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Advances in genome-scale metabolic models of 
industrially important fungi
Yichao Han1,2, Albert Tafur Rangel3,4, Kyle R Pomraning1,2,  
Eduard J Kerkhoven3,4,5 and Joonhoon Kim1,2,6

Many fungal species have been used industrially for production of 
biofuels and bioproducts. Developing strains with better 
performance in biomanufacturing contexts requires a systematic 
understanding of cellular metabolism. Genome-scale metabolic 
models (GEMs) offer a comprehensive view of interconnected 
pathways and a mathematical framework for downstream 
analysis. Recently, GEMs have been developed or updated for 
several industrially important fungi. Some of them incorporate 
enzyme constraints, enabling improved predictions of cell states 
and proteome allocation. Here, we provide an overview of these 
newly developed GEMs and computational methods that facilitate 
construction of enzyme-constrained GEMs and utilize flux 
predictions from GEMs. Furthermore, we highlight the pivotal roles 
of these GEMs in iterative design–build–test–learn cycles, 
ultimately advancing the field of fungal biomanufacturing.
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Introduction
Fungi possess exceptional metabolic versatility, robust
ness, and secretory capacity, which offer the potential to 
sustainably produce biofuels and bioproducts [1]. Their 

unmatched biosynthetic capacity has derived a wide 
range of products, which include not only bread, beer, 
and wine in daily foods and beverages [2], but also or
ganic acids, proteins, and secondary metabolites with 
broad-reaching applications [3]. Fungal biomanu
facturing can promote the transition from our petroleum- 
based economy to a bio-based circular economy [3].

Understanding metabolism in fungi can enable their 
potential biosynthetic capacity and enhance bioproduc
tion via rational design. Genome-scale metabolic models 
(GEMs) provide a holistic view of all interconnected 
pathways in an organism. Moreover, GEMs enable pre
diction of phenotypic steady states via constraint-based 
modeling methods. Different types of omics data can be 
integrated into GEMs to improve prediction via more 
constraints or estimate metabolic kinetics.

In this review, we summarize advances in industrially 
relevant fungal GEMs and computational methods de
veloped associated with GEMs. We then highlight their 
recent applications in iterative design–build–test–learn 
(DBTL) cycles to improve bioproduction with a focus on 
yeasts and filamentous fungi. Finally, we discuss chal
lenges and future perspectives on computational 
methods that have not yet been tested in fungi and 
combined use of GEMs and machine learning (ML) 
approaches.

Recent genome-scale metabolic model 
development in industrially relevant fungi
Many fungal GEMs have been developed and updated 
in recent years. Here, we focus on industrially relevant 
fungi and classify them based on the group of molecules 
they typically overproduce (Table 1). More information 
about these GEMs can be found in Supplementary 
Table S1.

Oleaginous yeasts accumulate lipids or triacylglycerides 
to more than 20% of their cell dry weight and are pro
mising microbial hosts for oleochemical production. 
GEMs are available for some oleaginous yeasts, in
cluding Yarrowia lipolytica, Rhodotorula toruloides, 
Papiliotrema laurentii, and Cutaneotrichosporon oleaginosus. 
Since 2016, several GEMs have been reconstructed and 
updated for Y. lipolytica for different purposes. Among 
these, iYali4, the fourth published GEM of Y. lipolytica, 
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was derived from the consensus GEM of Saccharomyces 
cerevisiae to analyze the regulation of amino acid meta
bolism during lipid accumulation [4]. Using iYali4 as a 
scaffold, the GEM iYL21 specific for strain W29 was 
developed with experimental data curation, which well- 
predicted growth and gene essentiality [5•]. For another 
Y. lipolytica strain CLIB122, two GEMs, iYL_2.0 [6] and 
iYLI647 [7], were concurrently developed using dif
ferent previous models as templates, and were respec
tively utilized for metabolic engineering of 
triacylglycerol and dicarboxylic acid. Three GEMs have 
been independently developed for R. toruloides: Rhto- 
GEM, iRhto1108, and RT_IFO0880. Among these 
three, Rhto-GEM had the most comprehensive re
presentation of lipid metabolism for lipidomics data in
tegration and predicted growth on glucose, xylose, and 
glycerol [8]. iRhto1108 had improved gene essentiality 
predictions and introduced context-specific biomass 
composition for carbon or nitrogen-limited conditions 
[9]. RT_IFO0880 described lignocellulosic carbon utili
zation pathways identified from multi-omics datasets 
and improved growth predictions on different nutrients 
using growth phenotyping and fitness data [10]. More 
recently, two GEMs (Papla-GEM [11] and iNP636 [12]) 
have been respectively developed for other oleaginous 
yeasts, P. laurentii and C. oleaginous, which can grow on 
industrially relevant feedstocks. These models largely 

