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A B S T R A C T   

Background and aims: Plant-based dietary patterns have been associated with improved health outcomes. This 
study aims to describe the metabolomic fingerprints of plant-based diet indices (PDI) and examine their asso-
ciation with metabolic syndrome (MetS) and its components in a Danish population. 
Methods: The MAX study comprised 676 participants (55% women, aged 18-67 y) from Copenhagen. Socio-
demographic and dietary data were collected using questionnaires and three 24-h dietary recalls over one year 
(at baseline, and at 6 and 12 months). Mean dietary intakes were computed, as well as overall PDI, healthful 
(hPDI) and unhealthful (uPDI) scores, according to food groups for each plant-based index. Clinical variables 
were also collected at the same time points in a health examination that included complete blood tests. MetS was 
defined according to the International Diabetes Federation criteria. Plasma metabolites were measured using a 
targeted metabolomics approach. Metabolites associated with PDI were selected using random forest models and 
their relationships with PDIs and MetS were analyzed using generalized linear mixed models. 
Results: The mean prevalence of MetS was 10.8%. High, compared to low, hPDI and uPDI scores were associated 
with a lower and higher odd of MetS, respectively [odds ratio (95%CI); hPDI: 0.56 (0.43–0.74); uPDI: 1.61 
(1.26–2.05)]. Out of 411 quantified plasma metabolites, machine-learning metabolomics fingerprinting revealed 
13 metabolites, including food and food-related microbial metabolites, like hypaphorine, indolepropionic acid 
and lignan-derived enterolactones. These metabolites were associated with all PDIs and were inversely correlated 
with MetS components (p < 0.05). Furthermore, they had an explainable contribution of 12% and 14% for the 
association between hPDI or uPDI, respectively, and MetS only among participants with overweight/obesity. 
Conclusions: Metabolites associated with PDIs were inversely associated with MetS and its components, and may 
partially explain the effects of plant-based diets on cardiometabolic risk factors.   
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1. Introduction 

Metabolic and cardiovascular diseases (CVDs) are major global 
causes of morbidity and mortality [1]. Many of the identified car-
diometabolic risk factors have been directly associated with unhealthy 
lifestyles, which are still highly prevalent and poorly tackled [2]. In 
parallel, metabolic alterations, clustered within metabolic syndrome 
(MetS), make an important contribution to the attributable burden of 
CVD [1]. The prevalence of MetS has increased over time globally, with 
nearly 20–25% of the adult population currently having MetS [3,4]. 

Following a healthy diet is one of the most important modifiable 
lifestyle factors in preventing MetS and cardiometabolic diseases [5]. In 
recent years, there has been a growing interest in plant-based and 
vegetarian diets and their relationships with environmental sustain-
ability, animal welfare, and its concomitant health benefits [6,7]. 
Vegetarian diets are a subset of plant-based diets that include both 
traditional foods based on vegetables and fruits, but more recently also 
plant-based protein isolates and concentrates from traditional and new 
sources used as meat and dairy analogues. Overall, these diets are 
characterized by a low/null consumption of animal foods [8]. From their 
first approach by Martínez-González et al. [9] in 2014 to the present, 
different plant-based dietary patterns have been captured by proposed a 
priori defined diet indices (PDIs). Originally, PDIs scored all plant-based 
foods positively without any particular organization. Now, there is a 
high acceptance of the classification of PDIs scoring animal food groups, 
and healthy and less healthy plant foods, although classifications as 
“healthy” or “unhealthy” are highly context related [10–12]. The 
healthy plant-based diet index (hPDI) emphasizes a higher intake of 
healthy plant foods (e.g., fruits and vegetables, whole grains, nuts and 
seeds, legumes, tea and coffee), and the unhealthy plant-based diet 
index (uPDI) is based on less healthy plant foods (e.g., refined grains, 
sweets and desserts, sugar-sweetened beverages, potatoes, fruit and 
vegetable juices), while all PDIs reverse score animal foods (e.g., meats, 
dairy products, fish, eggs, animal fat, and miscellaneous) [13]. Although 
one may seem the inverse of the other, these two indices exhibit dif-
ferences in their association with health outcomes [8,10,13]. A recent 
meta-analysis of prospective cohort studies showed that a higher overall 
PDI and hPDI adherence was associated with a lower risk of CVDs [8]. 
Moreover, a South Korean prospective cohort found that a higher uPDI 
was associated with an elevated risk of MetS [13]. A few studies have 
analyzed the relationships between differentiated PDI and MetS or 
cardiovascular risk factors [10,12,13], but further research is needed to 
confirm such potential relationships, especially in different populations. 

As a complementary strategy, the use of large-scale targeted 
metabolomics platforms, which offer high-sensitivity, reproducibility, 
and compound coverage, has emerged in recent years for use in quan-
titative metabolomics analysis, with great applicability in nutrimeta-
bolomics and exposome research [14]. This allows new opportunities to 
investigate the molecular mechanisms linking diet with health and to 
improve prediction and stratification for precision nutrition. Identifying 
metabolite signatures associated with plant-based diets may, for 
example, provide new insights into the underlying biological processes, 
including host and gut microbiota metabolic processes, behind these 
associations with cardiometabolic diseases [15]. Indeed, a recent study 
found that the plasma metabolites related to plant-based diets explained 
up to 37% of the type 2 diabetes risk reduction associated with 
plant-based dietary patterns [16]. 

