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Abstract—The system inertia constant is the predominant
indicator for power system frequency strength, but fails to
account for non-inertial contributions such as fast frequency
response. In this paper, the effective inertia constant is proposed
as a new indicator to account for the contribution from both
synchronous generators and power-electronic interfaced sources.
Time-domain simulations show that the effective inertia constant
is a better indicator for frequency nadir than the conventional
inertia constant.

Index Terms—Frequency nadir, inertia, load-frequency control,
power system stability, renewables integration

I. INTRODUCTION

Frequency stability denotes the ability of a power system
to maintain the frequency of its electric quantities within
stipulated limits when subject to an active power imbalance
[1]. Frequency deviations are typically arrested by frequency
containment reserve (FCR) [2], [3]. The sensitivity of the
system frequency prior to any control action like FCR acti-
vation depends on the amount of mechanical inertia coupled
to the grid, with a higher amount of inertia resulting in a
stiffer frequency [4]. Due to this, the system’s inertia constant
is today the main indicator of short term frequency strength,
where short term refers to the time frame before a substantial
amount of FCR has been activated, corresponding to the first
5 s to 15 s after a larger disturbance [3].

The efforts of decarbonizing the electricity sector have
led to an increasing share of renewable energy sources in
power systems throughout the world [5]. Among these, wind
and solar power have shown the highest growth rates. They
are predominantly interfaced to the grid through power elec-
tronic converters, in contrast to the conventional power plants
they replace, which commonly contain synchronous machines
(SMs) connected directly to the grid. Unlike the SMs, power
converter-interfaced generation does not directly contribute
to the system’s inertia, which means a shift of generation
from conventional to wind and solar results in a reduced
system inertia [4], [6], [7]. Virtual inertia (VI) and fast
frequency reserve (FFR) are two concepts used by converter-
interfaced generation and storages to remedy this decrease
in synchronously coupled mechanical inertia by providing
controlled fast frequency support (FFS) [3], [7]–[12].

The utilization of FFS implicates that the short term
frequency progression following a disturbance is no longer
determined by the inertial response of the SMs and the
load-frequency dependence alone. As a result, the value of
the inertia constant as an indicator for frequency strength
decreases. Since it is important for system operators to know
the frequency strength of their system, a new indicator for
frequency strength that incorporates the impact of FFS is
needed.

Consequently, this paper proposes and evaluates an alter-
native indicator for the short term frequency strength of the
bulk power system that reflects FFS from all sources non-
discriminatorily. The proposed frequency strength indicator is
referred to as the effective inertia constant. Section II sum-
marizes different mechanism of frequency support from SMs
and power-electronic interfaced sources (PEIS), and introduces
measures quantifying the contribution of single units during a
frequency disturbance. In Section III, measures and indicators
for the frequency strength of the bulk power system are
presented and the effective inertia constant is defined. It is
followed by a case study of a generic power system with a
varying degree of converter-interfaced generation in Section IV
and V, demonstrating the capability of the newly suggested
frequency strength indicator to include FFS from PEIS.

II. INERTIAL AND FAST FREQUENCY SUPPORT

Inertial support describes the natural reaction of SMs to a
frequency change as well as the control action of those PEIS
with VI, while FFS refers to frequency control faster than
FCR, typically provided by converter-interfaced resources. In
this section, both mechanisms of frequency support as well as
two measures to quantify an individual unit’s contribution to
it are presented.

A. Inertial Frequency Support

The inertial support provided by a SM is governed by the
swing equation, which in pu is expressed as

2H
dω

dt
= Tm − Te =

Pm − Pe

ω
, (1)

where H is the inertia constant in s, ω the rotor speed, Tm the
mechanical and Te the electrical torque, Pm the mechanical
and Pe the electrical power [13].



B. Fast Frequency Support (FFS)

In contrast to inertial support from SMs, FFS from PEIS is
not dictated by physical behaviour like the swing equation does
for SMs, but instead is a design choice within the limits of the
source’s power and energy reserves. The different strategies for
inertial support are commonly categorized into three groups
[14], [15], depending on the quantity used to control the FFS
power, which can be
1) independent of the frequency but follow a predefined

support profile once a frequency deviation threshold is
passed and the support is activated,

2) proportional to the frequency deviation, resembling a FCR
droop controller, or

3) based on the rate of change of frequency (RoCoF), emu-
lating the inertial response of a SM.

Depending on the selected approach, the support from the
unit to the grid has to be estimated differently. In this work,
an approach based on ENTSO-E’s Nordic region FFR spec-
ification is investigated [3], with the corresponding support
profile described in detail in Section IV. The chosen approach
is frequency-independent.