enhanced our understanding of lipid production in 
oleaginous yeasts.

Acid-tolerant filamentous fungi (Aspergillus niger) and 
yeast (Issatchenkia orientalis also known as Pichia ku
driavzevii) are ideal hosts for industrial organic acid 
production. To date, four GEMs have been developed 
for A. niger [13–16]. The first A. niger GEM iMA871 [13]
has served as a scaffold to construct other high-quality 
GEMs. Updates to this model were produced by in
dependent groups taking advantage of increased bio
chemical data and availability of Aspergillus genomes. 
The dual-purpose model iJB1325 [15] includes in
dependent models for organic acid (ATCC 1015) and 
protein (CBS 513.88) production strains and updates to 
core and secondary metabolite pathways. Concurrently, 
iHL1210 [14] was produced with updated annotations 
from the model protein production strain (CBS 513.88) 
and was used as a scaffold to produce iDU1756 [16]
based on the citric acid production strain (ATCC 1015). 
While iJB1325 may be more useful for general-purpose 
metabolic engineering due to its greater number of re
presented metabolites and reactions, iDU1756 may be 
more appropriate for accurate modeling of industrial or
ganic acid production as flux predictions from its pre
cursor iHL1210 were verified by 13C metabolic flux 
analysis. In contrast to A. niger GEMs with extensive 

Table 1 

Recent developments and updates in genome-scale models of industrially important fungi. 

Organism Strains GEMs and references MEMOTE scoresa Notes

S. cerevisiae S288C Yeast8 [60]
ecYeastGEM [42]

68% Model organism

Y. lipolytica W29 iYali4 [4]
eciYali [42]

47% Regulation of amino acid metabolism

CLIB122 iYL_2.0 [6] N/A Strain design for triacylglycerol production
CLIB122 iYLI647 [7] 25% Strain design for dicarboxylic acid production
W29 iYli21 [5] 17% Improved prediction of growth capabilities

R. toruloides NP11 Rhto-GEM [8]
ecRhtoGEM [61]

66% Detailed representation of lipid metabolism

IFO0880 iRhto1108 [9] 87% Strain design for triacylglycerol production
IFO0880 RT_IFO0880 [10] 93% Lignocellulosic carbon source utilization

P. laurentii UFV-1 papla-GEM [11] 48% Strain design for triacylglycerol production
C. oleaginosus ATCC 20509 iNP636 [12] 19% Simulation of optimal lipid production condition
A. niger CBS 513.88 iHL1210 [14] N/A Validation with13C metabolic flux data

ATCC 1015 and CBS 
513.88

iJB1325 [15]
eciJB1325 [62]

29% Validation against extensive experimental data

ATCC 1015 iDU1756 [16] 22% Strain design for organic acid production
I. orientalis SD108 iIsor850 [17] 84% Strain design for organic acid production
Alternaria sp. MG1 iYL1539 [21] N/A Media and strain design for resveratrol production
P. rubens Wisconsin 54-1255 Penicillium-GEMs [19] 22% Reconstruction of 24 Penicillium models