Dietary patterns in Nordic populations are distinguishable from 
Asian, Western, or even other European populations [17]. Only a few 
studies have yet identified and investigated metabolite patterns shared 
across several healthy dietary patterns and their association with disease 
outcomes as recently reviewed [18]. To the best of our knowledge, no 
previous study in Nordic populations has described the associations 
between plant-based diets and cardiometabolic risk factors, using a 
nutrimetabolomics approach. Thus, we aimed to investigate the re-
lationships of different self-reported plant-based diet indices (PDI, hPDI, 

and uPDI), and their associated metabolomic fingerprints, with MetS in 
the Danish Diet, Cancer and Health – Next Generations (DCH-NG) MAX 
study, a subcohort of the main DCH-NG. 

2. Patients and methods 

2.1. Study population/design 

The current analysis is based on the DCH-NG MAX study, a validation 
subsample within the DCH-NG cohort. This large population-based 
family study, established in Denmark between August 2015 and April 
2019, is an extension of the Diet, Cancer and Health (DCH) cohort [19]. 
The DCH-NG cohort includes 39,554 adult participants with complete 
data collection and incorporates biological children, their spouses, and 
the grandchildren of the participants in the DCH cohort [20]. From 
August 2017 to January 2018, 720 participants of the DCH-NG MAX 
study, aged 18 or older, were enrolled and both questionnaire data and 
biological samples were collected at baseline, and at 6 and 12 months 
(Supplementary Fig. 1). At each time point, participants completed two 
main questionnaires concerning lifestyle and dietary habits, and 
participated in a health examination that included collection of blood, 
spot urine, saliva and fecal samples, as well as anthropometry and blood 
pressure measurements. Not all participants had available data at the 
three time points (Supplementary Fig. 1). 

The DCH-NG research project was approved by the Danish Data 
Protection Agency (journal number 2013–41- 2043/2014–231-0094). 
The Committee on Health Research Ethics for the Capital Region of 
Denmark approved the full DCH-NG project March 2015 and the DCH- 
NG MAX sub-study July 2017 (journal number H-15001257). The par-
ticipants provided their written informed consent to participate in the 
study. 

2.2. Dietary assessment 

Participants (n = 676) of the DCH-NG MAX study completed one 24- 
h dietary recall (24-HDR) at least once. For dietary assessment, the 
Danish version of the web-based tool myfood24 (www.myfood24.org/) 
from Leeds University [21] was used. This application has been linked 
with the Danish national food composition database and other food 
databases [22], which includes approximately 1600 Danish food items, 
and also features a recipe maker. Portion sizes were based on reports 
from the Danish Food Institute. 

2.3. Plant-based diet indices 

We calculated the overall PDI, the hPDI and the uPDI, following the 
procedures described in previous publications [11,13]. Eighteen food 
groups were classified into larger categories of healthy and less healthy 
plant foods, and animal foods. Healthy plant food groups included whole 
grains, fruits, vegetables, nuts, legumes, vegetable oils, and tea/coffee. 
Less healthy plant food groups included fruit juices, sugar-sweetened 
beverages, refined grains, potatoes, and sweets/desserts. Animal food 
groups included animal fats, dairy, eggs, fish/seafood, meat, and 
miscellaneous animal-based foods. Supplementary Table 1 details ex-
amples of food items constituting each food group. Intake data from all 
the available time points of each participant were averaged to calculate 
the PDIs. Afterwards, we adjusted the mean consumption (g/d) of each 
food group for the mean of total energy intake using the residual method 
[9]. The energy-adjusted estimates were ranked in quintiles. Each 
quintile was assigned a score between 1 and 5. The scoring system 
(positive vs. reverse) is presented in Supplementary Table 2. 

For the PDI, all plant foods were positively scored. For example, 
individuals in the highest quintile of fruit consumption received a score 
of 5, and those in the lowest quintile received a score of 1. Another 
example, for hPDI the less healthy plant-based foods were reversely 
scored, so individuals in the lowest quintile of e.g. refined grains intake 
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received a score of 5. In all PDIs, animal foods were reversely scored, so 
individuals in the highest quintile of e.g. fish intake received a score of 1. 
The 18 food group scores for an individual were summed to obtain the 
indices, with a theoretical range of 18 (lowest possible score) to 90 
(highest possible) for all PDIs. 

Alcoholic beverages were not included in the indices. The associa-
tions between alcoholic beverages, at the low-modest intake levels re-
ported in the present study and health outcomes are controversial and 
not clear [11]. Nonetheless, statistical analyses were controlled for 
alcohol consumption. 

2.4. Biological, anthropometrical, and clinical data 

The anthropometric measures for height and weight were performed 
using a stadiometer (Seca 264, Germany) and a medical Body Compo-
sition Analyzer (Seca 515/514, Germany), respectively. Body mass 
index (BMI) was calculated as weight (kg)/height (m)2. Waist circum-
ference (WC) was measured midway between the lowest rib margin and 
the iliac crest and to the nearest 0.1 cm, using a measuring tape. Blood 
pressure was measured on the left arm, three times after at least 5 min of 
rest, using an automatic manometer (Omron M − 10 IT and Omron HB- 
1300, Germany). Blood samples were collected in a nonfasting status 
(from 1 to 9 h since last meal, mean fasting time 5 h). Measurements of 
high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), and 
high-sensitivity C-reactive protein (hs-CRP) were carried out in lithium 
heparin plasma, and hemoglobin A1c (HbA1c) in blood tubes with 
K2EDTA using standardized clinical laboratory methods. All analyses 
were performed on a Cobas® 6000 analyzer by Roche Diagnostics. A 
complete description of the physical examination and measurements in 
biological samples is presented elsewhere [20]. 