C. Frequency Strength Measures on Unit Level

The impact of a single unit on the system frequency
strength can be quantified by two unit-level frequency strength
measures, which are estimated examining the unit’s response
to a stiff frequency. The first measure is the specific FFS power
PFFS and is defined as

PFFS =
P − P0

P0
, (2)

where P denotes the quasi-steady state active power injection
from the unit into the grid and P0 the pre-disturbance power
injection. This means a unit with a PFFS = 0.2 injects
an additional 20% of its pre-disturbance power during a
frequency disturbance.

The second measure is the specific FFS energy EFFS, which
is at time t defined as

EFFS(t) =

t∫
t0

P − P0

P0
=

E(t)− E0(t)

E0(t)
, (3)

with t0 the time the disturbance occurs, E(t) the energy that
is injected into the grid from begin of the disturbance until t
and E0(t) the energy that would have been injected over the
same time by keeping the active power constant as P0. In the
rest of this study the term specific FFS energy will refer to the
maximum of EFFS for a given disturbance, thus eliminating
the variation over time.

For a SM, these measures can be calculated using (1),
assuming that the mechanical power is constant:

PFFS = −2H

P0
ω
dω

dt
and (4)

EFFS =
H

P0
(ω2

0 − ω2
min), (5)

where P0 is the pre-disturbance active power output, ω0 is
the pre-disturbance and ωmin the minimum rotor speed in pu,
respectively. For the contribution from units participating in
FFR, the estimation of these values depends on the chosen
FFR approach.

III. SYSTEM LEVEL FREQUENCY STRENGTH MEASURES
AND INDICATORS

In this section, measures and indicators for the frequency
strength of the bulk power system are presented. Those quan-
tities denoted as measures are generally related to specific
disturbances and can directly be measured, while those re-
ferred to as indicators can not be measured directly, but give
a more general, less disturbance-specific assessment of the
system frequency strength. Assuming that no generator loses
synchronism, no system separation occurs and the frequency
can be considered a global system quantity, the individual SMs
in the system can be aggregated through their swing equations
(1) to yield the lumped mass model given by

2Hsysf
df

dt
= Pm − Pe, (6)

where

Hsys =

∑
HSr

Sb,sys
(7)

is the equivalent system inertia constant in s under the total
system base apparent power Sb,sys. f denotes the system
frequency, Pm the total mechanical power input and Pe the
total active electrical power consumption, including both the
frequency-independent and frequency-dependent load, all in
pu. As suggested in [16], the reduction in inertia due to
converter-interfaced generation can be considered by including
their rated power in Sb,sys, but with zero inertia constant.

A. Direct Measures of System Frequency Strength

The frequency strength of a power system is directly
reflected by the frequency excursion caused by a given
disturbance in the power balance. There exist a variety of
measures to quantify this [6], [17], but the most commonly
used ones include rate of change of frequency (RoCoF),
frequency nadir and time to nadir. These three measures are
illustrated in Fig. 1. There exist further metrics such as steady-
state frequency deviation and damping of the frequency after
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Fig. 1: Direct measures of system frequency strength.



the response [17]. These are not relevant for the phenomena
described in this work and therefore not described in detail.

B. Frequency Strength Indicators

In contrast to the disturbance-specific measures presented
in the previous section, a frequency strength indicator is
representing the overall system strength independently of a
specific disturbance, i.e. the stiffness of the system frequency
in the face of power imbalances, the size of resulting fre-
quency deviations and the stability margins of the system.
The classical indicator for frequency strength in use today
is the system inertia constant Hsys [6], [17]. It affects both
the RoCoF as shown in (6) as well as the frequency nadir of
the power system due to the time delay of FCR action, and
thereby serves as a good indication of the frequency strength.
However, as Hsys represents exclusively inertial support it
fails to accurately indicate the frequency strength of systems
incorporating other means of FFS.

A possible solution is to include these alternate sources
of FFS based on the energy they deliver. This energy can
be compared to the energy that a SM would deliver for a
given minimum frequency. This results in the proposal of
the effective inertia constant: The inertia constant of a SM
supporting with the same amount of energy when subjected to
the same frequency deviation. It can be estimated as

Heff =
EFFSP0

f2
0 − f2

min

(8)

with the pre-disturbance frequency f0 and minimum frequency
fmin. This allows to include sources of FFS when estimating
the system inertia constant with the help of (7). This proposed
new indicator comes with some caveats:

• The FFS included via Heff has to act on a similar time
scale as the SM’s inertial response and should be distinct
from other means of frequency control. The analogy to an
inertial response is most accurate if the deadband for the
activation of FFS is as small as possible and the support
energy considered in the calculation is delivered before the
frequency nadir is reached.

