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ABSTRACT

Context. The availability of large bandwidth receivers for millimeter radio telescopes allows for the acquisition of position-position-
frequency data cubes over a wide field of view and a broad frequency coverage. These cubes contain a lot of information on the physical,
chemical, and kinematical properties of the emitting gas. However, their large size coupled with an inhomogenous signal-to-noise ratio
(S/N) are major challenges for consistent analysis and interpretation.
Aims. We searched for a denoising method of the low S/N regions of the studied data cubes that would allow the low S/N emission to
be recovered without distorting the signals with a high S/N.
Methods. We performed an in-depth data analysis of the 13CO and C17O (1−0) data cubes obtained as part of the ORION-B large
program performed at the IRAM 30 m telescope. We analyzed the statistical properties of the noise and the evolution of the correlation
of the signal in a given frequency channel with that of the adjacent channels. This has allowed us to propose significant improvements
of typical autoassociative neural networks, often used to denoise hyperspectral Earth remote sensing data. Applying this method to the
13CO (1−0) cube, we were able to compare the denoised data with those derived with the multiple Gaussian fitting algorithm ROHSA,
considered as the state-of-the-art procedure for data line cubes.
Results. The nature of astronomical spectral data cubes is distinct from that of the hyperspectral data usually studied in the Earth
remote sensing literature because the observed intensities become statistically independent beyond a short channel separation. This
lack of redundancy in data has led us to adapt the method, notably by taking into account the sparsity of the signal along the spectral
axis. The application of the proposed algorithm leads to an increase in the S/N in voxels with a weak signal, while preserving the
spectral shape of the data in high S/N voxels.
Conclusions. The proposed algorithm that combines a detailed analysis of the noise statistics with an innovative autoencoder archi-
tecture is a promising path to denoise radio-astronomy line data cubes. In the future, exploring whether a better use of the spatial
correlations of the noise may further improve the denoising performances seems to be a promising avenue. In addition, dealing with
the multiplicative noise associated with the calibration uncertainty at high S/N would also be beneficial for such large data cubes.

Key words. methods: data analysis – methods: statistical – ISM: clouds – radio lines: ISM – techniques: image processing –
techniques: imaging spectroscopy

1. Introduction

The current generation of millimeter radio-astronomy receivers
is able to produce large spectro-imaging data cubes (about
106 pixels ×105 frequencies or 0.4 TB) at a sensitivity of 0.1 K
(per pixel of ∼9′′ × 9′′ × 0.5 km s−1 in about 1000 h of observ-
ing time at, for example, the IRAM (Institut de Radioastronomie
Millimétrique) 30m telescope (Pety et al. 2017). The next gener-
ation of receivers will be between 25 and 50 times faster (Pety
et al. 2022). Such projects will thus move from the category
of large programs, which are difficult to carry out because they
require more than 100 h of telescope time per semester, to typ-
ical programs that only require 20–40 h per semester. The main
challenges in interpreting these observations are the following:
(i) the noise level depends on the frequency, (ii) the emission
varies from bright unresolved sources to faint extended ones,
and (iii) the intricate gas kinematics of the emitting gas leads

to complex emission line profiles (non-Gaussian profiles, high
velocity line wings, self-absorptions, etc.), which vary from one
pixel to another. Increasing the signal-to-noise ratio (S/N), often
simply referred to as denoising, is an important step to lead to
new discoveries by enlarging the space of achieved observing
performances.

Denoising is an important topic in remote sensing, and many
methods and algorithms are found in the literature, for instance
principal component analysis (PCA, e.g., Wold et al. 1987),
kernel-PCA (e.g., Schölkopf et al. 1997), low rank tensor decom-
position (e.g., Harshman et al. 1970), and total variation meth-
ods (e.g., Vogel & Oman 1996). These methods try to compress
and uncompress the input data in a way that filters the noise but
retains the salient features of the signal. Among them, autoen-
coder neural networks are interesting algorithms because they
propose a generic nonlinear PCA, well adapted to hyperspec-
tral data in Earth remote sensing (Licciardi & Chanussot 2018).
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In this paper, we explore the statistical nature of signal and
noise in millimeter radio-astronomy cubes in order to understand
the adaptations of typical autoencoders, which are required to
efficiently denoise these cubes.

This article is organized as follows. Section 2 presents the
general problem of denoising and the particular case of denois-
ing by dimension reduction. Section 3 details the acquisition pro-
cesses that directly affect the properties of the noise. Sections 4
and 5 characterize the signal and noise properties for the studied
line data cubes. The intrinsic dimension of the signal is deter-
mined in Sect. 6. Section 7 presents the modifications proposed
to typical autoencoder neural networks to better handle radio-
astronomy line cubes. The obtained denoising performances are
then compared with the state-of-the-art Regularized Optimiza-
tion for Hyper-Spectral Analysis (ROHSA) algorithm in Sect. 8.
Section 9 summarizes the conclusions.

2. Denoising by dimension reduction

2.1. Definition of a denoising algorithm

The observed data d are noisy observations of the astronomical
signal s

d = f (s), (1)

where f is a known function that describes the observing process
with its random component considered as noise. Denoising com-
putes an estimate ŝ of the signal based on prior knowledge of the
deterministic and random part of the function f . This study will
be restricted to the case where the response f of the telescope is
linear

d = c · s + n, (2)

where n is one realization of an additive random variable N, and
c is one realization of a multiplicative random variable C. The
variables N and C are centered on 0 and 1, respectively. In radio-
astronomy, N represents the thermal noise, and C the calibration
noise associated to the uncertain determination of the calibration
parameters (see Sect. 5). It is often assumed that the calibration
uncertainty is negligible. In this case, the performance of the
denoising estimator can be characterized by the improvement of
the S/N.

2.2. Supervised versus self-supervised methods

In machine learning, denoising algorithms belong to two main
categories.

Supervised methods. that use a set of known (d, s) couples,
called a training set, to train the algorithm to estimate s from the
measured values of d. When available, ground truth data are the
best choice to build the training set. In astrophysics, numerical
simulations based on physical laws and laboratory experiments
are used as surrogates. The simplifications required to be able to
describe a complicated reality may bias the denoising.

Self-supervised methods. consider that data are both the
measurements (features) and ground truth (labels). Additional
constraints on the denoising process are required to avoid deliv-
ering the data itself as the denoised estimate of the signal. A
common assumption is that the signal s is located in a lower

dimension space than the observed data d. The idea is that the
intrinsic dimension of the signal space is lower than its extrinsic
dimension. For instance, we shall assume that the data are com-
posed of three features (d1, d2, d3) with four different samples for
each of the feature, as in

[d1, d2, d3] =


2 1 1
1 −2 1
5 6 4
2 −8 4

 . (3)

The extrinsic dimension is three, that is the number of features.
But its intrinsic dimension is only two. Indeed, the values of the
features (i.e., the first, second, and third columns of the above
matrix) are deterministically linked to two independent variables
u and v through

d1 = u + v, d2 = uv, and d3 = u2, (4)

where [u, v] =


1 1
−1 2

2 3
−2 4

 . (5)

Any algorithm that is able to deduce the above relations from the
measured data would enable one to compress it because only two
numbers per sample are required to encode the three features.
But it would also enable one to denoise the data. Indeed, in the
presence of noise, knowing the relationship that exists between
the features, will enable us to consider the measurement of the
three features as three independent measurements of the same
two underlying variables u, v, and thus to increase the S/N of the
estimated signal.

2.3. Generic denoising by dimension reduction

2.3.1. Principle

Denoising by dimension reduction aims at mapping the data with
an encoder function E : Rm −→ Rl with l < m, so that ϕ = E(d)
contains all the salient features ϕ of the signal of interest s
and filters out the noise. The fact that l < m implies that the
encoder compresses the data. Another function, named decoder
D : Rl −→ Rm, estimates the signal s from its salient features
without loss. The estimated signal should preserve the relevant
physical information from the astronomical source, and it should
have an increased S/N. The spaces Rm and Rl are thus called
data and bottleneck (or latent) spaces, respectively. The denois-
ing will be all the better when l ≪ m, and the signal is extracted
without distortion.

In astrophysics, denoising can be achieved with two differ-
ent approaches. First, astronomers may just wish to improve the
S/N of the measurements to ease the extraction of the phys-
ical information in a second step. The structure and unit of
the estimated signal stay unchanged. Second, astronomers may
directly try to estimate the physical parameters (e.g., the source
geometry and kinematics, the volume and column density, the
kinetic temperature, the far-UV illumination, the Mach number,
the magnetic field, chemical abundances, etc.), which best fit the
measured data. In this case, the significant physical and chem-
ical processes are selected, and their corresponding laws allow
one to fit the data. The salient features ϕ are the physical param-
eters of interest. While this study will use the first approach,
an interesting challenge of denoising algorithms by dimension
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reduction is to enable astrophysicists to relate the delivered
salient features to the physical quantities of interest. For instance,
Gratier et al. (2017) showed that the first component of the PCA
of the integrated intensities of a set of lines is related to the gas
column density.

2.3.2. In practice

Denoising by dimension reduction is thus based on a structure
linking data d, estimated signal ŝ, and salient features ϕ as

d(i1, ..., im)
E−→ ϕ( j1, ..., jl)

D−→ ŝ(i1, ..., im), with l < m. (6)

In principle, the level of distorsion should be measured as the
distance between s and ŝ. However, it is impossible here because
astronomical observations of the interstellar medium do not pro-
vide ground truth. We thus replace ŝ by s in the reminder
of the paper for the sake of simplicity. In this representation,
(i1, ..., im) are the spectral channels of the observed intensities,
while ( j1, ..., jl) are the indices of the salient features. The global
denoising functionA, often called autoencoder, is defined as

d
A=D◦E−−−−−−→ s. (7)

It is just the composition of the E and D functions. The func-
tions E and D are not exactly inverse of each other. Indeed, in
order to denoise, the function Emust filter out the noise. In other
words, we expect that the function E will transform a random
variable D of a large variance into a random variable Φ of a low
variance. There is no such requirement for the function D. For
instance, denoising can sometimes be achieved through the asso-
ciation of PCA, which is a linear inversible transformation, with
a low dimensional projection. After the application of the PCA
to the data, the components that better explain the correlations
of the original data are kept and the other ones are set to zero,
before inversing the PCA transformation. In this case, D is the
inverse of the PCA, while E is the PCA itself followed by a non-
linear function that sets the noisiest (least informative from the
signal viewpoint) components to zero. In this case, the reduction
of dimensionality is obtained by enforcing a low dimensional
bottleneck with the direct transform before applying the inverse
transform.

To achieve the denoising, it is necessary to estimate the best
functions E and D in terms of quality of reconstruction of the
data for a given dimensionality of the bottleneck space.

Sampling the data. Finding functions by numerical means
first implies to correctly sample the manifold that links their
input and output values. In other words, the algorithm must be
trained with many (e.g., K) samples of the data d. This is subject
to interpretation. In our case, the data are one position-position-
channel cube d(ix, iy.ic), where ix, iy, and ic are the position of a
pixel along the position and channel axes. This data cube can be
seen as a set of images dima

ic
(ix, iy), or a set of spectra dspe

ix,iy
(ic). The

molecular line profiles are broadened by the gas motions along
the line of sight. Optically thin lines deliver an approximation of
the probability distribution function (PDF) of the velocity com-
ponent parallel to the line of sight. As the interstellar medium is
highly turbulent, the different spectra of one cube can be seen
as the PDFs of many realizations of the underlying turbulent
velocity field. This is the viewpoint used in this article.

Measuring the distance between s and d over all the
samples. Our goal is to find a single pair of functions (E,D)
that correctly autoencodes all the samples of the data (all the
spectra in our case). The distance between s and d is quantified
with the mean squared error (MSE) between d and s over all the
samples

MSE(s, d) =
1
K

K∑
k=1

(sk − dk)2 . (8)

The denoising problem can then be recast as an optimization
problem whose goal is to find the functionA that will minimize
the distance between s = A(d) and d, that is

Â = arg min
A
L(A, dk), (9)

with L(A, d) =
1
K

K∑
k=1

[A(dk) − dk]2 . (10)

L is often called the loss function.

