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cally bounded plurisubharmonic functions by Bedford-Taylor 
in the 80’s. This definition has been extended to compact 
complex manifolds, and to various classes of mildly un-
bounded quasi-plurisubharmonic functions by various au-
thors. As this operator is not continuous for the L1-topology, 
several stronger topologies have been introduced over the last 
decades to remedy this, while maintaining efficient compact-
ness criteria. The purpose of this note is to show that these 
stronger topologies are essentially equivalent to the natural 
quasi-monotone topology that we introduce and study here.
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0. Introduction

In connection with the spectacular developments of Kähler geometry in the last decade 
(see [11,24,2,4,34,33,35]), several finite energy spaces of quasi-plurisubharmonic func-
tions have been studied, each of which endowed with a strong topology, that ensures 
completeness of the space, good compactness criteria, and continuity of the complex 
Monge-Ampère operator (the latter being discontinuous for the weaker L1-topology). 
In this note we introduce yet another strong convergence, the quasi-monotone conver-
gence.

Let (X, ω) be a compact Kähler manifold. A function ϕ : X → R ∪ {−∞} is quasi-
plurisubharmonic if it is locally the sum of smooth and a plurisubharmonic function. The 
function ϕ is called ω-psh if ω + ddcϕ ≥ 0 in the sense of currents. We let PSH(X, ω)
denote the set of all ω-psh functions; it can be endowed with the L1-topology, which 
is equivalent to the weak topology of distributions. If ϕj ∈ PSH(X, ω) converges in 
L1 to ϕ ∈ PSH(X, ω), then ϕ+

j :=
(
sup�≥j ϕ�

)∗ is a decreasing sequence of ω-psh 
functions that pointwise decreases to ϕ (see [29, Proposition 8.4]). The quasi-monotone 
convergence requires a dual property:

Definition. We say that ϕj converges quasi-monotonically if ϕ−
j := Pω (inf�≥j ϕ�) is a 

sequence of ω-plurisubharmonic functions that increases to ϕ.

Here Pω(h) denotes the ω-psh envelope of the function h: this is the largest ω-psh 
function that lies below h. The family of such functions is compact, but it may happen 
that it is empty in which case Pω(h) ≡ −∞ (see Example 3.3).

The complex Monge-Ampère operator MA is well defined for bounded ω-psh functions, 
as follows from Bedford-Taylor theory [1,29]. At the heart of the theory lies the continuity 
property of MA along monotone sequences. Our convergence notion naturally extends 
this property, allowing for sequences ϕj that are bounded from above and below uj ≤
ϕj ≤ vj by a sequence of ω-psh functions uj (resp. vj) which increases (resp. decreases) 
to ϕ [see Lemma 2.2].

The property that we require is somewhat dual to the property for the upper-envelope, 
which always holds. This is well illustrated by the case when the ϕj’s are solutions of 
a complex Monge-Ampère equation (or of a complex Monge-Ampère flow), where this 
operation (envelope of infima) leaves the space of super-solutions invariant (see [25, 
Theorem C] and Examples 3.1 and 3.2).

Our main result compares all these strong topologies:

Theorem. Let (X, ω) be a compact Kähler manifold, and (ϕj) ∈ PSH(X, ω)N a sequence 
which converges in L1(X) to some ϕ ∈ PSH(X, ω). Fix ψ ∈ E1(X, ω).

(1) If ϕj converges quasi-monotonically then ϕj converges in capacity.
(2) If ϕj converges in capacity and ϕj ≥ ψ then ϕj converges in (E1(X, ω), d1).
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(3) If ϕj converges in (E1(X, ω), d1), then ϕj converges to ϕ in capacity. Moreover up 
to extracting and relabelling, the convergence is quasi-monotone and there exists 
ψ̃ ∈ E1(X, ω) such that ϕj ≥ ψ̃.

A sequence (ϕj) converges in capacity to ϕ if for all δ > 0,

Capω ({z ∈ X, |ϕj(x) − ϕ(x)| ≥ δ}) −→ 0,

as j → +∞, where Capω denotes the Monge-Ampère capacity introduced by Kolodziej 
[32] and further studied in [26,31,39,22].

The set (E1(X, ω), d1) denotes the finite energy space introduced in [27], endowed 
with the metrizable strong topology considered in [2] and further studied in [15]. One 
can equally well consider other finite energy classes (Eχ(X, ω), dχ), endowed with the 
induced Mabuchi topology, and show an appropriate version of the above result. We refer 
the reader to Definitions 1.2 and 1.8, and to Theorem 2.5 for the precise statements.

All the previous notions of strong convergence therefore coincide –up to extracting 
and relabelling– when the sequence is uniformly bounded:

Corollary. Let (X, ω) be a compact Kähler manifold, and (ϕj) ∈ PSH(X, ω)N a uni-
formly bounded sequence which converges in L1(X) to some ϕ ∈ PSH(X, ω). Up to 
extracting and relabelling, the following properties are equivalent

(1) ϕj converges quasi-monotonically to ϕ;
(2) ϕj converges to ϕ in capacity;
(3) ϕj converges to ϕ in (E1(X, ω), d1).

Example 3.3 shows that a sequence can converge in capacity but not quasi-
monotonically. The sequence ϕj = ϕ/j converges to zero both in capacity and quasi-
monotonically, but not in energy if ϕ does not belong to E1(X, ω). Example 3.4 shows that 
extracting is necessary to ensure the quasimonotone convergence. Finally Example 3.5
provides an example where these strong convergences do not hold, while Example 3.6
compares the various types of convergence in energy.

Contents We recall basic facts in Section 1. The quasi-monotone convergence is in-
troduced in Section 2, where we prove our main Theorem. We provide several explicit 
examples in Section 3 and explain how our observations extend to big cohomology classes 
with prescribed singularities, as well as to the local setting.
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1. Capacity and energies

In the whole article we let X denote a compact Kähler manifold of complex dimension 
n ≥ 1, and we fix ω denote a Kähler form on X.

1.1. Convergence in capacity

1.1.1. Quasi-plurisubharmonic functions
A function is quasi-plurisubharmonic if it is locally given as the sum of a smooth and 

a psh function. Quasi-psh functions ϕ : X → R ∪ {−∞} satisfying ω + ddcϕ ≥ 0 in the 
weak sense of currents are called ω-plurisubharmonic (ω-psh for short). Here d = ∂ + ∂

and dc = 1
2iπ (∂ − ∂).

A C2-smooth function u has bounded Hessian, hence εu is ω-psh if 0 < ε is small 
enough. Note that constants functions are also ω-psh functions.

Definition 1.1. We let PSH(X, ω) denote the set of all ω-plurisubharmonic functions 
which are not identically −∞.