2.5. Metabolic syndrome and cardiometabolic risk factors 

MetS was defined as the presence of three or more of its five com-
ponents according to the International Diabetes Federation (IDF) defi-
nition [23], including: WC (>88 cm in women and >102 cm in men); 
high serum TG concentration ≥1.7 mmol/L; reduced serum HDL-C 
(<1.3 mmol/L in women and <1.0 mmol/L in men); high blood pres-
sure, high systolic blood pressure (SBP) (>130 mmHg) and/or high 
diastolic blood pressure (DBP) (>85 mmHg); and high HbA1c (>42 
mmol/mol or 6.0%) as a biomarker for long-term glycemic control, 
replacing fasting plasma glucose [24,25]. Furthermore, we included 
high hs-CRP as a cardiovascular risk factor (≥2.0 mg/L) [26,27]. Most of 
the cutoffs of lower cardiometabolic risk were in line with the recom-
mendations of the European Guidelines on CVD Prevention in Clinical 
Practice [2]. Cardiometabolic risk factors were used as categorical var-
iables following the metabolic risk classification. 

2.6. Targeted metabolomics analysis and quality control assessment 

A large-scale targeted metabolomics approach was available for 
plasma samples of 625 participants at baseline, 380 at 6 months and 348 
at 12 months (Supplementary Fig. 1), which encompasses simultaneous 
detection and quantification of (poly)phenolic and other food derived 
compounds, and its phase I/II metabolites, gut microbiota-transformed 
derivatives, and endogenous metabolites. Plasma samples were first 
subjected to protein precipitation in a Sirocco Plate (Waters, Milford, 
MA, USA) as previously described [14]. Supernatants were transferred 
to 96-well injection plates after the addition of a set of 14 labeled in-
ternal standards. Analyses were carried out by ultra-high performance 
liquid chromatography coupled to tandem mass spectrometry 
(UHPLC-MS/MS), using the operating conditions described elsewhere 
[14]. Calibration curves were prepared at 10 concentration levels in the 
range 0.01–1000 μg/L. 

Metabolomics data preprocessing was performed using the POMA R/ 
Bioconductor package (https://github.com/nutrimetabolomics/POMA) 

[28]. Data preprocessing included the removal of metabolites with more 
than 40% missing values, and those with a coefficient of variation (CV) 
> 30% in an internal quality control. The imputation of the remaining 
missing values was carried out using the KNN algorithm, correction of 
batch effects using the ComBat function (‘sva’ R package) [29], and data 
normalization using auto-scaling. Afterwards, distances to the group 
centroid were computed based on Euclidean distances to remove out-
liers from the data matrix (±1.5 × interquartile range [IQR]). Thus, the 
metabolites were preprocessed, and outliers were removed, imputed, 
batch effect corrected, standardized, and normalized. The working 
metabolomics data set comprised 411 metabolites out of the 1353 pu-
tative metabolites from the exposome-based metabolomics method 
developed at the Nutrimetabolomics laboratory of the University of 
Barcelona [14]. 

2.7. Statistical analysis 

Baseline characteristics were presented as median (p25 – p75) or 
percentages for dichotomous variables according to tertiles of PDIs. To 
include all participants in the baseline descriptive analysis, including 28 
participants who only had available data at 6 or 12 months, their first 
available evaluation was considered as baseline. PDI scores were repli-
cated at the different time points for each participant, reflecting their 
adherence to the dietary pattern during the year of the study. All clinical 
and metabolomics data available were included for all the participant at 
each time point (total observations, k = 1353), and generalized linear 
mixed models (GLMMs) were used for inferential statistics. 

Associations between PDIs (as continuous per standard deviation 
(SD) or categorical variables per tertile) and the prevalence of MetS and 
cardiometabolic risk factors (as categorical variables) were assessed 
using GLMMs in a random intercepts model. The p-value for trend was 
calculated by modeling PDI tertiles as a continuous variable. 

GLMM models for studying the association between PDIs and MetS 
were constructed based on previous knowledge as shown in the directed 
acyclic graph (Supplementary Fig. 2). Results are presented as odds 
ratios (ORs) and 95% confidence intervals (CIs). Model 1 was unad-
justed; Model 2 was adjusted for age (y), sex (male vs. female), total 
energy intake (kcal/d), physical activity (regular vs. no regular exer-
cise), smoking (never, former, and current smoker), and alcohol intake 
(g/d). 

The associations between dietary patterns and targeted metab-
olomics data were evaluated with random forest models using the R 
package ‘ranger’ in baseline data with a split at 70% and 30% of the 
sample for training and testing, respectively. Furthermore, model fit was 
evaluated with data sets at 6 and 12 months and accepted using a 
minimum R2 threshold of 0.15. Variable importance was attributed ac-
cording to the permutation criteria, which emphasizes the effects of the 
metabolites based on the mean squared error reduction. For each PDI, 
we selected the top 20 metabolites (Venn diagram) with the highest 
permutation importance. The association between these individual 
metabolites and cardiometabolic risk factors was analyzed using the 
Spearman’s rank correlation coefficient. In addition, we presented the 
top 10 metabolites’ highest permutation importance for all PDIs (Sup-
plementary Fig. 3). The associations between PDIs, the selected me-
tabolites, and MetS were analyzed using GLMM. 