We now need to define the family of functions from which A
will be selected. Several ways can be used to reach this goal.

Using generic function approximators. Such as artificial
neural networks. This will be our choice in this paper (see
Sect. 6).

Using specific classes of function. For instance, Marchal
et al. (2019) propose to fit the spectra as a finite set of Gaus-
sian functions whose parameters (amplitude, position, full width
at half maximum) can be spatially regularized. This methods
is named ROHSA that stands for Regularized Optimization for
Hyper-Spectral Analysis. In this case, D is a sum of Gaussians,
E is the fitting algorithm, and the loss function is regularized as

L(A, d) = MSE(A(d), d) +
1
K

K∑
k=1

R(k), with (11)

R(k) =
∑
g=1,G

{
λa

∣∣∣∣∣∣K ∗ ag
∣∣∣∣∣∣2

2 + λµ
∣∣∣∣∣∣K ∗ µg∣∣∣∣∣∣22 + λσ ∣∣∣∣∣∣K ∗ σg∣∣∣∣∣∣22} ,

(12)

where K is a 2D convolution kernel that computes the sec-
ond order differences, and λa, λµ, and λσ are the Lagrangian
multipliers associated with convolved images of the amplitudes
ag, positions µg, and standard deviations σg of the G Gaussian
functions. The value of these multipliers needs to be fixed.

3. Acquisition of radio-astronomy spectral line
cubes by a ground-based single-dish telescope

A detailed analysis of the radio-astronomical data is of criti-
cal importance to understand the specificities of the considered
data and thus propose adequate optimizations for the denoising
autoencoder. To do this, we first describe the acquisition of the
data in detail to emphasize all the phenomena that will impact
the properties of the recorded signal and noise.
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3.1. The ORION-B IRAM 30 m Large Program

The ORION-B project (Outstanding Radio-Imaging of OrioN-B,
co-PIs: J. Pety and M. Gerin) is a large program of the IRAM
30 meter telescope that aims to improve our understanding of
physical and chemical processes of the interstellar medium by
mapping about half of the Orion B molecular cloud over ∼85%
of the 3 mm atmospheric window. The ORION-B field of view
covers five square degrees at a typical angular resolution of 27′′
(or 50 mpc at a distance of 400 pc), or about 8× 104 independent
lines of sight.

It uses the EMIR heterodyne receivers (Carter et al. 2012)
coupled with the Fourier Transform Spectrometers (Klein et al.
2006, 2012) that instantaneously deliver two spectra per polar-
ization of 7.8 GHz-bandwidth sampled every 195 kHz. These two
spectra, named lower and upper side-bands, are separated by
7.9 GHz. The local oscillator of the heterodyne receiver can be
tuned at 3 mm from 82.0 to 107 GHz. This enables a frequency
coverage ranging from 70.7 to 118.3 GHz in a few successive
observations. Moreover, the horizontal and vertical polarizations
are recorded and averaged. This delivers the total intensity of the
source (independent of the polarization state). It also allows us to
gain a factor of two on the acquisition time compared to record-
ing a single polarization state and assuming that the signal is
unpolarized.

The ORION-B large program delivers a total bandwidth of
about 40 GHz at a channel spacing of δ f = 195 kHz, that is
about 200 000 channels. The spectral resolving power (defined
as f /δ f , where f is the observing frequency) increases from
3.6 × 105 to 6.0 × 105 with increasing frequency in the 3 mm
wavelength range. This huge resolving power allows radio-
astronomers to resolve the profiles from emission lines of chemi-
cal tracers of the molecular gas, for instance, the J = 1−0 lines of
the isotopologues of carbon monoxide: 12CO, 13CO, C18O, and
C17O.

3.2. Scanning strategy

The heterodyne receivers currently available at the IRAM
30 meter telescope can only record the emission toward a single
direction of the sky at any time. They are thus called single-beam
receivers. To make an image with such a detector, we need to
scan the sky at a constant angular velocity along lines of con-
stant right ascension or declination. The signal is continuously
recorded and dumped at regular time intervals. This observing
mode is called on-the-fly observations.

The data consist of a set of spectra that cover the target
field of view in a set of parallel lines. The angular distance (∆θ)
between the lines is set to satisfy the Nyquist sampling criterion

∆θ =
λ

2 D
, (13)

where λ is the smallest observed wavelength, and D is the single-
dish telescope diameter (30 m here).

The resulting telescope response is slightly elongated along
the scanning direction because it is convolved along this direc-
tion with a boxcar filter whose size corresponds to the angular
size scanned during the integration time (Mangum et al. 2007).
To minimize this effect, it is desirable that the telescope has
moved only by a small fraction of its natural response during
one integration. We choose to dump the data 5 times over the
angular scale corresponding to the telescope natural beamwidth

θ = 1.2
λ

D
. (14)

Table 1. Studied molecular lines.

Species Transition Rest frequency
(GHz)

13CO J = 1−0 110.201354
C17O J = 1−0 112.358982

We use the minimum sampling time that the computer system is
able to sustain during the typical duration of an observing ses-
sion, for instance 8 h. With a dump time of 0.25 s, a scanning
speed of 17′′/s ensures a sampling of 5 dumps per beam along
the scanning direction at the 21.2′′ resolution reached at the
highest observed frequency for the used tuning, that is 116 GHz.
The spatial sampling rates along and across the scanning direc-
tion are adapted to the highest frequencies of each individual
tunings.

Only one scanning direction per tuning was observed in order
to maximize the observed field of view in the allocated telescope
time. The usual redundancy between horizontal and vertical
scanning coverages could thus not be exploited to improve the
denoising algorithm.

3.3. Calibration

Appendix B describes the methods used to calibrate the data.
Under perfect conditions, the calibrated spectrum, S cal, can be
written as

S cal( f , θl, θm) = Tsys ( f , θl, θm, θl0, θm0)
{

ON( f , θl, θm)
REF( f , θl0, θm0)

− 1
}
,

(15)

where Tsys( f ) is the system temperature during the observation,
ON( f , θl, θm) is the spectra on-source at the position (θl, θm), and
REF( f , θl0, θm0) is a reference spectrum observed at a fixed posi-
tion (θl0, θm0) of the sky where the source does not emit. This
reference spectrum is used 1) to correct for the shape of the
frequency bandpass, and 2) to subtract the contribution of the
atmosphere to the measured signal. The RMS noise level will be
directly proportional to the system temperature that is the cali-
bration factor needed to get the right intensity units. Using the
same reference spectrum for several adjacent pixels introduces
a slight spatial correlation in the noise properties. Section 5.2
characterizes this in detail.

3.4. Spectral resampling and spatial gridding

We wish to study the variations of the emission of a given
line as a function of the position on the sky. We thus need to
obtain a position-position-frequency cube centered around the
line rest frequency in the source rest frame (see Table 1), which
is tagged by the typical velocity of the source in the LSRK frame.
However, the gas in a molecular cloud experiences turbulent
motions. These hypersonic motions imply a combination of a
broadening of the linewidth compared to the natural thermal
linewidth and a shift in frequency of the line peak due to the
Doppler effect associated with the large scale velocity gradients.
Both effects are used to probe the kinematics of the molecular
gas where star forms (see, e.g., Orkisz et al. 2017, 2019; Gaudel
et al. 2023).

In order to study the kinematics of the gas traced by different
molecules, it is easier to compare spectral line cubes that share
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the same spatial and velocity grid. Appendix A describes the
impact of the Doppler effect on radio-astronomy line cubes. The
velocity axis is linked to the frequency axis through Eq. (A.1).
In particular, the velocity resolution associated for a given line is
inversely proportional to the line rest frequency for a spectrum
regularly sampled in frequency. Getting the same velocity axis
for the different tracers around their rest frequencies requires
resampling the spectra in velocity. We choose to resample all
the spectra to 0.5 km s−1, which corresponds to the spectrome-
ter velocity channel spacing at the highest observed frequency
in our data, that is the frequency of the 12CO (1−0) line. This
means that all other spectral line cubes will be oversampled
along the spectral axis. As the imperfect Doppler tracking also
implies a resampling of the spectral axis, we correct for both
effects in a single resampling step. This resampling is done
by simple linear split (or integration) of the adjacent channels
when the target spectral resolution is narrower (or respectively
wider) than the original one. This ensures that the line flux is
conserved.

At this point, the data are thus a set of spectra regularly sam-
pled on the same velocity grid. They are also regularly sampled
spatially but with small spatial shifts between two rows along the
scanned direction because the data acquisition only starts when
the telescope scanning velocity is constant, and this event has a
relatively uncertain position on the sky for each line. We thus
need to “grid” the spectra on a regular spatial grid. This is done
through a convolution with a Gaussian kernel of full width at half
maximum approximately one-third of the IRAM 30 m telescope
beamwidth at the considered rest line frequency. This operation
conserves the flux and degrades the telescope point spread func-
tion width by ∼9%. Here again we choose the same spatial grid
for all the lines. We set the pixel size of 9′′ in order to com-
ply with the Nyquist criterion for the studied line that has the
highest frequency. The other spectral line cubes will be spatially
oversampled.

We now end up with one position-position-velocity cube per
studied line. Each cube contains 240 velocity channels times
1074×758 pixels. The size of the voxels are 9′′×9′′×0.5 km s−1.
The velocity axis is centered around the rest frequency of the
associated line. While the spatial and spectral grid are common
to all cubes, the spatial and spectral response inversely scales as
the line rest frequency. To ease the computation of line ratios,
the cubes are often convolved with a Gaussian kernel to reach
the same angular resolution as the telescope response of the line
that has the smallest rest frequency. This is the case for the cubes
provided in the first public data release of the ORION-B project1,
where the provided cubes are smoothed to a common resolution
of 31′′. In contrast, no action is in general taken to get a common
spectral resolution because a large fraction of the analysis just
relies on the intensity integrated on the full line profile.

4. Properties of the signal in two ORION-B spectral
line cubes

We here analyze the signal properties of two radio-astronomy
line cubes from the ORION-B dataset (namely, the 13CO J = 1−0
and C17O J = 1−0 cubes2). This analysis will lay out the ground
for the innovations proposed in Sect. 7.

1 It is available on the IRAM large program archive at https://oms.
iram.fr/?dms=frontpage
2 These cubes are available on the ORION-B project web page at
https://www.iram.fr/~pety/ORION-B/data.html

Fig. 1. Comparison of mean intensity images between two radio-
astronomy lines.

4.1. Spatial and spectral means

A spectral cube contains two spatial dimensions and a spectral
dimension. Figure 1 compares the map of the emission averaged
over the spectral axis for the two cubes. The most obvious differ-
ences are the intensity dynamics (defined as the ratio of the cube
peak intensity to the typical noise level) and the S/Ns. The 13CO
(1−0) mean emission has an intensity dynamic of at least a factor
10. But a fraction of the voxels of the 13CO (1−0) cube still lies at
S/N lower than 5. The C17O (1−0) mean emission mostly looks
like noise. Only an astronomer knowing the shape of the source
may guess the existence of some signal on the southeastern part
of the image near NGC 2023 and NGC 2024.

Figure 2 compares the spectra averaged over the observed
field of view, as well as the minimum and maximum spectra for
the two cubes. The line signal is sparse along the spectral axis:
The mean spectra of the line cubes show signal only between
about −0.5 and 16.0 km s−1, that is a small fraction of the mea-
sured channels. These spectra confirm the difference already
seen for the intensity dynamics and S/Ns. The sparsity of the
line signal along the spectral axis allows us to estimate the noise
level. Assuming that the noise follows a centered Gaussian dis-
tribution of RMS σ, the difference between the minimum and
maximum spectra is 6σ for 99.7% of the samples. This gives
a typical noise level of about 0.1 K in our case. The dynamical
range of the line cubes are thus on the order of 430 and 20 for
the 13CO (1−0) and C17O (1−0) lines, respectively. The spectra
in the C17O (1−0) cube must be spatially averaged in order to
clearly detect a mean spectrum because the typical S/N of this
cube is on the order of 1.