The set PSH(X, ω) is a closed subset of L1(X), for the L1-topology. Subsets of ω-psh 
functions enjoy strong compactness and integrability properties, we mention notably the 
following: for any fixed r ≥ 1,

• PSH(X, ω) ⊂ Lr(X); the induced Lr-topologies are all equivalent;
• PSH(X, ω) ⊂ W 1,q(X) = {u ∈ L1(X), ∇u ∈ Lq(X)} for all q < 2; the induced 

W 1,q-topology is again equivalent to the L1-topology;
• PSHA(X, ω) := {u ∈ PSH(X, ω), −A ≤ supX u ≤ 0} is compact.

We refer the reader to [29] for further basic properties of ω-psh functions.
Let ϕ be a plurisubharmonic function in Cn. If ϕ is smooth, its complex Monge-

Ampère measure is defined by

MA(ϕ) = (ddcϕ)n = cn det
(

∂2ϕ

∂zj∂zk

)
dVeucl,

where dVeucl is the euclidean volume form, and cn > 0 is a normalizing constant.
When ϕ is less regular, one can approximate it from above by smooth plurisub-

harmonic functions ϕεj = ϕ � χεj obtained by convolution with a standard family of 
mollifiers. If the measures MA(ϕεj ) converge to a limit μϕ, one sets MA(ϕ) := μϕ. This 
definition has been shown to be consistent by Bedford and Taylor [1] when ϕ is locally 
bounded: in this case they have shown that μϕ is the limit of any decreasing sequence of 
plurisubharmonic approximants.

Bedford-Taylor’s theory has been adapted to the compact setting (see [29,21]), and 
the definition of MA has been extended to mildly unbounded quasi-plurisubharmonic 
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functions (see [10,7,13,29]). In the compact setting, one needs to replace plurisubhar-
monic functions by quasi-plurisubharmonic ones. One can approximate ϕ ∈ PSH(X, ω)
by a decreasing sequence of smooth ω-psh functions ϕj [19] and set V =

∫
X
ωn and

MA(ϕ) := lim
j→+∞

V −1(ω + ddcϕj)n,

whenever the limit is well-defined and independent of the approximants.
The complex Monge-Ampère measure MA(ϕ) is in particular well-defined for any 

ω-psh function ϕ which is bounded. It is also well-defined for unbounded ω-psh functions 
that have finite energy (see Section 1.2).

1.1.2. The Monge-Ampère capacity

Definition 1.2. Given K ⊂ X a compact set, its Monge-Ampère capacity is

Capω(K) := sup

⎧⎨
⎩
∫
K

(ω + ddcu)n, u ∈ PSH(X,ω) with 0 ≤ u ≤ 1

⎫⎬
⎭ .

This notion has been introduced in [32] and further studied in [26]. We refer the reader 
to [29, Chapter 9] for its basic properties.

Definition 1.3. A sequence (ϕj) ∈ PSH(X, ω)N converges in capacity to ϕ ∈ PSH(X, ω)
if for all δ > 0,

Capω ({x ∈ X, |ϕj(x) − ϕ(x)| ≥ δ}) j→+∞−→ 0.

It is known that convergence in capacity implies convergence in L1 (see [29, Lemma 
4.24]). One can moreover reduce to uniformly bounded sequences:

Proposition 1.4. A sequence (ϕj) ∈ PSH(X, ω)N converges in capacity to ϕ ∈
PSH(X, ω) if and only if for all C > 0, the sequence max(ϕj , −C) converges in ca-
pacity to max(ϕ, −C).

Proof. We can assume without loss of generality that ϕ, ϕj ≤ 0. It follows from the 
Chern-Levine-Nirenberg inequalities [29, Corollary 9.5] that

Capω ({x ∈ X, ϕj(x) < −C}) ≤ ||ϕj ||L1 + nV

C

and similarly Capω ({ϕ < −C}) ≤ ||ϕ||L1+nV

C . Thus {x ∈ X, |ϕj(x) − ϕ(x)| ≥ δ} and 
{x ∈ X, | max(ϕj(x), −C) − max(ϕ(x), −C)| ≥ δ} differ by a set whose capacity is 
uniformly small in j, as C goes to +∞. The conclusion follows. �
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For uniformly bounded sequences, the convergence in capacity implies the conver-
gence of Monge-Ampère measures [38, Theorem 1]. More generally we have the following 
consequence of [29, Theorem 4.26]:

Proposition 1.5. Let ϕ�
j be a uniformly bounded sequence of ω-psh functions which con-

verge in capacity to ϕ� ∈ PSH(X, ω), 0 ≤ 
 ≤ n. For all continuous weight χ : R → R, 
the weighted measure χ(ϕ0

j)(ω+ddcϕ1
j ) ∧· · ·∧(ω+ddcϕn

j ) weakly converges to the weighted 
measure χ(ϕ0)(ω + ddcϕ1) ∧ · · · ∧ (ω + ddcϕn).

We shall need the following estimate, which is an adaptation to the compact setting 
of a local observation of Blocki [6].

Proposition 1.6. Let u, v, w be ω-psh functions such that −1 ≤ u ≤ 0 and v ≤ w. Then

∫
X

(w − v)n+1(ω + ddcu)n ≤ (n + 1)!
n∑

j=0

∫
X

(w − v)n+1−j (ω + ddcv)j ∧ ωn−j .

Proof. Set ωu = ω + ddcu and ωv = ω + ddcv. Let S be a closed current of bidegree 
(1, 1). By induction it suffices to establish the following inequality,

∫
X

(w − v)p+1ωu ∧ S ≤
∫
X

(w − v)p+1 ω ∧ S + (p + 1)
∫
X

(w − v)p ωv ∧ S,

and apply it to S = ωa
u ∧ ωb

v ∧ ωc. This follows from Stokes theorem, observing that 
−ddc(w − v)p+1 ≤ (p + 1)(w − v)pωv, hence 

∫
X

(w − v)p+1ddcu ∧ S =
∫
X
u ddc(w −

v)p+1 ∧ S ≤ (p + 1) 
∫

(w − v)pωv ∧ S. �
1.2. Finite energy topologies

1.2.1. Finite energy classes
Given ϕ ∈ PSH(X, ω), we consider

ϕj := max(ϕ,−j) ∈ PSH(X,ω) ∩ L∞(X).

The measures MA(ϕj) are well defined probability measures and the sequence μj :=
1{ϕ>−j}MA(ϕj) is increasing [27, p.445], with total mass bounded from above by 1. We 
consider

μϕ := lim
j→+∞

μj ,

which is a positive Borel measure on X, with total mass ≤ 1.
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Definition 1.7. We set E(X, ω) := {ϕ ∈ PSH(X,ω) | μϕ(X) = 1}.
For ϕ ∈ E(X, ω), we set MA(ϕ) := μϕ.