• As defined in (8), the effective inertia constant depends
on fmin. In case of FFS sources that support with a fixed
amount of energy independent of the frequency deviation,
the support given to the grid will be larger than expected
if the deviation in frequency is smaller than what was used
to calculate the effective inertia constant. If the deviation is
larger, the support will be smaller than what is expected.
Thus, this parameter should be chosen carefully.

IV. DESCRIPITION OF SIMULATION MODEL

A case study of a single disturbance with varying degrees
of wind power production and FFR provision is conducted
in MATLAB to assess and compare the suitability of the
proposed effective inertia constant and the classical system
inertia constant to capture the system frequency strength.

A. Lumped Mass Model and Modelling of FCR

Assume that the power system is modelled as a one-mass
model. The linearized swing equation in Laplace domain can
be expressed as [13]

2Hsyss∆f = ∆Pm −∆Pe (9)

where ∆f is the variation in system frequency, ∆Pm the
variation in mechanical power and ∆Pe the variation in
electrical power. The mechanical power is the total mechan-
ical power of the SMs in the system, while the electrical
power represents the residual load, i.e. the load minus the
generation from converter-interfaced renewable generation,
import through HVDC links and power injection from energy
storage. The system inertia constant Hsys is estimated with
the synchronous generation active power Psyn, power factor
cosφ and inertia constant Hsyn according to (7) and [14] as

Hsys =
HsynPsyn

Sb,sys cosφ
, (10)

where converter-interfaced generation is considered in Sb,sys.
The present model can be extended to include the load

frequency dependency [13], which is determined by the load
damping constant D and can be taken into account through

(2Hsyss+D)∆f = ∆Pm −∆Pl, (11)

where ∆Pl denotes the frequency-independent change in resid-
ual load. Furthermore, the model should include the FCR,
which is a control action of the SM governors due to a
frequency deviation. Simplifying the approach presented in
[17], it can be modelled as a first-order system following

∆PFCR = − 1

R

1

TFCRs+ 1
∆f, (12)

where ∆PFCR is the variation in the FCR activation in pu,
R is the droop constant and TFCR is the FCR activation time
constant. To represent that not all SMs in the system participate
in the FCR, the droop constant R should be replaced by the
effective droop

Reff = R
Sb,sys

PFCR,tot
, (13)

where PFCR,tot is the total available frequency containment
reserve (FCR). The activated FCR is limited to PFCR,tot and
then applied as a mechanical power deviation in (11). The
parameters of the system model are shown in Table I and
are selected to reproduce a system behaviour similar to the
tuning disturbance in [17]. In accordance with the reference,
only the component of FCR designed for large disturbances is
taken into consideration in this model, FCR-D.

B. Modelling of FFR

In this paper, FFR from PEIS is implemented similar to
the ENTSO-E specification [18]. As a result, the FFR is
considered directly a change in the electrical power, as it is
independent of the frequency once activated. It is activated
at a frequency of 49.7Hz and ramped up to 100% in 1.3 s.



TABLE I: Simulation model parameters.

Parameter Value
SM inertia constant Hsyn 4.5 s
Synchronous generation power factor 0.8
PEIS inertia constant Hwind 0 s
PEIS power factor 1
Load damping constant D 1%
Droop constant R 0.8%
FCR time constant TFCR 20 s
FCR activation threshold 49.9Hz
FFR activation threshold 49.7Hz

Short-duration FFR is chosen here, which according to [18]
has to be supplied for a duration of 2 s. The contribution is then
reduced to 0% over the time of 10 s. The recovery begins after
a buffer time of 15 s from the deactivation of the FFR support
and is limited to 25% of the FFR contribution in power. Due
to potential losses, more energy needs to be recovered than
injected during FFR [19]. To account for this, the length of
the recovery period is calculated to result in a 20% higher
energy transfer than during the support period. This results in
a recovery time of approximately 40 s. The FFR activation and
recovery is illustrated in Fig. 2.

The selected, frequency-independent approach means that
PFFS is determined solely by the requirements and controller
design, and is selected to be 3% of the wind turbines’ active
power, which is well within the capabilities reported in [19].
The specific FFS energy can be estimated as

EFFS = PFFS(tsup +
tramp

2
), (14)

where tsup denotes the time the full FFR power is provided,
and tramp the total ramp time during activation and deacti-
vation. Apart from the described FFR, the wind turbines in
this model do not provide other forms of FFS, VI or FCR.
The resulting model for the case study simulation is shown in
Fig. 3.