The percentual contribution of the metabolites to the association 
between the PDIs and MetS was calculated by including the metabolites 
separately in Model 2 (OR base model – OR adjusted model)/(OR base 
model − 1) × 100%. These last analyses were performed in participants 
categorized by normal weight (BMI <25 kg/m2) or overweight/obesity 
(≥25 kg/m2) due to the mediation effect of BMI (Supplementary Fig. 2). 
Additionally, we conducted an analysis including BMI in the models 
since BMI and waist circumference are variables highly intercorrelated 
(Supplementary Fig. 4). 

p-values <0.05 were considered statistically significant in two-tailed 
tests. IBM SPSS 27.0 and R version 4.1.3 (R foundation, Austria) were 
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used for statistical analysis. 

3. Results 

The baseline characteristics according to tertiles of PDIs are shown in 
Table 1. Participants with higher scores in overall PDI and hPDI were 
more likely to be women, have a lower BMI, be more physically active, 
and were less likely to smoke than participants with lower PDI and hPDI 
scores. In contrast, participants in the highest vs. those in the lowest 
uPDI tertile were more likely to be men, to be overweight or have a high 
waist circumference, and to be more physically inactive and smoke. 
With regards to cardiometabolic risk factors, participants with the 
highest PDI and hPDI scores were more likely to have lower blood 
pressure, HbA1c, LDL-C, and hs-CRP, and higher HDL-C. 

The mean food group intakes according to tertiles of PDIs are pre-
sented in Supplementary Table 3. Participants with higher scores in 
overall PDI and hPDI (as well as those with lower uPDI scores) showed 
higher intakes of wholegrains, vegetables, tea, and coffee and lower 
intakes of sugar-sweetened beverages, sweets, and animal food groups 
(i.e., dairy and miscellaneous animal-based foods) than participants 
with lower overall PDI and hPDI scores (higher uPDI scores). 

The mean prevalence of MetS was 10.8% (155 cases out of 676 
participants), with minor differences over the three time points (p >
0.05): baseline 11.6% (n = 648), 6 months 8.6% (n = 406), and 12 
months 11.8% (n = 382). In adjusted models, a 1 SD higher PDI and 
hPDI score was significantly associated with a 30% and 44% lower odds 
of MetS (OR: 0.70; 95%CI: 0.55–0.90]) and (OR: 0.56; 95%CI: 
0.43–0.74]), respectively (Table 2). Conversely, 1 SD higher uPDI score 
was significantly associated with 61% higher odds of MetS (OR: 1.61; 
95%CI: 1.26–2.05]). Furthermore, we observed a linear trend across the 
tertiles in all associations between PDIs and MetS (p < 0.05). The 

inclusion of BMI as a covariate attenuated the observed associations of 
PDI (OR: 0.94; 95%CI: 0.77–1.44]), hPDI (OR: 0.84; 95%CI: 0.69–1.03]) 
and uPDI (OR: 1.18; 95%CI: 0.98–1.43]) with MetS (Supplementary 
Fig. 4, panel b). Moreover, in analyses stratified by BMI categories, 
significant associations between hPDI or uPDI and MetS odds were only 
observed among participants with overweight/obesity (Table 3). 

Regarding MetS components, associations between all PDIs and high 
WC were consistently significant in all models (Supplementary Table 4 
and Supplementary Fig. 5). Moreover, we found an inverse association 
between a higher hPDI and the prevalence of low HDL-C and elevated 
hs-CRP. Similar associations, but in the opposite direction, were 
observed for uPDI (Supplementary Fig. 5). 

From a total of 411 metabolites, using a machine-learning algorithm 
we selected the top 20 metabolites associated with each PDI. A common 
set of 13 metabolites was associated with all three PDIs (Fig. 1B). These 
metabolites were tridecanoyl-carnitine, hydroxyvaleryl-carnitine, 
linoleoyl-carnitine, 2,6-dihydroxybenzoic acid (2,6-DHBA), 3,4-dihy-
droxybenzoic acid (3,4-DHBA), trigonelline, catechol-sulfate, 2-hydrox-
yphenylacetic acid, urolithin A-glucuronide, enterolactone-glucuronide, 
enterolactone-sulfate, indolepropionic acid, and hypaphorine. In cor-
relation analyses, most of these metabolites (enterolactone sulfate/ 
glucuronide, 2,6-DHBA and 3,4-DHBA, indolepropionic acid, and 
hypaphorine) were inversely correlated with several cardiometabolic 
risk factors (Fig. 1A). Among the specific metabolites selected for PDIs, 
most of them showed a negative correlation with HDL-C and a positive 
correlation with TG concentrations (Fig. 1). Metabolites specifically 
associated with hPDI included testosterone, 1-methylhistidine, valeryl- 
carnitine, and 2-methylbutyryl-carnitine. 

Next, we divided the metabolomic fingerprint into two sets of me-
tabolites, those common to all three PDIs, and those specific to each PDI 
(Fig. 1, named common and specific metabolites, respectively). To 

Table 1 
Baseline characteristics of MAX study according to tertiles of plant-based diet indices (n = 676)a.  