It is proved in [27] that the Monge-Ampère operator MA is well defined on the class 
E(X, ω). One has a stratification

E(X,ω) =
⋃

χ∈W
Eχ(X,ω),

where W denotes the set of all functions χ : R → R such that χ is increasing and 
χ(−∞) = −∞, and the finite energy class Eχ(X, ω) is defined as follows:

Definition 1.8. We set Eχ(X, ω) :=
{
ϕ ∈ E(X,ω) | χ(−|ϕ|) ∈ L1(MA(ϕ))

}
.

When χ(t) = −(−t)p, p > 0, we set Ep(X, ω) = Eχ(X, ω).

The set E1(X, ω) can be characterized as the set of ϕ ∈ E(X, ω) such that

E(ϕ) := 1
n + 1

n∑
j=0

∫
X

ϕ(ω + ddcϕ)j ∧ ωn−j > −∞.

Observe that 
⋂

χ∈W Eχ(X, ω) = PSH(X, ω) ∩ L∞(X), so that finite energy classes in-
terpolate between E(X, ω) and bounded ω-psh functions.

It follows from [27, Theorem C] that a probability measure μ is the Monge-Ampère 
measure of a potential in Ep(X, ω) if and only if Ep(X, ω) ⊂ Lp(X, μ), while [27,20]
ensures that μ does not charge pluripolar sets if and only if there exists a unique ϕ ∈
E(X, ω) such that μ = (ω + ddcϕ)n with supX ϕ = 0.

Example 1.9. Every bounded ω-psh function belongs to E(X, ω). The class E(X, ω) also 
contains many ω-psh functions which are unbounded:

• when X is a compact Riemann surface, E(X, ω) is precisely the set of ω-sh functions 
whose Laplacian does not charge polar sets.

• if ϕ ∈ PSH(X, ω) satisfies ϕ ≤ −1, then ϕε = −(−ϕ)ε belongs to E(X, ω) whenever 
0 ≤ ε < 1, and ϕε belongs to Ep(X, ω) if ε < 1/(n + p).

• the functions in E(X, ω) have relatively mild singularities; in particular they have 
zero Lelong number at every point.

1.2.2. Mabuchi geometry
The class E1(X, ω) has played a key role in recent applications of pluripotential theory 

to Kähler geometry (see e.g. [4]). Set

I(ϕ,ψ) =
∫

(ϕ− ψ)[MA(ψ) −MA(ϕ)] ≥ 0.

X
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This quantity is well defined for ϕ, ψ ∈ E1(X, ω) and satisfies a quasi-triangle inequality 
[2, Theorem 1.8], hence induces a distance dI .

Definition 1.10. The strong topology on E1(X, ω) is the one induced by dI .

This notion has been introduced in [3, Section 5.3], it implies convergence in capacity 
[3, Theorem 5.7]. A sequence (ϕj) ∈ E1(X, ω)N strongly converges to ϕ iff it converges in 
L1 and E(ϕj) converges to E(ϕ). Moreover the metric space (E1(X, ω), dI) is complete 
[2, Propositions 2.3 and 2.4].

Let H = {ϕ ∈ C∞(X, R), ω + ddcϕ > 0} denote the set of smooth and strictly ω-
psh functions (Kähler potentials). This set can be thought of as an infinite dimensional 
Riemannian manifold, whose tangent space at ϕ ∈ H can be identified with C∞(X, R). 
Following earlier work of Mabuchi, Darvas [15] has considered the following Finsler struc-
ture: for f ∈ TϕH he sets |f |ϕ :=

∫
X
|f |MA(ϕ). If γ : [0, 1] → H is a Lipschitz path, one 

then defines


(γ) =
1∫

0

∫
X

|γ′(t)|MA(γ(t))dt,

and given ϕ, ψ ∈ H, one considers

d1(ϕ,ψ) := inf {
(γ), γ : [0, 1] → H with γ(0) = ϕ, γ(1) = ψ} ,

where the infimum runs over all Lipschitz paths joining ϕ to ψ. The following summarizes 
some results of [15] that we shall need:

Theorem 1.11. Fix ϕ, ψ ∈ E1(X, ω). The following properties hold:

• d1 is a distance on H which is uniformly equivalent to dI ;
• d1 uniquely extends to E1(X, ω), (E1(X, ω), d1) is a geodesic metric space;
• Pω(min(ϕ, ψ)) ∈ E1(X, ω) with d1(ϕ, Pω(min(ϕ, ψ))) ≤ d1(ϕ, ψ);
• if ψ ≤ ϕ, then d1(ϕ, ψ) is comparable to 

∫
X

(ϕ − ψ)MA(ψ).

We refer to [15, Theorem 2, Theorem 3, Corollary 4.14] for more details.
Analogous strong topologies have been defined on the other energy classes, notably the 

classes Ep(X, ω) (see [15,25,16]). If χ ∈ W is convex with polynomial growth at infinity, 
the class Eχ(X, ω) can be equipped with a Finsler metric dχ making it a complete geodesic 
metric space [15]. The Mabuchi distance dχ is again comparable to a pluripotential quasi-
distance,

C−1dχ(u, v) ≤ Iχ(u, v) :=
∫

|χ(u− v)|(MA(u) + MA(v)) ≤ Cdχ(u, v),

X
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for a constant C = C(χ) > 0 and u, v ∈ Eχ(X, ω).
Concave weights χ correspond to low energy classes. These are the weights one needs 

to consider for the stratification of the class E(X, ω). One can still consider Iχ and dχ, 
but the distance dχ is no longer induced by a Finsler metric as emphasized in [16, p2]. 
The following summarizes the results obtained by Darvas in [16] that we shall need:

Theorem 1.12. Fix ϕ, ψ ∈ Eχ(X, ω). The following properties hold:

• dχ is a distance on H which is uniformly equivalent to Iχ;
• dχ uniquely extends to Eχ(X, ω), (Eχ(X, ω), dχ) is a complete metric space;
• Pω(min(ϕ, ψ)) ∈ Eχ(X, ω) with dχ(ϕ, Pω(min(ϕ, ψ))) ≤ dχ(ϕ, ψ);
• if ψ ≤ ϕ, then dχ(ϕ, ψ) is comparable to 

∫
X
χ ◦ (ϕ − ψ)MA(ψ).

We refer to [15] for convex weights with polynomial growth, and to [16, Proposition 
5.3, Theorem 5.7, Theorem 6.1] for concave weights.