4.2. Histograms of the measured intensities

Figure 3 compares the histograms of the intensities for the two
cubes. On each panel, three noise histograms are displayed: The
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Fig. 2. Comparison of intensity spectra between the two radio-
astronomy lines. The spectra show the mean (top), minimum and
maximum (bottom) intensity as a function of the channel velocity or
number. The vertical dashed red lines show the channels whose spa-
tial distribution is plotted on Fig. 4. The vertical dotted lines on the
radio-astronomy spectra separate the signal channels from the noise-
only ones.

black one uses all the channels, while the green and red ones
use the channel with mostly signal or noise, respectively. The
left column shows the histograms over the full interval of inten-
sities. These “signal” histograms show that the bright end of the
13CO (1−0) intensities follow an exponential distribution. The
right column zooms in over the faint intensity edge of the his-
togram. These two “noise” histograms are close to a Gaussian
distribution. They are centered on zero by construction because
of the baseline removal.

4.3. Signal redundancy among the channels

Figure 4 compares the spatial distribution of the signal for two
channels of the 13CO (1−0) cube. The two chosen channels are
displayed as the red vertical lines in Fig. 2. They are centered
on the two main velocity components of the Orion B molecular
cloud (Pety et al. 2017). These channels display different spa-
tial patterns and are thus quasi-independent. In other words, the
knowledge of the first pattern provides no information on the
shape of the second pattern.

To better quantify this phenomenon, we compute the Pear-
son correlation coefficient and the mutual information between
each pair of channels. The former highlights linear relationships
between two channels while the latter is able to capture both
linear and nonlinear relationships. The absence of a linear cor-
relation does not mean either independence or the absence of

Fig. 3. Comparison of the histograms of the intensity of the two radio-
astronomy lines. The left column shows the full intensity dynamical
range, while the right column zoom on faint intensity. The black his-
togram is computed over all the data channels. The red and green
histograms are computed over the channel ranges that contains either
mostly noise or high signal-to-noise ratio intensity, respectively.

Fig. 4. Velocity channels at 6 and 10 km s−1 of 13CO (1−0). The corre-
sponding channels are displayed as vertical dashed red lines in Fig. 2.

redundancy to be exploited for information extraction. The com-
putation of the mutual information is thus desirable because, as
shown by Licciardi & Chanussot (2018), the relations between
the channels of hyperspectral cubes are sometimes strongly
nonlinear. It quantifies whether one can predict one quantity
knowing the other one, even though the relationship is nonlin-
ear. It is equal to 0 if and only if both variables are statistically
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independent. More details are given in Appendix F. The mutual
information is numerically computed by approximating the joint
distribution with nearest neighbors (Kraskov et al. 2004). In
order to have homogeneous and comparable results, we express
the correlation coefficient in bits of information as the mutual
information (Gelfand & Yaglom 1959). If ρ(X,Y) is the Pear-
son correlation coefficient between X and Y , it can be expressed
in bits of information through I =−0.5 log2

[
1 − ρ(X,Y)2

]
.

This quantity diverges when the relationship between the
two variables is deterministic. We thus blank the diagonal
coefficients.

The top panel of Fig. 5 shows the linear relation between
two channels. The linear correlation of the 13CO (1−0) cube
has significant values only in two regions: 1) along the diagonal
because the spectral response of the radio-astronomy spectrom-
eter is slightly larger than one channel (see Sect. 5.3), and 2)
for the [3.15 km s−1] velocity range, where the signal sits. The
bottom panel of Fig. 5 shows the image of mutual information
that quantifies any relation. Large values of the mutual infor-
mation gather into two main groups related to the two velocity
components of the Orion B cloud at 6 km s−1 and 11 km s−1.
Moreover, there is a faint correlation between the two main
velocity ranges. In the signal region, the coefficient values fall
by a factor of ∼10 at a typical distance of 3 or 4 channels.
We call this distance mutual information scale in Sect. 6.5.
In other words, the mutual information scale is small for the
13CO (1−0) cube.

5. Noise properties

We next characterize the noise properties inside the acquired
radio-astronomical cubes. In particular we compute the noise
spatial and spectral power density3.

5.1. Spatial and spectral levels

To estimate the noise levels, we assume that the spatial and spec-
tral variations of the noise are independent of each other, as
proposed by Leroy et al. (2021). The noise RMS can then be
factored as

σ(ix, iy, ic) = σspe(ix, iy) . σspa(ic), (16)

where σspe(ix, iy) and σspa(ic) represent the spatial and spectral
variation of the noise RMS computed along the spectral and spa-
tial axes, respectively. We start by computing the noise RMS of
the channels for each pixel on channels that are devoid of signal.
We then divide the signal cube by the spatial variations of the
spectral RMS, σspe(ix, iy), and we compute the RMS per channel
after masking regions where signal is detected (see Sect. 7.3).
Moreover, we compute the standard deviation of the RMS as
σ/
√

2s where s is the number of samples used.
The top panel of Fig. 6 shows the map of the noise spectral

RMS, normalized by its median value, for the C17O (1−0) cube.
We do not show the result for the 13CO (1−0) cube because it is
similar to the result for the C17O (1−0) cube. The noise map has
an obvious inhomogeneous spatial distribution with mostly ver-
tical stripes organized in squares. This reflects the acquisition
3 To be precise, we could use the complete formulation, noise spatial
and spectral power spectral density. This however introduces a confu-
sion between the spectral (frequency, wavelength, or velocity) axis of
astronomy cubes and the spectral density that refers to computations in
the Fourier plane. We thus choose to remove spectral in power spectral
density.
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Fig. 5. Amount of information shared between channels for the
13CO(1−0) data cube. The top row shows information related only to
linear relationship, while the bottom row shows information related to
any type of relation (i.e., the mutual information).

scheme, where a single pixel detector is scanned along verti-
cal lines of size of ∼1000′′ inside squares. The noise pattern
evolves from left to right because the scanning strategy was opti-
mized during the acquisition of the ORION-B large program
data. For instance, in the middle of the acquisition we tried to
organize the approximately 1000′′-long scans into long vertical
lines instead of squares. However, this increased the striping in
the signal images. We thus decided to come back to an acqui-
sition in consecutive squares to ensure a better continuity of
the signal.

The noise comes mostly from the atmosphere contribution
to the measured power in radio-astronomy (see Appendix C.1).
This implies that the noise level follows to first order the qual-
ity of the weather. A dry atmosphere during winter observations
improve the noise level by a typical factor of approximately 1.5
over summer observations for the two studied lines. This is the
origin of the large variations of the noise level from one square
to another. The amount of atmosphere that emits depends on
the source elevation. It is minimum at zenith and maximum
when the source rises and sets. Thus, the noise level also fol-
lows the elevation of the telescope at constant weather, and this
is the main origin of the noise level regular variations inside
each square.

The bottom panel of Fig. 6 shows the variations of the spatial
RMS of the noise with the velocity. The line cubes show spectral
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Fig. 6. Noise spatial (top) and spectral (bottom) variations for the C17O
(1−0) line cube. The spatial maps were normalized by the median noise
value. The red region in the bottom panels shows the 3σ uncertainty
interval of the computation.

variations of the noise between −2 and +4% with two character-
istic patterns. First, there is an oscillating pattern that directly
comes from the resampling of the spectra along the spectral
axis. Superimposed, there is also an increase of the noise level
of about 2% following more or less a boxcar function between
−10 and +30 km s−1. This is related to the baseline removal step
during the reduction. This step is required to remove remaining
atmospheric residual signal after the atmosphere calibration. It is
done by fitting a Chebyshev polynomial of low order outside the
velocity window where the signal appears with some margin to
avoid biasing the baseline by signal at low S/N in the line wings.
The baseline substracted inside the signal window is then inter-
polated using the fitted Chebyshev coefficients. We here used
a polynomial order of degree 1 outside the [−10,+30 km s−1]
signal window.

5.2. Noise spatial power density

We first compute the spatial 2D Fourier transform of the
C17O (1−0) cube for 90 channels devoid of signal, from −50
to −5 km s−1. We then compute the square of the modulus of
the Fourier transform, and we finally average the 90 resulting
images. This gives an estimation of the noise spatial power
density.

We use the radio-astronomy convention to define the conju-
gate coordinates of the angular coordinates (θl, θm) relative to the

projection center of the image as (u, v) with

u θl = λ, and v θm = λ, (17)

where λ is the wavelength of the observed line. In our case,
λ = 2.67 mm. The conjugate planes are called image and uv
planes, respectively. The (θl, θm) and (u, v) coordinates are
expressed in radian and meter, respectively.

The first column of Fig. 7 shows the obtained noise spatial
power density. For a perfect measurement, we expect to recover
an image proportional to |F [B]|2, that is the square of the mod-
ulus of the Fourier transform of the point spread function of the
telescope B. While |F [B]|2 should show a radial symmetry to
first order, we obtain a spatial power density that is dominated
by a structure elongated along the u axis. This structure comes
from correlations in the observed noise between all the spectra
belonging to the same subscan (scanned vertically in this case).

Appendix C shows that the noise spatial power density is to
first order equal to P (u, v) ≃ P on(u, v) + P ref(u, v), with

P on(u, v) = Apix

(
σon

σ

)2 ∣∣∣F [B]
∣∣∣2(u, v), (18)

and

P ref(u, v) = Arect

(
σref

σ

)2
[
sinC

(
∆θl u
λ

)
sinC

(
∆θm v

λ

)]2

. (19)

In these equations, Apix and Arect = ∆θl∆θm are the respective
areas of the image pixel and of any rectangle that shares the

same reference measurement. Moreover, σ =
√
σ2

on + σ
2
ref , and

σon and σref are the typical standard deviation of the noise on
source and on reference, respectively.

The second and third columns of Fig. 7 show the resulting
model, and the ratio of the measured and modeled noise spa-
tial power density in logarithmic scale. In the studied case, the
modeling holds for most of the uv plane.

5.3. Noise spectral power density

Figure 8 shows the noise spectral power density and the noise
autocorrelation. To get them, we first compute the 1D Fourier
transform along the frequency axis for the same subcube devoid
of signal. We then compute the square of the modulus of the
Fourier transform, and we average results over the pixels. The
autocorrelation function of the noise is estimated by calculating
the inverse Fourier transform of the spectral power density.

The autocorrelation shows that the correlation between
two channels x[ f ] and x[ f + δ f ] becomes zero when
|δ f | > 2 × 183.80 kHz. This fact leads us to model the noise
spectral autocorrelation with the autocorrelation of a symmet-
ric finite impulse response filter of the form h = [a b a], with
the constraint 2a2 + b2 = 1 in order to preserve the signal power.
The curve on Fig. 8 shows five nonzero values because it
corresponds to the autocorrelation of the filter. We estimate
h = [0.18 0.97 0.18] for the 13CO (1−0) and C17O (1−0) spec-
tral cubes. The good fit of the noise autocorrelation with the
autocorrelation of this filter indicates that the noises of pair of
channels separated by more than two channels are uncorrelated.
The estimated filter can be used to simulate noise with a similar
spectral power density.
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Fig. 7. Comparison between the measured (left) and modeled (middle) noise spatial power density, and their ratios (right) in logarithmic scale. The
top row shows the spatial power densities for all scales, while the bottom row zooms in on the large spatial scales.
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Fig. 8. Comparison between the measured (plain line) and modeled
(dashed line) spectral power density (left) and autocorrelation function
(right).

5.4. Noise PDFs at low and large S/N

The measured intensity at pixel i j and velocity channel c is given
by

Iijc =
(
1 + ϵi j

) [
S ijc + Nijc

]
, (20)

where S ijc is the signal from the source, Nijc the additive noise
coming mostly from the atmosphere and the receiver, and ϵi j
the relative uncertainty on the calibration gain. We assume that
ϵi j is mostly constant over the narrow-band spectra used here.
The values of Nijc and ϵi j are drawn from two centered nor-
mal distributions of standard deviation σi jc and Σ, respectively.
Depending on the observed atmospheric window (3 or 1 mm),
the values of Σ range from 0.05 to 0.1, so ϵi j ≪ 1 (for details,
see the Appendix D). Thus, there are two main different limiting
regimes that depend on the S/N

Iijc ∼ S ijc + Nijc when S ijc ≪ Nij,

log Iijc ∼ log S ijc + ϵi j when S ijc ≫ Nijc.

