tops + I<t< Tpred-

2) Output Representation: There are different kinds of out-
put representations for trajectory prediction. Many researchers
treated trajectory prediction as a regression problem. The
output can be represented as: a) positions of (X, y) coordinates,
b) uni-modal distributions, and c¢) multi-modal distributions.
Representing output as positions is used by many studies, such
as [21], [22], [23], [24], and [49]. Such models are simple
compared to those models predicting distributions, and can get
deterministic results, but they cannot include the randomness
nature of the pedestrian movement. Uni-modal distributions
are very popular for trajectory prediction and are used by
studies such as [27], [28], [39], [41], [45], [52], [59], and [62].
Compared to multi-modal distribution models, the uni-modal
prediction requires less computational cost, but the model may
learn an “average behavior” that is not plausible. Multi-modal
distributions can overcome the drawback of converging to
average behaviors by outputting several plausible behaviors,
and are used by studies such as [31], [33], [35], [38], [40],
[44], [47], [50], [51], and [58]. But this representation requires
higher computational resources with more complicated frame-
works such as GANs, and are hard to converge.

Instead of treating the trajectory and positions as a con-
tinuous variable and directly regressing values, the trajectory
prediction can also be represented as a discrete variable. The
output can be represented as: a) discretizing the frame scene
into grids, and b) discretizing the pedestrian velocity into bins.
Grid-based representations are used by studies such as [48]
and [56]. Using a grid-based representation to encode the
location information enables a parameter-free approximation
of distributions, but the discretization over the whole scene
may require high dimensionality. Therefore, grids are more
often used for representing local occupation information for
interaction with neighbors or the environment as in [27]
and [49]. The trajectory prediction can also be treated as a
classification task by quantizing the input data into classes
and represented by one-hot encoding. Giuliari et al. [24] used
1000 bins to represent the velocity of pedestrians and pre-
dicted the future velocity by classification. But the authors
claimed that the classification generally gets worse results than
regression models because of quantization errors. In addition
to predicting only future trajectories, some work outputs
both destination and trajectory prediction [86], or outputs the
pedestrians’ walking behavioral response in each footstep [57].

3) Training Strategies: For trajectory prediction, mean
square error (MSE), also called L2 loss, is commonly used,
especially for position representations, as in studies [21],
[22], [23], [24], [32], [35], [49], [56]. For uni-modal dis-
tribution representations, the negative log-likelihood loss is
used, as in studies [27], [28], [39], [41], [52], [59], [62]. For
the multi-modal distributions representations such as GAN-
based models, the adversarial loss is used, together with L2
loss to measure the distance between generated samples and
the ground-truth, as in studies [31], [40], [44], [50], [51].
Amirian et al. [33] also used information loss in addition to
discrimination loss and adversarial loss. Eiffert et al. [58] used
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tasks.

adversarial loss with the negative log-likelihood loss for the
generator.

B. Intention Prediction

1) Task Definition: The intention prediction methods pro-
vide high-level information on pedestrian behavior. The inten-
tion or action can be predicted in different time horizons.
Understanding and predicting the pedestrian intention, espe-
cially the crossing intention, is crucial for higher “Society
of Automotive Engineers” (SAE) Levels aiming at automated
driving. With the precise prediction of pedestrian intention in
advance, automated vehicles can make better decisions and
reduce the risk for potentially hazardous situations. Given
the observed information of a pedestrian such as trajectories
and postures, we aim to predict the intention of a pedestrian.
The intention can be defined as discrete behavior types in
the future. Many studies use “intention” interchangeably with
“actual actions in the future”, because labeling the “intention”
of a pedestrian is usually a hard problem. Rasouli et al. [84]
addressed and labeled intention by asking multiple annotation
participants to observe the video of pedestrians and label the
crossing intention, and then took the average. In this paper,
we do not distinguish the intention and actual action.

2) Output Representation: The intention prediction is a
classification problem. Many studies treated the problem as
a binary classification with crossing or non-crossing (C/NC)
action, such as in [64], [70], [75], [76], and [7]. Some
other studies predicted multi-classification with several dif-
ferent action types. For instance, Fang et al. [69] predicted
four types of behaviors including crossing, stopping, bending,

and starting, using several binary classifications for multi-
classification. Rasouli et al. [73] included four types of behav-
iors including walking, standing, looking towards the traffic,
and not looking. Goldhammer et al. [81] classified pedestri-
ans’ motion states into waiting, starting, moving, and stopping.
The multi-classification usually includes the whole process of
crossing with a certain order, and contains more information.

3) Training Strategies: Rasouli et al. [73] used sigmoid
cross entropy loss for classification. Besides, many studies
used deep learning networks to extract features, and then use
other machine learning classification methods. For example,
the studies [69], [87] used SVM with hinge loss, and the
studies [69], [70] used random forest (RF) for classification.

C. Joint Prediction

Pedestrian intention can be predicted jointly with trajectory
prediction. There are mainly two kinds of joint prediction
frameworks. One kind is that the trajectory and intention
prediction tasks share the same feature extracting module. The
extracted features are fed into two separate streams for differ-
ent prediction tasks. For instance, Liang et al. [83] predicted
both, the future positions (xy-coordinates) as well as estimat-
ing the possibilities of future activity labels simultaneously in
one network. The trajectory generator and activity prediction
modules share the features extracted from the images. In this
framework, the trajectory and intention prediction share the
same network, which can save computational resources.

Another kind is that the trajectory and intention are sep-
arately predicted, but the information is used to refine each
other as suggested by Huang [80]. In works [81], [82], [84],
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TABLE I
MODEL FEATURES AND INPUT DATA OF PEDESTRIAN BEHAVIOR PREDICTION
Model Features Input Data Papers
Prediction Targe;t Other Agents Envir- Traj- Sensor Data Sljlpplemer}tary
Tasks Pedestrians onment | ectory information
Trajectory - - Yes - - [20]-[26]
Trajectory Social interaction - Yes - - [271-[45]
Trajectory, Social interaction - Yes Camera images - [46]
skeleton cue
Trajectory - Implicit Yes Camera images - [47], [48]
Trajectory Trajectory Social interaction Implicit Yes Camera images - [49]-[54]
(44 papers) Trajectory Person-ORU interaction  Implicit Yes Camera images - [55]
. Social interaction; .. .
Trajectory Person-ORU interaction Implicit Yes - Scene image map [40]
Trajectory, L j
motion states, Social interaction Implicit Yes - Gnd_b‘.lbeq map. [56]
inati destination
destination
Trajectory,
motion states, Social interaction Explicit Yes Camera images Destination [57]
destination
Trajectory, Social interaction; ]
category Person-ORU interaction ) Yes ) Agent Category [581-{60]
Trajectory,
category, Person-ORU interaction - Yes - Agent Category [61]
direction
Trajectory, g
velocity, Person-ORU interaction - Yes Camera images /\%‘gents states, [62]
traffic concentration
agent shape
Trajectory, Pedestrian
appearance cue, Person-ORU interaction  Implicit Yes Camera images VR information, [63]
VR information vehicle’s states
Motion states Vehicle factors Explicit - Lidar images Static map [64], [65]
Trajectory - - Yes Lidar images - [66]
Intention Appearance cue Vehicle factors Explicit - Camera images Vehicles’ states [67]
(17 papers) Skeleton cue,
motion states, Vehicle factors Explicit - Camera images - [68]
individual information
Skeleton and/or - - - Camera images - [69]-[72]
appearance cue
Appearance cue - Implicit - Camera images - [73]-177]
Appearance cue Person-ORU interaction  Implicit - Camera images - [78]
S Age, gender,
Speed, age, Vehicle factors Explicit - Lidar 1mages, environmental [7]
gender Camera images
parameters
Trajectory, Bounding boxes,
skeleton and Vehicle states Implicit Yes Camera images the speed of [79]
appearance cue ego-vehicle
o e ' R T— : 0
(6 papers) motion states ) B Yes ) B (81]
Trajectory,
skeleton cue, - Explicit Yes Camera images - [82]
velocity
Skeleton and Social interaction; Implicit _ Camera images j (83]
appearance cue Person-ORU interaction P &
Trajectory, Vehicle factors Implicit Yes Camera images Bounding-boxes [84], [85]
appearance cue

and [85], the researchers extracted features for the two tasks
separately, and combined the two tasks based on the intention
prediction results information to improve the trajectory pre-
diction results. The combination of the two streams can then
utilize more information to get better performance.

D. Summary of Prediction Tasks

The existing works for different prediction tasks are listed
in Table I. We notice that there are more papers on trajectory
prediction than the other two tasks. The application of different
tasks is one of the reasons for this imbalance. The trajectory
prediction can be used for many scenarios, not only for

the automated vehicles in urban scenarios, but also for the
development of social-aware robots in indoor scenarios, while
the crossing intention prediction is mainly used for traffic sce-
narios. Therefore, there were more researchers from different
research fields focused on trajectory prediction compared with
intention prediction. There are other reasons related to the
prediction methods and datasets that are used by these tasks.
We discuss them in Sec. VI-C and Sec. VII-C.

IV. INPUT DATA

Previous models used various types of input data. The
pre-processed data such as trajectories and raw sensor data
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such as camera images can be used for training. Besides,
other information such as the map and road parameters can
be used to provide environment information. In this section,
we classify previous studies based on the type of input data
that provide different kinds of information.

Existing methods use one or multiple data sources as input
to predict pedestrian trajectories:

1) Past trajectories, which can provide information of a
pedestrian’s motion state. It is used by most trajectory
prediction methods.

2) Sensor data, such as the sequences of scene images
recorded by the camera, and the point clouds recorded by
LiDAR. The sensor data can provide more information
of the pedestrian’s posture and appearance, as well as
provide the environmental context information.

3) Other supplementary information, including the pedes-
trian information (e.g., age and gender), the vehicle state
(e.g., the speed and heading angle), and environment
information (e.g., the road information and maps).

The input data of previous studies is shown in Table I,
showing that different prediction tasks require different input
data. The trajectory prediction requires trajectories as input.
The trajectory can be labeled from either camera-recorded
videos or LiDAR point cloud videos, or even generated from
the simulation. In the studies that only require trajectories,
raw sensor data is not required. For those trajectory prediction
methods that require sensor data, the camera images and
LiDAR point clouds can be used to provide visual behavior
information. The intention prediction usually requires raw
sensor data, that can provide visual or posture behavior cues
for a pedestrian’s intention. For joint prediction, both trajectory
and raw sensor data can be utilized because this type of task
requires both trajectory and visual behavior information. When
the model needs the environment or other information, the sup-
plementary information such as maps of the environment, the
types of the object, and even virtual reality (VR) information
can be required. With different types of input data, different
features can be considered for modeling. More details about
the model features are presented in Sec. V. As most of the
existing studies used publicly available datasets for training
and evaluation, we introduce more details about the sensors in
Sec. VII-B for models that used raw sensor data.

