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Fast generation of Schrödinger cat states
using a Kerr-tunable superconducting
resonator

X. L. He 1,2,7, Yong Lu 3,4,7 , D. Q. Bao1,2, Hang Xue 1,2, W. B. Jiang1,2,
Z. Wang1,2, A. F. Roudsari 4, Per Delsing 4, J. S. Tsai5,6 & Z. R. Lin 1,2

Schrödinger cat states, quantum superpositions of macroscopically distinct
classical states, are an important resource for quantum communication,
quantum metrology and quantum computation. Especially, cat states in a
phase space protected against phase-flip errors can be used as a logical qubit.
However, cat states, normally generated in three-dimensional cavities and/or
strong multi-photon drives, are facing the challenges of scalability and con-
trollability. Here, we present a strategy to generate and preserve cat states in a
coplanar superconducting circuit by the fast modulation of Kerr nonlinearity.
At the Kerr-free work point, our cat states are passively preserved due to the
vanishing Kerr effect. We are able to prepare a 2-component cat state in our
chip-based device with a fidelity reaching 89.1% under a 96 ns gate time. Our
scheme shows an excellent route to constructing a chip-based bosonic
quantum processor.

Quantum computation has been proven to surpass classical archi-
tectures in certain computational tasks1. Quantum information has
been encoded and manipulated in diverse systems such as cold
atoms2, trapped ions3,4, superconducting circuits5. Especially, super-
conducting circuit is a promising platformwhich has shown significant
progress on the gate-based quantum computers1,6. Additional qubit
elements are normally required to achieve large-scale error-correct-
able two-level system-based quantum computation7. In contrast, the
phase space of a bosonic system inherently provides a larger Hilbert
space and thus a larger coding area8–11. Therefore, encoding quantum
information in continuous variables leads to a significant reduction in
hardware overhead on the path towards the fault-tolerance12,13. The
nonclassical states with negative Wigner functions14,15 can be regarded
as a quantum computing resource to obtain quantum computational
advantage. Recently, non-classical states including Schrödinger’s cat
codes16 binominal codes17, GKP states18,19, and cubic-phase states18,20,

have been demonstrated in cavities coupled to ancillary qubits. How-
ever, the ancillary qubit normally has a fixed Kerr nonlinearity which
might be detrimental even for the storage of nonclassical state21. In
previous results, Schrödinger’s cat states were mostly generated by
engineering the two-photon losses22,23 or ancilla-assisted processes24 in
two-25,26 and three-dimensional23 structures.

In this paper, differently from traditional gate-based cavity con-
trol schemes using the dispersive shift of a nominally linear resonator
to an ancilla qubit24–26, our cat state preparation scheme is an alternate
by applying a displacement followed by a Kerr gate to a nonlinear
resonator. The Kerr gate is implemented by quickly tuning the non-
linearity of the resonator terminated by a Superconducting Nonlinear
Asymmetric Inductive eLement (SNAIL)27,28 as shown in Fig. 1a. More-
over, by tuning thefluxbias to theKerr-free pointwith eliminated four-
wave mixing term, we therefore preserve the prepared cat states
against the Kerr-induced evolution.
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Results
Design of the quantum circuit
The energy of the SNAIL in our circuit with three big junctions and one
smaller junction [Fig. 1c] can be written as29

USNAILðφÞ= �βEJ cosðφÞ � 3EJ cos
φext � φ

3

� �
, ð1Þ

where the ratio of the Josephson energies of the small and the big
junctions of SNAIL, β≈0.095, the Josephson energy EJ/h≈830GHz28

(Details in Methods), φext = 2πΦext/Φ0 is the phase induced by the
external magnetic flux and φ is the phase difference between two ports
of theSNAIL. TheHamiltonianof theSNAIL-terminated resonator is10,27,30:

HSNAIL�Res = _ωsa
ya+ g3ða+ayÞ3 + g4ða+ayÞ4, ð2Þ

whereωs is the resonant frequency of the SNAIL-terminated resonator
(the tunable range of ωs/2π is around 4.08-5.00 GHz in our device). a

(a†) is the annihilation (creation) operator. g3(g4) is the coupling
strength for the three (four)-wave mixing.