V. SIMULATION RESULTS

A. Description of Case Studies

Table II lists five simulated cases with varying wind power
penetration and FFR provision. The system load is 50GW
in all cases. The first case is a base case, where the load is
entirely supplied from synchronous generators. For the other
cases, part of the synchronous generation is replaced by wind
power, which results in a reduced kinetic energy and system
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Fig. 2: Modelled FFR activation and recovery.
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a) Illustration of the lumped mass simulation model.
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b) Block diagram of the lumped mass simulation model.

Fig. 3: Lumped mass system model for the case study.

inertia constant. In case 2 and 4, no FFR is delivered, and
in case 3 and 5, the wind turbines support with 3% of their
active power as FFR. The disturbance applied is the same for
all cases. It is dimensioned to lead to a frequency nadir of
approximately 49.5Hz in the base case and is close to the
dimensioning fault for the Nordic system.

TABLE II: Simulation cases.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5
Synchr. generation (GW) 50 40 40 30 30
Wind power (GW) 0 10 10 20 20
Kinetic energy (GWs) 281.25 225 225 168.75 168.75
FCR-D (MW) 1450 1450 1450 1450 1450
FFR (MW) 0 0 300 0 600
Disturbance (MW) 1070 1070 1070 1070 1070

B. Proposed System Effective Inertia Constant

Fig. 4 shows the simulated frequency, FCR and FFR acti-
vation. The frequency measures and indicators introduced in
Section III are estimated for each of the cases and summarized
in Table III. The RoCoF is estimated over an average of 5
electrical cycles [14]. Fig. 4 shows that the RoCoF is the
highest at the beginning of the disturbance, before any reserves
are activated. Thus, the maximum RoCoF is only affected by
the kinetic energy in the system, with higher RoCoF in case
of a lower system kinetic energy [12].

TABLE III: System frequency strength measures and indica-
tors for the simulated case study.

Measure Case 1 Case 2 Case 3 Case 4 Case 5
Max. RoCoF (Hz/s) 0.0935 0.1165 0.1165 0.1545 0.1545
Frequency nadir (Hz) 49.5 49.47 49.57 49.42 49.56
Time to nadir (s) 11.89 10.27 12.07 8.5 18.44
Hsys (s) 4.5 3.75 3.75 2.93 2.93
Hwind,eff (s) 0 0 5.8 0 5.8
Hsys,eff (s) 4.5 3.75 4.72 2.93 4.95

For the cases not involving any FFR (cases 1, 2 and 4), the
consequence of a reduced kinetic energy (as represented by
Hsys) is a lower frequency nadir and shorter time to nadir. In
these cases the inertia constant Hsys gives a good indication
of the frequency strength of the system. In case 3 and 5,
which include FFR support from the wind turbines, this is
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Fig. 4: Simulated frequency, FCR and FFR activation.

no longer true. Even though the system inertia constant is
decreasing, both nadir and time to nadir are not following
this trend. As seen in Fig. 4, in case 5 the nadir occurs
when the FFR is ramped down. However, even this secondary
dip occurs at a notably higher frequency than in the no-FFR
cases. Hence Hsys does not give a reliable estimation of the
system frequency strength in these cases since the contribution
from FFR is disregarded in the indicator, which confirms the
concern presented in Section III.

The effective inertia constant Hwind,eff is here estimated
with a minimum frequency of 49Hz, which is the minimum
allowable instantaneous frequency in the Nordic power system.
The resulting effective system inertia constant is estimated
using (7) and Hwind,eff as the wind turbine inertia constant.
Since Hwind,eff for the chosen FFR strategy is larger than
the SMs’ inertia constant, an increasing share of wind power
results in an increasing effective system inertia constant. This
corresponds well with an increasing time to nadir. The nadir
does not follow the same trend, as it is lower in case 5 than
in case 3. This is due to the secondary dip during the FFR
deactivation though, which means that the indicator is reliable
for the first dip. Fine-tuning and coordinating the different
frequency controls present in a system is a must, especially
if a new type of control such as FFR is introduced. As the
coordinated frequency control is not the main purpose of this
study the demonstrated behaviour is acceptable here.