V. MODEL FEATURES

In this section, we categorize previous studies based on
what features of pedestrian behavior have been considered in
the model. Many factors can influence pedestrian behavior.
Rasouli and Tsotsos [88] divided the factors that influence
pedestrian behavior into pedestrian factors and environmen-
tal factors. Kotseruba et al. [85] analyzed the implicit and
explicit factors that influence the pedestrians’ crossing behav-
ior, including the environment, communication with others,
and their own states. Researchers consider one or several of
these influencing factors as model features. In this paper, based
on the internal and external stimuli of pedestrian behavior
defined by Rudenko et al. [16] and the influencing factors
mentioned in [85] and [88], we divide existing works by
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@ (1 paper)

(2019, Lisotto et al.[52])

Fig. 3. The classification of the model features. The number of papers that use
the corresponding features and the year that firstly used the factors/methods
are listed. Please note that a paper can use multiple model features.

three types of model features. Fig. 3 shows the classification
of model features, and the number of papers that used the
corresponding features. Existing works use one or several
combinations of these features:

1) The features related to target pedestrians, including
trajectories and motion states, behavioral cues such as
posture and appearance, as well as individual informa-
tion such as the age and gender, etc.;

2) The features related to other agents, including homo-
geneous interaction, i.e., the social interactions between
pedestrians; and heterogeneous interaction, i.e., the inter-
action between pedestrians and other road users (ORUs).
Note that in this paper, we mean other types of road
users except pedestrians when we say “ORUSs”;

3) The features related to the environment, including
explicit factors and implicit interactions with context
scenes.

A. Target Pedestrians

The states of target pedestrians are essential model features
for predicting their future behaviors. A summary is listed in
Table II.
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TABLE I
INFORMATION OF TARGET PEDESTRIANS USED IN PREDICTION. PLEASE NOTE THAT A PAPER CAN USE MULTIPLE MODEL FEATURES

Target Pedestrian Information Papers

Summary

Trajectories only:
Trajectory prediction: [20]-[24], [34]

Advantages: Contain the historical temporal information. The
predicting models are usually simple and require less computing
resources.

Drawbacks: These models have not considered the interaction
with other road agents and environment.

Trajectories Trajectories Intention prediction: [66]
and (51 papers) Joint prediction: [80]
Motion P )
States Together with other factors:

(55 papers)
Intention prediction: [79]
Joint prediction: [81], [82], [84], [85]

Trajectory prediction: [25]-[33], [35]-[63]

Advantages: The models consider other features can get more
accurate results.

Drawbacks: The predicting models are complicated and require
more computing resources.

Motion States

(9 papers) Joint prediction [81]

Trajectory prediction: [56], [57], [61],
Intention prediction: [7], [64], [65], [68]

Advantages: Provide simple but strong information. They are
easy to get, and do not require complicated feature extraction and
labelling.

Drawbacks: These properties do not include other implicit
information, and only related to current states. They are usually
used together with other inputs.

[62]

Trajectory prediction: [63]
Intention prediction: [67], [72]-[79]
Joint prediction: [83]-[85]

Appearance-based

Behavior (13 papers)

features

Advantages: The images can provide more information than just
trajectories, the posture and appearance can reveal the future action.

Trajectory prediction: [46]
Intention prediction: [68]-[71], [79]

(19 papers) Skeleton-based

Drawbacks: These models require more powerful computing
resources.

Advantages: These factors influence the pedestrian behavior and
using them as features enables researchers to get accurate results.

(8 papers) Joint prediction: [82], [83]
Individual Category and type | Trajectory prediction: [58], [59], [61]
information - —
(8 papers) Others Trajectory prediction: [63]

Intention prediction: [7], [57], [62], [68]

Drawbacks: Can be hard to get. If based on assumptions, it may
not be precise.

1) Trajectories and Motion States:

a) Trajectories: Most of the trajectory prediction mod-
els include the history of pedestrian trajectories, sometimes
together with other model features. Trajectory prediction stud-
ies [20], [21], [22], [23], [24] considered only pedestrians’
past trajectories for predicting their future trajectories. They
extracted the features through embedding layers, and fed the
features into deep learning structures for prediction. In addition
to only trajectories, studies [25], [26], [44] encoded inter-
mediate destinations from the trajectories and predict future
trajectories conditioned on the destinations. For intention
prediction, Zhao et al. [66] used trajectories extracted from
roadside LiDAR sensors to predict the crossing intention. For
joint prediction, Huang et al. [80] used trajectory to predict
future intention and trajectory simultaneously, with the pre-
dicted results refining each other.

Although the context-based data are good indicators to
include, the prediction can be faster by using only the
trajectory as input. With recurrent networks, the temporal
information of target pedestrians can be extracted from the
trajectories, which usually provide rich historical information.
There are several advantages of using only trajectories for
prediction: It requires less annotation effort than annotating
more semantic information on images, and the predicting
framework is usually simple and requires less computing
resources than those methods which consider the interac-
tion with other road agents and with the environment. The
drawbacks are that these methods have not considered the
interaction with other road agents and the environment that
could also affect the future behavior of pedestrians. The
trajectories considered together with other model features
usually take the trajectory as part of the input. These models
extract the trajectory feature in an individual branch and
utilize other compensation information resulting in higher
accuracy.

b) Motion states: The motion states such as the velocity
and position are also important features for human behavior
prediction. For trajectory prediction, Ma et al. [57] focused
on a microscopic level instead of estimating the positions
at each time-step, and predicted the future trajectories by
learning pedestrian’s walking behavior at each footstep, con-
sidering the velocity and the step length as important inputs.
Song et al. [56] also considered velocity as one of the fea-
tures. Carrasco et al. [61] used orientation to build a graph
representation for feature extraction. Chandra et al. [62] used
position, velocity, and other factors as model features to define
the state space of each road agent. For intention prediction
methods, many studies [7], [64], [65], [68] included velocity to
decide whether a pedestrian wants to cross the road or not. For
the joint prediction, Goldhammer et al. [81] considered pedes-
trians’ trajectory and velocity, as well as their ego-coordinate
for prediction.

The motion states can provide simple but strong information
about the moving behavior of pedestrians. The velocity and
position information is easy to get, and does not require
complicated feature extraction and labeling. However, these
properties do not include other implicit information, and are
only related to states at the current time step. Therefore, the
motion states are usually used together with several other
inputs as complements.

2) Behavior Features: As proposed by Schmidt and
Férber [89], using only trajectory information for intention
prediction is insufficient. The behavioral features, especially
the appearance and posture, usually indicate a pedestrian’s
intention, and are used by many intention prediction and
joint prediction works. The CNNs are usually used to extract
visual cue information and/or get the key-point features of
pedestrians. The behavioral information from the images can
provide more behavior information of pedestrians than just
trajectories, but requires more powerful computing resources.
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a) Appearance-based: For intention prediction, the
appearance behavioral feature can be extracted implicitly
from images, usually using CNNs [72], [73], [78]. Three-
dimensional CNNs (3D-CNNs) have been utilized to extract
spatio-temporal features and recognize pedestrians’ crossing
intentions in [67], [75], and [76]. For the joint prediction,
Rasouli et al. [84] and Kotseruba et al. [85] used separate
streams for intention estimation, which extracts posture fea-
tures from the local context and appearance with CNNs.

b) Skeleton-based: The postures of pedestrians are strong
behavioral cues that can indicate their intentions. The pos-
tures can be represented and estimated by skeleton keypoints
using pre-trained CNN-based networks, as in For intention
prediction studies [46], [68], [69], [70], [71], [79] and joint
prediction studies [82], [83]. The hourglass network [90] and
OpenPose [91] are utilized to extract pose features.

3) Individual Information: Category, destination, and agent
shape/size, age, gender, and the theory of mind information are
considered in many existing papers. The trajectory prediction
models that involve multi-agents [58], [59], [61] required the
category of the target pedestrians in prediction. Ma et al. [59]
and Carrasco et al. [61] used the category and coordinates of
the agent as vertex information. Both methods build graph
representations of the instances, and consider all types of
agents in traffic, that can also be used as pedestrian predictors.
In work [58] denotes the vehicle and pedestrian type, and used
the information for vehicle-human interaction, which can be
explained in detail in the following sections.

Individual information such as age and gender can provide
supplementary information for pedestrian behavior prediction,
and they are significant factors that influence pedestrian behav-
ior [92], [93]. For intention prediction, age and gender are
included as important model features in work [7] to provide
necessary human factors-related information. Ma et al. [57]
assumed the destination is a vertical line of the crossroad, and
used the distance from the destination to the target pedestrian
as input features. Chandra et al. [62] also considered the road
agent’s shape and size as implicit constraints in the trajectory
prediction. Kim et al. [63] proposed the multiple stakeholder
perspective structure (MSPM) that considered the information
not only from the driver’s view using sensors mounted on a
vehicle, but also included the information from the pedestrian’s
view using VR devices. These individual factors can influence
pedestrian behavior and enable the researchers to get more
accurate results using them as model features. However, com-
pared to the trajectories and images, many factors are much
harder to get. The destination, age, and gender usually require
questionnaires or additional annotation. Otherwise, they can
be based on assumptions or output from previous perception
modules but may not be precise enough.

B. Other Agents

In this section, we discuss the influence of the other agents
on pedestrians’ behaviors. The information and interaction
with other agents are included by 65% of existing papers that
we reviewed. A summary is presented in Table III.

1) Homogeneous - Social Interaction Between Pedestrians:
According to Moussaid et al. [8], pedestrians’ future behavior
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is not only dependent on their past states, but also driven
by social interactions with other pedestrians nearby. Social
interaction is an important factor for modeling pedestrians’
future trajectories.

a) Hand-crafted features: For trajectory prediction,
Ma et al. [57] used hand-crafted features to model the social
relationship between pedestrians. They utilized relative posi-
tions and relative velocities between the pedestrian and the
seven nearest neighbors in front of the target pedestrian as
input features. While these hand-crafted features succeeded in
this task, they are often hard to generalize to new scenarios.
Therefore, deep learning methods are developed to be more
powerful structures for extracting social interactions.

b) Social pooling and its variants: Social-LSTM [27]
modeled social interactions in a learning-based approach for
trajectory prediction. Instead of using knowledge-based meth-
ods as in social force [12], the authors proposed a social
pooling layer over the hidden states of LSTMs to model
the interactions between pedestrians. Several works includ-
ing [29], [30], [32], [44], [46], [49], and [52] followed the
social pooling trend and improved the interaction mechanism
by attention pooling using various attention mechanisms.
Fernando et al. [29] improved the social pooling module with
a soft and hard-wired attention mechanism. Xu et al. [30]
utilized a weighted spatial affinity function with calculated
weights to determine the social interactions over the spatial
features. Zhang et al. [32] proposed a state refinement module
for future predictions. Sophie [51] assumed that people pay
more attention to closer objects and sorted the attention by
distance.