2. Quasi-monotone convergence

2.1. Capacity vs quasi-monotonicity

Continuity of complex Monge-Ampère operators along monotone sequences lies at the 
heart of Bedford-Taylor theory [1]. Several extensions of this continuity property have 
been proposed over the last decades under various restricted types of convergence. The 
following notion seems to encompass many of the latter:

Definition 2.1. A sequence ϕj ∈ PSH(X, ω) converges quasi-monotonically to ϕ ∈
PSH(X, ω) if there exists an increasing (resp. decreasing) sequence uj (resp. vj) in 
PSH(X, ω) such that uj ≤ ϕj ≤ vj for all j and uj , vj → ϕ in L1(X).

It follows easily from the definition that ϕj converges to ϕ in L1(X). Observe that 
ψ+
j := sup�≥j ϕ� decreases to ϕ, while ψ−

j := inf�≥j ϕ� increases to ϕ. However none of 
these functions usually belongs to PSH(X, ω): ψ+

j satisfies the mean value inequalities 
but it is no longer u.s.c., while ψ−

j is u.s.c. but does not satisfy the mean value inequalities. 
It follows from [29, Proposition 8.4] that

ϕ+
j :=

(
sup
�≥j

ϕ�

)∗

∈ PSH(X,ω)

and decreases to ϕ pointwise. By duality we consider the sequence

ϕ−
j := Pω

(
inf ϕ�

)
.

�≥j
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The latter belongs to PSH(X, ω) as soon as it is not identically −∞, which is the case if 
ϕj ≥ uj with uj increasing, since we then obtain ϕ−

j ≥ uj . We thus obtain the following 
reformulation of the quasi-monotone convergence:

Lemma 2.2. A sequence ϕj ∈ PSH(X, ω) converges quasi-monotonically to ϕ ∈
PSH(X, ω) if and only if ϕ−

j := Pω (inf�≥j ϕ�) increases to ϕ.

It is a celebrated result of [1] that if ϕ−
j converges to ϕ in L1, the convergence holds 

pointwise off a pluripolar set.

Example 2.3. Assume ϕj ∈ PSH(X, ω) converges in L1(X) to ϕ ∈ PSH(X, ω), and 
assume there exists ϕ ≥ ψ ∈ PSH(X, ω) and εj ∈ R+ decreasing to 0 such that ϕj ≥
(1 −εj)ϕ +εjψ. Then ϕ−

j ≥ (1 −εj)ϕ +εjψ, hence ϕj converges to ϕ quasi-monotonically. 
In this case it has been observed in [25, Lemma 1.2] that ϕj converges to ϕ in capacity. 
This is a special case of Theorem 2.4 below.

It is well-known that monotone convergence implies convergence in capacity (see [29, 
Proposition 4.25]). We extend this here to quasi-monotone convergence.

Theorem 2.4. If a sequence ϕj ∈ PSH(X, ω) converges quasi-monotonically, then it 
converges in capacity.

Conversely if ϕj ∈ PSH(X, ω) is uniformly bounded and converges in capacity, then 
a subsequence converges quasi-monotonically.

The converse does not hold without a uniform lower bound on the ϕj’s, as shown in 
Example 3.3 which provides a sequence (ϕj) which converges in capacity while ϕ−

j ≡ −∞
(even after extracting). Example 3.4 moreover shows that it is usually necessary to 
extract, in order to reach the quasi-monotone convergence.

Proof. We let the reader check that if ϕj converges quasi-monotonically, then for all C >

0, max(ϕj , −C) converges quasi-monotonically to max(ϕ, −C). Since the convergence in 
capacity of ϕj to ϕ is equivalent to the convergence in capacity of max(ϕj , −C) to 
max(ϕ, −C), we are reduced to the uniformly bounded case.

Assume first that ϕj converges quasi-monotonically to ϕ ∈ PSH(X, ω). Fix u ∈
PSH(X, ω) such that −1 ≤ u ≤ 0. It follows from Proposition 1.6 that for all δ > 0,

∫
{|ϕj−ϕ|≥δ}

(ω + ddcu)n ≤ δ−(n+1)
∫
X

(ϕ+
j − ϕ−

j )n+1(ω + ddcu)n

≤ δ−(n+1)(n + 1)!
n∑

j=0

∫
(ϕ+

j − ϕ−
j )n+1−j(ω + ddcϕ−

j )j ∧ ωn−j .
X
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Each of the above integral converges to zero as j → +∞, as follows from Bedford-Taylor 
monotone convergence theorem. Thus ϕj converges in capacity.

Assume now that ϕj converges in capacity. Rescaling ω, we can assume that −1 ≤
ϕj ≤ 0. Let δj , εj > 0 be sequences decreasing to zero. Observe that

{|ϕj − ϕj+1| ≥ δ} ⊂ {|ϕj − ϕ| ≥ δ/2} ∪ {|ϕj+1 − ϕ| ≥ δ/2}.

Extracting and relabelling, we can thus assume that

Capω ({|ϕj − ϕj+1| ≥ δj}) ≤ εj − εj+1.

Set Ej = {ϕj+1 ≤ ϕj −δj} and Fj = ∪�≥jE�. The sequence j �→ Fj is decreasing with 
Capω(Fj) ≤ εj . Fix Aj ≥ 1 and consider

hj := (sup {u ∈ PSH(X,ω), u ≤ −Aj on Fj and u ≤ 0 on X})∗ .

This is a variant of the “relative extremal function” considered in [29, Definition 9.13]. 
Adapting [29, Section 9.3], one easily obtains the following:

• hj ∈ PSH(X, ω) with −Aj ≤ hj ≤ 0;
• hj = −Aj on Fj \ Pj , where Pj is a pluripolar set;
• Capω(Fj) ≥ A−n−1

j

∫
X

(−hj)(ω + ddchj)n.

Thus 
∫
X

(−hj)(ω + ddchj)n ≤ 1 if we choose An+1
j εj = 1 and it follows from Stokes 

theorem that ∫
X

(−hj)ωn ≤
∫
X

(−hj)(ω + ddchj)n ≤ 1.

We infer that 
∑

�≥1 2−�h� ∈ PSH(X, ω), hence the sequence

Hj :=
∑
�≥j

2−�−1h� ∈ PSH(X, 2−jω)

increases to zero as j → +∞.
We set ψj := (1 − 2−j)ϕj +Hj − 2−j+1 ∈ PSH(X, ω). Since Hj ≤ 0 and ϕj ≥ −1, we 

obtain ψj ≤ ϕj . We choose δj = 2−j−1/(1 − 2−j) and Aj = 2j+1 and claim that j �→ ψj

increases to ϕ as j → +∞. Indeed

• either x ∈ X \ Fj , then ϕj+1(x) ≥ ϕj(x) − δj hence

ψj+1 − ψj = (1 − 2−j)(ϕj+1 − ϕj) + 2−j−1ϕj+1 − 2−j−1hj + 2−j ≥ 0

using that −hj ≥ 0 and ϕj+1 ≥ −1;
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• or x ∈ Fj and we obtain ψj+1 − ψj ≥ −1 − 2−j−1hj = 0 if x /∈ Pj .