C. Impact of the Shape of FFR Provision

To be able to judge how the shape of the FFR support affects
the informative value of the proposed frequency strength indi-
cator Heff , two additional cases with altered FFR specifications
are simulated, with parameters listed in Table IV. Case 3 from
the previous study is included as a base case for comparison.
For case 6, the duration of full power FFR support was
increased from 2 s to 5 s, which corresponds to the time given
in [18]. For case 7, the time was kept at 2 s, but in return
the FFR contribution was increased so that approximately the
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Fig. 5: Simulation results for the case study with varied FFR.

same amount of FFS energy is supplied, resulting in nearly
the same effective inertia constants as in case 6. This increase
results in a specific FFS power PFFS of 4.175% in contrast
to 3% in the other cases.

TABLE IV: Simulation cases with varying FFR specification.

Parameter Case 3 Case 6 Case 7
FFR (MW) 300 300 417.5
FFR support time (s) 2 5 2

The results of this case study are shown in Fig. 5 and in
Table V. The frequency nadir is higher in both case 6 and 7
than in the base case, and differs only very slightly between
those two cases. In contrast, the time to nadir varies greatly
even between the cases with increased FFS: In case 6 the
primary dip is dominant, due to the prolonged FFR provision
bridging the time until more FCR has activated. This means
the decrease in frequency can be stopped earlier than in case 3,
where FFR starts to ramp down before the nadir is reached.
The secondary dip occurs only slightly in case 6 and at
an already higher frequency, resulting in the lowest time to
nadir. In case 7 on the other hand, the higher FFR support
results in an earlier slow down of the frequency change. Due
to the short time of the support it ends before FCR has
activated sufficiently to take over, which becomes visible in
the pronounced secondary frequency dip.

TABLE V: Results for cases with varying FFR specification.

Measure Case 3 Case 6 Case 7
Max. RoCoF 0.1165Hz/s 0.1165Hz/s 0.1165Hz/s
Frequency nadir 49.57Hz 49.59Hz 49.58Hz
Time to nadir 12.07 s 8.45 s 17.99 s
Hsys 3.75 s 3.75 s 3.75 s
Hwind,eff 5.8 s 8.07 s 8.07 s
Hsys,eff 4.72 s 5.09 s 5.09 s

D. Suitability of the Effective Inertia Constant

As the effective inertia constant includes the impact of
non-inertial FFS, it does not correlate well with the maxi-



mum RoCoF. However, there is a good correlation with the
frequency nadir and in some cases even with the time to
nadir. The Pearson correlation coefficient between Hsys,eff

and the frequency nadir is 0.96 over all simulation cases,
which indicates a very strong linear correlation even though
the FFR specification was varied for case 6 and 7. The same
coefficient drops to 0.19 if the classical indicator Hsys is used
instead. These findings have also been confirmed for different
disturbance sizes. For the correlation between Hsys,eff and
time to nadir, results vary depending on FFR specifications
and disturbance sizes due to the interaction between FFR
deactivation and FCR. To summarize, it can be observed that
the effective inertia constant is a meaningful indicator for the
frequency nadir of the presented study cases even when the
specification of FFR is varied, as long as the FFR is mainly
provided prior to the full FCR activation. Further studies are
needed to investigate conditions for good correlation with
the time to nadir, as well as comparability and sensitivity of
the indicator for different FFR specifications and disturbance
sizes.

VI. CONCLUSIONS AND FURTHER WORK

This paper demonstrates the inadequacy of the system
inertia constant as the sole indicator for system frequency
strength in power systems containing FFS apart from iner-
tial support. It proposes the effective inertia constant as a
new indicator for power system frequency strength to reflect
these other contributions. The ability of the effective inertia
constant to capture the system frequency strength even in
the presence of FFR is demonstrated. Care has to be taken
if the system is prone to secondary frequency dips during
deactivation or recovery of the FFR, as these can result in
lower frequencies than the original disturbance and are not
covered by the effective inertia constant. The presented simu-
lations demonstrate that the effective inertia constant is, within
limits, even able to indicate the frequency nadirs if different
specifications for FFR are used. As an additional result, FFS
from wind turbines with existing FFR specifications is shown
to correspond to an effective inertia constant of 5.8 s, similar
to those of large conventional power stations. This is the case
even though a very low FFR contribution of only 3% of the
turbine’s pre-disturbance active power was considered and a
very low minimum frequency of 49Hz was used to estimate
the effective inertia constant. Future work is required to further
explore the applicability of the suggested frequency indicator
across different systems at different system operating points,
in particular for varying composition of generation. The need
of other control strategies for FFR should be investigated in
the future for wind power penetration exceeding 50%.
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