Later works [31], [33], [45] improved the interaction module
with a more complicated pooling structure. Social-GAN [31]
pointed out that local interaction information is not always
sufficient, and hence, they use a multi-layer perceptron (MLP)
followed by a max-pooling structure to capture the global
social interaction information. Amirian et al. [33] improved
the interaction module by using an attention pooling that
relies on hand-crafted interaction features inspired by neu-
roscience and biomechanics. Zhang et al. [45] proposed the
Social Interaction Extractor to learn interaction weights with
a sub-network structure. Kothari et al. [39] categorized the
existing interaction module into grid-based methods and non-
grid-based methods, and proposed a grid-based directional
pooling method and the DirectConcat method that achieved
improvement. Bhujel et al. [53] calculated the social attention
from the hidden state with designed physical and social atten-
tion functions. Col-GAN [36] proposed an attention module
that used MLPs to learn the interaction and used a weighted
sum to calculate the interaction feature.

The social pooling module enables the existing work to
consider social interaction. The structure is simpler than the
graph-based models with fewer parameters to learn.

c) Graph-based representation: The symmetric pooling
(max or average pooling) operation assumes that the inter-
actions between pedestrians are symmetric, which, however,
is not always the case. To extract non-symmetric interactions,
researchers use a graph to represent the relationship between
pedestrians. In such graphs, the vertices represent the states of
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TABLE III

INFORMATION OF OTHER ROAD USERS (ORUS) USED IN PEDESTRIAN BEHAVIOR PREDICTION

Other Agent Information

Papers

Summary

Homogeneous -
Social
Interaction
Between
Pedestrians
(33 papers)

Hand-crafted
features

(1 paper)

Trajectory prediction: [57]

Advantages: Explainable.
Disadvantages: Hard to generalize to new scenarios.

Social pooling
and its variant

Trajectory prediction: [27], [29]-[33], [36], [39],

[44]-[46], [49], [51]-[53], [56]

Advantages: The social pooling module considers social
interaction in the model. It is relatively simple compare with
graph based models.

1 . . . . .
(16 papers) Disadvantages: They mainly deal with symmetric interactions.
Graph-based Traicctory prediction: Advantages: They can extract non-symmetric interactions.
representation y yp ' Disadvantages: The construction of the graph is

(10 papers)

[28], [34], [35], [37], [41]
[40], [50], [54], [58], [59]

computational- and time-consuming.

Other methods
(6 papers)

Trajectory prediction: [38], [42], [43], [56], [60]
Joint prediction: [83]

Comments: The social norm is considered using sampling
methods. Agent-aware attention and LSTMs are used to model
social and time dimensions simultaneously. CNNs are applied
on grid-based map.

Heterogeneous -
Interaction
with
Other Road
Users
(18 papers)

Hand-crafted
features
(9 papers)

With single vehicle: Trajectory prediction: [63]
Intention prediction: [7], [64], [65], [67], [79]
Joint prediction: [84], [85]

Vehicle volume: Intention prediction: [68]

Advantages: Explainable.
Disadvantages: Can be hard to generalize to new scenarios.

Graph-based
representation

Trajectory prediction: [40], [58], [59], [61], [78]

Comments: The graph based module can extract non-
symmetric interactions between pedestrians and other road

(5 papers) users.
Other methods | Trajectory prediction: [55], [60], [62] Comments: Grid-based pooling, CNNs, One-hot coding, and
(4 papers) Joint prediction: [83] reinforcement learning can be combined into the network.
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the pedestrians and the edges represent the spatial or temporal
relationships between pedestrians.

For trajectory prediction, Vemula et al. [28] represented the
social attention by a spatio-temporal graph representation,
using soft attention with calculated weights over hidden states
of each node. Zhang et al. [34] used the graph representa-
tion and applied the social graph network directly on MLP
embedded features from agents’ locations and velocity status.
STGAT [35] and Social-BiGAT [50] applied the graph atten-
tion networks (GAT) as proposed by Velickovi¢ et al. [94]
to extract the social interactions between pedestrians over
the hidden states of LSTMs. STGAT [35] calculates the
relationship for each time step to get the state of pedestri-
ans, while Social-BiGAT [50] calculates the interaction after
extracting the hidden states from all observed time steps.
Hu et al. [40] proposed an interaction branch with a graph
structure, namely neural motion message passing (NMMP),
which calculates k times the interacted actor embedding with
graph neural network on the hidden states of each agent. Yu et
al. [37] exploited a spatio-temporal graph transformer (STAR)
to model the spatio-temporal interaction between pedestrians.
Social-STGCNN [41] and STGT [54] used graph convolu-
tional networks (GCNSs) [95], which are defined as convolution
operations over graphs to extract the spatio-temporal social
interaction feature.

The graph-based module can extract non-symmetric interac-
tions and get better results than the pooling structures, but the
instruction of the graph takes more computational resources,
and hence, can be more time-consuming.

d) Other methods: For the trajectory prediction, Social-
NCE [38] considers unfavorable events like discomfort and
collision situations when learning socially aware motion rep-
resentations. The authors proposed a safety-driven sampling
method, called the multi-agent contrastive sampling, to select
negative samples from the neighborhood of other agents in

the future. Yuan et al. [42] proposed AgentFormer that can
simultaneously model the time and social dimensions using
an agent-aware attention mechanism. Tra2Tra [43] proposed a
spatial-temporal attention module, that embedded the spatial
feature from the coordinates of all pedestrians, and used an
LSTM network to extract the temporal dependency between
spatial features. Song et al. [56] considered the target pedes-
trian’s neighbors by considering their neighbors’ speed. The
speed is filled in cells of a grid-based map, and CNNs are
used to extract the spatial relationship with the neighbors.

2) Heterogeneous - Interaction With Other Road Users
(ORUs): The future behavior of pedestrians is influenced
by the interaction with ORUs such as vehicles according to
Shirazi et al. [9].

a) Hand-crafted features: In Schmidt and Firber’s
research [89], parameters such as the distance and velocity of
the vehicles can influence the crossing intention. For the inten-
tion prediction, many researchers used hand-crafted features
as inputs, such as in studies [7], [64], [67], [79], including
vehicle’s velocity or speed, relative velocity and distance
between the pedestrian and vehicle, or time to collision (TTC).
Zhang et al. [68] used vehicle-related information for cross-
ing intention prediction, including vehicle volume, the green
light time for vehicles, and the number of vehicles. For the
joint prediction, Rasouli et al. [84] and Kotseruba et al. [85]
utilized the ego-vehicle information including the speed and
heading angle as complementary inputs.

b) Graph-based representation: As the interaction
between different types of traffic agents is usually non-
symmetric, graph-based methods can model heterogeneous
interactions. For the trajectory prediction, Eiffert et al. [58]
proposed a graph vehicle-pedestrian attention network (GVAT)
to include both human-human interactions and human-vehicle
interactions. Ma et al. [59] used a 4-dimensional graph that
consists of the instance layer and the category layer to
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represent the traffic sequence and to calculate their interaction.
The instance layer represents the individual interaction, while
the category layer ensures the motion pattern of different
categories. Hu et al.’s framework [40] can jointly predict the
trajectory of pedestrians and vehicles by the proposed NMMP
module with a graph representation. Carrasco et al. [61] built
the graph with coordinates, categories, headings as vertices,
and exploited the graph attention layer to include the inter-
action. For the intention prediction, Liu et al. [78] captured
the interaction between the pedestrians and other road users
using graph convolution to include both spatial and temporal
context.

c) Other  methods: For trajectory  prediction,
Lee et al. [55] modeled the interaction for multi-agents
with a spatial grid-based pooling layer, which is similar to
the social-pooling layer. Chandra et al. [62] took sequences
of images as input to predict the trajectories of heterogeneous
traffic agents including pedestrians, using CNNs for extracting
the appearance and behavioral information of different road
agents. Li et al. [60] considered the existence of a vehicle, and
combined reinforcement learning into the prediction. For joint
prediction, Liang et al. [83] modeled the interaction between
pedestrians and other road users in the scene by explicitly
modeling the geometric relation with a knowledge-based
function defined by the authors that considered the geometric
distance and the box size, and modeled the object type using
one-hot encoding.

C. Environment

The interaction with the environment also influences pedes-
trians’ behaviors. The environmental information is included
by 36% of the existing papers that we reviewed. To include
the interactions with the environment scene as model features,
studies either took explicitly defined environment features as
inputs, or use sequences of camera images or a navigation
map to learn the pedestrians’ interaction with the surrounding
environment implicitly. In this section, we present how the
researchers address pedestrian-environment interactions. The
summary is shown in Table IV.

1) Explicit Features: Explicit features are manually defined
and usually explainable. Many researchers utilize information
about zebra crosswalks and the curbs. For trajectory prediction,
Ma et al. [57] used the distance to the left and right boundaries
of the crossroad as input features for the prediction. For
intention prediction, the distance between the vehicle and
the crosswalk, the distance between the pedestrian and the
crosswalk, and the distance between the pedestrian and the
curb are important factors and were used by Volz et al. [64]
and Zhang et al. [7] as model features. Yang et al. [67] con-
sidered the existence of stop signs, zebra markings, and traffic
lights in local traffic scenes. They used the prior weight to
represent different scenes. In addition to the geometry-related
environment features, Zhang et al. [68] used temperature as
an important factor to predict the crossing intention at red-
light. For joint prediction, Wu et al. [82] used the crossable
information at a crossroad to change the sampling weight when
predicting the trajectory.
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2) Implicit Features: The implicit features are not explicitly
defined and are usually extracted from images or semantic
maps.

a) CNN-based feature extractor: As CNNs are capa-
ble of extracting image features, pre-trained CNNs can be
used to extract appearance features and implicit human-scene
interaction features from a sequence of images. The tra-
jectory prediction works [47], [49], [50], [51], [54], [55]
followed this direction using pre-trained CNNs. Bhujel et
al. [53] utilized CNN features and a physical attention func-
tion to learn the probability that a location is the right
place to focus for predicting the next position. Instead of
sensor image data, Hu et al. [40] used a 2D bird’s-eye-view
scene image map as input to provide prior knowledge about
the traffic condition and rules, and extracted the environ-
ment information with the CNN structure [96] to extract
scene embedding. Song et al. [56] used a grid-based map
with occupied cells to indicate the fixed obstacles in the
scenes using CNNs to extract the environmental features.
For intention prediction, Rasouli et al. [73], Hoy et al. [74],
and Kotseruba et al. [79] used CNNs to extract visual context
features implicitly. Liu et al. [78] segmented the images into
pedestrians and objects with binary masks using a segmen-
tation model [97]. Then, they captured the context feature
by encoding the segmented binary masks with the ResNet
backbone. Works [75], [76] utilized 3D-convolutional net-
works for image feature extraction in the observed time period.
For joint prediction, Liang et al. [83] used a pre-trained scene
segmentation model [98] for environmental feature extraction.
The integer scene semantic features are transformed into
binary masks, then two convolutional layers are applied to
the mask features to get CNN features. Rasouli et al. [84] and
Kotseruba et al. [85] used CNNs to extract the local visual
context around the pedestrian with a bounding box implicitly
along with the appearance feature.

b) Other methods: For trajectory prediction, Scene-
LSTM [48] takes the scene information into consideration
by using grid cells to represent the input scene image. The
calculated hidden states of each grid cell are used as input to a
scene data filter to pass the scene constraints information to get
better trajectory prediction results. Lisotto et al. [52] utilized
a semantic map and the navigation map, and applied semantic
and navigation pooling to extract the environmental interaction
feature. The semantic map, which contains the scene context,
is generated from the image using semantic segmentation,
and the navigation map which embodies the most frequently
crossed areas is generated from the observed data by counting
the crossing frequency of squared patches.