Thus ψj+1 ≥ ψj a.e. hence everywhere. Replacing ψj by max(ψj , −1), we moreover 
obtain an increasing sequence which is uniformly bounded. �
2.2. Finite energy sequences

Following Theorem 2.4 we now prove our main Theorem, which extends several partial 
results previously obtained ([38, Theorem 2], [31, Theorem 2.1], [39, Theorem 1.2], [3, 
Theorem 5.7], [15, Corollary 5.7], [5, Propositions 2.6 and 6.4], [25, Proposition 1.9], [36, 
Proposition 5.7], [30, Theorem 1.2]).

Theorem 2.5. Assume ϕj ∈ PSH(X, ω) converges in L1(X) and fix χ ∈ W a weight 
which is either convex or concave with polynomial growth at −∞.

• If ϕj converges in capacity and ϕj ≥ ψ for some ψ ∈ Eχ(X, ω), then ϕj converges in 
(Eχ(X, ω), dχ).

• If ϕj converges in (Eχ(X, ω), dχ), then ϕj converges in capacity. Moreover up to 
extracting and relabelling, ϕj converges quasi-monotonically and there exists ψ ∈
Eχ(X, ω) such that ϕj ≥ ψ.

For sequences that are not uniformly bounded, one cannot expect that quasi-monotone 
convergence is equivalent to convergence in energy. For instance if ψ ∈ PSH(X, ω) has 
some positive Lelong number and εj decreases to zero, then ϕj = εjψ converges quasi-
monotonically to ϕ = 0, but not in energy. A finite energy lower bound turns out to be 
a necessary and sufficient condition.

Proof. We start with the first item. Assume first that the sequence (ϕj) is uni-
formly bounded. When χ(t) = t, it follows from [2, Proposition 2.3] that ϕj → ϕ in 
(E1(X, ω), d1) if and only if 

∫
X

(ϕj − ϕ)[MA(ϕ) −MA(ϕj)] → 0. The latter holds when 
ϕj converges in capacity, as follows from Proposition 1.5. More generally the convergence 
in (Eχ(X, ω), dχ) is equivalent to the following

∫
X

|χ(ϕj − ϕ)| [MA(ϕj) + MA(ϕ)] → 0,

which is a consequence of [29, Theorem 4.26].
We now reduce the general case to the uniformly bounded one. Fix χ̃ a weight such 

that 
∫
X

(−χ̃ ◦ ψ) MA(ψ) < +∞ and χ̃(t)/χ(t) → +∞ as t → −∞ (see [29, Exercise 
10.5]). Set ϕC

j = max(ϕj , −C) and ϕC = max(ϕ, −C), it follows from Theorem 1.12
that
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dχ(ϕj , ϕ
C
j ) ∼

∫
X

χ ◦ (ϕC
j − ϕj)MA(ϕj) ≤

∫
{ϕj<−C}

(−χ ◦ ϕj)MA(ϕj)

≤ χ(−C)
χ̃(−C)

∫
X

(−χ̃ ◦ ϕj)MA(ϕj) ≤
Mnχ(−C)
χ̃(−C)

∫
X

(−χ̃ ◦ ψ)MA(ψ),

where the last inequality follows from [27, Lemmas 2.3 and 3.5]. The conclusion thus 
follows from the uniformly bounded case and the triangle inequality.

It thus remains to show the second item. To check that ϕj converge in capacity, 
it suffices to show that any subsequence admits a subsubsequence that converges in 
capacity. Extracting and relabelling, we can assume that dχ(ϕj , ϕj+1) ≤ 2−j . Set ϕ−

j,k :=
Pω(minj≤�≤j+k ϕ�). A repeated use of Theorem 1.12 ensures that ϕ−

j,k ∈ Eχ(X, ω) with

dχ(ϕj , ϕ
−
j,k) ≤ dχ

(
ϕj , Pω

(
min

j+1≤�≤j+k
ϕ�

))

≤ dχ(ϕj , ϕj+1) + dχ

(
ϕj+1, Pω

(
min

j+1≤�≤j+k
ϕ�

))

≤ dχ(ϕj , ϕj+1) + dχ

(
ϕj+1, Pω

(
min

j+2≤�≤j+k
ϕ�

))

≤
j+k−1∑
�=j

dχ(ϕ�, ϕ�+1) ≤ 2−j+1.

We infer that k �→ ϕ−
j,k decreases, as k increases to +∞, to ϕ−

j ∈ Eχ(X, ω) with 
dχ(ϕj , ϕ

−
j ) ≤ 2−j+1. It follows that ϕj converges to ϕ quasi-monotonically and for all j, 

ϕj ≥ ψ := ϕ−
1 ∈ Eχ(X, ω). In particular ϕj converges to ϕ in capacity. �

3. Examples and remarks

3.1. Quasi-monotone convergence of Monge-Ampère potentials

Families of solutions to complex Monge-Ampère equations or flows provide natural 
examples of sequences which converge quasi-monotonically. We illustrate this here with 
two typical situations.

Example 3.1. Let μ be a non pluripolar probability measure. It follows from [27,20] that 
there exists a unique function ϕ ∈ E(X, ω) such that

MA(ϕ) = eϕμ.

[25, Theorem C] and Choquet’s lemma show that ϕ is the quasi-monotone limit of a 
sequence of functions ϕj ∈ E(X, ω) such that MA(ϕj) ≤ eϕjμ.
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We now consider smoothing properties of the Kähler-Ricci flow [28,23].

Example 3.2. Assume that X is a Calabi-Yau manifold and fix T0 = ω+ddcϕ0 a positive 
closed current with zero Lelong numbers which is cohomologous to ω. It has been shown 
in [28,23] that there exists a unique family of Kähler forms (ωt)t>0 on X, which evolve 
along the Kähler-Ricci flow

∂ωt

∂t
= −Ric(ωt),

and such that ωt → T0 as t → 0. The (normalized) potentials ϕt ∈ PSH(X, ω) of 
ωt = ω + ddcϕt are solutions of a complex Monge-Ampère flow,

(ω + ddcϕt)n = e∂tϕt+hωn,

and the convergence ϕt → ϕ0 at time zero is such that ϕt ≥ ϕ0 −A(t − t log t) for some 
constant A ≥ 0 [28, Lemma 2.9]. It follows that

ϕ−
t := Pω

(
inf

0<s≤t
ϕs

)
≥ ϕ0 −A(t− t log t),

hence the convergence of ϕt towards ϕ0 is quasi-monotone.