Wisconsin 54-1255 iPrub22 [63] 74% Prediction of specialized metabolite production
P. pastoris GS115 and DSMZ 70382 iMT1026 [22] 27% Consensus model of three previous models

GS115 iRY1243 [24] N/A Improved prediction of growth capabilities
GS115 and DSMZ 70382 iMT1026v3 [23] 19% Improved prediction of growth on methanol or 

glycerol
O. polymorpha NCYC 495 iUL909 [25] 42% Strain design for organic acid production

a MEMOTE benchmarks metabolic models and reports an overall score from standardized tests for annotation, formal correctness, biomass 
reaction, and stoichiometry. 
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studies, the first GEM for I. orientalis (iIsor850) was 
produced only recently based on the Yeast 7.6 scaffold 
with refinements from the SD108 genome [17]. Biomass 
composition and ATP maintenance requirements were 
determined experimentally and substrate utilization and 
gene essentiality assays were used to validate model 
predictions, making this a high-quality model for yeast- 
based organic acid production.

Developing GEMs for fungi with the potential to pro
duce complex natural products is challenging, because it 
requires specific emphasis on incorporation of reactions 
and metabolites in secondary metabolism that may not 
be well-predicted from genomic data. Recent develop
ment has focused on updates to the Penicillium rubens 
model used for β-lactam antibiotics and Alternaria sp. 
MG1 for production of resveratrol. P. rubens (Wisconsin 
54-1255) has a long history of development and mod
eling to support industrial production of antibiotics. 
Modern GEMs for P. rubens are based on iAL1006, 
which was produced as a demonstration of the RAVEN 
toolbox [18]. Updates to this model have been generated 
by incorporating additional data on secondary metabolite 
and natural product pathways from MetaCyc to produce 
models for P. rubens and 23 additional Penicillium species 
(Penicillium-GEMs) using automated pipelines [19]. 
iPrub22 builds upon this automatic reconstruction by 
dramatically increasing the size of the model to 5919 
reactions but currently lacks experimental validation 
[20•]. While the newer GEMs better represent sec
ondary metabolite pathways, iAL1006 remains the gold 
standard for prediction accuracy as it was optimized to 
perform precise simulations based on experimental data. 
The first GEM for an endophytic Alternaria species 
(iYL1539) was produced recently based on reactions 
from Aspergillus terreus, P. rubens, and S. cerevisiae models 
and additional natural product pathways based on 
KEGG and literature sources [21]. This model will 
provide a high-quality starting point but may require 
refinement and experimentally derived constraints to 
target specific natural product pathways.

Pichia pastoris is used for industrial production of re
combinant and total protein products. Modern GEMs 
representing its metabolism are based on iMT1026 
[22], which was produced as a consensus model by 
merging aspects of metabolism from three previous P. 
pastoris GEMs (iPP668, PpaMBEL1254, and iLC915). 
iMT1026 has been updated to v3.0 [23], which in
corporates additional reactions, experimentally de
termined bounds, and biomass compositions for growth 
on methanol and glycerol. iRY1243 was independently 
produced as an update to iMT1026 v1.0 that in
corporates additional reactions, including complex sugar 
utilization pathways [24]. iMT1026 v3.0 is re
commended as a high-quality P. pastoris model that has 
gone through iterative refinements and incorporates 

accurate representations of growth on industrial feed
stocks. iUL909 has also been recently developed for 
another protein production host Ogataea polymorpha (also 
known as Pichia angusta) and tested against phenotype 
microarray using 190 substrates as carbon sources [25].