D. Summary of Model Features

Model features play important roles in pedestrian behavior
prediction. As we summarized in Fig. 3, a method can use
multiple model features. For the target pedestrians, the trend
is also to include more information. In 2016, the trajectories
and motion states are included [27]. In 2017, the behavioral
features are included [69], [73], and in 2019, the individual
information are added [57], [59], [62]. For the interaction with
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TABLE IV
INFORMATION OF ENVIRONMENT USED IN PEDESTRIAN BEHAVIOR PREDICTION
Environment | Descriptions | Papers Summary
Explicit Hand-crafted Trajectory prediction: [57]
P Intention prediction: [7], [64], [65], [67], [68] | Comments: They are manually defined, simple and usually explainable.
(7 papers) features . L
Joint prediction: [82]
Cl\flitgj:ed g;jli(f;%r]y prediction: [40], [47], [49]-[51], Comments: CNNs are capable of extracting image features, and can be
Implicit - diction: used to extract the interaction between pedestrians and the environment
(22 papers) extractor InFentlon pre iction: [63], [73]-[79] implicitly.
(20 papers) Joint prediction: [83]-[85]
Others Comments: One-hot encoding and pooling can be used to encode the
Trajectory prediction: [48], [52] location information. But when encoding location information with
(2 papers) . . . . .
one-hot vectors, the dimensionality might become very high.

other agents, the social interactions are included mainly in tra-
jectory prediction. The social pooling methods was proposed
in 2016 [27], and the graph-based model was proposed in
2018 [28]. In 2019, Ma et al. [57] added knowledge-based
information to model the interaction. The interaction with
other road users such as vehicles is included mainly in
the intention prediction works. In 2016, researchers started
to use hand-crafted features to model the interaction [64].
in 2017, the learning-based feature extractor such as pooling
method [55] and graph-based methods [59] are proposed.
For the environment feature, researchers first model it with
hand-crafted features explicitly in 2016 [64], then used a
CNN-based model to learn it in 2017 [55]. In 2018 and 2019,
other attempts on one-hot encoding [48] and pooling [52]
are tried by researchers. The hand-crafted features used in
existing works are explainable but hard to generalize, while the
learning-based features have achieved more accurate results
but are difficult to explain. Future works can focus on how to
combine these features.

VI. NETWORK STRUCTURES

In this section, we list commonly used network structures,
and classify them into sequential networks and non-sequential
networks. These structures can be combined to form a predic-
tion model. For instance, a model can use CNNs for extracting
visual information, and use LSTMs for temporal prediction.
Fig. 4 shows the classification of the network structures.
Table V presents the summary of the network structures used
by existing research.

A. Sequential Networks

The sequential networks typically deal with time-series
information by assuming the moving state at one time step
is conditionally dependent on previous states. Traditional
models used for predicting the pedestrian’s future action
such as hidden Markov models (HMM) [99], [100], partially
observable Markov decision processes (POMDP) [101], and
Gaussian processes [5], [102], [103] require accurate and
precise segmentation and tracking of pedestrians. However,
this is challenging due to the difficulty of extracting reliable
image features as outlined by Volz et al. [64]. With the help
of deep learning, the models are able to extract features from
images with CNNs and to extend the long-term memory with
Recurrent neural networks (RNNs) including long short-term

RNNs and LSTMs

@ (28 papers)
(Since 2016, Alahi et al.[27])
[ GRUs
| @ (8papers)
| (Since 2017, Lee et al.[55])
. |/ . .
Sequential |/ 54 papers in total, include:
Conv-LSTM: z '
(54 papers) /// °® (;n\a/ ers) s - Trajectory: 40 papers (91%)
® ) (Since 2019, Rasouli et a. [34]) jiention g papei(c32%)
- /\/’ ' - Joint: 5 paper (83%)
A\
f/ \ GANs based on LSTMs
/ \\ @ (9 papers)
J ‘\ (Since 2018, Gupta et al.[31])
lf \ -
Ne}@/ork Structures Transformer
1 | ® (4 papers)
O \ (Since 2020, Yu et al.[37])
Convolutional Networks
(28 papers)
(Since 2017, Rasouli et al.[73])
Non-sequential GNNs 46 papers in total, include:
(46 papers) (12 papers) - ITrtaJei:}or.yW:éZb pape;s‘t(;(?%)
(Since 2018 Vemula et al.[28]) = It s (2P (245
- Joint: 4 paper (67%)
ANNs
(6 papers)
(Since 2016, Volz et al.[64]
Fig. 4. The classification of the network structures. The number of papers

that used corresponding methods and the year that firstly used the network
structures are listed. Please note that a paper can use multiple network
structures. For example, a model can use CNNs for extracting the visual
information, and use LSTMs for the temporal prediction. The distribution of
the papers is summarized in the boxes on the right side.

memory (LSTMs) and gate recurrent units (GRUSs), convolu-
tional LSTMs (Conv-LSTMs), and transformer networks (TFs)
to overcome the limitation of traditional models.

1) Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTMs): RNNs and their improved version, LSTMs
are preferred by many researchers because of their strong
ability to handle the trajectory sequence information. For
trajectory prediction, Vemula et al. [28] used spatio-temporal
graph within the RNN structure. Alahi et al. [27] utilized
LSTMs to learn the motion state of a pedestrian and proposed
Social-LSTM model to predict a pedestrian’s trajectory. Later
trajectory prediction methods such as [20], [21], [22], [29],
[301, [32], [34], [35], [39], [43], [48], [49], [52], [53], [59],
and [62] followed this trend of using LSTM-based methods to
cope with time-series information.

For intention prediction, Zhang et al. [7] used LSTMs with
the attention mechanism for prediction that outperforms the
SVM model. Pop et al. [77] proposed a multi-task network
that combines the CNNs for extracting visual features and the
LSTM network for estimating the time to cross the street. The
FuSSI-Net proposed by Piccoli et al. [71] used a CNN-based
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TABLE V
NETWORK STRUCTURES FOR PEDESTRIAN BEHAVIOR PREDICTION. PLEASE NOTE THAT A PAPER CAN USE MULTIPLE NETWORK STRUCTURES

Network Structures

(Earliest Used Time) Papers

Summary

RNNs and LSTMs
(Since 2016,
Alahi et al. [27])

Sequential
Networks
(54 papers)

[59], [62], [63], [84]

Joint: LSTMs: [80], [82], [83]

Trajectory: RNNs: [28]; LSTMs: [20]-
[22], [27], [29], [30], [32], [34], [35],
[38], [39], [43], [48], [49], [52], [53],

Intention: LSTMs: [7], [71], [72], [77]

Advantages: RNNs (including LSTMs, GRUs) are more capable
to handle long term prediction than the traditional models.
Disadvantages: They cannot be parallelized, and cannot
handle too long sequences.

GRUs
(Since 2017,
Lee et al. [55])

Trajectory: [25], [26], [47], [55]
Intention: [74], [78], [79]
Joint: [85]

Conv-LSTMs
(Since 2019,
Rasouli et al. [84])

Trajectory: [56], [63]
Intention: [75], [76]
Joint: [84]

Advantages: Conv-LSTMs can extract spatial and temporal
features simultaneously.
Disadvantages: The computational cost is higher than for LSTMs.

GANs
(Since 2018,

Gupta et al. [31]) (501 [51], [58]. [60]

Trajectory: [31], [33], [36], [40], [46],

Advantages: The GANs as generative models can predict multiple
plausible trajectories.
Disadvantages: Hard to train, and requires techniques for conver-

gence.
T f;eg;/:trilsiges: They can handle long sequences and allow paral-
(Since 2020, Trajectory: [24], [37], [42], [54] Disadvantages: Implemented with a fixed-length, not flexible
Yu et al. [37]) enough

Convolutional Networks | [49]-[51], [53]-[56], [61]

Non- (Since 2017, Intention: [46], [67]-[73], [75], [76],
sequential Rasouli et al. [73]) [781, [79]
Networks Joint: [83]-[85]

Trajectory: [23], [40], [41], [45], [47],

Comments: CNNs can be used for both extracting spatial features
and sequential features. For the sequential prediction, as there is
not dependency of the previous time steps, the prediction error do
not accumulate like the RNNS, and it allows parallel computation.

(46 papers) | GNNs (Since 2018,

Vemula et al. [28] [41]’ [50]’ [54]’ [58]’ [59]’ [61]

Intention: [78]

Trajectory: [28], [34], [35], [37], [40],

Comments: GNNs can be used for extracting non-symmetric
interactions and capturing spatio-temporal features.

Other ANNs
(Since 2016,
Volz et al. [64])

Trajectory: [44], [57]
Intention: [64]-[66]
Joint: [81]

Advantages: Structures are simple; can handle the non-linearity.
Disadvantages: For 2D image input, ANNs will lose the spatial
information, and require a huge amount of trainable parameters.
For sequential input, ANNs cannot capture sequential information.

network for detection and skeleton keypoints extraction, and
then used LSTMs to extract temporal information. For joint
prediction, Huang et al. [80] proposed warp LSTM to deal
with neighboring time steps in place of global positions and
to allow for long-term trajectory prediction. They proposed
the mutable intention filter to generate potential intentions,
and then predicted the intention-aware trajectories. Lorenzo
et al. [72] employed CNNs to extract pedestrians’ behav-
ioral features and applied various RNNs including LSTMs,
GRUs, and the bidirectional variants of LSTMs and GRUs
for crossing probability prediction. Kim et al. [63] proposed
the MSPM model, that includes a driver perspective network
and a pedestrian perspective network. The driver perspective
network used LSTMs to encode the speed and trajectory
information of the driver’s perspective and other structures
for image feature extraction, and used LSTMs to predict a
pedestrian’s behavior.