Plant-based diet indices Overall PDI hPDI uPDI  

Tertile 1 Tertile 3 Tertile 1 Tertile 3 Tertile 1 Tertile 3 All 

Sample size, nb 220 230 230 216 221 223 676 
Median score, rangeb 43 (29–47) 56 (53–74) 46 (33–50) 62 (58–79) 49 (35–53) 64 (59–81) 50 (29–74) 
Sex, female (%) 45.5 64.8 47.8 70.8 63.3 51.6 54.9 
Age, years 48.0 (30.0–54.0) 46.5 (30.7–52.0) 47.0 (32.7–53.0) 48.0 (30.0–52.7) 49.0 (34.0–54.0) 46.0 (30.0–53.0) 48.0 (31.0–53.0) 
BMI (kg/m2) 25.3 (22.6–28.0) 23.7 (21.5–26.0) 25.5 (23.1–28.6) 23.4 (21.4–25.7) 23.6 (21.8–26.0) 25.1 (22.8–28.6) 24.5 (22.2–27.2) 
Waist circumference (cm) 90.0 (80–98) 82.9 (76.2–91.7) 90.0 (81.0–98.3) 81.8 (75.2–89.8) 82.5 (76.0–92.0) 88.5 (79.2–98.0) 86.1 (78.5–95.3) 
Alcohol intake (g/d) 0.0 (0.0–14.0) 0.0 (0.0–12.7) 0.0 (0.0–9.0) 0.0 (0.0–11.7) 0.0 (0.0–14.2) 0.0 (0.0–1.4) 0.0 (0.0–12.4) 
Total energy intake (kcal/d) 1869 

(1452–2382) 
2001 
(1615–2593) 

2167 
(1637–2602) 

1836 
(1446–2283) 

1929 
(1563–2404) 

1919 
(1436–2489) 

1976 
(1528–2473) 

Physical activity (%) 
Regular 80.9 87.0 79.1 86.6 90.0 74.4 83.1 
Not regular 19.1 13.0 20.9 13.4 10.0 25.6 16.9 
Smoking status (%) 
Never 49.1 57.9 53.5 53.7 51.6 51.6 52.2 
Former 24.5 28.3 24.3 27.8 31.2 22.4 27.5 
Current 26.4 13.9 22.2 18.5 17.2 26.0 20.3 
Risk factors 
SBP (mmHg) 119 (107–131) 113 (102–124) 119 (107–128) 112 (102–122) 113 (104–124) 118 (106–129) 116 (106–126) 
DBP (mmHg) 81 (75–89) 79 (71–85) 81 (74–89) 77 (71–84) 79 (71–86) 80 (73–89) 80 (72–87) 
HbA1c (mmol/mol) 34 (32–37) 33 (31–36) 35 (32–37) 34 (31–36) 34 (32–36) 34 (32–36) 34 (32–36) 
TG (mmol/L) 1.2 (0.8–2.0) 1.0 (0.7–1.5) 1.1 (0.8–1.9) 1.0 (0.7–1.4) 1.0 (0.7–1.4) 1.2 (0.8–1.8) 1.12 (0.80–1.67) 
HDL-C (mmol/L) 1.4 (1.2–1.7) 1.5 (1.2–1.8) 1.3 (1.1–1.7) 1.6 (1.3–1.9) 1.6 (1.3–1.9) 1.4 (1.1–1.6) 1.49 (1.23–1.79) 
LDL-C (mmol/L) 3.0 (2.4–3.7) 2.8 (2.3–3.4) 3.0 (2.4–3.6) 2.8 (2.3–3.4) 2.9 (2.3–3.4) 3.0 (2.4–3.6) 2.99 (2.40–3.55) 
hsCRP (mg/L) 0.8 (0.3–1.6) 0.4 (0.2–1.1) 0.9 (0.3–2.0) 0.4 (0.2–0.9) 0.5 (0.2–1.2) 0.8 (0.3–2.0) 0.71 (0.31–1.49) 
Healthy plant food (score/d)c 13 (11–16) 22 (18–25) 14 (11–16) 22 (18–25) 20 (17–23) 29 (26–31) 17 (14–21) 
Less-healthy plant foods 

(score/d)c 
11 (9–13) 15 (12–17) 14 (12–17) 20 (17–22) 11 (9–13) 15 (13–17) 13 (10–16) 

Animal food (score/d)3 17 (15–21) 20 (18–23) 17 (15–19) 22 (19–24) 17 (15–20) 21 (19–23) 19 (17–22) 

BMI, body mass index. WC, waist circumference. SBP, systolic blood pressure. DBP, diastolic blood pressure. HbA1c, glycosilated hemoglobin. TG, triglycerides. HDL, 
high-density lipoprotein. HsCRP, high-sensitivity C-reactive protein. 

a Values are median (p25-p75) for continuous variables or percentages for dichotomous variables, unless otherwise indicated. 
b The tertiles do not have equal sample size because many participants received the same scores. For participants that did not have a baseline (n = 28) considered the 

starting time point (i.e. six or twelve months) as baseline. 
c Energy-residual adjusted. 
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evaluate whether these sets could explain the association between PDIs 
and MetS, we sequentially included them by sets in the regression 
models and calculated their percentual contribution to the PDIs’ pro-
tective effects. Fig. 2 shows the calculated contribution of the metabo-
lites in Model 2 (fully adjusted model) among participants according to 
BMI categories (normal weight vs. overweight/obesity). In individuals 
with a normal BMI, the specific metabolites of overall PDI and hPDI 
made a relevant contribution (27 and 71%) to the association between 
the respective PDI score and odds of MetS (Fig. 2C). In participants with 
overweight/obesity, common metabolites of hPDI and uPDI made a 
relevant contribution (12 and 14%) to the association between the 
respective PDI score and odds of MetS (Fig. 2D). 

Additionally, further analyses were performed comparatively in 
Model 2 and in Model 2 including further adjustment for BMI (Supple-
mentary Fig. 3A: without BMI, and Panel b: with BMI). Without BMI, the 
set of metabolites reflecting all PDIs explained between 15% and 30% of 
the association between PDIs and MetS risk (Supplementary Fig. 3A). 
However, in the Model that includes BMI, only the set of metabolites 
specific to hPDI showed an explainable contribution of 25% (Supple-
mentary Fig. 3B). Conversely, for the other indices, no sets of 

metabolites made important contributions when BMI was included as 
covariate (Supplementary Fig. 3B). 