At low S/Ns, we can neglect the uncertainty of the calibration,
and the additive noise dominates the uncertainty budget. In con-
trast, at a high S/N, we can neglect the additive noise, and the
uncertainty budget is dominated by the multiplicative noise with
log

(
1 + ϵi j

)
∼ ϵi j.

6. The autoencoder neural network as a generic
method of dimension reduction

In this section, we introduce a deep learning method called
autoencoder neural network. We present its default architecture
and operation. We then use it to compute the amount of redun-
dancy available in the input dataset. In the next section, we tailor
it for molecular line cubes based on the data analysis performed
in Sect. 3.

6.1. Neural networks

Artificial neural networks are a class of statistical machine
learning methods that were originally designed to simulate
the behavior of the brain. Today, they are widely used in data
science because they allow any nonlinear functions in high
dimensional spaces to be modeled easily. More precisely,
we use architectures derived from the multilayer perceptron
(Shalev-Shwartz & Ben-David 2014). Multilayer perceptrons
are composed of a succession of matrix products and nonlinear
functions called activation functions. They are interesting
because they are universal approximators of any continuous
function when they have at least one hidden layer and this layer
contains enough neurons (Hornik et al. 1989). Appendix E gives
more details.

The modeling of a nonlinear function by a neural network
can be considered as a global optimization problem that is solved
through stochastic gradient descent. The user specifies a loss
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Fig. 9. Example of an autoencoder neural network. Each column rep-
resents a neuron layer. Each arrow represents a connection between the
neuron layers. The first and last layers are composed from the measured
and denoised intensities of a spectrum at the different channels, respec-
tively. The bottleneck contains the minimum number of neurons needed
to compress the data without loss of signal information. In this example,
the signal intrinsic dimension (size of the bottleneck) is three while the
data extrinsic one (size of the input and output spectra) is 10.

function that will constrain the neural network to select one fam-
ily of functions adapted to the considered problem. The only
constraint on the loss function is that it must be derivable with
respect to each parameter of the network, in order to be able
to perform their optimization by the stochastic gradient descent
algorithm (Duda & Hart 1973).

6.2. Autoencoder neural network

Figure 9 shows the architecture of an autoencoder neural net-
work. As the autoencoder described in Sect. 2.3, it is composed
of two cascaded parts, the encoder and the decoder functions
that are implemented as two neural networks. The encoder aims
at computing a simplified representation of the data. The decoder
aims at reconstructing the input data as faithfully as possi-
ble from the simplified representation. In our cases, we choose
symmetrical architectures for the encoder and decoder parts.
Nevertheless, it does not mean that the functions E and D are
inverse from each other, as explained in Sect. 2.3.

The reduction of dimension space enforced by the autoen-
coder can be interpreted as an approximation of a nonlinear
PCA (Licciardi & Chanussot 2015). In the case of noisy data
containing signal with a low dimension representation, this com-
pression should retain the signal features and filter the noise.
As an autoencoder neural network is designed to identify a low
dimension representation of the signal, it allows one to perform
a generic denoising operation. In particular, it generalizes the
denoising operation that can be performed with a PCA in the
case where the signal features are nonlinearly correlated.

6.3. Estimating the intrinsic dimension of a dataset

When denoising by reduction dimension, the amount of denois-
ing is related to the redundancy in the input data, which allows
one to reduce the dimension without loosing relevant informa-
tion. If the dimension of the input data is called the extrinsic
dimension and the dimension of the bottleneck the intrinsic
dimension, we thus wish to measure the intrinsic dimension of

13CO (1 − 0) line cube Indian Pines dataset
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Fig. 10. Distance (mean absolute deviation) between input and recon-
structed data as a function of the bottleneck size for the 13CO (1−0) data
(left) and the Indian Pines data (right).

the data. The extrinsic dimension is necessarily greater than or
equal to the intrinsic dimension.

An autoencoder neural network is interesting here because
it is a practical algorithm that encompasses the whole category
of methods that assumes a reduction of dimension to denoise the
data (see Sect. 1). We use the autoencoder to analyze the intrinsic
dimension of the signal with respect to the extrinsic dimension
of the data, and thus emphasize the amount of redundancy that
could be used to increase the S/N.

6.4. Implementation

We define a set of autoencoders whose bottleneck size varies
between one and the extrinsic dimension of the data (m). The
loss function is then minimized for each of these autoencoders.
Figure 10 shows the mean absolute deviation between the input
data and the denoised data as a function of the bottleneck size
(l). The intrinsic dimension is the smallest dimension of the
bottleneck that allows us to reconstruct the signal without sig-
nificant loss of relevant information. Two regimes are expected
for this curve: A quick decrease of the mean absolute deviation
as long as increasing the bottleneck size adds useful informa-
tion to reconstruct the signal, followed by a constant value of the
mean absolute deviation when further increasing the bottleneck
size starts to reconstruct the noise. The threshold between these
two regimes is interpreted as the intrinsic dimension of the data.
This method is directly inspired by the “elbow method” used
when denoising with a PCA (Ferré 1995).

The choice of the loss function is key to ensure a proper
estimation of the intrinsic dimension. A desirable property is to
select encoders that will maintain independent input variables as
independent bottleneck neurons instead of encoding them as lin-
ear combinations. Using the mean absolute deviation instead of
the more usual mean squared error allows one to avoid mixing
independant inputs. Indeed, we shall assume that the data are
composed of two uncorrelated non-Gaussian (e.g., Laplacian)
variables of mean 0 and variance 1. The encoding of this pair
of variables with a single component (i.e., an autoencoder with
a single bottleneck neuron) consists in searching for the direc-
tion that maximizes the norm of the projection in one direction.
As illustrated in Fig. 11, the L2 norm is invariant to rotation,
implying that the maximization of the projection is not sensi-
tive to rotation, so the encoder will mix the two components. In
contrast, the values of the L1 norm varies under rotation, so the
autoencoder will thus avoids mixing the independent pair of vari-
ables. In other words, if we try to encode the two independent
variables with a bottleneck made of a single neuron, the MSE
loss function will constrain the autoencoder to pay attention to
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Fig. 11. Illustration of the non-invariance to rotation of the L1 norm as
opposed to the L2 norm.

the largest values of the two random variables and to combine
them linearly in order to minimize its value. In contrast, the mean
absolute deviation will enforce a solution where only one of the
two independent variables is encoded in the bottleneck, the other
one being ignored.

6.5. Comparison of the intrinsic dimension between the
ORION-B cubes and a typical hyperspectral cube

Figure 10 compares the evolution of the mean absolute devi-
ation as a function of the dimension of the bottleneck for
two datasets: The ORION-B 13CO (1−0) line cube on the
left panel, and a Earth remote sensing hyperspectral cube,
named Indian Pines4, that is used to benchmark denoising algo-
rithms on the right panel. This comparison is useful because
Licciardi & Chanussot (2018) showed that dimension reduction
with a neural autoencoder is particularly efficient to denoise the
latter dataset.

The intrinsic dimension of Indian Pines can be estimated at
around 4. In constrast, the curve for 13CO (1−0) only has a clear
elbow at about 27. This implies that the intrinsic dimension of
the signal is close to its extrinsic dimension. This confirms our
previous finding that the measured mutual information scale is
small for the ORION-B line data (see Sect. 4.3).

Two main properties explain the different behaviors of the
13CO (1−0) and Indian Pine cubes. The astronomy line cube
contains many signal-less channels that are irrelevant for scien-
tific purpose but can be used to characterize the noise properties.
Moreover, the achieved spectral resolution still limits the amount
of redundancy inside the sampled line profile. In contrast, almost
all the channels of Indian Pine cube are scientifically relevant
and (anti-)correlated. In this respect, denoising by dimension
reduction would be easier for astronomy hyperspectral cubes
observed with direct detection imaging spectrometers used to
study the spectral energy distribution of the sources, includ-
ing the continuum and and low to medium resolution spectral
line emission, such as the SPIRE and PACS spectrometers
on-board Herschel (Pilbratt et al. 2010) or the MIRI and NIR-
Spec instruments on-board JWST (Rigby et al. 2023), because
such instruments provide hyperspectral cubes with scientifically
relevant information for each spectral channel.

4 The latter dataset, named Indian Pines, has been acquired with
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sen-
sor over an agricultural area located at northwestern Indiana, USA.
This cube is composed of 220 spectral channels ranging from 400 nm
to 2500 nm. Its spatial linear resolution is 20 × 20 m. It is pub-
licly available here https://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes

7. A locally connected autoencoder with prior
information to denoise line data

As discussed in the previous section, the reduction dimension
of the ORION-B line cubes is more difficult than in the case of
Earth remote sensing cubes. It is thus all the more important
to optimize the structure of the used autoencoder neural net-
work with sound assumptions to help it converge on the correct
solution. In this section, we propose an innovative autoencoder
structure adapted to the properties of the line cubes. We first
describe the geometry of the autoencoder that takes into account
the fact that the mutual information scale is small compared
to the extrinsic dimension of the data. We then propose a loss
function that ensures that channels without signal are set to zero
instead of some arbitrary (small) value.

7.1. Locally connected autoencoder

A typical autoencoder is composed of fully connected layers,
which means that all the input neurons of the layer are connected
to each output neuron (see Fig. 9). This ensures that all potential
correlations between the input data are explored. In line cubes,
only channels at nearby frequencies are correlated. This means
that an autoencoder would try to learn the numerous combina-
tions of uncorrelated channels. Figure 12 shows an architecture
where a set of multilayer perceptrons connects adjacent input
neurons to adjacent bottleneck and output neurons. In our case,
this means that only adjacent channels will be encoded together.
This change introduces a major difference compared to a typi-
cal autoencoder. The latter would deliver the same result (within
numerical approximations) whatever the ordering of the input
neurons. In contrast, our tailored autoencoder assumes that adja-
cent channels are linked together. This means that we introduce
the notion of proximity in frequency of the channels inside the
autoencoder architecture.

As a comparison, a convolutional layer5 (O’Shea & Nash
2015) would in addition take into account the order of the
channels. However, the applied convolution filter would be iden-
tical for all observed spectra. In other words, a convolutional
layer assumes spectral translation invariance with respect to the
observed spectra while the proposed architecture does not. In
particular, the fact that the S/N and the amount of signal informa-
tion can vary significantly with the frequency would be ignored
with a convolutional layer.

For simplicity, we choose a symmetric autoencoder which
has a total of four hyperparameters that must be chosen: 1) l, the
size of the bottleneck layer; 2) p, the size of the sliding window
that connects nearby channels; 3) q, the size of each perceptron
layer; and 4) h, the number of hidden layers of each perceptron.
We have the following relations: l < m and p < q < m, where m
is the number of input and output channels in the spectrum. The
hyperparameters of the tailored autoencoder may depend on the
studied line. For instance, it is likely that the model for a line such
as 13CO (1−0) is more complex than for the C17O (1−0) line,
implying larger values for l and h. The data analysis performed in
Sect. 4.3 imposes some constraints. If r is the mutual information
scale in channel units, the optimal window size is p = 2r + 1.
Moreover, m

r is a (potentially optimistic) lower bound for the size
of the bottleneck because it represents the number of groups of
channels that are decorrelated from each other.

5 Unlike a dense layer used in a perceptron which is composed of a
matrix product, a convolutional layer is composed of a linear filter.
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(a) Optimized Autoencoder (b) Fully connected layer (c) Locally connected layer

Fig. 12. Optimized autoencoder architecture (a) where fully connected layers (b) are replaced by locally connected layers (c). The number of entries
is 5 and the bottleneck is size 3. The hidden layers of the network can be described by describing the small encoders, here they are of dimension
[3, 2] with input and output windows of the same size 3.

In practice, the simplest implementation of our tailored
autoencoder is to perform a matrix product for each window.
However, the autoencoder will then perform a large number
of consecutive matrix products leading to large overheads. We
instead choose to encode the set of locally connected perceptrons
as a unique fully connected perceptron, where the superfluous
weights are set to 0 during the initialization and the associated
gradients are multiplied by 0 during the training. This requires
a single (tailored) matrix multiplication per layer. The number
of free (i.e., nonzero) parameters in this optimized autoencoder
can be computed directly from the Python implementation that
is available on the project GitHub repository. In our application,
the number of free parameters is only 6% of the total num-
ber of matrix elements. This eases the training of the optimized
autoencoder.