Including the coupled ancillary transmon qubit, the total effective
Hamiltonian of the system in the dispersive regime is given by31

Heff

_
≈ ωsa

ya+Kay2a2 +
ωq

2
byb

� χ
2
ayabyb� Kq

2
by2b2,

ð3Þ

whereωq is the frequencyof the ancillaryqubit (around5.09-5.19GHz).b
(b†) is the lowering (raising) operator for the ancillary qubit.K is the Kerr
nonlinearity of the resonator, defined as the frequency shift per photon,
K=Ks +Kqs with the self-Kerr term Ks = 12ðg4 � 5g2

3=ωsÞ from the SNAIL
element and the cross-Kerr term Kqs = χ2/4Kq from the qubit with the
dispersive shift χ/2π≈ 3.5− 18MHzdepending on theflux bias [especially
χ/2π≈4.35MHz when the external fluxΦext =0.4026Φ0 (see Methods)].
The qubit anharmonicity is Kq/2π≈ −420MHz. The value of Ks/2π can be
tuned from negative to positive with a range up to a few MHz [Fig. 2a],
whereas the value of Kqs/2π is always negative on the order of kHz.
Therefore, it is possible to cancel the cross-Kerr term from the qubit to
obtainK=0by tuningKs with themagneticflux through the SNAIL32, see
details in Table 1.

Characterization and manipulation of the nonlinearity
Firstly, we calibrate the values of the Kerr coefficient K [Fig. 2a] pre-
cisely with two approaches, namely single-tone and two-tone mea-
surements [Fig. 2b]. For the single-tone measurement, we sweep the
frequency of a displacement pulseD(α) followedby a conditional qubit
π-pulse, where the qubit is excited only if the SNAIL-terminated reso-
nator is empty (α is the displacement with photon number N = α2).
Therefore, we can observe the resonator frequency shift with the
photon number inside as shown in Fig. 2c–e. We can extract the Kerr
coefficient K by linearly fitting the relationship between the frequency
shift and the photon number (see Methods). This method is valid only
for a smallK so that the total frequency shift is not larger than the pulse
linewidth. For a larger K, we switch to perform a two-tone measure-
ment. In this measurement, we regard the nonlinear resonator as a
multi-level systemwith an anharmonicity (similar to a qubit), wherewe
perform Rabi oscillations on the lowest three levels by applying two
pulses on the transition 0j i ) 1j i and 1j i ) 2j i, respectively. Thus, the
anharmonicity, corresponding to the value of K, can be obtained as
soon as the resonant frequencies are found (see Methods).

As shown in Fig. 2a, the dynamic range of the Kerr coefficientK/2π
is approximately from −5 MHz to 6 MHz which is close to the theore-
tically simulated result29. Particularly, with flux bias Φext = 0.4026Φ0,
we find a working point where K is small, K=2π

�� ��< 70kHz from single-
tone measurement. The accuracy is limited by the spectroscopic
linewidth of the pump pulse. Therefore, the Kerr-induced dynamic
evolution is negligible within a time scale on the order of micro-
seconds. At the more accurate Kerr-free point, the nonlinearity from
the qubit Kqs/2π = χ2/4Kq ≈ − 11 kHz can be compensated by Ks, where
thedynamic evolution is ideally eliminated. Inorder to show themerits
of preparing the quantum state at the Kerr-free point, as an example,
we displace the nonlinear resonator with α = 1.42 at
Φext = 0.4026Φ0(K ≈0) and Φext = 0.41Φ0(K/2π ≈0.5MHz), respec-
tively. Then, we wait for a time duration Δt before performing the
Wigner tomography on the states by taking the parity
measurements33,34, where the pulse sequence is shown in Fig. 3a. The
results [Fig. 3b–g] clearly illustrate that the quantum states can be
preserved well at Kerr-free point whereas the phase of the state col-
lapses when the Kerr nonlinearity is nonzero. Moreover, the frequency
shift among energy levels may induce variations in the photon dis-
tribution (as what we discussed in the two-tone nonlinearity mea-
surement above). Injection of multiple photons would be much easier
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Fig. 1 | Structure of the superconducting circuit. a A microscopic photo of the
superconducting circuit. An ancillary qubit in the middle is capacitvely coupled to
both a readout resonator (left) and a SNAIL-terminated resonator (right).
b Schematic circuit diagram of the system. c Energy structure of the dispersively
couplednonlinear resonator and qubit. g

�� �
and ej i are the ground and excited state

of qubit respectively. 0j i, 1j i, 2j i, . . . represent the energy levels of the resonator. χ is
the dispersive shift.
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at the Kerr-free point because of the simple spectrum28. As a result, a
larger Hilbert space of photons provides us with a larger coding area
either for error correction9,35,36 or loss suppression26.