3.2. Intermediate convergences

We first provide examples of ω-psh functions ϕj such that ϕ−
j is identically −∞, while 

ϕj converges in capacity to some ω-psh function ϕ.

Example 3.3. Consider the Riemann sphere endowed with the Fubini-Study Kähler form 
(X, ω) = (P 1, ωFS). Then

ϕj [z] = log |z1 − τjz0| − log |z| −→ ϕ[z] = log |z1| − log |z|

if the τj ’s converge to 0, and Pω(min(ϕj , ϕj+1)) ≡ −∞ because functions in 
PSH(P 1, ωFS) can have at most one Lelong number of size 1. On the other hand 
the convergence of ϕj towards ϕ is uniform on compact subsets of P 1 \ [1 : 0], so the 
sequence converges in L1 and in capacity.

More generally if ψ ∈ PSH(Pn, ωFS) the set E1(ψ) = {x ∈ Pn, ν(ψ, x) ≥ 1} has to 
be included in a hyperplane [12, Proposition 2.2], so one can cook up similar examples 
for which ϕ−

j is identically −∞.

We now provide an example of a uniformly bounded sequence (ϕj) of ω-psh functions 
which converge to 0 in capacity with ϕ−

j ≡ −1. This shows that it is necessary to use 
extractions in Theorem 2.5.
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Example 3.4. Using local charts, we construct for each point a ∈ X a function Ga ∈
PSH(X, ω) which has a logarithmic singularity at point a.

Observe that max(Ga, −1) ≡ −1 in a neighborhood Va of a. We cover X by finitely 
many such neighborhoods V 1

a1,1
, . . . V 1

as1,1
. We similarly cover X by finitely many neigh-

borhoods V 2
a1,2

, . . . , V 2
as2,2

on which the function max(Ga/2, −1) is identically −1. The 
latter neighborhoods are smaller and we need more points.

We go on by induction, dividing at each step Ga by an extra factor 2, considering the 
family of functions max(Ga/2n, −1) at step n. We then label the corresponding sequence 
of functions (ϕj), so that ϕj = max(Ga/2n, −1) ∈ PSH(X, ω) for some aj = al,n with 
1 ≤ 
 ≤ sn and n = nj → +∞ as j → +∞. By construction we obtain ϕj ≥ −1
and ϕ−

j ≡ −1, since ϕ−
j lies below each function from a fixed step. On the other hand 

Gaj
/2nj → 0 in capacity, hence ϕj → 0 in capacity.

It has been observed by Cegrell in [9] that the Monge-Ampère operator is not con-
tinuous for the L1

loc-topology. The following is an explicit example of this phenomenon, 
adapted to the compact context.

Example 3.5. Assume (X, ω) = (P 2, ωFS) and consider

ϕj [z] = 1
j

max
(
log

∣∣∣zj0 + zj1 + zj2

∣∣∣ , log |z0|
)
− log |z|.

Observe that ϕj ∈ PSH(X, ω) is locally bounded outside the finite set

Fj = {[z] ∈ P 2, z0 = 0 & zj1 + zj2 = 0}

which is included in the circle S1 = {z0 = 0 & |z1| = |z2|}. Note also that ϕj converges 
in L1 to ϕ[z] = max0≤j≤2 log+ |zj | − log |z|. The Monge-Ampère measures MA(ϕj) are 
combination of Dirac masses at points of Fj and converge to the Haar measure on S1, 
while MA(ϕ) is the Haar measure on the torus

T 2 = {[z] ∈ P 2, |z0| = |z1| = |z2|}.

Thus ϕj does not converge in capacity to ϕ.

We finally compare the various types of convergence in energy classes.

Example 3.6. Assume (X, ω) = (P 1, ωFS) and consider

ϕj [z] = εj max(log |z1| − log |z|,−Cj) ∈ PSH(X,ω),

where 0 ≤ εj ≤ 1 and Cj ≥ 0. These examples are toric, so one can use the dictionary 
established in [14] to justify the following assertions:
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• ϕj → 0 in L1 iff it does so in capacity/quasi-monotonically iff εj → 0;
• ϕj → 0 in (Eχ(X, ω), dχ) iff εjχ(−εjCj) → 0.

By considering weights with arbitrarily slow growth, we conclude that ϕj → 0 in some 
(Eχ(X, ω), dχ) as soon as εj → 0, whatever the speed at which Cj ↗ +∞.

3.3. Concluding remarks

3.3.1. Independence on ω
Let ω̃ = ω + ddcρ be a Kähler form cohomologous to ω. Then ϕj ∈ PSH(X, ω) if 

and only if ψj = ϕj − ρ ∈ PSH(X, ω̃). We let the reader check that ϕj converges quasi-
monotonically if and only if so does ψj (and similarly for the other notions of strong 
convergence).

Assume now ω̃ is an arbitrary Kähler form. We want to compare notions of strong 
convergence with respect to ω and with respect to ω̃. We claim that these are essentially 
the same. Using ω + ω̃ as a third auxiliary form, we see that it suffices to treat the case 
when ω ≤ ω̃. The following are left to the reader:

• PSH(X, ω) ⊂ PSH(X, ω̃) and if ϕ ∈ Eχ(X, ω) then ϕ ∈ Eχ(X, ω̃);
• if ϕ ∈ Eχ(X, ω̃) then Pω(ϕ) ∈ Eχ(X, ω);
• ϕj ∈ PSH(X, ω) converges to ϕ ∈ PSH(X, ω) with respect to Capω if and only if 

it does so with respect to Capω̃;
• if ϕj ∈ PSH(X, ω) converges quasi-monotonically to ϕ ∈ PSH(X, ω), then the same 

property holds with respect to ω̃.

Adapting Example 3.3, one can find (ϕj) ∈ PSH(X, ω̃)N which converges quasi-
monotonically to ϕ ∈ PSH(X, ω̃) with Pω(inf�≥j ϕ�) ≡ −∞. This converse however 
holds if we assume an appropriate lower bound on the sequence.

In particular a uniformly bounded sequence ϕj ∈ PSH(X, ω) ∩PSH(X, ω̃) converges 
quasi-monotonically w.r.t. ω if and only if it does so w.r.t. ω̃.