For joint prediction, Liang et al. [83] extracted the feature
with CNNs, and then the extracted features are fed into a
trajectory generator and activity predictor separately. In the
trajectory generator, LSTMs are used for sequence prediction,
while in the activity predictor, two separate convolution layers
are used on a multi-scale Manhattan Grid for classification
and regression to predict the label and location. Wu et al. [82]
first extracted skeleton features with CNN-based methods and
then used LSTMs to predict behavior classes (i.e. standing,
walking, running), and used the dynamic Bayesian network to
identify crossing intention. The predicted intention information

is used for deciding the weights for trajectory sampling to
improve the results. Rasouli et al. [84] used LSTMs in the
pedestrian trajectory and vehicle speed prediction stream, and
used LSTMs together with other structures in the intention
estimation stream.

2) Gate Recurrent Units (GRUs): GRUs are another
improved version of RNNs that are also popularly used for
sequential prediction. For intention prediction, Hoy et al. [74]
explored a variant of variational recurrent neural networks
(VRNNS5), namely the deep variational Bayes filters [104] for
extracting tracking features, using GRU layers in VRNN cells
with CNNs’ extracted visual features as inputs. Liu et al. [78]
used GRUs for behavior prediction after using a CNN-based
segmentation model [97] for appearance feature encoding.
Kotseruba et al.’s later work [79] used 3D-CNN for local visual
context extraction and used GRUs for non-visual features
encoding from bounding boxes, poses, and ego-vehicle speed.
For joint prediction, Kotseruba et al. [85] employed GRUs
for trajectory prediction, connected with the intention feature
extracted from images using CNNs, and fed into a fully
connected layer for future action classification.

GRUs can be combined with generative models for pedes-
trian trajectory prediction. These multi-modal models can
provide multiple feasible results by incorporating prior knowl-
edge into pedestrian behavior learning. Recently, conditional
variational autoencoders (CVAEs) with sequential encoders
and decoders have been adopted to predict multi-modal dis-
tributions. The BiTraP [25], SGNet [26], CGNS [47] and
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DESIRE [55] used GRU encoder-decoders based on CVAE
method for trajectory prediction with multi-modal goal esti-
mation. Social-NCE [38] applied LSTM model based on
the noise-contrastive estimation (NCE) methods [105] by
introducing a social contrastive loss, namely the InfoNCE
loss [106].

RNNs and their variants including LSTMs and GRUSs use
hidden states to represent the time-varying motion properties.
They are more capable of dealing with long-term predic-
tion than traditional models because of their capability of
learning the dependencies between temporally correlated data.
However, the sequential computation of RNN-based models
inhibits parallelization. Besides, the networks cannot do well
for long sequences because the “temporal distance” between
two sample positions is linear, and the network tends to “for-
get” the information of the previous sample in the sequence.
Furthermore, it is hard to explain the physical meaning of the
hidden states that represent the moving states.

3) Convolutional LSTMs (Conv-LSTMs): Conv-LSTMs
as proposed by Shi et al. [107] have been used to extract
spatial and temporal information. For trajectory prediction,
Kim et al. [63] used CNNs, Conv-LSTMs, and LSTMs for
encoding image information in the driver perspective network.
Song et al. [56] used a grid-based map with social and scene
information filled in the cells, and used deep conv-LSTM to
predict the future trajectories. For intention prediction, Gujjar
et al. [76] and Chaabane et al. [75] used 3D-CNN layers as
the encoder and conv-LSTM layers as the decoder in their
encoder-decoder structure. For joint prediction, Rasouli et
al. [84] proposed the PIE model that used LSTMs, CNNs, and
conv-LSTMs for prediction. In the intention estimation stream,
CNNs are used for appearance behavioral feature extraction
with conv-LSTMs as the encoder, and LSTMs as the decoder.

4) Generative Adversarial Networks (GANs) Based on
LSTMs: The previously mentioned models follow a uni-modal
distribution. As there could be multiple socially acceptable
trajectories, Gupta et al. [31] proposed Social-GAN, which
assumed that the pedestrian trajectories follow a multi-modal
distribution, which means that multiple future trajectories
are potentially plausible. They utilized the GANs with an
LSTM-based generator for trajectory prediction. Social-
BiGAT [50] and studies [33], [40], [46], [51], [58] followed
this trend and used LSTMs as generators of the GANs, with
various structures of extracting the interactions with other
objects. Li et al. [60] utilized Social-GAN and combined
it with reinforcement learning in their prediction. The Col-
GAN [36] used a GAN structure with LSTM encoder-decoder
as the generator. But instead of using an LSTM-based
discriminator like Social-GAN [31] and Sophie [51], they
used CNNs as the discriminator and classify the segments of
a trajectory are real or fake.

The GANs can predict multiple plausible and socially
acceptable trajectories given a partial history instead of pre-
dicting only one ‘“average behavior”. The drawback of the
GANs is that they are usually hard to train and require
techniques to make the model converge.

5) Transformer Networks (TFs): The TFs [108] can allevi-
ate the previously mentioned problems of RNN-based models.
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The TFs used the attention mechanism to help memorize the
information in long sequences. The attention mechanism can
create shortcuts between the context vector and the entire
source input instead of only the last hidden state. TFs made
ground-breaking progress recently in the Natural Language
Processing domain and are becoming popular to be adopted
for predicting pedestrian behaviors because of their capability
of long-term prediction. Giuliari et al. [24] adopted both, the
original TF and bidirection transformer (BERT) for trajectory
prediction. The authors considered only the individual trajec-
tory as model features yet still gained better performance than
previous LSTM- and CNN-based methods. Yu et al. [37] fur-
ther considered social interaction using graph-based represen-
tation to achieve more accurate results. The AgentFormer [42]
applied the agent-aware transformer in a multi-agent trajec-
tory prediction framework based on CVAE and modeled the
future trajectory distribution conditioned on past trajectories
and contextual information. Syed et al. [54] proposed the
STGT model that used a CNN model (PSP-Net [109]) for
segmentation and extracting the image environmental features,
and the transformer is used for sequence prediction.

The TFs avoid recursion and allow parallel computation to
reduce training time. With the attention mechanism, the TFs
get more accurate results than RNNs. However, the transform-
ers are implemented with a fixed length, and cannot model
dependencies that are longer than the fixed length. Some other
improvement versions of TFs such as the TransformerXL [110]
and the compressive Transformer [111] could be used in the
trajectory prediction or other sequence prediction tasks.

B. Non-Sequential Networks

The non-sequential networks are used to extract spatial
and interaction features. Besides, they can also model the
temporal information by directly modeling the final state or
distribution over the entire history of observed states without
the assumption of conditional dependency on previous states.

1) Convolutional Networks: CNNs are used in many mod-
els to extract implicit appearance features from images as dis-
cussed in Sec. V. Trajectory prediction studies used pre-trained
CNN s to extract implicit features of the environment as in [40],
[47], [49], [50], [51], [53], [54], [55], and [56]. Intention
prediction studies used CNNs to extract appearance behav-
ioral features ad in [72], [73], [78], and [79], and skeleton
behavioral features as in [46], [68], [69], [70], [71], and
[79]. 3D-CNNs are used to extract spatio-temporal features
as in [67], [75], and [76]. For joint prediction, CNNs are used
to extract posture features as in [84] and [85] and environment
features as in [83].

In addition to extracting spatial features from images,
CNNs can also be used to extract sequential features for
pedestrian trajectory prediction. Many methods use hidden
states of LSTMs to represent the pedestrian motion states.
However, Nikhil and Morris [23] pointed out that trajectories
are continuous in nature and do not have a complicated “state”.
The feature extraction of hidden states in previous models is
indirect and the physical meaning of hidden states is difficult to
interpret. Bai et al. [112] noticed that recurrent architectures
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have limitations in inefficient parameters and the training can
be inefficient. Therefore, instead of using LSTMs, Nikhil and
Morris [23] proposed an algorithm using CNNs to predict
the trajectories for computational efficiency, which yields
competitive results with a faster speed. Lea et al. [113], [114]
proposed temporal convolutional networks (TCNs) that dealt
with time series and extracted features by convolutional layers
on the temporal dimension. Mohamed et al. [41] proposed
the Social-STGCNN model, which reached faster speed and
better results on trajectory prediction, by using TCNs to
extract spatio-temporal features from the spatial and social
interaction features, and utilized CNNs as an extrapolator on
the time dimension. Zhang et al. [45] proposed the Social-
IWSTCNN, which followed the trend of using CNNs and
TCNs for prediction. The convolutional-based methods enable
parallelization and without the dependencies on the previous
time step, the prediction can be faster and the prediction errors
do not accumulate like with RNNS.

2) Graph Neural Networks (GNNs): GNNs are neural
networks over graph-represented data. GNNs have achieved
significant success in human action recognition [115], [116],
[117]. GNNSs can be used in pedestrian behavior prediction for
extracting spatial and temporal interaction between pedestrians
and other objects and are especially suitable for modeling
non-symmetric interactions and spatio-temporal features as
mentioned in Sec. V.

Graph convolutional networks (GCNs) proposed by Kipf
and Welling [95] define the convolution operations over
graphs. Social-STGCNN [41], STGT [54] use GCNss to extract
the spatio-temporal social interaction features for trajectory
prediction. Liu et al’s [78] used GCNs captured the inter-
action between pedestrians and other road users using graph
convolution to include both spatial and temporal context.
In particular, the graph attention networks (GATSs) as proposed
by Velickovi¢ et al. [94] improved weighted message passing
between nodes and are applied by STGAT [35], Social-
BiGAT [50] and studies [58], [61]. Yu et al. [37] improved
GAT by applying a transformer boosted attention mecha-
nism and proposed spatio-temporal graph transformer (STAR)
model. These methods model the interaction not only based
on the current frame but also consider the influence of other
time steps. Besides, commonly used network structures can
be applied to graph representations. For trajectory prediction,
Hu et al. [40] proposed a neural motion message passing
(NMMP) structure, which used MLP embeddings to pass mes-
sages between nodes and edges. Zhang et al. [34] proposed
the social graph network that applied a one-layer MLP on egde
and nodes of a graph. Vemula et al. [28] applied structural
RNN [118] on edges and nodes of spatio-temporal graphs
to model the spatio-temporal interaction between pedestrians.
Ma et al. [59] applied LSTM on the nodes of a 4-dimensional
graph to model the interaction of different instances and
categories.