4. Discussion 

In this study of middle-aged Danish adults, metabolomics finger-
printing revealed a set of 13 food- and food-related microbial metabo-
lites common to all three PDIs, as well as some minor sets of metabolites 
specific for each individual index. This common set of metabolites 
explained almost 12–14% of the association between hPDI or uPDI, 
respectively, and MetS risk among participants with overweight/ 
obesity. Therefore, these food and gut microbiota related metabolites 
may be more relevant and sensitive to guide precision nutrition in-
terventions in individuals at high-risk for cardiometabolic diseases. The 
graphical abstract summarizes our study findings (Fig. 3). 

Most of the common metabolites included indole propionic and 
phenolic acids, and enterolactone metabolites, that are the result of the 
interaction between diets and microbe-host environment (e.g. gut 
permeability and grade of inflammation) [30,31]. Interestingly, bene-
ficial associations have been described between these metabolites and 

Table 2 
Associations between plant-based diet indices and prevalent MetS (n = 676).   

Tertile 1 Tertile 2 Tertile 3 p-trend Per SD 

Overall plant-based diet 
Number of cases 72 53 30  155 
K-measures 474 467 495  1436 
Model 1 Ref. 0. 73 (0.45–1.18) 0.37 (0.21–0.64) <0.001 0.68 (0.54–0.85) 
Model 2 Ref. 0.80 (0.48–1.34) 0.43 (0.24–0.79) 0.007 0.70 (0.55–0.90) 
Healthful plant-based diet 
Number of cases 85 43 27  155 
K-measures 490 474 472  1436 
Model 1 Ref. 0.46 (0.28–0.75) 0.27 (0.15–0.48) <0.001 0.60 (0.47–0.75) 
Model 2 Ref. 0.38 (0.22–0.65) 0.26 (0.14–0.49) <0.001 0.56 (0.43–0.74) 
Unhealthful plant-based diet 
Number of cases 35 49 71  155 
K-measures 481 490 465  1436 
Model 1 Ref. 1.50 (0.86–2.60) 2.48 (1.45–4.24) <0.001 1.50 (1.21–1.86) 
Model 2 Ref. 1.49 (0.82–2.72) 2.70 (1.50–4.85) <0.001 1.61 (1.26–2.05) 

Total mean plant-based scores were used as a continuous variable, after SD transformation. The data represent the OR (odds ratios) and confidence interval (CI). n, 
subjects. k, measures. Model 1 was an unadjusted model. Model 2 was adjusted for age, sex, time point, total energy intake, physical activity, smoking and alcohol 
intake. 

Table 3 
Associations between plant-based diet indices and prevalent MetS according to the BMI status (n = 676).   

Tertile 1 Tertile 2 Tertile 3 p-trend Per SD 

Overall plant-based diet 
Number of cases 5 5 2  12 
K-measures 225 245 327  797 
Model (N) Ref. 1.01 (0.40–2.56) 0.84 (0.33–2.14) 0.696 0.93 (0.63–1.36) 
Number of cases 67 48 28  143 
K-measures 249 222 168  639 
Model (OV/OB) Ref. 0.79 (0.44–1.40) 0.57 (0.29–1.12) 0.103 0.78 (0.58–1.04) 
Healthful plant-based diet 
Number of cases 4 6 2  12 
K-measures 218 248 331  797 
Model (N) Ref. 0.97 (0.38–2.50) 0.79 (0.30–2.08) 0.626 0.89 (0.60–1.32) 
Number of cases 81 37 25  143 
K-measures 272 226 141  639 
Model (OV/OB) Ref. 0.41 (0.23–0.74) 0.42 (0.21–0.86) 0.004 0.69 (0.51–0.92) 
Unhealthful plant-based diet 
Number of cases 6 2 4  12 
K-measures 314 254 229  797 
Model (N) Ref. 0.81 (0.32–2.02) 0.96 (0.38–2.40) 0.922 1.01 (0.68–1.48) 
Number of cases 29 47 67  143 
K-measures 167 236 236  639 
Model (OV/OB) Ref. 1.37 (0.68–2.74) 2.49 (1.25–4.97) 0.006 1.57 (1.18–2.08) 

Total mean plant-based scores were used as a continuous variable, after SD transformation. The data represent the OR (odds ratios) and confidence interval (CI). n, 
subjects. k, measures. The models were stratified for normal (N: <25 kg/m2) and (OV/OB: ≥25 kg/m2) by nutritional status according to BMI index. All models were 
adjusted for age, sex, time point, total energy intake, physical activity, smoking and alcohol intake. 

F. Lanuza et al.                                                                                                                                                                                                                                  



Atherosclerosis 382 (2023) 117285

6

cardiometabolic risk factors [32–34]. Among the common metabolites, 
indolepropionic acid and enterolactones have been increasingly high-
lighted for its positive cardiometabolic effects [31,35,36]. Indolepro-
pionic acid is a microbial metabolite of dietary tryptophan and it has 
been associated with the improvement of chronic low-grade inflamma-
tion and higher dietary fiber intake [31]. Moreover, some of the effects 
of increased dietary fiber on weight control and gut bacteria composi-
tion could be linked to the higher production of short-chain fatty acids 
and indolepropionic acid [37]. Enterolactones are metabolites produced 
by gut microbiota from plant lignans, and some studies suggest that 
these enterolignans provide health benefits associated with chronic and 
cardiometabolic diseases [15,38]. 