3.3.2. Big classes and prescribed singularities
All notions introduced previously and all properties established so far can be adapted

to the case when the reference form ω is no longer Kähler, but merely a smooth closed 
real (1, 1)-form representing a big cohomology class. We refer the reader to [8] for basics 
of pluripotential theory in that context. One can also extend these results to the case of 
big classes with prescribed singularities, a theory that has been developed by Darvas-Di 
Nezza-Lu in [17,18] and further studied in [36,37].

3.3.3. The local setting
Let Ω be a pseudoconvex domain of Cn. We let PSH(Ω) denote the set of plurisub-

harmonic functions in Ω.
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Definition 3.7. A sequence (ϕj) of plurisubharmonic functions in Ω converges to ϕ ∈
PSH(Ω) quasi-monotonically if ϕ−

j := PΩ (inf�≥j ϕ�) increases to ϕ.

Here PΩ(h) denotes the largest plurisubharmonic function in Ω lying below h. Adapt-
ing what we have done in the compact case, we can establish that

• quasi-monotone convergence implies convergence in capacity;
• a sequence can converge in capacity but not quasi-monotonically;
• both notions essentially coincide for uniformly bounded sequences.

We leave the details to the reader.

Declaration of competing interest

None declared.

Data availability

No data was used for the research described in the article.

References

[1] E. Bedford, B.A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1–2) 
(1982) 1–40.

[2] R.J. Berman, S. Boucksom, P. Eyssidieux, V. Guedj, A. Zeriahi, Kähler-Einstein metrics and Kähler-
Ricci flow on log Fano varieties, J. Reine Angew. Math. 751 (2019) 27–89.

[3] R.J. Berman, S. Boucksom, V. Guedj, A. Zeriahi, A variational approach to complex Monge-Ampère 
equations, Publ. Math. IHÉS 117 (2013) 179–245.

[4] R.J. Berman, S. Boucksom, M. Jonsson, A variational approach to the Yau-Tian-Donaldson con-
jecture, J. Am. Math. Soc. (3) (2021) 605–652.

[5] R.J. Berman, T. Darvas, H.C. Lu, Convexity of the extended K-energy and the large time behavior 
of the weak Calabi flow, Geom. Topol. 21 (5) (2017) 2945–2988.

[6] Z. Blocki, Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad. Sci., Math. 41 (2) 
(1993) 151–157.

[7] Z. Blocki, The domain of definition of the complex Monge-Ampère operator, Am. J. Math. 128 (2) 
(2006) 519–530.

[8] S. Boucksom, P. Eyssidieux, V. Guedj, A. Zeriahi, Monge-Ampère equations in big cohomology 
classes, Acta Math. 205 (2) (2010) 199–262.

[9] U. Cegrell, Discontinuité de l’opérateur de Monge-Ampère complexe, C. R. Acad. Sci. Paris Sér. I 
Math. 296 (21) (1983) 869–871.

[10] U. Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier 
(Grenoble) 54 (1) (2004) 159–179.

[11] X.X. Chen, S. Donaldson, S. Sun, Kähler-Einstein metrics on Fano manifolds, I, II & III, J. Am. 
Math. Soc. 28 (2015) 183–197, 199–234 & 235–278.

[12] D. Coman, V. Guedj, Quasi-plurisubharmonic Green functions, J. Math. Pures Appl. 92 (2009) 
521–562.

[13] D. Coman, V. Guedj, A. Zeriahi, Domains of definition of Monge-Ampère operators on compact 
Kähler manifolds, Math. Z. 259 (2) (2008) 393–418.

[14] D. Coman, V. Guedj, S. Sahin, A. Zeriahi, Toric pluripotential theory, Ann. Pol. Math. 123 (1) 
(2019) 215–242.

http://refhub.elsevier.com/S0007-4497(23)00115-X/bibD3B5D9A8B76543E13D57DD78434B4DB5s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibD3B5D9A8B76543E13D57DD78434B4DB5s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibD4511D25A7D27862C49B549D84655821s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibD4511D25A7D27862C49B549D84655821s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibD9B1D2A366738B890C693D8A32D77DD0s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibD9B1D2A366738B890C693D8A32D77DD0s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib25E20E37B022BD9E5728F1C980430BC1s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib25E20E37B022BD9E5728F1C980430BC1s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib735A37702459087AF9F6CF7A9E64EDF4s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib735A37702459087AF9F6CF7A9E64EDF4s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib48A2015CB3CE4511F52E29002657EB14s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib48A2015CB3CE4511F52E29002657EB14s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib8EBEBB226848D45F0DBF0AF9B49B69DFs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib8EBEBB226848D45F0DBF0AF9B49B69DFs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibF43730A965B3AC436AFAA970C1DBC7BBs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibF43730A965B3AC436AFAA970C1DBC7BBs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib771B1849EFAA466E42A0BBA37705AE43s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib771B1849EFAA466E42A0BBA37705AE43s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib92371E01C14ACDA05AD88BC53C32EC90s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib92371E01C14ACDA05AD88BC53C32EC90s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibAEEBEF2785AEA4FC78CCE74DB406E7C0s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibAEEBEF2785AEA4FC78CCE74DB406E7C0s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib5ACDD98008A5B1BFDD36DE48EF122F00s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib5ACDD98008A5B1BFDD36DE48EF122F00s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibD882C746E7597E3B12E54BBA4A5EDD03s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibD882C746E7597E3B12E54BBA4A5EDD03s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibA0608132E6F5377BE2DCB9E3F4DCA961s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibA0608132E6F5377BE2DCB9E3F4DCA961s1


18 V. Guedj, A. Trusiani / Bull. Sci. math. 188 (2023) 103341
[15] T. Darvas, The Mabuchi geometry of finite energy classes, Adv. Math. 285 (2015) 182–219.
[16] T. Darvas, The Mabuchi geometry of low energy classes, Math. Ann. (2023), https://doi .org /10 .

1007 /s00208 -023 -02648 -0, in press.
[17] T. Darvas, E. Di Nezza, H.C. Lu, On the singularity type of full mass currents in big cohomology 

classes, Compos. Math. 154 (2) (2018) 380–409.
[18] T. Darvas, E. Di Nezza, H.C. Lu, The metric geometry of singularity types, J. Reine Angew. Math. 

771 (2021) 137–170.
[19] J.-P. Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 

1 (3) (1992) 361–409.
[20] S. Dinew, Uniqueness in E(X, ω), J. Funct. Anal. 256 (7) (2009) 2113–2122.
[21] S. Dinew, Pluripotential theory on compact Hermitian manifolds, Ann. Fac. Sci. Toulouse Math. 

(6) 25 (1) (2016) 91–139.
[22] S. Dinew, P.H. Hiep, Convergence in capacity on compact Kähler manifolds, Ann. Sc. Norm. Super. 