7.2. Adding prior information to the optimization problem

As described in Sect. 2.3.2, denoising by dimension reduction
is an optimization problem that tries to find the autoencoding
function A that will minimize the distance between the data
and its autoencoding, averaged over all the data samples: see
Eqs. (9) and (10). The presence of noise implies three adapta-
tions of the autoencoder about the definition of its training loss
function. The first one will take into account the important vari-
ation of the S/N (from <1 to a few 100) in radio-astronomy data.
The second one will address the potential unbalance between the
number of voxels that only contain noise and the number of vox-
els that actually contain relevant signal. The third one will ensure
that the autoencoder attributes a zero-valued intensity (instead of
any other randomly chosen systematic value) for voxels that only
contain noise.

To handle varying S/N values. The distance is usually
weighted by the standard deviation of the noise. In our case,
the baseline part of the spectrum enables us to easily esti-
mate the noise standard deviation σk for the spectrum dk
at pixel k = ix + nx (iy − 1). We thus will modify the loss
function as

L(A, d) =
1
K

K∑
k=1

(A(dk) − dk

σk

)2

. (21)

This normalization avoids the variation of the data “energy” just
caused by noise, which would overweight the noisiest pixels.
We recognize here the reduced χ-squared merit function that is
regularly used in astronomy. In contrast, the machine learning
community mostly uses the MSE.

To address the problem of sparsity of the signal inside the
cube. We balance the loss function by giving prior information
about the channels that have a large probability to be just noise.
To do this, we first segment the position-position-frequency cube
into signal and noise samples (see Sect. 7.3). We then modify the
loss function as

L(A, d) =
1
K

K∑
k=1


1∑J

j=1 w jk

∑J
j=1 w jk

(A(d jk)−d jk

σk

)2

+
1∑J

j=1(1−w jk)

∑J
j=1

(
1 − w jk

) ∣∣∣∣A(d jk)−0
σk

∣∣∣∣q
 ,

(22)

where w jk = 1 for a channel j of spectrum k dominated by signal,
and w jk = 0, elsewhere. The normalization factors ensure that
noise-only (S/N < 1) samples do not dominate the loss func-
tion. This solves the potential unbalance between signal and
noise samples inside each spectrum. While the architecture of
the optimized autoencoder does not use the spatial information,
the segmentation used in the proposed loss function introduces
some spatial information as it is a method that works in the
position-position-frequency space.

To ensure that noise-only samples deliver 0. Instead of
a small random value, we use the Lq norm6, with q ∈]0, 2],
for samples that are mostly noise. This enforces the training to
choose either 0 or the autoencoded (denoised) value of the data,
A(d jk). The denoised value of the data will be selected when
the data sample has a statistical signature too far from random
Gaussian noise. The hyperparameter q allows one to finely con-
trol the asymptotic behavior of the penalty of voxels containing
only noise: The closer q is to 0, the larger the penalty applied
to an autoencoded value close to zero. In this study, we chose
q = 1.
6 The Lq norm of the vector x = (x1, ..., xn) is defined as
||x||q =

(∑n
i=1 |xi|q)1/q .
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Fig. 13. Maps of the maximum (top) and minimum (bottom) S/N per spectrum before (left) and after (right) convolution of the C17O (1−0) line
cube by the telescope point spread function.

7.3. Detecting significant signal

The C17O (1−0) is characterized by a low S/N. The best way to
detect signal in such a condition is to correlate the noisy mea-
surement with the expected shape of the signal and to threshold
the output because the probability that random noise reproduces
the expected shape is negligible. This technique, named matched
filtering, is all the more effective when the shape of the sig-
nal is accurately known. For example, if one aims at detecting
a point source, we just need to know the point spread function
of the instrument. Correlating the noisy measurement with the
point spread function thus not only delivers an optimal way to
detect point sources, but it also improves the detection of spa-
tially resolved sources. Indeed, adjacent pixels can be thought as
measurements of the same source where the noise is uncorre-
lated from one pixel to another. As the pixel size is chosen to at
least Nyquist-sample the point spread function, any source will
be spread over at least four contiguous pixels, and the S/N after
correlating with the point spread function will be much higher
than the S/N per pixel of the original image. As this makes no
assumption on the shape of the source, this is a simple way
to optimize the detection of any kind of a resolved source. In
summary, while matched filtering is the optimal way to detect
point sources, it also improves the detection of resolved sources
because it smoothes the data to an angular resolution larger by√

2 and thus naturally increases the S/N per pixel.
Figure 13 shows the map of the maximum and minimum S/N

per spectrum before and after correlation of the C17O (1−0) line
cube by the telescope point spread function. In both cases, the

S/N is defined as

S/N(ix, iy, ic) =
d(ix, iy, ic)
σ(ix, iy, ic)

, (23)

where d(ix, iy, ic) and σ(ix, iy, ic) are the position–position–
velocity cubes of intensities and noise RMS, respectively. The
computation of the noise RMS is described in Sect. 5.1. When
correlating the cube by the instrument response, the maximum
of the S/N improves by a factor on the order of 2 from 9.7 to
16.8, and the percentage of pixels whose maximum S/N value is
above 5 increases from 0.13 to 0.75%. In contrast, the minimum
S/N value is relatively stable (−6.7 vs. −6.1) as expected when
the noise is (mostly) uncorrelated between adjacent pixels.

The S/N cube can then be thresholded to yield a 3D mask
of detected pixels. On one hand, we wish to reduce the number
of false positives. This requires to use a relatively high threshold
value. Indeed, for a Gaussian additive noise, even using a S/N
threshold value of 3 yields about 0.3% of false positives, that is
approximately 105 voxels even when assuming that the signal can
be present only between −5 and 20 km s−1. On the other hand,
we wish to reduce the number of false negatives. In millimeter
radio-astronomy, a large fraction of the source flux frequently has
S/N values lower than 3. Using a too high S/N threshold value
thus implies a large quantity of false negative pixels.

The first way to improve the tradeoff between the require-
ments to minimize the number of false positives and negatives
uses again the fact that the noise distribution is (mostly) uncorre-
lated between contiguous pixels. It is indeed possible to segment
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Fig. 14. Properties of the segments obtained on the cube of S/N for the C17O (1−0) line. This cube was segmented into contiguous position-
position-velocity regions above a minimum S/N value. The segments are ordered by decreasing value of the S/N summed over the segment (total
S/N). The shown properties are, from top to bottom, the total number of pixels inside the segment, the total S/N, and the mean S/N of the segment.
These properties are shown for two different S/N thresholds: 1 and 2. The blue plain vertical lines show the segments that are selected to compute
the moment maps in Fig. 15. The red dashed horizontal lines show the typical mean S/N reached for the segment # 200.

the cube in regions contiguous in the position-position-velocity
space and for which all pixels have a S/N value above a given
threshold. In practice, we define segments of voxels contiguous
in the position–position–velociy space, which satisfy the S/N cri-
terion. When a voxel is added to the current segment, we check
whether the segment should be merged with a segment already
defined in the previous row of the current image or the previous
image of the cube. The pixels that do not satisfy the criterion
are put in a specific segment regardless of their position in the
cube. Segmenting in contiguous regions above a given threshold
was proposed by Pety & Falgarone (2003) along the spectral axis
and Rosolowsky & Leroy (2006) in 3D. When adjacent samples
have uncorrelated noise levels, the probability of a false negative
decreases when the total S/N of the region (defined as the sum of
the S/N over all the pixels of the region) increases. Hence sorting
the segmented regions by decreasing total S/N and selecting the
first few ones minimizes the chance 1) to overlook large regions
at relatively low values of the mean S/N, and 2) to yield too many
false positive regions.

Figure 14 shows the evolution of three properties of the
3D segments obtained for the C17O (1−0) line, and sorted by
decreasing value of the S/N summed over their voxels (here-
after named segment total S/N). The three properties are the
number of voxels inside each segment, the segment total and
mean S/N. These properties are shown for two different S/N
thresholds (1 and 2) used during the cube segmentation pro-
cess. Figure 15 shows maps of the peak intensity maxic I(ic),
the line integrated intensity

∑
ic I(ic)dv, and the centroid velocity{∑

ic v(ic)I(ic)
}
/
{∑

ic I(ic)
}
. We compute them by including the

voxels that belong to the first 200 segments. In all generality, the
number of segments included is a compromise between includ-
ing only the segments with the highest total S/N and enough
segments with a mean S/N larger than 3. Two hundred seg-
ments is a good compromise when the S/N threshold is 2. We
here use the same number of segments when the S/N threshold
is 1 in order to make a comparison without changing too many
parameters at a time.

For the C17O (1−0) line, the number of voxels per segment
varies from more than 10 millions to about 1, in comparison
with the 195 millions of voxels present in the cube. The total
S/N follows a similar trend because the mean S/N per voxel
is low. In contrast, the mean S/N and images have a different
behavior depending on the S/N threshold.

For a threshold of 1. The segment mean S/N is always
smaller than 3. It is constant at about 1.5 before oscillating.
Voxels have been selected over almost all the field of view and
it is difficult to see any structured signal in the three associated
maps.

For a threshold of 2. The segment mean S/N starts to
decrease or oscillates above 3 before converging to about 2.5
with an increasing dispersion. The signal is now pretty well
defined in the three associated maps, even though some vertical
striping is sometimes still visible.

These properties can be understood by the fact that for uncor-
related Gaussian noise, the probability to have the intensity of
one of the 6th closest neighbors to any voxels above 1, 2 or 3σ
is 0.90 = (1 − 0.6836), 0.25, and 0.02 respectively. This implies
that any voxel has a large chance to be part of the first segment
for an S/N threshold of 1, a minor chance for a threshold of 2,
and a negligible chance for a threshold of 3.

8. Denoising performances

We here compare the denoising performances between our tai-
lored autoencoder and the ROHSA algorithm7 that we shortly
summarized in Sect. 2.3.2. We do this comparison on the
13CO (1−0) cube that displays a large S/N range. Our autoen-
coder neural network and ROHSA share several properties. They
propose a representation of the data that can be interpreted as
denoising by dimension reduction. They work mainly on indi-
vidual spectra with a regularization term that introduces some
spatial information about the data. They nevertheless differ in
the family of functions assumed to encode the data. ROHSA
assumes that the signal is composed of a limited number of
Gaussian functions whose amplitude, position, and standard
deviation are spatially regularized. Our autoencoder assumes
that the data can be approximately classified as noise and signal
pixels, and that the scale of mutual information between channels
is small compared to the number of channels in the spectra.

7 We also compared with the GAUSSPY+ algorithm (Riener et al.
2019), which guesses the number of fitted Gaussian components per
pixels instead of fixing it over the full field of view as ROHSA does.
While both algorithms deliver solutions with slightly different system-
atic deviations, the differences are not compelling enough to warrant
presenting both of them.
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Fig. 15. Maps of the moments of the spectrum for two different values (1 at left, and 2 at right) of the S/N threshold used to compute the position–
position–velocity mask of significant emission. From top to bottom, the peak intensity (maximum of the spectrum), line integrated intensity
(moment 0 of the spectrum), and centroid velocity (moment 1 of the spectrum) are shown.

8.1. Detailed setups of the autoencoder and ROHSA

We use the Python framework PyTorch to implement our numer-
ical neural network experiments8. The segmentation of the line
cubes is implemented in a new IRAM software named CUBE
and distributed inside GILDAS9. The associated Python and
CUBE scripts are available in a GitHub repository10.