Preparation of Schrödinger cat states
Furthermore, the fast tunablity of the Kerr coefficient can also be used
togenerate non-classicalquantumstates. TheKerr cat qubits23 with the
related error correction methods37 benefiting from Kerr nonlinearity
show the potential of dissipation-insensitive and long lifetime quan-
tum computation in a multidimensional Hilbert space.

For example, we consider the Bloch sphere of a Kerr-cat qubit
which is constructed with a group of perpendicular states23:

φ±X

�� �
= ±αj i, ð4Þ

φ±Z

�� �
= αj i± �αj i, ð5Þ

φ±Y

�� �
= αj i± i �αj i, ð6Þ

φ±X

�� �
= ±αj i are the coherent states generated by pumping our

nonlinear resonator with coherent pulses. To prepare the cat states
φ±Y

�� �
= αj i± i �αj i, the Kerr nonlinearity normally plays an important

role23,38. As shown in Fig. 4a, the flux bias pulse (with a pulse width τ)
after the first displacementD(α) introduces a flux bias shift, as well as a
large Kerr coefficient K. The coherent states evolution under this
nonlinear Hamiltonian results in phase shifts among Fock states Nj i
(N = 0, 1, 2,…), which means the rotating speed in the phase space is
not uniform. Therefore, when we initialize the system with a coherent
state αj i, the evolution of the field states (during the flux bias pulse in
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Fig. 2 | Experimental methods to calibrate the tunable nonlinearity of the
resonator. a Flux bias dependent nonlinearity. The Kerr coefficient K is measured
with single-tone and two-tonemeasurements.bPulse sequences for the single-tone

and two-tone nonlinearity measurements. c–e Results of the single-tone mea-
surement near the Kerr-free point. α is the displacement. ωp is the frequency of the
pump pulse to the SNAIL-terminated resonator.

Table 1 | Parameters of the circuit. (ωq0, ωs0, and χ0 are the
values at Kerr-free working point.)

ωq/2π 5.09–5.19 GHz ωs/2π 4.08–5.00 GHz

Kq/2π −420 MHz Ks/2π (−5) −6 MHz

EJ/h 830 GHz β 0.095

χ/2π 3.5–18 MHz ωq0/2π 5.095 GHz

ωs0/2π 4.223 GHz χ0/2π 4.35 MHz
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Fig. 4a) can be written as23

ΨðτÞ
�� �

= ei
K
2ðayaÞ2τ αj i

= e� αj j2=2 X
N

αNffiffiffiffiffi
N!

p ei
K
2N

2τ Nj i
ð7Þ

Under certain circumstances, them-component cat states can be
generated when the nonlinear evolution time τ = τ0/m
with τ0 = 2π/K (m = 1, 2,…). In particular, when

τ =π=K or 3π=K, ð8Þ

the final state is

ΨðτÞ
�� �

= αj i± i �αj i: ð9Þ

In our experiment, we chose α = 1.42 and a flux bias with
K/2π = 5.21 MHz corresponding to τ0 = 192 ns. When the pulse width
of the flux bias is either τ = τ0/2 = 96ns or τ = 3τ0/2 = 288 ns, we get
φ±Y

�� �
= αj i± i �αj i. By setting τ = τ0/3(64 ns) and τ = τ0/4(48 ns), we

also implement 3- and 4- component cat states which can be used

for quantum error correction37,39. Wigner functions of 2, 3 and 4-
component cat states are measured and shown in Fig. 4b–d.