3) Other Artificial Neural Networks (ANNs): For the trajec-
tory prediction, Ma et al. [57] used an ANN with hidden lay-
ers to model the mechanism of decision-making that employed
human experience to make the approach more realistic for
the prediction of microscopic pedestrian walking behavior.
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For the intention prediction, Volz et al. [64] designed a
dense neural network using 15 hand-crafted features over five
time steps, and the dense network outperformed the LSTM
and SVM methods. Zhao et al. [66] compared the intention
prediction with Naive Bayes methods using trajectories as
input, and claimed the results of ANN is worse than the
Bayes methods. This may be because they only include the
trajectories as inputs, which is too simple to demonstrate
the power of neural networks, and other networks such as
RNNs can be used for sequence prediction and CNNs can
be used for image inputs. CVAEs can also be combined with
ANNs. PCENet [44] considered the intermediate stochastic
destinations of the pedestrians into prediction by using an
endpoint CVAE, where the prediction is conditioned on the
features extracted from the past encoder using MLPs. For joint
prediction, Goldhammer et al. [8§1] proposed the PolyMLP
model that uses an MLP network to predict polynomial
approximation of time series.

The structures of ANNs are simple and can handle non-
linearity. ANNs can be used for multiple tasks when the
number of input features is small, especially for the intention
prediction with hand-crafted features. However, for a 2D
image that is a common kind of input in pedestrian behavior
prediction, ANNs will lose the spatial information because
of squeezing the image into a 1D vector, and can require a
huge amount of trainable parameters, where CNNs could be
the better choice because they share weights and can keep the
spatial information. Besides, ANNs cannot capture sequential
information in the input data, where RNNs could handle better.

C. Summary of Network Structures

From the distribution of the papers in Fig. 4, we see that
sequential methods are mainly used for trajectory prediction.
This is because trajectory prediction requires time series
information. Trajectory prediction also employed GNNs for
extracting interactions with other road users. The intention
prediction usually used non-sequential networks, because they
usually need the visual behavior features, which are extracted
by CNNs. The joint prediction used both sequential networks
and non-sequential networks, as they needed both spatial and
temporal information.

The prediction methods also influenced the development of
different prediction tasks. For the sequential methods that are
commonly used by the trajectory prediction, research followed
the trend from LSTMs in 2016 [27], GRUs in 2017 [55],
to GANs in 2018 [31] and Conv-LSTMs in 2019 [84], and
to the recently used Transformers in 2020 [37]. Each time the
development of sequential methods stimulated the research on
trajectory prediction. In contrast, for the intention prediction,
most works used non-sequential. These models rely on the
CNNs to process the images, which usually require more
computing resources. This influences the development of the
intention prediction. In future work, we need to investigate
how much effort we should put into intention prediction.
We need to trade off the additional gain from adding intention
information for the application domain (e.g., for increased
safety in an operational design domain for an autonomously
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driving vehicle) and the cost of increased computing resources
and accuracy and reliability for the perception system.

VII. EVALUATION AND DATASETS

In this section, we firstly present the evaluation metrics that
are commonly used for pedestrian behavior prediction. Then,
we provide a review of the most commonly used datasets.
There are some benchmarks for the trajectory prediction [39],
[119] and intention prediction [79] that evaluated parts of the
existing works.

A. Evaluation Metrics

1) Trajectory Prediction: The evaluation metrics for trajec-

tory prediction are listed below.

o The average displacement error (ADE) (or the mean
squared error (MSE)): The average distance between
ground-truth and prediction trajectories over all predicted
time steps, as defined below, where the predicted position
for i'" pedestrian at time-step ¢ is ¥/ = (!, §!), and the
ground-truth is Yiie{l,....,n}, Tops +1 <t < Tpred-

Tpred i >i
Zien Zt:Tobﬁ-l ”Ytl - Ytl ”2
n x (Tpred — Tops)

ADE =

(1

« The final displacement error (FDE): The average distance
between ground-truth and prediction trajectories for the
final predicted time-step, as defined below:

Zien I1X7 = Xl
- :

FDE =

1 = 1Ipred ()

Some other evaluation metrics such as the collision rate
and negative log-likelihood are mentioned in the TrajNet++
benchmark [39]. The average non-linear displacement error is
also used by some papers [27], [29], [30], [48], which is the
MSE at the non-linear regions of a trajectory.

2) Intention Prediction: The evaluation metrics for inten-
tion prediction are listed below, with the number of positives
P, negatives N, true positives TP, true negatives TN, false
positives FP, and false negatives FN.

e Accuracy (ACC): ACC=(TP+TN)/(P+N)

e Fl score (F1): F1 =2TP/(2TP+ FP + FN)

o Precision: Precision =TP/(TP + FP)

« Recall (True Positive Rate): Recall = TP/(TP + FN)

« Average precision (AP): AP = >/ _, (P(k)Ar(k)).

AP is defined as the area under the precision-recall
curve, where k is the rank in the sequence of retrieved
documents, n is the number of retrieved documents, P (k)
is the precision at cut-off k in the list, and Ar(k) is the
change in recall from items k — 1 to k.

3) Joint Prediction: For the joint prediction, the intention
and trajectory results can be evaluated separately.

B. Datasets

High-quality and large-scale datasets are crucial for
data-driven deep learning algorithms. Yin et al. [120] and
Kang et al. [121] explored publicly available datasets to inves-
tigate their properties for developing autonomous driving
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features. In this part, we briefly introduce the publicly available
datasets that that are commonly used for pedestrian behavior
prediction. Table VI lists the publicly available datasets that
are used by existing works and the summaries.

1) Trajectory Prediction: ETH [122] and UCY [123]
datasets are widely used for evaluating pedestrian trajec-
tories prediction. These two datasets contain five scenes
of bird’s-eye-view (BEV) videos collected in various sce-
narios, including crowded urban scenes. The ETH dataset
contains two scenes with 750 annotated pedestrians, and
UCY dataset contains three components with 786 anno-
tated pedestrians. However, these two datasets are limited
to pedestrians in crowds, and do not consider other road
users.

KITTI [124] dataset contains driving scenarios collected
by multi-sensors from the vehicle’s view. The data is collected
with a 64-layer LiDAR and two high-resolution stereo cameras
(grayscale and color) with a resolution of 1392 x 512 pixels
at 10 fps. It contains over 200,000 3D objects annotated in
synchronized and calibrated LiDAR and stereo images. This
dataset enables 3D detection and tracking estimation, and can
also be used for pedestrian trajectory prediction.

Daimler [5] dataset consists of 68 sequences of images
captured from the vehicle’s view, of which 12,485 images
contain pedestrians. The videos are recorded with a stereo
camera with a resolution of 1176 x 640 pixels at 16 fps. The
dataset contains four typical types of pedestrian behaviors,
including crossing, stopping, starting, and bending in, and
can be used to evaluate pedestrian trajectory prediction and
intention classification.

New York Grand Central (GC) Dataset [125] contains
more than 12,000 trajectories annotated in a one-hour-long
BEV video. The video is recorded at 25 fps with a resolution
of 1920 x 1080 pixels. This dataset includes crowd pedestrian
scenes but is not collected in traffic scenarios.

Stanford Drone Dataset (SDD) [126] contains 20 scenes
of BEV videos collected in a university campus. The videos
are captured with a 4k camera on a quadcopter platform with
a resolution of 1400 x 1904 pixels. It includes over 11,000
unique pedestrians and other road users, such as vehicles and
bikers with their interactions captured.

Waymo Open Dataset [127] contains 1,150 scenes col-
lected by multi-sensors from the vehicle’s view in traffic
scenarios. The sensors include five LiDAR sensors, and five
high-resolution pinhole cameras. Three front cameras have a
resolution of 1920 x 1280 pixels, two side cameras have a
resolution of 1920 x 1040 pixels. The LiDAR on top has a
scan range of 75m, the other four LiDAR have a scan range
of 20m. Each scene is 20 seconds long, containing 2D and
3D objects labeled in LiDAR and camera images sampled
at 10 Hz. The objects include pedestrians, cyclists, vehicles,
and signs. This dataset has become increasingly popular for
detection and tracking evaluation, and can also be used for
evaluating trajectory prediction.

To evaluate existing pedestrian trajectory prediction algo-
rithms, TrajNet benchmark [119] is proposed, based on
selected trajectories from the ETH, UCY, and SDD datasets
and uses the ADE and FDE evaluation metrics, and
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TABLE VI
EVALUATION METRICS AND DATASETS FOR PEDESTRIAN BEHAVIOR PREDICTION

Citation (Total/
Per year/Last year)

Prediction Tasks and Used

Dataset (Year) in Papers

Summary

Trajectory: [23], [25]-[28],
[30]-[37], [40]-[44], [47]-
[54], [58]

1188 /99 / 364
710/ 51 /265

ETH (2009) [122];
UCY (2007) [123]

Collected in crowded urban scenes in bird’s-eye-view (BEV). There are five
scenes with more than 1500 people. Drawbacks: Do not include other traffic
agents, and they are not collected in traffic scenarios.

KITTI (2012) [124] 7952 / 884 / 3520 | Trajectory: [55]

Collected in traffic scenarios from vehicle’s view. The data is collected with
a 64-layer LiDAR and two high-resolution stereo cameras (grayscale and
color) with a resolution of 1392 x 512 pixels at 10 fps. It contains over
200,000 3D objects annotated in synchronized LiDAR and stereo images.

Collected in traffic scenarios from the vehicle’s view. The videos are recorded
with a stereo camera with a resolution of 1176 x 640 pixels at 16 fps. It

Daimler (2013) [5] 214127175 Trajectory: [21], [22], [74] consists of 68 sequences of stereo images, with four types of pedestrian
behaviors. It can be used to evaluate trajectory and intention prediction.

New York Collected in New York grand central in BEV. The video is recorded at

Grand Central (GC) 209 /35 / 59 Trajectory: [29], [30] 25 fps with a resolution of 1920 x 1080 pixels. It consists of more than

(2015) [125]

12,000 trajectories in a one-hour video. Drawbacks: Do not include other
traffic agents, and they are not collected in traffic scenarios.

Trajectory: [40], [44], [47],

SDD (2016) [126] [51]. [55]

485 /97 / 284

Collected in a university campus in BEV. The videos have a resolution
of 1400 x 1904 pixels at 30 fps. It contains 20 scenes with over 11,000
pedestrians, and other road users such as vehicles and bikers.

Waymo (2020) [127] 453 / 453 / 449 Trajectory: [45]

Collected in traffic scenarios from vehicle’s view. It consists of 1,150
scenes collected by multi-sensors including five LiDAR sensors and five
high-resolution pinhole cameras. Three front cameras have a resolution of
1920 x 1280 pixels, two side cameras have a resolution of 1920 x 1040
pixels. The dataset contains 2D and 3D objects (pedestrians, cyclists, vehicles,
and signs) labeled in LiDAR and camera images sampled at 10 Hz. There
are over 23k 3D-tracked pedestrians and 45k 2D-tracked pedestrians labeled.