We use the approximately 800 000 spectra of 240 channels
as input to the autoencoder. We tagged as mostly signal the vox-
els that belong to the first 200 segments obtained with a S/N
threshold of 2, and the reminders as mostly noise. The hyper-
parameters of the autoencoder were optimized as follows. The
width of the sliding window is set at 7 channels according to

8 https://pytorch.org/
9 The GILDAS software are distributed here https://www.iram.
fr/IRAMFR/GILDAS/
10 https://github.com/einigl/line-cubes-denoising

the mutual information scale (see Sect. 4.3). Most of the other
hyperparameters were set with a typical cross validation proce-
dure (Refaeilzadeh et al. 2009). In short, we first defined a set of
possible values to explore. For each set of hyperparameters, we
then optimized the network on a training dataset and we com-
pute its performance on a different validation dataset. In order
to reduce the variability of the results depending on the choice
of the training and validation sets, this procedure is performed
several times, varying the test and validation sets so that each
sample has been selected once in the validation set during the
procedure. This gives for the local encoder: A bottleneck size of
75% the number of input channels (here 180), and 3 hidden lay-
ers of size [35, 14, 7] per perceptron. During this cross validation
procedure, the hyperparameters that are assumed noncritical are
fixed to usual values: The Adam stochastic optimizer (Kingma &
Ba 2014) was used with a batch size of 100, 50 epochs, and a
learning rate that decreases exponentially from 10−3 to 10−6.
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Fig. 16. Comparison of the denoising performances of the taylored autoencoder and ROHSA for four different velocity channels belonging to the
line wings. For each channel, the raw (left) and denoised (middle) images are shown with the same intensity scale and the residual (right) image is
displayed with an optimized intensity scale. The top and bottom rows show the results for the autoencoder and ROHSA algorithms, respectively.

Instead of trying to optimize the hyperparameters of ROHSA
for denoising, we used the ones derived by Gaudel et al. (2023)
when trying to decompose the spectra into a set of coher-
ent velocity layers in order to study the velocity field around
the filaments of gas where stars will form. The number of
Gaussians was set to 5 for the 13CO (1−0) cube, and the
Lagrangian multipliers used to regularize the maps of Gaussian
amplitude, position, and standard deviation were λa = λµ =
λσ = 100.

8.2. Results

Figure 16 compares the raw images with the denoised ones
obtained with the autoencoder and ROHSA for four different
velocity channels that were chosen in the line wings because
denoising of the additive component is expected to act mostly
at low to intermediate S/N. The two algorithms produce sim-
ilar results to first order. They both set noise-only voxels to a
value close to zero. The shape of significant signal is kept, and
the residuals mostly look like noise. A closer look suggests that
ROHSA delivers signals that are more spatially coherent than
the autoencoder at low S/N but this stays within the noise level.
At intermediate S/N, ROHSA deforms the signal more than the
autoencoder as can be seen in the residuals of the channels at
13.5 km s−1.

A more quantitative comparison can be seen in Fig. 17
that shows the spatial variations of the spectral RMS of the
residual cubes and their ratio with the spectral RMS of the
raw data. The spatial variations of the spectral RMS show
that both algorithms recover the rectangular pattern coming
from the ON-REF acquisition method. However, a significant

part of the signal appears in the ROHSA residuals, while
only a few point sources appear in the autoencoder residuals.
The signal that remains in the autoencoder residuals is com-
ing from defaults in the signal tagging procedure. The better
preservation of the signal by the autoencoder goes hand in hand
with a slight under-denoising. Indeed, the map of the spectral
RMS of the residuals normalized by the spectral RMS of the
noise is on average lower than 1 in regions that have been tagged
as mostly signal. In other words, the denoised output is closer
to the raw input than it should be in case of perfect denois-
ing. In contrast, the residuals of ROHSA better recover the noise
level at low S/N at the price of more distortion of the signal at
high S/N.

Figure 18 compares the joint histogram of the denoised vs.
the raw intensities. A perfect denoising of the noise additive
component would deliver a joint histogram along the diagonal at
large S/N and an histogram whose dispersion is very asymmetric
around zero: The distribution should have the same dispersion
as the noise along the raw intensity axis and a narrow dispersion
along the denoised intensity axis. The autoencoder succeeds in
mimicking the identity function with a good approximation for
signal above 20σ, that is a much lower value than ROHSA. The
two algorithms have different behaviors around zero intensity.
On one hand, ROHSA biases the denoising to positive intensities
resulting into a larger vertical size of the histogram, which means
a larger dispersion along the denoised intensity axis for positive
values. On the other hand, the autoencoder slightly biases the
denoising to positive values for positive raw intensities and to
negative values for negative raw intensities. The bias is more
significant for the negative part and can be tracked in the raw
cube to voxels in the surrounding of obviously positive signal.
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Fig. 17. Comparison of the properties of the residuals after denoising by our autoencoder (top) and ROHSA (bottom). The right column shows the
map of the residual RMS, and the left column shows the map of the residual RMS normalized by the noise standard deviation.

Fig. 18. Comparison of the denoising performances of the taylored
autoencoder (top) and ROHSA (bottom). Each panel shows the joint
histogram of the denoised intensities vs. the data intensities. The left
and right columns display the full dynamic range of intensities and a
zoom into the low intensities. A arcsinh transform was applied in order
to show the intensities below 5σ (lower dashed square) with a linear
scale and above 20σ with a logarithm scale (upper dashed square). The
dotted line highlights the identity function.

We interpret this as the consequence of the matched filtering step
that includes in the mostly signal mask negative intensities at the
edges of strong signal.

Fig. 19. Comparison of the spectral profiles and residuals for the autoen-
coder (left) and ROHSA (right) algorithms. Top: comparison of the
input (in black) and output (in red) intensities. Bottom: comparison of
the residuals between the input and denoised data.

The denoising quality must also be judged on quantitative
estimators that strongly differ from the loss function. Figure 19
compares the averaged spectra before and after denoising for the
autoencoder and ROHSA. Both the autoencoder and ROHSA
deliver an overall positive bias on spectral regions that contain
the signal but the bias is about twice lower for the autoencoder.
This means that the algorithms slightly bias positively the total
flux of the source. Finally, Figs. 20 and 21 compare the spatial
variations of the properties of the 13CO (1−0) line before and
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Fig. 20. Maps of the properties of the 13CO (1−0) line before (left) and after denoising with the autoencoder (middle) and ROHSA (right). From
top to bottom, the properties are the maximum of the line, the line integrated intensity, the velocity of the maximum, the centroid velocity, a robust
estimation of the line width, and the velocity dispersion.
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Fig. 21. Maps and histograms of the residuals of the properties of the 13CO (1−0) line. The properties are the same as for Fig. 20. The first, second,
and third columns show the maps of residuals between the autoencoder denoised and raw data, the ROHSA denoised and raw data, and the ROHSA
and autoencoder denoised data, respectively. The color scales are saturated in order to emphasize the differences where some signal is detected.
The fourth column shows the associated histograms. The brown and green lines show the residuals from the autoencoder and ROHSA denoising,
respectively. The black lines show the difference between the autoencoder and ROHSA results.

after denoising. The results on the raw data cube can be con-
sidered as unbiased. The properties are computed on the raw
and denoised data in exactly the same way. In particular, we
used the same spectral window [−5, 21 km s−1] to compute the
line moments. In addition to the peak intensity, line integrated
intensity, and centroid velocity defined in Sect. 7.3, we com-
pute the robust line width that is the ratio of the line integrated
intensity by the peak intensity. This value would be equal to the
line full width at half maximum for a Gaussian shape. We also

compute the line velocity dispersion, defined as the square root
of

{∑
ic [v(ic) −C]2 I(ic)

}
/
{∑

ic I(ic)
}
.

Denoising has a higher impact on the higher order moments
of the line, namely the centroid velocity and the velocity dis-
persion. To first order, the autoencoder and ROHSA algorithms
give similar results. In particular, the histograms of the residuals
between these two methods are all centered on zero. Moreover,
they both set low maximum intensities closer to zero than the
raw data, as expected for a denoising algorithm. Looking in
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more detail, differences appear in regions of low to intermedi-
ate S/N. ROHSA better removes the striping pattern of the noise
in regions devoid of signal but it does this by biasing positively
the maximum intensity and the line integrated intensity. The
velocity of the maximum is better preserved by the autoencoder
than by ROHSA, but the two algorithms deliver similar centroid
velocity results. Finally, the line width estimator delivers nar-
rower linewidths on the autoencoder data than on ROHSA data,
in particular in regions of low S/N.

8.3. Perspectives

Our autoencoder does not rely on the spatial information, in par-
ticular, the spatial correlations of the noise. Wavelet scattering
transforms and wavelet phase harmonic transforms are recent
tools that allow the spatial texture of data to be characterized
in statistical ways with only a few hundred coefficients (Allys
et al. 2019; Levrier et al. 2021). This can be used to denoise
astrophysical data as proposed by Regaldo-Saint Blancard et al.
(2020). Investigating whether this would improve the denoising
performances achieved here will be the subject of a forthcoming
paper.

9. Conclusion

In this paper, we have proposed a promising approach to denoise
radio-astronomy line data cubes, inspired by a method developed
to denoise hyperspectral cubes in Earth remote sensing. To do
this, we first characterized in-depth the properties of the noise
and signal for two radio-astronomy position-position-velocity
cubes that are part of the ORION-B IRAM 30 m large program,
namely the 13CO (1−0) and C17O (1−0) cubes.

– The additive noise is well represented by a Gaussian ran-
dom variable. Its RMS value varies spatially and spectrally.
It can be modeled as the product of a spatial and a spectral
contribution.

– The spatial variations come from a combination of the
source scanning strategy, variations of the atmospheric con-
ditions between winter and summer runs, for example, and
the source elevation during each observing session.

– The spectral variations mostly have two origins. First, the
resampling (currently) required to correct for Doppler effects
in wide-bandwidth observations implies a sinusoidal oscil-
lation of the noise level with frequency. Second, the inter-
polation of the polynomial fit of the baseline also slightly
increases the noise RMS in the line frequency range.

– The noise spatial power distribution can be modeled as the
sum of two components: i) the square of the Fourier trans-
form of the telescope point spread function, and ii) the
modeling of the noise correlation introduced by sharing the
same reference spectra among many on-source spectra.

– The noise spectral autocorrelation can be modeled by the
autocorrelation of a finite impulse response filter with a
shape of [0.18 0.97 0.18]. This implies that the noise
between pairs of channels is uncorrelated as long as their
distance is larger than two channels.

Moreover, the signal is sparse along the spectral axis. This allows
an easy estimation of the noise level and the associated S/N. This
S/N varies from less than one to several hundred, mostly because
of the large intensity dynamic range. The uncertainty budget is
dominated by additive noise at a low S/N, but it becomes dom-
inated by multiplicative noise due to the uncertain calibration

when the S/N is larger than the inverse of the RMS of the cali-
bration uncertainty: on the order of 20 in our case. For this study,
we only denoised the low S/N part of the observations dominated
by additive noise.

We then looked at the cube as a set of spectra that were indi-
vidually denoised by dimension reduction. This method assumes
that there is linear or nonlinear redundancy between the data
features (here the channels of any spectrum). This hypothesis is
well verified by standard hyperspectral cubes usually produced in
Earth remote sensing. A mutual information computation shows
that this hypothesis is more problematic for radio-astronomy
line cubes, because the signal information decorrelates quickly
from one channel to another at the obtained spectral resolution.
From this viewpoint, denoising by dimension reduction would be
more adapted to astronomy hyperspectral cubes observed with
direct detection imaging spectrometers used to study the spec-
tral energy distribution of the sources. When dealing with cubes
that only contain spectrally resolved line emission, any denois-
ing method by dimension reduction must thus take into account
the fast decorrelation of channels that characterize these cubes.

An autoencoder is a nonlinear low rank deep learning denois-
ing method whose goal is to minimize the distortion of the
signal. We adapted the typical architecture to our line data as
follows.
1. The proposed architecture took the fast decorrelation of the

signal into account as a function of frequency.
2. We took the sparsity of the signal into account inside the

spectrum by adapting the loss function of the autoencoder
depending on whether the voxels contain mostly signal or
mostly noise. This implies an a priori position-position-
frequency classification algorithm.

3. For signal voxels, we weighed the distance between the data
and the autoencoded data by the inverse of the noise vari-
ance. For noise voxels, we used the L1 norm between the
autoencoded data and zero to ensure that the autoencoder
would not create or destroy flux for low S/N voxels.