Among the hPDI-specific metabolites, some metabolites could be 
related to male sex and the consumption of dairy or meat (testosterone, 
1-methylhistidine, valeryl-carnitine, and 2-methylbutyryl-carnitine) 
[39,40]. Among the 12 metabolites specific to the metabolomics 

fingerprint of uPDI, some were related to smoking and the uremic toxin 
indoxyl-sulfate. In the case of overall PDI, some of the specific metab-
olites could be related to the intake of saturated fatty acids (e.g., 
palmitoyl-carnitine) and meat (e.g., isovaleryl-carnitine). These high-
light the notion that, although the metabolomic fingerprints were built 
based on PDIs, they may provide information related to lifestyle char-
acteristics in general, when using an exposome-based metabolomics 
method. 

Metabolomics fingerprinting allowed us to analyze the differences 
between the PDIs signatures beyond dietary intake and to study their 
associations with MetS risk. Remarkably, in the associations between 
dietary indices and MetS risk in models adjusted for BMI only the set of 
specific metabolites of hPDI showed a significant contribution (Sup-
plementary Fig. 4). This finding has two complementary interpretations: 
i) hPDI may provide a more comprehensive estimate of the relationship 
between diet and cardiometabolic health than the other PDIs, which 

Fig. 1. Correlations between the specific and common metabolites selected from plant-bases diet indices by metabolomics profiling and cardiometabolic risk factors 
(n: 625, k = 1353). 
(A) PDI: overall plant-based diet index. uPDI, unhealthful plant-based diet index. hPDI: healthful plant-based diet index. C13:0-CAR, tridecanoyl-carnitine. Catechol- 
S, catechol sulfate. C5:0-OH-CAR, hydroxyvaleryl-carnitine. 2-HPAA, 2-hydroxyphenylacetic acid. UroA_G, urolithin A glucuronide. ELS, enterolactone sulfate. 3,4- 
DHBA, 3,4-dihydroxybenzoic acid. ELG, enterolactone glucuronide. 2,6-DHBA, 2,6-dihydroxybenzoic acid. C18:2-CAR, linoleoyl-carnitine. IPA, indolepropionic. 
HYP, hypaphorine. C17:0-CAR(i1), heptadecanoyl-carnitine (isomer 1). 4-CQA, 4-caffeoylquinic acid. HPPA_S, hydroxyphenylpropionic acid sulfate. 3-HHA, 3- 
hydroxyhippuric acid. 1-MeHis: 1-methylhistidine. C5:0-CAR: valeryl-carnitine. 2-MeC4:0-CAR: 2-methylbutyryl-carnitine. 2-HPPA: 3-(2-hydroxyphenyl)propionic 
acid. 3-HCOT: 3-hydroxycotinine. IS, indoxyl sulfate. HA, hippuric acid. 3-CMPF: 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid. EQ4-S, equol 4′-sulfate. PYR- 
S1, pyrogallol sulfate 1. UroA_S, urolithin A sulfate. ASB, arsenobetaine. 5-HIA, 5-hydroxyindoleacetic. C16:0-CAR: palmitoyl-carnitine. 3-HPAA: 3-hydrox-
yphenylacetic acid. 4-Pro B, 4-hydroxyproline betaine. Pro B: proline betaine. iC5:0-CAR, isovaleryl-carnitine. C18:3-CAR, linolenoyl-carnitine. 3-HPV_S: 5-(3′- 
hydroxyphenyl)-γ-valerolactone 3′-sulfate. CIG, cinnamoylglycine. HbA1c, glycosilated hemoglobin. HDL-C, high-density lipoprotein cholesterol. hs-CRP: high- 
sensitivity C-reactive protein. WC, waist circumference. SBP, systolic blood pressure. DBP, diastolic blood pressure. TG, triglyceride; colors denote the association 
directions (red, positive; blue, inverse). Asterisk in the colored cell represent association significance (*p < 0.05). (B) Venn diagram of specific and common me-
tabolites for the metabolite profiling of PDI, hPDI, and uPDI. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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mainly reflected the association mediated by BMI; and ii) the metab-
olomic fingerprint of hPDI may provide a ‘broader’ outlook of the diet 
and lifestyle-related metabolites involved in cardiometabolic risk de-
terminants when compared to the other PDIs. 

As we previously mentioned, the plant-based diet has been linked 
with beneficial or even detrimental cardiovascular health effects ac-
cording to the type of the diet, particularly in vegan diets [41]. However, 
to the best of our knowledge, only one study has reported a metabolomic 
fingerprint for PDIs [16]. Wang et al. using elastic net regression, 
identified a metabolomic signature of 55 metabolites for overall PDI, 93 

metabolites for hPDI, and 75 metabolites for uPDI. Remarkably, the 
hPDI contributed to 51% of the effects of higher adherence to hPDI on a 
lower risk of incident type 2 diabetes. Differences in the metabolomic 
methods, which in our study include gut microbial metabolites and di-
etary biomarkers, and statistical methodologies make comparisons be-
tween studies difficult. There are different methodologies for reducing 
high-dimensional data for metabolic fingerprinting, such as random 
forests, principal component analysis, partial least-squares regression, 
or even elastic net regression [16,42,43]. In particular, random forests 
do not need normally distributed data and have shown better 

Fig. 2. Odds ratio for metabolic syndrome of each plant-based diet indices according to participants with normal BMI (n = 377, k = 816) (A) and overweight and 
obesity (n = 248, k = 537) (B). 
GLMM models were adjusted for age, sex, time point, total energy intake, physical activity, smoking and alcohol intake. The percentage of change in total effect of the 
plant-based diet indices after controlling for selected metabolites (C and D). The percentage of change was calculate using the formula (OR base model – OR adjusted 
model)/(OR base model − 1) × 100%). Model (a) was additionally adjusted for: specific, common, and specific and common metabolites (as appropriate, for 
calculations of % of change in total effect). 