These GEMs were assessed using MEMOTE [26], a 
tool developed for standardized testing of GEMs. 
MEMOTE performs various tests and quantifies the 
results to calculate an overall score. In Table 1, the 
MEMOTE scores were included for the GEMs available 
in Systems Biology Markup Language format. It is im
portant to note that while some GEMs had lower scores 
than others, this does not necessarily indicate lower 
quality or unsuitability for use, because the MEMOTE 
score is the weighted sum of many different metrics. A 
low score might mean that certain modeled entities, 
such as metabolites, are not linked to various databases, 
even if the metabolic network itself accurately reflects 
reality. In general, focusing on only one validation 
method cannot provide a comprehensive assessment of 
the overall model performance. It would be good prac
tice to validate the model under diverse conditions. For 
instance, assessing growth with diverse substrates can 
activate and test different parts of metabolism. Models 
that pass multiple validation tests may still have large 
solution spaces. Integrating new constraint layers will 
further enhance the predictive power of such GEMs.

Advances in computational methods
To exploit GEMs, a variety of computational methods 
have been developed. Flux balance analysis (FBA), a 
commonly employed method to predict metabolic flux 
distributions, serves as the basis for many other methods. 
To find flux distribution solutions, FBA defines an ob
jective function to be optimized subject to certain con
straints. Owing to numerous possible metabolic states in 
the solution space given by the network topology, some 
variations on FBA have been proposed to identify al
ternative flux distributions [27–30] (Figure 1a). Among 
them, the cost-weighted FBA considered the potential 
contribution of alternative pathways in the network, 
which increases the biological relevance of the flux 
predictions [29]. To consider the cost of expressing 
metabolic enzymes, enzyme-constrained GEMs (ec
GEMs) determine the metabolic fluxes incorporating 
enzyme kinetics, and constraining the total amount of 
proteins. These GEMs strongly rely on enzyme turnover 
numbers (kcat), which mostly come from in vitro mea
surements and are chosen according to the Enzyme 
Commission (EC) number, substrate and organism.

Since there exist limited experimental records of EC 
number and kcat, statistical and ML models have been 
employed to provide inferences on enzyme information 
(Figure 1b). For example, DeepEC used three 
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convolutional neural networks (CNNs) to predict EC 
numbers with high precision, true positives/(true posi
tives + false positives) = 0.920, based on the protein se
quence as input [31]. Recently, Bayesian multilevel 
models were developed to estimate kcat values and their 
uncertainty using EC numbers, identifiers, and protein 
families as inputs [32]. Additionally, kcat can also be 
predicted using ML methods. An ML model trained on 
less than 200 observations with manually curated fea
tures (metabolic fluxes, enzyme structural and bio
chemical properties, and assay conditions), showed R2 of 
0.76 and 0.31 for predictions of apparent catalytic rates 
(kapp) and in vitro kcat, respectively. A deep learning 
model called DLKcat [33•] was trained on enzyme da
tasets in BRENDA [34] and SABIO-RK [35] databases 
to predict turnover numbers. The model, which com
bined a graph neural network (GNN) and a CNN, used 
substrate SMILES and enzyme protein sequences as 

input, significantly increasing the number of available 
training entries. With good predictive performance (R2 

of 0.50 on the test dataset), DLKcat has generated ap
proximately 25.7 million turnover numbers [36] com
pared with the 86 919 available in BRENDA [34]. The 
recently updated GECKO 3.0 incorporated DLKcat as a 
key component [37], which facilitates the reconstruction 
of ecGEMs for any organism. More recently, a machine 
and deep learning hybrid approach called TurNup was 
developed to predict in vitro kcat, which outperformed 
DLKcat, especially for enzymes without close homologs 
in the training dataset and enzymes catalyzing unseen 
reactions [38••]. This model first utilized reaction fin
gerprints and a pretrained transformer model for protein 
sequence embedding to generate enzyme-reaction re
presentation. The representation was further used as 
inputs to train a gradient boosting model (GBM) for kcat 
prediction. However, it should be noted that many 

Figure 1  

Current Opinion in Biotechnology

Overview of advances in genome-scale modeling methods. (a) Classic approach to build and analyze GEMs or ecGEMs. (b) ML approaches predict 
enzyme information and add constraints to ecGEMs. (c) ML approaches learn from GEM predictions in hybrid modeling framework.  
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turnover numbers were obtained in vitro and may not 
accurately reflect the in vivo activities [39,40]. Large- 
scale in vivo kcat can be estimated based on kapp using 
absolute proteomics and fluxomics data from either FBA 
or 13C metabolic flux analysis [39–41].