We finally compared the denoising performance to that achieved
by the ROHSA algorithm that represents the spectra as a set of
Gaussian fits. While ROHSA allows one to decompose the sig-
nal into velocity layers (e.g., Gaudel et al. 2023), the denoising
performances of the proposed autoencoder are higher. The latter
allowed us to increase the S/N in pixels with a low S/N while
preserving the shape of spectra in high S/N pixels.
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Appendix A: Doppler effect and implied spectral
resampling

The observed lines are emitted in the source frame at the line
rest frequency, for example f rest = 110.20135 GHz for the 13CO
(1−0) line. The relative motion between the observatory and the
Orion B molecular cloud in the Milky Way implies that the lines
are recorded in the observatory frame at a frequency shifted by
the Doppler effect. Pety & Bardeau (2011) describe in depth
the consequences of this effect on the spectral data. In short,
this effect can be approximated to first order in the Doppler
parameter vc (radio velocity convention) as

f rest − f obs

f rest =
vsou/obs

c
, (A.1)

where c is the speed of light, vsou/obs the component of the source
velocity along the line of sight in the observatory frame, and f obs

the observed frequency.
Moreover, the spectrum is regularly sampled in frequency. Its

frequency axis is thus described as

f (i) = fref + (i − iref) δ f , (A.2)

where fref is the reference frequency at the reference channel iref ,
and δ f the frequency channel spacing. The astronomer is inter-
ested by the description of the velocity variations in the source
rest frame. However, the spectrum is recorded in the observa-
tory frame. The same intensity I(i) of the spectrum can thus be
attributed to two different frequencies, f obs(i) and f rest(i). Equa-
tion A.2 can thus be written in the two frames for the same
channel i as

f obs(i) = f obs
ref + (i − iref) δ f obs, (A.3)

f rest(i) = f rest
ref + (i − iref) δ f rest. (A.4)

Applying Eq. A.1 yields

f obs
ref = f rest

ref

(
1 − vsou/obs

c

)
, and δ f obs = δ f rest

(
1 − vsou/obs

c

)
.

(A.5)

On one hand, the channel spacing in the observatory frame
(δ f obs) is fixed by the spectrometer hardware. On the other
hand, there is an infinite number of (iref , f obs

ref , f rest
ref ) values to

describe the same spectrum. The simplest choice is to set f rest
ref

to the rest frequency of the line of interest, for example f rest =
110.20135 GHz for the 13CO (1−0) line, and to use f obs

ref as the
tuning frequency of the receiver, implying that the reference
channel and thus the associated line will be localized at the
middle of the spectrum frequency axis.

The Doppler frequency shift ( f rest − f obs) of Eq. A.1 varies
with time during the day because of the Earth rotation around its
axis and during the year because of the Earth rotation around the
Sun. To remove this time dependency at the tuning frequency,
radio-observatories slightly shift the tuning frequency with time
according to the relative velocity between the observatory and
the inertial frame, named Kinematic Local Standard of Rest
(LSRK). The remaining Doppler effect between the LSRK frame
and the source rest frame is dealt with in the data reduction soft-
ware because it is independent of the observing time. However,
the hardware correction, called real-time Doppler tracking, has
two main limitations.

– First, as it is only applied to the tuning frequency, it
exactly corrects only the rest frequency at the refer-
ence channel while the radio-astronomy receivers observe
wide bandwidth at high spectral resolution. The fre-
quency scale in the source frame thus experiences a
time-dependent frequency dilation around the reference
frequency: δ f rest = δ f obs/ {1 − vsou/obs(t)/c}, with δ f obs the
channel spacing fixed by the spectrometer hardware in the
observatory frame. The order of magnitude of the Earth
velocity in the LSRK frame, |∆v| ≤ 30 km s−1, implies that
the dilation effect, δ f rest, becomes on the order of the
channel spacing every few tens of thousands channels. No
observatory is yet proposing a hardware solution to correct
for this dilation effect.

– Second, when scanning the receiver over a portion of the sky
to obtain wide-field imaging, the Doppler tracking correc-
tion is computed only once at the start of each scan. This
is to ensure that potential standing wave associated with
the cavity composed of, for example, the primary and sec-
ondary mirrors, have a periodicity along the frequency axis
that is fixed during the scan duration. The Doppler tracking
correction is thus only approximate because it is computed
only once every few minutes in a particular sky direction,
while the Doppler effect continuously depends both on the
time and sky direction. The dependence on the sky direction
is most problematic when scanning a wide portion of sky
during a single scan.

Correcting for the time and space dependence of the Doppler
effect implies a shift of the reference channel (iref) at con-
stant reference frequency ( f rest

line ) in the source frame (for details,
see, e.g., Pety & Bardeau 2011). The observed spectra are
thus slightly shifted in frequency. Moreover, current heterodyne
receivers cover two frequency bands located below (lower side
band) and above (upper side band) the frequency of the local
oscillator. Due to the difference in frequency between the two
bands (16 GHz for the EMIR receiver), the velocity scales are
slightly different for these two side bands. Furthermore the sepa-
ration of the signals from the two bands is not perfect. This may
lead to the apparition of “ghost” lines from the rejected band
at frequencies that depend on the local oscillator frequency. We
refer the reader to Pety & Bardeau (2011) for associated details.
All in all, the spectra thus need to be resampled to a common fre-
quency axis before merging them to avoid blurring the spectral
response in the science-ready product.

Appendix B: Calibration in a nutshell

In this appendix, we summarize the calibration of the raw data,
which combines the determination and application of the time
varying calibration factor with the removal of the contribution
of the atmosphere to the measured intensity. For simplicity, we
start with assuming that the gain of the measurement is constant
with time before generalizing to the case where the gain actually
varies with time. We finally look at the impact of this calibration
scheme on the measured noise. We do not speak about impor-
tant additional subtleties, such as the impact of the mixing of
the image sideband into the signal sideband or the usefulness of
smoothing the frequency bandpass response when determining
the calibration gain.
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B.1. Time independent gain

The intensity measured (Imeas) by the receiver can be written
before calibration and to zero order as the sum of the contri-
bution of the astronomical signal (S astro) and of the atmospheric
emission (S atm), multiplied by a gain (g)

Imeas = g.
(
S astro + S atm

)
. (B.1)

The astronomer is interested to recover the astronomical sig-
nal. However, the contribution of the atmosphere most often
completely dominates the astronomical signal at millimeter
wavelengths, in other words S astro ≪ S atm. It is thus required
to measure independently the contribution of the atmosphere in
order to subtract it. A common way to do this is to regularly
observe a reference line of sight in between the observations
of the on-source lines of sight. This method is called position
switching. Writing the two observations as

ON = g.
(
S astro

on + S atm
on

)
, (B.2)

REF = g.
(
S astro

ref + S atm
ref

)
, (B.3)

this gives

S astro
on =

1
g

(ON − REF) + S astro
ref +

(
S atm

on − S atm
ref

)
. (B.4)

When the reference line of sight is actually devoid of signal
(S astro

ref = 0), and the contribution from the atmosphere is stable
between the on-source and reference lines of sight, the last two
terms cancel and we obtain

S astro
on =

1
g

(ON − REF) . (B.5)

B.2. Time varying gain

This gain is a combination of the absorption of the atmosphere
and of the electronic amplification of the receiver. The electronic
gain is constant over a typical timescale of about 30 minutes. But
the atmosphere absorption varies on much shorter timescales.
Moreover the atmosphere absorption and receiver amplification
vary with frequency. In order to take into account the time vari-
ation of the system (atmosphere + receiver) gain, we model it as
the product of the atmosphere and the receiver gain

g = grec gatm. (B.6)

Using this expression in Eq. B.2 and B.3, we obtain

ON = grec gatm
on

(
S astro

on + S atm
on

)
, (B.7)

REF = grec gatm
ref

(
S astro

ref + S atm
ref

)
. (B.8)

In order to solve for S astro
on , we first remove the receiver depen-

dency because it dominates the spectral part of the gain varia-
tions, in particular at the edges of the observed bandpass. To do
this, we just take the ratio of the ON and REF measurements.
This yields

ON
REF

=
gatm

on

gatm
ref

[
S astro

on + S atm
on

][
S astro

ref + S atm
ref

] ∼ 1. (B.9)

This ratio is of order 1 for two reasons.

1. The astronomical signal is (most often) dominated by the
atmospheric signal, in other words S astro ≪ S atm.

2. The time variation of the gains are mostly due to variations
of the atmosphere absorption, which are to first order anti-
correlated with the variations of the atmosphere emission.
This can be written as

gatm
on S atm

on ∼ gatm
ref S atm

ref . (B.10)

This is of course only true when the atmosphere varies only
slightly during the observation.

We thus subtract 1 to the ratio of Eq. B.9 in order to mimic a
Taylor decomposition. Solving for S astro

on then yields the sum of
three terms

S astro
on = Tsys

{
ON
REF

− 1
}
+ S cal,astro

ref + B, (B.11)

with Tsys =
REF
gatm

on
, (B.12)

S cal,astro
ref =

gatm
ref

gatm
on

S astro
ref ∼ 0, (B.13)

and B = S atm
on

{
gatm

ref S atm
ref

gatm
on S atm

on
− 1

}
∼ 0. (B.14)

Equation B.11 is a generalization of Eq. B.4 to the case where the
gain varies with time during the observations. Both have three
terms.

The baseline The term B is the residual that is nonzero when
the assumption that the atmosphere emission and absorp-
tion are anticorrelated, that is Eq. B.10, breaks. This term
is responsible for the typical continuum variations, called
baselines, seen around the lines. These baseline offsets
are removed through the baselining procedure described in
Sect. 5.1.

The reference signal The term S cal,astro
ref is exactly zero, except

when there exists some residual signal from the astronom-
ical source on the reference line of sight. This happens for
lines whose emission is extended over several degrees on
the plane of sky, for instance, the 12CO and 13CO (1−0)
emissions from local Giant Molecular Clouds. This is nev-
ertheless rather the exception than the rule. When this term
is nonzero, it can not be treated through baselining as the
previous continuum offset. Indeed, it has a similar shape as
the on-source line. It must thus be measured independently
at relatively large signal-to-noise ratio and added back to
the calibrated on-source signal. Contrary to common belief,
this is S cal,astro

ref that must be added, and not S astro
ref . In other

words, the astronomical signal toward the reference line of
sight must be added after multiplication by the time gain
ratio between the on-source and reference observations.

The on-source signal Under perfect conditions, we recover an
equation whose shape is similar to Eq. B.5, that is

S astro
on = Tsys

{
ON
REF

− 1
}
. (B.15)

The term in parenthesis is unitless and the system temper-
ature (Tsys) is the multiplicative calibration factor needed
to establish the correct intensity unit scale. The system
temperature depends both on frequency and time.

A158, page 23 of 26



Einig, L., et al.: A&A, 677, A158 (2023)

Appendix C: Noise spatial power density

The spatial energy density of a 2D stochastic process D is defined
as

E D(u, v) = E
[∣∣∣F [D]

∣∣∣2(u, v)
]
, (C.1)

where F [D] is the Fourier transform of D, and E is the
expectation operator. In our case, the stochastic process is the
measurement of the signal affected by random noise over an
image of area Aima, and the expectation is measured as the aver-
age of the images over a given number of channels. The spatial
power density of D is then defined as the spatial energy density
divided by the area of the image, that is

P D(u, v) =
E D(u, v)

Aima
. (C.2)

The reference spectrum is observed only in between the
observation of two consecutive lines on source. The integration
time at the reference position is much larger than the one for each
ON spectrum. The contribution of the noise from the reference
position to the noise of the calibrated spectrum is thus negligible
when computing the noise RMS per ON position. However, the
noise of the reference spectrum is shared by all the ON spectra of
two consecutive lines, implying a noise energy level correlated
to the scanning configuration (rectangular patterns).

Here, we first compute the first order term of the Taylor
decomposition of Eq. B.15 at point S atm. This allows us to show
that the noise spatial power density is to first order the sum of two
components coming from the ON and REF noise spatial behav-
iors, respectively. We finally compute the quantitative impact of
the noise correlation introduced by the REF measurements.