Fig. 3. Using a targeted metabolomics method of food and microbiota-derived metabolites, as well lifestyle, contaminants, exposome, and clinical metabolites, a 
common signature of 13 metabolites was associated with three different plant-based dietary indices (PDIs). 
High, compared to low, healthful PDI and unhealthful PDI scores were associated with a lower and higher odds of metabolic syndrome. Metabolomic fingerprinting of 
PDIs support the notion that not all PDIs are equal in terms of their impact on cardiometabolic health. 
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performance when compared to other machine-learning algorithms 
[44]. On the other hand, elastic net regression may be used to obtain 
metabolic fingerprints ‘adjusted’ for confounding or mediation variables 
(e.g., sex, BMI, and other lifestyles) [16,45]. Including covariates in 
metabolite selection methods could be misleading as assumptions of 
linear regression may not be satisfied for all the metabolites, leading to 
inappropriate results. Thus, we must be aware of the implications of 
each methodological process, data analysis, results, and their 
interpretation. 

In general, in participants with a higher adherence to plant-based 
dietary patterns, there is a high consumption of foods that are rich in 
dietary fiber and phytochemicals (e.g. phenolic compounds), which 
have been identified as key factors for positive health effects, such as 
glycemic control [46]. Although (poly)phenols are consumed in less 
quantity than fiber (mg/day vs. g/day, respectively), increasing scien-
tific literature has demonstrated its impact as a prebiotic acting via 
direct microbe-host interactions and therefore on the gut bacterial 
community, and indirectly through the production of gut microbial 
metabolites, that may display beneficial health effects. In addition, PDIs, 
and specially overall PDI or uPDI, may be affected by high intakes of 
plant-based ultra-processed foods of poor nutritional value (e.g. few 
minerals/vitamins and a lot of energy, sugar and additives) such as 
sugar-sweetened beverages or refined grains [11,47]. Moreover, the 
length and accessibility of the food supply chain may contribute to the 
development of cardiovascular risk among individuals who adhere to a 
specific PDI [48]. Another layer of complexity to the study of the 
diet-health relationship has been recently highlighted due to the 
importance of differentiating and integrating short and long-term PDI 
data in order to identify and establish associations with gut microbial 
diversity, taxonomic composition, and their protective role on car-
diometabolic health [49]. 

The present study has three main strengths. First, we included a 
large-scale targeted metabolomics approach and biochemical data from 
individuals evaluated three times over a one-year period. Second, we 
applied a comprehensive multi-metabolite targeted metabolomics 
method and a nonparametric, machine-learning, random forest algo-
rithm, which, compared to other machine-learning methods, is inde-
pendent of the conformity with the assumptions of linear regression. 
Also, to the best of our knowledge, no previous studies have analyzed 
the PDIs, combining diet assessment data and a targeted metabolomics 
approach, in relation to MetS and cardiometabolic risk factors. Lastly, 
our analytical method focused on plant-based foods and their de-
rivatives. However, another approach could capture additional metab-
olites from endogenous pathways. 

Our study also has limitations, including weaknesses related to the 
limitations of the analytical procedures in nutrimetabolomics studies, 
such as difficulties in detecting specific compounds, and the unknown 
bias and intra-individual variation in metabolomics measurements (only 
287 participants had metabolomics measurements at baseline, and 6 and 
12 months). In addition, this is a one-year study and we do not know 
whether the associations found, or even the metabolomics fingerprint, 
are stable over longer time periods. With regard to dietary assessment, 
one of the limitations is that the repeated 24-HDR during three times 
over the year to estimate the PDIs may be less representative of the 
habitual diet than a food frequency questionnaire. It is worth noting that 
participants may have also engaged in social desirability bias, including 
underreporting the intake of energy-dense foods perceived as unhealthy. 
This, in turn, has the potential to attenuate the observed association 
between diet and disease [50]. However, in this case, we worked with 
the mean of the three timepoints to improve our estimations of dietary 
indices. On the other hand, the 24-HDR usually provides more food 
items and is more accurate in terms of dietary components than other 
dietary assessment methods. As all self-reported diet intake, 24-HDR are 
prone to random and systematic errors [51]. The studied population of 
the MAX study has a relatively low prevalence of obesity (10.2%) and of 
MetS (11.6%) compared to some other studies and even the general 

population [4,52,53]; thus, the generalizability of our results might be 
limited. Finally, the observational design of our study does not allow to 
establish cause effect relationships, and further studies should confirm if 
these metabolites are directly involved in metabolic health benefits 
associated with PDIs or are biomarkers of a more diverse and more 
healthy gut bacteria ecosystem. 

In conclusion healthy and unhealthy PDIs were associated with 
lower and higher MetS risk, respectively. Additionally, we identified 
specific and common metabolites associated with PDIs and MetS risk, 
which may be relevant to explain the effects of diet on cardiometabolic 
risk factors independently of BMI. Other metabolites in the metabolic 
fingerprint may reflect other exposures such as clinical or lifestyle 
characteristics (e.g. sex, meat consumption, or smoking, among others). 
Future studies need to evaluate if these metabolites are useful targets for 
novel precision nutrition interventions for cardiometabolic disease 
prevention. 
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