When the growth or production rate predicted by an 
ecGEM does not align with experimentally observed 
values, a kcat correction procedure may be necessary. 
Some computational methods have been developed for 
automatic curation by substituting or relaxing the kcat 
value for the enzyme with the highest impact on growth. 
In the first case, kcat value will be substituted by the 
largest value in BRENDA for this enzyme across all 

organisms [42••] or with the mean value of the kcat 
collected based on nearest species [43]. In the second 
case, the kcat value will be increased by n-fold the initial 
value [37]. This procedure is repeated until the experi
mental growth rate can be predicted. As an alternative 
method, PRESTO utilized an optimization framework 
by minimizing a weighted sum of two objectives: the 
relative error to measured growth rates across multiple 
conditions and the sum of positive kcat correc
tions [44••].

Flux predictions from constraint-based methods can be 
subsequently used as input for statistical and ML 
models in hybrid modeling frameworks (Figure 1c). 

Figure 2  

Current Opinion in Biotechnology

Representative applications of fungal GEMs in biomanufacturing. Applications in the ‘design’ and ‘learn’ stages are respectively surrounded by a blue 
line and a red line. (a) Design grow-coupled production. sGCP, strongly GCP (producing the target in all flux states with growth); wGCP, weakly GCP 
(producing the target in all growth-maximal flux states); pGCP, potentially GCP (producing the target in at least one growth-maximal flux state). (b) 
Predict genetic modification targets. KO, knockout; KD, knockdown. (c) Evaluate carbon sources and C/N ratios to optimize bioprocess. (d) Infer 
FCCs from omics datasets. (e) Train ML models from production records. 
Figures in (a), (b), and (c) adapted from Refs. [51,54••,12].  
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Metabolic flux information is an important part in me
tabolic control analysis (MCA), where flux control coef
ficients (FCC) describe how flux changes in response to 
changes in enzyme concentrations or activities. From 
multi-omics datasets and fluxes determined by FBA, 
Bayesian MCA (BMCA) was developed to predict FCC 
for a GEM using linear-logarithmic (linlog) kinetics to 
approximate mechanistic enzyme kinetic equations [42]. 
Additionally, supervised ML models can train on flux 
predictions from FBA as inputs and production perfor
mance in literature as outputs [44]. This type of method 
can estimate production performance and guide meta
bolic engineering.

Applications in metabolic engineering
GEMs serve multiple purposes in iterative DBTL cy
cles. In the initial round of the DBTL cycle, GEMs can 
guide the design process. First, they can determine the 
optimal biosynthetic routes. For instance, based on 
pathway lengths and maximum product yields calculated 
by yeast GEM, SPD-3 and SPD-4 were selected as in
itial production targets for the development of a yeast- 
based polyamine production platform [45]. Second, 
GEMs can predict genetic engineering targets based 
solely on the stoichiometry of metabolic networks by 
employing classical methods such as OptKnock [46], 
Minimization Of Metabolic Adjustment (MOMA) [47], 
and Flux Scanning based on Enforced Objective Flux 
(FSEOF) [48]. Many strain design methods were re
cently implemented in Python packages [49,50]. Opt
Knock was utilized on the I. orientalis GEM iIsor850 to 
identify three degrees (i.e. strongly, weakly, and po
tentially) of growth-coupled production (GCP) designs 
for 22 organic acid products from both glucose and xy
lose as carbon substrates [51] (Figure 2a). MOMA was 
performed on P. pastoris GEM iMT1026 v3.0 to evaluate 
the impact of cytosolic and mitochondrial reduced ni
cotinamide adenine dinucleotide (NADH) kinase over
expression (OE) on production of an antibody fragment 
[52]. FSEOF was employed on GEMs iUL909 and 
papla-GEM to identify reactions that enhance desired 
bioproduction in O. polymorpha [25] and P. laurentii [11], 
respectively. Recently, a FSEOF variant, later called 
ecFactory [53••], was developed on top of ecGEMs to 
identify a set of minimum genetic modifications, which 
prevents the arbitrary selection of the number of gene 
targets. Using this approach with ecYeast8, 84 genes (62 
for OE, 14 for repression, and eight for deletion) were 
identified to enhance heme production [54••] (Figure 
2b). The author further optimized the combination of 
gene modification through model-guided design, re
sulting in 70-fold improvement in heme production. The 
authors also used ecFactory to predict engineering tar
gets for production of 102 different chemicals in yeast 
and found shared gene targets for each group of che
micals [53••]. Third, GEMs can optimize production 