C.1. Linearization of the measurement equation

We restart from Eq B.15 that relates the calibrated signal to the
ON and REF measurements to show that we have to first order
for channels devoid of signal

S astro
on (θl, θm, θl0, θm0) ≃ [B ⋆ Non] (θl, θm) − [B ⋆ Nref] (θl0, θm0),

(C.3)

where⋆ is the convolution symbol, B is the point spread function
of the telescope, and (Non,Nref) are a couple of centered normal
random variables of same standard deviation as the atmospheric
signal on source or on reference, respectively.

To do this, we first redefine the ON and REF measurements
to take into account three things. First, we compute the noise
spatial power density only on channels devoid of line astronom-
ical signal. In other words, we assume that S astro = 0. Second,
the coupling of the telescope to the sky is imperfect. This trans-
lates into a convolution equation. Third, the telescope is scanning
the sky when observing on source, while it always comes back to
the same position, (θl0, θm0), devoid of astronomical signal, when
observing the reference. Given coordinates (θl, θm) and (θl0, θm0)
at which ON and REF spectra are respectively measured, we
obtain the measurement expressions

ON(θl, θm) = grecgatm
on .

[
B ⋆ S atm

on

]
(θl, θm), (C.4)

REF(θl0, θm0) = grecgatm
ref .

[
B ⋆ S atm

ref

]
(θl0, θm0). (C.5)

The atmospheric signal S atm can be considered as a normal
random variable of expectation E

[
S atm]

and standard devia-
tion σatm. As explained above σatm/E

[
S atm] ≪ 1 in millimeter

radio-astronomy. In order to prepare to compute the Taylor
decomposition of Eq. C.3 in E

[
S atm]

, we rewrite the atmospheric
random variable as

S atm = E
[
S atm

]
(1 + ∆) , with ∆ = N/E

[
S atm

]
, (C.6)

where ∆ is a centered normal random variable of standard devi-
ation≪ 1. Replacing the definitions C.6 in Eq. C.4 and C.5, and
using the fact that the integral of B is equal to one, we yield

ON(θl, θm)
REF(θl0, θm0)

=
gatm

on E
[
S atm

on (θl, θm)
]

gatm
ref E

[
S atm

ref (θl0, θm0)
] {

1 + [B ⋆ ∆on] (θl, θm)
1 + [B ⋆ ∆ref] (θl0, θm0)

}
.

Using again the fact that the first term of the product is of order 1,
and keeping only the first order term in the Taylor decomposition
of the second product term, we find

ON(θl, θm)
REF(θl0, θm0)

− 1 ≃ [B ⋆ ∆on] (θl, θm) − [B ⋆ ∆ref] (θl0, θm0).

(C.7)

We obtain Eq. C.3 by 1) replacing this equation in Eq. B.15,
2) using the definition of N in Eq. C.6, and 3) recognizing that
Tsys ∼ E [

S atm]
.

C.2. Normalization of the pixel variances

We plan to compute the spatial power density of S astro
on . Equa-

tion C.3 indicates that the measured signal is to first order the
subtraction of two central normal random variables of standard
deviation σon and σref . The standard deviation of S astro

on is thus

σ =
√
σ2

on + σ
2
ref . (C.8)

As the weather and the source elevation is varying during the
observations, σ varies with times and thus with the position in
the final map as shown on Fig. 6. Fortunately, the observing con-
ditions can be considered constant between the observation on
source and on reference. This implies that

σref = σon

√
dton

dtref
and σ = σon

√
1 +

dton

dtref
(C.9)

where dton and dtref are the integration time on source and on
reference. We can thus compute the spatial power density of the
ratio S astro

on /σ to get rid of the noise variations due to the weather
or the source elevation. This simplifies the interpretation of the
result. From this point on, we keep the notation of Eq. C.3, and
just note that the random variables Non and Nref have for standard
deviation σon/σ and σref/σ.

C.3. Relative contributions from the ON and REF
measurements

The spatial power density of the difference of two independent
random processes is the sum of the spatial power density of each
random process. We thus get

P S astro
on
≃ P on + P ref , (C.10)
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with

P on(u, v) =
E

[∣∣∣F [B ⋆ Non]
∣∣∣2(u, v)

]
Aima

(C.11)

= Apix

(
σon

σ

)2 ∣∣∣F [B]
∣∣∣2(u, v), (C.12)

and

P ref(u, v) =
E

[∣∣∣F [B ⋆ Nref]
∣∣∣2(u, v)

]
Aima

. (C.13)

The noise spatial power density of the on-source noise delivers
the usual result, that is, it is proportional to the Fourier trans-
form of the point spread function of the telescope. In the next
section, we compute the noise spatial power density of the ref-
erence noise. In particular, it is not proportional to |F [B]|2 (u, v)
because the reference position is always observed at the same
position on sky.

C.4. Quantitative impact of the noise correlation

Fig. C.1: Illustration of the 1D calibration noise decomposition as the
convolution between a random Dirac comb and a rectangular filter.

We shall assume that all on-source pixels inside a rectangle
of area Arect share the same reference spectrum, and that these
rectangles form a chessboard pattern. The images are paved by
nrect rectangles. The impact (R) of the reference observations on
the observation procedure can be modeled by a convolution of a
random dirac comb X with a 2D rectangular shape Π

R(θl, θm) = [Π ⋆X](θl, θm), (C.14)

with X(θl, θm) = Arect

nrect∑
k=1

Nk δ(θl − θl,k, θm − θm,k), (C.15)

and

Π(θl, θm) =
{

1/Arect if |θl| < ∆θl2 , and |θm| < ∆θm2 ,
0 else, (C.16)

where k is the index of one rectangle over the chessboard,
(θl,k, θm,k) the position of center of each rectangle, and Nk is the
random variable associated with each measurement of the refer-
ence position. This random variable is assumed to be a normal
variable N(0, σref

k ). The factor 1/Arect that appears in the defini-
tion C.16 ensures that the integral of the 2D rectangular shape Π
is equal to 1 (unitless), and that all the energy of the stochastic
process R is contained into the energy of the random comb func-
tion X. Figure C.1 illustrates this decomposition in the 1D case.
We now show that the noise spatial power density of the process
R is

P R(u, v) =
[
sinC

(
∆θl u
λ

)
sinC

(
∆θm v

λ

)]2

Arect ⟨σ2
k⟩, (C.17)

where

⟨σ2
k⟩ =

1
nrect

nrect∑
k=1

σ2
k (C.18)

is the average of the noise variances of the reference measure-
ments. Indeed, the properties of the Fourier transform and the
deterministic nature of the Π function allow us to yield

P R(u, v) =
∣∣∣F [Π]

∣∣∣2(u, v) · P X(u, v). (C.19)

As the Fourier transform of a boxcar is a cardinal sine,

∣∣∣F [Π]
∣∣∣2(u, v) =

[
sinC

(
∆θl u
λ

)
sinC

(
∆θm v

λ

)]2

. (C.20)

As X is a white noise, its energy spectral density is a con-
stant. By using the energy conservation property of the Fourier
transform, we get

P X(u, v) =
A2

rect

AIma

nrect∑
k=1

E
[
N2

k

]
. (C.21)

Finally, using Eq. C.18 and the fact that Aima = Arect nrect, the
spatial power distribution of the 2D random comb is

P X(u, v) = nrect
A2

rect

Aima
⟨σ2

k⟩ = Arect ⟨σ2
k⟩. (C.22)

Appendix D: Calibration uncertainty

Fig. D.1: Relative variation of the fitted Gaussian area for the 13CO
(1−0) line toward the Horsehead core in percentage. The left panel
shows the variations as a function of the time of the measurements,
while the right panel shows the histogram of the variations. The black
and red colors are used for the H and V polarizations of the EMIR
receiver. The vertical error bars around each point show the uncertain-
ties on the fitted area due to thermal noise. The horizontal dashed lines
show the mean variation for each polarization. The horizontal dotted
lines show the ±1σ level for all the measurements.

In order to monitor the calibration uncertainty, we observed
the same position with known and bright line intensities at the
start of each 8-hour block of observations. We choose the Horse-
head core position (located at (+20′′,+22′′) from the projection
center of 05h40m54.270s,−02◦28

′
00.00

′′
) as this position has

been extensively studied in the framework of the Horsehead
WHISPER survey (see, e.g., Guzmán et al. 2012; Pety et al.
2012; Gratier et al. 2013; Guzmán et al. 2013). We used the
symmetric position switching observing mode with a reference
position located at (−100′′, 0′′) from the projection center. We
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integrated 6 minutes in total (3 minutes on source and 3 minutes
on reference). This yields 55 measurements times two polariza-
tion spread over slightly more than 6 years and observed during
varying weather conditions.

Calibration and reduction were done using standard methods
of MRTCAL and CLASS. After extracting 11 MHz around the
13CO (1−0) rest frequency, we averaged the 110 separate spec-
tra. The mean spectrum of all 110 measurements was fitted with
a single Gaussian to get a reference value for the 13CO (1−0) line
integrated intensity. In this fit, we only considered the main com-
ponent of Orion B, near 10 km s−1. We then fit a single Gaussian
for each 6-minutes measurement using the solution for the aver-
aged spectra as initial guess for the fit and we visually checked
that all fits were good. We then computed the variation of each
measurement relative to the value derived for the average spec-
trum. Figure D.1 shows the relative variations as a function of the
time and their histograms for the H and V EMIR polarizations
separately.

The relative variations range from −25 to +10%. The vertical
polarization delivers almost systematically a larger intensity than
the horizontal polarization. This explains why the mean relative
variations are +1.01 and −1.09%, respectively. The RMS around
these means are 6.8 and 6.1%. The median absolute deviations
are 5.0 and 4.3%, respectively. The difference between the RMS
and median absolute deviation implies that a few measurements
are outliers. Overall, the calibration uncertainty for the IRAM
30m is on the order of 5% for an almost instantaneous observa-
tion at 3 mm, as is the case for the ORION-B project. Averaging
many such measurements when, for example, observing low
brightness sources, considerably reduces this uncertainty. This
experiment says nothing about the absolute calibration accuracy.

Appendix E: About the multilayer perceptron

Fig. E.1: Example of graphical representation of a multilayer percep-
tron. The left part of the figure represents the network as a flowchart,
highlighting the successive operations applied to the inputs. The right
part shows the detailed architecture of the network, in this case consist-
ing of two inputs, ten outputs and two hidden layers of four and height
neurons, respectively.

A neural network is a graphical model that maps nonlinearly
outputs from inputs. A neural network architecture represents
a given class of function. Neural networks are composed of a
succession of layers that perform nonlinear transformations. Fig-
ure E.1 shows an example of a forward propagation architecture,
named multilayer perceptron. Forward propagation means that

the output of one layer is always the input of the next layer, while
multilayer implies that there are at least two layers. In addition,
the layers are fully connected, which means that each output of a
layer is computed from all inputs. More precisely, for each layer,
the input x and the output y are related through

y = σ (Wx + b) , (E.1)

where W and b are respectively the weight matrix and the
bias vector, which are estimated during the learning step. The
biases enable one to shift the argument of a nonlinear activation
function σ. Such a perceptron has the universal approximation
property. It is able to approximate as precisely as required any
continuous function provided it has enough neurons.

Appendix F: A short introduction to mutual
information

In information theory, mutual information is a quantity that mea-
sures the statistical dependence of two variables. The mutual
information in base 2 of two continuous real variables X and
Y is calculated as

I (X,Y) =
∫ +∞

−∞

∫ +∞

−∞
fX,Y (x, y) log2

fX,Y (x, y)
fX(x) fY (y)

, (F.1)

with fX , fY , and fX,Y respectively the probability density func-
tions of X, Y , and (X,Y).

Mutual information is a positive real quantity and it is sym-
metric. In other words, I (X,Y) = I (Y, X). If there exists a
function f (linear or not) such that Y = f (X), then I (X,Y) =
+∞. Conversely, if the knowledge of one of the variables gives
no information about the other (i.e., the two variables are inde-
pendent) then I (X,Y) = 0. Mutual information is therefore a
more general indicator than Pearson or Spearman correlation
coefficient since it takes into account nonlinear and nonmono-
tonic relationships. In particular, it is possible for two variables
to be decorrelated but have nonzero mutual information.

Appendix G: Supplementary figures

Fig. G.1: Visualization of the 240 spectral images of the 13CO (1−0)
cube sorted by increasing velocity.
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