Trajectory: [25], [26], [63]

Intention: [67], [70]-[73],

JAAD (2017) [73] 128 /32 /93

Collected in traffic scenarios from the vehicle’s view. There are over
300 video clips. The HD videos are recorded with on-board monocular
camera at 30 fps. Most of the videos have a resolution of 1920 x 1080

[751-[79] pixels. The duration is between 5 to 15 seconds. The dataset contains
Joint: [84] approximately 82,000 frames and 2,000 unique pedestrian samples. The

number of pedestrians with behavior annotations is 686.
Collected in traffic scenarios from the vehicle’s view. There are six sets
consisting of over 6 hours of driving videos. The HD videos with a
Trajectory: [25], [26], [63] rt(asolufion (3)1(‘) 1f92~0 >; 1(?80 Pixe:js are recgrci%d With OE—bgar’d‘ monocuhlaf
PIE (2019) [84] 36/ 43 / 86 Intention: [79] camera at ps. The average duration is min. The ataset contains
Joint: [84], [85] apprO).umately 2?0,009 annotated frames. .The pumber of pedestr}ans with
behavior annotations is 1842. The annotations include the bounding boxes
with occlusion flags, crossing intention confidence, and text labels for

pedestrians’ actions.

ACtEV/VIRAT Collected in traffic scenarios in BEV. Includes 455 videos from 12 traffic
97 /132/42 Joint: [83] scenes, with more than 12 hours of recordings. Most of the videos have a

(2018) [128]

high resolution of 1920 x 1080 pixels.

is expanded to TrajNet++ by Kothari et al. [39] with
larger-scale data and more evaluation metrics.

For the trajectory prediction, there are datasets that only
contains pedestrians, such as the Subway Station dataset [129]
and the CUHK Crowd Dataset [130] used by Xu et al. [30];
and the Town Center Dataset [131] used by Xue et al. [49].
Besides, there are several datasets that contain urban traf-
fic, such as ApolloScape [132] as used by Ma et al. [59],
Interaction Dataset [133] as used by Li et al. [47], and
nuScenes [134] as used by Yao et al. [25]. But these datasets
are mainly designed for detection or for vehicle behavior
prediction instead of pedestrian behavior prediction.

2) Intention Prediction: For the intention prediction, many
previous works are based on data collected by the authors
themselves [7], [64], because they can design what information
to include in the data collection. We outline the publicly
available datasets that are commonly used for pedestrian
intention prediction.

Joint Attention for Autonomous Driving (JAAD) [73]
dataset contains over 300 video scenes, and each scene ranges

from 5 to 15 seconds in duration. The videos are recorded
with three types of onboard cameras at 30 fps. 60 clips are
collected in North America by a camera with a resolution of
1920 x 1080, 276 clips are collected in Europe by a camera
with a resolution of 1920 x 1080, and 10 clips are collected
in Europe by a camera with a resolution of 1280 x 720 pix-
els. This dataset contains approximately 82,000 frames and
2,000 unique pedestrian samples comprising a total number of
337,000 bounding boxes with behavioral and contextual tags.
The number of pedestrians with behavior annotations is 686.

Pedestrian Intention Estimation (PIE) [84] dataset con-
tains over 6 hours of driving footage captured from the
vehicle’s view, and the videos are split into approximately
10 minutes long pieces and grouped into 6 sets. The HD videos
with a resolution of 1920 x 1080 pixels are recorded with an
onboard camera at 30 fps. The dataset contains approximately
290,000 annotated frames. The number of pedestrians with
behavior annotations is 1842. The dataset provides pedestrian
behaviors and continuous sequences at the point of crossing.
The pedestrians are annotated with the bounding boxes with
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occlusion flags, and crossing intention confidence and text tags
for their actions.

3) Joint Prediction: The JAAD and PIE datasets can be
used for evaluating both trajectory and intention prediction,
as well as joint prediction.

The ActEV/VIRAT [128] dataset includes 455 videos at
30 fps from 12 traffic scenes in BEV with more than 12 hours
of recordings, and can be used for the evaluation of both
trajectory and intention prediction. Most of the videos have
a resolution of 1920 x 1080 pixels.

Other datasets such as the one proposed by
Kooij et al. [135], which consists of sequences including
single pedestrians with the intention to cross the street, can
be used to evaluate the trajectories at crossing areas and
intention prediction.

C. Summary and Discussion of Datasets

Table VI lists the publicly available datasets that are used by
existing works and the summaries. We presented the number
of citations of each dataset in the table to show the popularity
of the dataset, including the number of total citations, the
citation per year after released, and the citation in the last
year. The KITTI dataset and Waymo Open dataset can also be
used for other tasks such as detection and tracking, so there are
more citations. ETH and UCY datasets are the most popular
for trajectory prediction. SDD is also popular as it contains
the annotation of pedestrians and other road users and can be
used to study the interactions. JAAD and PIE datasets are the
most popular for intention prediction. These two datasets can
also be used for joint prediction.

The ETH and UCY datasets, the most commonly used
datasets for trajectory prediction, were proposed in 2007 and
2009. While the JAAD and PIE datasets, the most com-
monly used datasets for intention prediction, were proposed
in 2017 and 2019, which are ten years later than the datasets
for trajectory prediction. This is because the information of
pedestrian intention is more implicit compared to trajectories,
and hence, the labeling of intention is more difficult compared
to the labeling of trajectories. On the other hand, the dataset
used for training and evaluation can influence the development
of the prediction models. The earlier appearance of the com-
monly used dataset for trajectory prediction is another reason
for more papers on this topic compared to intention prediction.

We also looked into the places where the data was captured
and found they are mainly collected in North America, Europe,
and Asia, including the USA, Canada, Germany, Switzerland,
Bulgaria, Cyprus, and China. There are few datasets with
urban scenarios captured in South America, Africa, and Ocea-
nia. Future research could focus on developing more datasets
for these places. Furthermore, the comparability of findings
across datasets is another issue that needs to be tackled to
enable the transferability of results as well as applicability for
certain geographic regions.

VIII. COMPARISON AND DISCUSSION

A. Performance of Existing Models

In this section, we compare the performance of some of the
reviewed prediction methods. To align and compare the results,
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we select the works that used the most common publicly
available datasets and metrics. The joint prediction is evaluated
separately for trajectory and intention, so we compare them
with the trajectory and intention prediction on corresponding
datasets.

1) Trajectory Prediction: For the trajectory prediction,
we compare the ADE and FDE values in meters, with 3.2s
observation time and 4.8s prediction time on the ETH and
UCY datasets. In Table VII, we list the evaluation results,
model features, and summarize the methods used for feature
extraction and modeling. From the first LSTM-based network
for trajectory prediction, Social-LSTM [27], to the most recent
model, AgentFormer [42], the ADE has improved from 0.72m
to 0.18m, and the FDE improved from 1.54m to 0.29m.

The models intended to consider more model features to
improve the accuracy, including the consideration of social
interaction and the interaction within a scene. For the social
interactions, the social pooling method improved to more com-
plicated attention pooling networks, and afterwards, the graph-
based spatio-temporal attention network took place. Recently,
researchers have focused on the interactions with other road
users, i.e., the heterogeneous interaction, to model real traffic
scenarios. The graph-based representation is a powerful tool
to model non-symmetric interactions. The environment and
appearance features encoded by CNNs from the images help
to improve the results. Besides, the instant destination is
increasingly popular to be considered while predicting in goal-
driven networks.

For prediction methods, instead of only using sequential
or non-sequential methods, many models combine the CNNs
and the sequential models to extract both the spatial and
temporal features. The multi-modal GAN and CVAE models
that can provide multiple plausible predictions are becoming
increasingly popular compared to the uni-modal methods that
predict a single distribution. The recurrent LSTM models
are gradually replaced by the TCN models and TF models
that have made a breakthrough in performance and can be
paralleled to reduce training time. The current state-of-the-art
algorithm AngentFormer [42] used the TF-based CVAE model
and use agent-aware attention to model the spatio-temporal
interaction at the same time.

2) Intention Prediction: For the intention prediction,
we compare the AP and ACC for the C/NC classification on
the most commonly used JAAD dataset. Table VIII lists the
selected algorithms, their observation and prediction time hori-
zon, the evaluation results, model features, and the summary.
From the baseline method provided in the JAAD dataset [73]
to the most recent intention prediction work [67], the AP is
increased from 0.63 to 0.90.

Early works considered the appearance and skeleton of
pedestrians and the environment context. Recent research
included the vehicle states and the interaction with other
road users to improve the precision. Off-the-shelf CNN-based
segmentation and detection models are used for appearance
and environmental feature extraction. 3D-CNNs can be used
to extract both spatial and temporal information. A longer
observation time improves the results [70], [78] showing that
time series-related information contributes to the intention