Pisa, Cl. Sci. (5) 11 (4) (2012) 903–919.
[23] E. Di Nezza, H.C. Lu, Uniqueness and short time regularity of the weak Kähler-Ricci flow, Adv. 

Math. 305 (2017) 953–993.
[24] S. Donaldson, Some recent developments in Kähler geometry and exceptional holonomy, in: Proc. 

Int. Cong. of Math., Rio de Janeiro 2018, vol. I, World Sci. Publ., 2018, pp. 425–451.
[25] V. Guedj, H.C. Lu, A. Zeriahi, Plurisubharmonic envelopes and supersolutions, J. Differ. Geom. 

113 (2) (2019) 273–313.
[26] V. Guedj, A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (4) (2005) 

607–639.
[27] V. Guedj, A. Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. 

Funct. Anal. 250 (2) (2007) 442–482.
[28] V. Guedj, A. Zeriahi, Regularizing properties of the Kähler-Ricci flow, J. Reine Angew. Math. 729 

(2017) 275–304.
[29] V. Guedj, A. Zeriahi, Degenerate Complex Monge-Ampère Equations, EMS Tracts in Mathematics, 

vol. 26, European Mathematical Society (EMS), Zürich, 2017.
[30] P. Gupta, A complete metric topology on relative low energy spaces, Math. Z. 303 (3) (2023) 56.
[31] P.H. Hiep, On the convergence in capacity on compact Kähler manifolds and its applications, Proc. 

Am. Math. Soc. 136 (6) (2008) 2007–2018.
[32] S. Kolodziej, The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 

52 (3) (2003) 667–686.
[33] C. Li, G-uniform stability and Kähler-Einstein metrics on Fano varieties, Invent. Math. 227 (2) 

(2022) 661–744.
[34] C. Li, G. Tian, F. Wang, On the Yau-Tian-Donaldson conjecture for singular Fano varieties, Com-

mun. Pure Appl. Math. (2020).
[35] Y. Liu, C. Xu, Z. Zhuang, Finite generation for valuations computing stability thresholds and 

applications to K-stability, Ann. Math. 196 (2) (2022) 507–566.
[36] A. Trusiani, L1 metric geometry of potentials with prescribed singularities on compact Kähler 

manifolds, J. Geom. Anal. 32 (2) (2022) 37.
[37] A. Trusiani, The strong topology of ω-plurisubharmonic functions, Anal. PDE 16 (2) (2023) 367–405.
[38] Y. Xing, Continuity of the complex Monge-Ampère operator, Proc. Am. Math. Soc. 124 (2) (1996) 

457–467.
[39] Y. Xing, Continuity of the complex Monge-Ampère operator on compact Kähler manifolds, Math. 

Z. 263 (2) (2009) 331–344.

http://refhub.elsevier.com/S0007-4497(23)00115-X/bib89A1B75F43876053EB600A3FD10A723Bs1
https://doi.org/10.1007/s00208-023-02648-0
https://doi.org/10.1007/s00208-023-02648-0
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib199B1D6A1ADD8BBE86C135A7BC6B5AD5s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib199B1D6A1ADD8BBE86C135A7BC6B5AD5s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibDA5094236D838C6941C6BA9CA1BBF9D3s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibDA5094236D838C6941C6BA9CA1BBF9D3s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib08626CFB1F6973CB9F63052875D49851s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib08626CFB1F6973CB9F63052875D49851s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibD1164A31F708B3BCF22EB0B05B4375FEs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibB2FD9779A6C8079881B42C73C4DA39CAs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibB2FD9779A6C8079881B42C73C4DA39CAs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibDA43DE19964BB80F6431FB1FFE4211E7s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibDA43DE19964BB80F6431FB1FFE4211E7s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib25DB4E8FCC76F1E96BE7A82964AF7CE6s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib25DB4E8FCC76F1E96BE7A82964AF7CE6s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibD70DC3C5563E80DAEA672034E97539EBs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibD70DC3C5563E80DAEA672034E97539EBs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib897F3EC2780158BD76D73F3DB004A351s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib897F3EC2780158BD76D73F3DB004A351s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib8C6EC9724290A58705413A9CF727A807s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib8C6EC9724290A58705413A9CF727A807s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibE42DD28AA21243364CA7CB581FA1B4DCs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibE42DD28AA21243364CA7CB581FA1B4DCs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib8EFCD2F16090ED19FF4FAAEE44FCDC76s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib8EFCD2F16090ED19FF4FAAEE44FCDC76s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib674906B12111C3A0BE837409CD5F66E9s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib674906B12111C3A0BE837409CD5F66E9s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibD409F50BA9DFD35EFF40B94B86BB6924s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibEEE0836FF182A822102A631CEFB873BAs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibEEE0836FF182A822102A631CEFB873BAs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib576FC02022A29CAAA88CCA694FC10676s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib576FC02022A29CAAA88CCA694FC10676s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibA027AABD496C4532CCC59994F024B0FFs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibA027AABD496C4532CCC59994F024B0FFs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib8F737404A60AF923CF4E6F055559FA42s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib8F737404A60AF923CF4E6F055559FA42s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibD22080AEC016035C9C9B20F39EBB7E06s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibD22080AEC016035C9C9B20F39EBB7E06s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib7B53D81953F28EF2362479717221D7FCs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib7B53D81953F28EF2362479717221D7FCs1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib111719766D10EE9CA5F186AF4D97D6B9s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib4B19A984D5C3821A3CAF310A12DEF2F1s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bib4B19A984D5C3821A3CAF310A12DEF2F1s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibF84A7E947B03E5B4B971A9E813E37F94s1
http://refhub.elsevier.com/S0007-4497(23)00115-X/bibF84A7E947B03E5B4B971A9E813E37F94s1

	Quasi-monotone convergence of plurisubharmonic functions
	0 Introduction
	Acknowledgments
	1 Capacity and energies
	1.1 Convergence in capacity
	1.1.1 Quasi-plurisubharmonic functions
	1.1.2 The Monge-Ampère capacity

	1.2 Finite energy topologies
	1.2.1 Finite energy classes
	1.2.2 Mabuchi geometry


	2 Quasi-monotone convergence
	2.1 Capacity vs quasi-monotonicity
	2.2 Finite energy sequences

	3 Examples and remarks
	3.1 Quasi-monotone convergence of Monge-Ampère potentials
	3.2 Intermediate convergences
	3.3 Concluding remarks
	3.3.1 Independence on ω
	3.3.2 Big classes and prescribed singularities
	3.3.3 The local setting


	Declaration of competing interest
	Data availability
	References