conditions during the fermentation process (Figure 2c). 
Such attempts in oleaginous yeasts C. oleaginosus and R. 
toruloides have been made to investigate the effects of 
different carbon sources and carbon-to-nitrogen (C/N) 
ratios on lipid production using GEMs iNP636 [12] and 
rhto-GEM [55], respectively.

In the learning stage of the DBTL cycle, GEMs serve as 
a data integration platform for understanding the meta
bolism and guiding subsequent rounds of design. GEMs 
can incorporate kinetic parameters from batch fermen
tation to analyze metabolism changes. In a recent ex
ample, flux distribution changes in Y. lipolytica were 
analyzed by dynamic FBA using GEM iYali4 [56]. This 
analysis identified metabolic pathways that contribute to 
citrate production and suggested a strategy to achieve a 
twofold increase in citrate titer. Additionally, genome- 
scale multi-omics datasets can be integrated with GEMs 
to recommend genetic engineering targets. An evolu
tionary algorithm that incorporated transcriptomic data 
was developed to identify targets for increasing citric 
acid productivity from lignocellulosic hydrolysate in A. 
niger using GEM iDU1327 [57]. BMCA was applied to a 
few itaconic acid-producing Y. lipolytica strains with the 
central metabolism part of GEM iYLI649 [58•]. Based 
on FCCs inferred from multi-omics data, they identified 
enzymes in rate-limiting reactions that can improve ita
conic acid production. Last, with more production data 
available, metabolic fluxes calculated from GEMs are 
important features in ML. For instance, ML models 
were trained on flux distributions generated from FBA 
with Y. lipolytica GEM iYLI647 and other bioprocess 
parameters to predict product titers [59••].

Conclusion and future perspectives
An increasing number of GEMs have been re
constructed and updated in industrially relevant fungi 
for biomanufacturing. These GEMs provide a potent 
computational platform enabling model-driven design. 
To enhance simulation performance, ecGEMs impose 
additional constraints on finite proteome, enzyme con
centration, and catalytic activity. Despite these ad
vances, ecGEMs are available for only a few fungi (A. 
niger, R. toruloides, S. cerevisiae, and Y. lipolytica in 
Table 1), likely due to the lack of enzyme information 
for most fungi. By integrating ML methods that address 
missing enzyme information, tools have been developed 
to facilitate the construction of ecGEMs. GEMs often 
benchmark against growth phenotyping data across dif
ferent nutrients and gene fitness/essentiality data, which 
in turn allows subsequent curation and improves model 
quality with more experimental data.

Classical approaches such as OptKnock [46], MOMA 
[47], and FSEOF [48] still dominate the target predic
tions for metabolic engineering, although a few variants 
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have been developed. Among more recent innovations, 
BMCA is a promising approach to identify gene targets. 
It considers enzyme kinetics by incorporating omics 
data, but does not require absolute quantification. All 
these methods are compatible with ecGEMs, which can 
yield more accurate predictions. A combination of mul
tiple methods can be considered to identify better tar
gets, because no single method can address all problems 
in metabolic engineering.
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