10296

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 10, OCTOBER 2023

TABLE VII
COMPARISON FOR TRAJECTORY PREDICTION

Paper, Author

Year [ ADE/FDE |

Model Features

[ Summary of Network Structures

Social-LSTM [27] Trajectory, C . L .
(Alahi et al.) 2016 0.72 / 1.54 social interaction LSTMs for sequence prediction; social pooling to model social interaction.
Social-GAN [31] 2018 058/ 1.18 Trajectory, LSTM-based GAN for multi-modal sequence prediction; social pooling
(Gupta et al.) . ’ social interaction network to model social interaction.
23] : Ctor s o, enablos oarallelizat
(Nikhil et al.) 2018 0.59/1.22 Trajectory CNNss instead of LSTMs for sequence prediction, enables parallelization.
SNS [52] 2019 036/ 181 qocirflll‘ai]stcet:arcyt’ion LSTMs for sequence prediction; social, navigation and semantic pooling
(Lisotto et al.) - ’ ; environment ’ to model social interaction and environmental interaction.
Sophie [51] 2019 054/ 1.15 sociTaiaiJI?fetgcyt’ion LSTM-based GAN for multi-modal sequence prediction; CNNs for envi-
(Sadeghian et al.) . ) environment ’ ronmental feature extraction; soft-attention to model social interaction.
[34] 2019 048 / 0.99 Trajectory, LSTM encoder-decoder for sequence prediction; social graph network to
(Zhang et al.) ’ ' social interaction model social interaction.
CGNS [47] . T ra-Jectory,. GRU-based CVAE for multi-modal sequence prediction; CNNs for envi-
2019 0.49 /097 social interaction, . ? S .
(LI et al.) . ronmental feature extraction; soft-attention to model social interaction.
environment
Social-BiGAT [50] T rajectory, LSTM-based GAN for multi-modal sequence prediction; CNNs for envi-
R 2019 0.48 / 1.00 social interaction, . B X
(Kosaraju et al.) environment ronmental feature extraction; GAT to model social interaction.
[83] slj)iriz(ln}ntt):gac\ggﬁ LSTM for sequence prediction; CNNs for environmental and appearance
(Liang et al.) 2019 0.46 / 1.00 Pefson—ORU interaciion feature extraction; geometric relation function for person-object interaction
(Joint Prediction) environment modeling.
SR-LSTM [32] 2019 045/ 0.94 Trajectory, LSTMs for sequence prediction; social-aware information selection and
(Zhang et al.) : ’ social interaction state refinement module to model social interaction.
Social-ways [33] 2019 046 / 0.83 Trajectory, LSTM-based Info-GAN for multi-modal sequence prediction; attention
(Amirian et al.) ) ) social interaction pooling to model social interaction.
STGAT [35] 2019 043/ 0.83 Trajectory, LSTM encoder-decoder for sequence prediction; GAT for social interaction
(Huang et al.) : ’ social interaction modeling.
Social-STGCNN [41] 2020 0.44 /075 Trajectory, TCNs and CNNs for sequence prediction, enables parallelization; spatio-
(Mohamed et al.) ’ ' social interaction temporal GCNs to model social interaction.
NMMP [40] T rajectory, LSTM-based GAN for multi-modal sequence prediction; graph-based
2020 0.41/0.82 social interaction, K . .
(Hu et al.) Person-ORU interaction NMMP module to model the interaction with other road users.
(58] Trajectory, LSTM-based GAN for multi-modal sequence prediction; Mixture Density
(Eiffert et al.) 2020 0.34/0.77 social interaction, Networks (MDN) and GVAT module to model the interaction with other
: Person-ORU interaction | road users.
Trarzgiour]rir; P;f ((3;1"];1)')[24] 2020 0.31/0.55 Trajectory TF for sequence prediction, enables parallelization for encoder-phase.
?$ﬁ1:t [317)] 2020 0.26 / 0.53 soc;l;rlajii(t:;:arli];ion TF for sequence prediction; GCNs to model social interaction.
Trajectory, . . . .
PECNet [44] 2020 0.29 / 0.48 social interaction CVAE for multi-modal sequence prediction with an endpoint encoder for
(Mangalam et al.) : ’ ’ destinations ? destinations; social pooling to model social interaction.
Tra2Tra [43] 2021 0.20 / 0.54 Trajectory, LSTM for sequence prediction; LSTM-based spatio-temporal attention
(Xu et al.) ’ ’ social interaction module to model social interaction.
SGNet [26] 2021 0.18 / 0.35 Trajectory, GRU-based CVAE for multi-modal sequence prediction; a stepwise goal
(Wang et al.) : ’ destinations estimator (SGE) for destination estimation.
Bitrap [25] 2021 0.18 / 0.35 Trajectory, GRU-based CVAE for multi-modal sequence prediction with a GRU-based
(Yao et al.) . ’ destination encoder and goal estimation, and a bi-directional decoder.
AgentFormer [42] 2021 0.18 / 0.29 Trajectory, TF-based CVAE for multi-modal sequence prediction; agent-aware TF to
(Yuan et al.) . - social interaction model social interaction on both time and social dimensions.

prediction. Recent work combined the CNN-based model
with sequential models, including LSTMs and conv-LSTMs,
to better extract the temporal information. The current state-
of-the-art model [67] used a 3D-CNN to extract spatial and
temporal behavioral feature, and encode the environmental
and vehicle interaction feature with an additional distance
encoding module.

B. Research Gaps and Future Opportunities

Next, we discuss the current research gaps in pedestrian
behavior prediction that could be improved for future research.

1) Trajectory Prediction: Most existing trajectory predic-
tion studies relied on past trajectories, and did not take full use
of the appearance and skeleton behavioral features like inten-
tion prediction studies. Only a few of them (e.g., [46]) consider
the pedestrians’ visual behavioral features. In future works,
the visual behavioral features can be considered even more.
Another problem of existing trajectory prediction is that the
prediction considers the “perfect” detection and tracking (i.e.,
the ground-truth of past trajectories). However, this is usually
not feasible in practice. Future work should look at how to
predict under conditions of imperfect detection and tracking
and how to develop an end-to-end prediction from raw sensor
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TABLE VIII
COMPARISON FOR INTENTION PREDICTION
Observation /
Paper, Author Year Prediction AP / ACC Model Features Summary of Network Structures
Time (sec)
ATGC. (73] 2017 0'33_0'5‘/ 0.03 0.63 /- Appee}rance cue, Used CNNs to extract behavioral features for prediction.
(Rasouli et al.) (Next frame) environment
[70] 0.46 / 0.03 Used CNNs and skeleton fitting to extract skeleton-based
(Fang et al.) 2018 (Next frame) —/0.88 Skeleton cue behavior features for prediction.
Res-EnDec [76] Appearance cue Used 3D-CNNs as the encoder and conv-LSTMs as the
o 2019 0.5370.53 0.81 /- ppea ’ decoder for generating future video, and appended a binary
(Gujjar et al.) environment . S . . .
classifier to the generator for intention classification.
Used 3D-CNNs as the encoder and depth-wise separable
[75] Appearance cue, conv-LSTMs as the decoder for generating future video, and
(Chaabane et al.) 2020 0537053 087/~ environment appended a binary classifier to the generator for intention
classification.
[72] Used CNNs to extract behavioral features, and applied
(Lorenzo et al.) 2020 -/1.0 0.83 /- Appearance cue LSTMs, GRUs, and the bidirectional variants of LSTMs
’ and GRUs for crossing probability prediction.
A . Used a CNN-based model for image parsing, and encoding
[78] ppearance cue, the appearance features. Used graph convolution for spatio-
. 2020 1.0/ 1.0 -/0.79 Person-ORU interaction, . . o o
(Liu et al.) . temporal interaction extraction. GRUs are used for capturing
environment . .
the temporal features and for behavior prediction.
Skeleton and Used 3D-CNNs for local visual context extracting, and
PCPA [79] 2021 0.53 /7 0.03 0.86 / 0.85 appearance cue, used GRUs for non-visual features encoding. The temporal
(Kotseruba et al.) (Next frame) : ' vehicle state, attention and modality attention modules are applied to
environment learn the interaction.
Appearance cue, Used 3D-CNNs to Extract spatial and temporal behavioral
[67] 0.53/0.03 . N . .
2021 0.90 / — vehicle states, features, and used a distance encoding module to extract
(Yang et al.) (Next frame) X . 4
environment environmental contextual cues and vehicle features.
Used LSTMs, CNNs and conv-LSTMs for joint prediction.
For the trajectory prediction and vehicle speed prediction
PIE [84] 0.5/ 0.03 Appearance cue, stream, the authors used LSTMs with temporal attention
(Rasouli et al.) 2019 (Nc.:x i frz;lme) -/0.79 vehicle states, in encoder inputs, and self-attention in decoder inputs. For
(Joint Prediction) environment the intention estimation, CNNs are used for appearance
behavioral feature extraction, and conv-LSTMs are used as
encoders, and LSTMs are used as decoders.

data. Besides, existing works have used static graph-based
models to extract spatio-temporal features. As dynamic graph-
based models have shown a potential of better reflecting the
spatio-temproal features compared with the static graph-based
model in traffic flow prediction as used by Peng et al. [136],
in future trajectory prediction works, researchers can also
consider using dynamic graph-based models.

2) Intention Prediction: Only a few works (e.g., [7], [57],
[67]) considered the traffic rules and signals while predicting
the crossing behaviors. The existence of crosswalks and traffic
signal lights are easy to get while strongly influencing the
crossing behavior. Hence, such factors can be combined with
other implicit environmental context features for intention
prediction in future works. The interaction with vehicles and
other road users can influence the pedestrian’s decision. Unlike
trajectory prediction, which considered various interactions
between different traffic agents, most intention prediction
studies used hand-crafted features to define the relationship
with a single vehicle as shown in Table III. In future works, the
graph-based or attention-pooling method can also be employed
to extract the interaction relationships in crossing intention
prediction.

As discussed, intention prediction usually requires large
computational resources. More research could focus on inves-
tigating whether adding the intention prediction can bring
noticeable improvements to an application domain.

3) Joint Prediction: The predicted results of trajectory and
intention can be used to improve each other. Future works

can focus on joint prediction, which could use past trajectories
and interaction information that is usually used in trajectory
prediction, and appearance behavioral cue that is typically used
in intention prediction. The two prediction branches can share
the extracted features to compensate for each other.

4) Hybrid Models: The behavior of pedestrians in urban
traffic usually includes interactions between multiple road
users. As we summarized in Table III, the interactions can
either be learned implicitly by deep learning models that can
include as much information as possible without requiring
expert knowledge but that are hard to explain, or be repre-
sented by using knowledge-based hand-crafted features that
are explainable but requires prior knowledge instead. In future
works, we can develop hybrid models to take advantage
of both approaches. For example, we can use conventional
models with parameters learned from deep learning networks
such as the Deep Social Force proposed by Kreiss [137],
or implement the conventional knowledge-based model as
a layer in the deep learning network.

5) Benchmark: As we reviewed and summarized in Sec VII,
existing works use various datasets and metrics. The most pop-
ularly used datasets for trajectory prediction, ETH and UCY,
are limited to crowds but not designed for traffic scenarios,
and hence, they are not suitable to represent the performance
for automated driving usage. The recently proposed popular
benchmark, TrajNet, and TrajNet++ are not designed for
automated driving scenarios and do not cover enough traffic
scenes. For intention prediction, many researchers still use
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self-collected datasets on a selected intersection, which makes
it difficult for others to replicate and compare the work. For
joint prediction, many existing works evaluate the trajectory
and intention prediction separately with different datasets for
comparison with previous works. Existing benchmarks either
focus on trajectory or intention prediction. In future works,
a benchmark can be defined and explored for the behavior
prediction that includes both tasks and to thoroughly compare
the performance for the joint prediction.

IX. CONCLUSION

In this paper, we have presented a thorough review of
pedestrian behavior prediction models that use deep learning
methods extracted from 92 papers. Compared with previous
literature review papers, the original contributions of our
review paper are as follows:

« Both trajectory and intention predictions are considered
and analyzed, instead of only focusing on a single type
of task;

« We have categorized existing works by three different cri-
teria to provide a perspective from different dimensions,
instead of reviewing the papers from a single criterion;

o We introduced widely used datasets containing urban
scenarios and we have evaluated and compared previous
methods on such publicly available datasets.

« We included the most recent papers from 2016 to 2021.

We have discussed the model features used by existing models,
and how they extracted these features. We have presented,
categorized, and discussed the prediction methods used by
existing works. The advantages and drawbacks of using differ-
ent model features, and the properties of different prediction
methods are discussed in detail. We have discussed why
there is more research on trajectory prediction than intention
prediction, how much effort we should put into intention
prediction, which prediction methods we should use for which
task, and the distribution of the datasets in the world. Finally,
we outline the research gaps and possible research directions
for improving the performance of prediction algorithms for
urban scenarios.
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