The fidelity of the above Schrödinger’s cat states can be cal-
culated by comparing the measured Wigner function Wmeas

[Fig. 4b–d] with the numerical oneWcal [Fig. 4e–g]. The fidelity can
be written as40

F =π
Z

dγ2WmeasðγÞW calðγÞ, ð10Þ

where γ is the displacement vector, integrated through the whole
phase space.

Here, the fidelity Fm of the m-component cat from our measure-
ments is

F2 = 89:1%, F3 = 81:3%, F4 = 83:15%: ð11Þ

Note that the distortion caused by the imperfect Wigner tomography
has not been eliminated. Moreover, the fidelities are currently limited
by our device coherent time 1μs (see Supplementary Fig. 1). The
dominating dephasing source of cat states is the single photon loss in
our system (details in Supplementary Fig. 3). Additionally, we need to
mention that the ancillary qubit is a nonnegligible source of the col-
lapse and decoherence of the bosonic quantum states. It is therefore

Δt=30 ns Δt=100 ns Δt=200 ns

)d()c()b(
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Fig. 3 | Time evolution of a coherent state in the SNAIL-terminated resonator.
a The pulse sequence where the pulse width of displacement is 30ns, and the time
between two displacement pulses is Δt. The experimental Wigner tomography

shows the evolution progress of the coherent states at different time durations as
shown in b–d at the Kerr-free point and e–g with K/2π ≈0.5MHz where the Kerr
effect clearly distorts the state.
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beneficial to reduce the photon loss and the impacts from the qubit
(e.g. spectrally isolating the ancillary qubit while not in use).

In previous strategies with a fixed Kerr coefficient23,38, the m-
component cat state is stabilized by applying a squeezing drive con-
tinuously. However, in our case, the cat states can bemaintained in the
Kerr-free system passively. Therefore, after the state generation, the
system is immediately tuned back to the Kerr-free point, where our
resonator can be described by a linear Hamiltonian41, leading to a
better storage and evolution of the cat stateswithin adesirable lifetime
(see Methods).

To verify the feasible controllability of our nonlinear resonator,
we successfully generate an odd cat state, φ�Z

�� �
= αj i � �αj i by fol-

lowing the ancilla-assisted cat preparation method42,43. By using the
spectral selectivity and different evolution induced by the dispersive
shift, the odd cat state is obtained (details see Supplementary Fig-
ure 1). It shows the possibilily of constructing a logical qubit with our
platform. In conclusion, we have generated nonclassical states
through the fast tunable nonlinearity on a SNAIL-terminated reso-
nator where the tunable range is up to 10 MHz. Compared to the cat
states in 3D cavities44 where the state preparation is based on the
ancillary qubit, our method is more straightforward from the fast
tuning of the Kerr coefficient of the nonlinear resonator itself. Thus,
our scheme is much simpler and has no affect from the imperfect

preparation on the ancillary qubit. Moreover, compared to the two-
photon driving strategy23,25,38, the time to prepare the cat states is
about 1/K in our method, which is several times faster than the adia-
batic case38. Meanwhile, by eliminating the Kerr-induced evolution,
the states of light can be stored passively without consecutive pump
at the Kerr-free point. Finally, our platform is more compact com-
pared to 3D cavities, and shows the capability to integrate more ele-
ments. Therefore, our method shows a possibility of the extensible
and low-crosstalk bosonic-based quantum computation in the future.

Our method provides an avenue to achieve continuous-variable
quantum information processing. It can be used to achieve universal
control of bosonic codes. One direct application of our circuitry is
constructing hardware-efficient, loss-tolerable quantumcomputerswith
error correction codes9,44. Furthermore, networks of coupled resonators
can be used to achieve quantum annealing architectures45 and quantum
simulations such as phase transitions46, Gaussian boson sampling47, etc.

Methods
Photon number calibration
The photon number in the resonator is measured by the spectroscopy
of the ancillary qubit. Here, we pump the resonator with a coherent
pulse D(α). As shown in Fig. 5a, due to the dispersive coupling to the
qubit, the qubit frequency has a Poisson distribution related to the
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Fig. 4 | Schrödinger cat states generation through the fast modulation of Kerr
nonlinearity. a Pulse sequence for generating the m-component Poisson dis-
tributed cat states. b–d Measured Wigner functions of them-component cat

(m = 2,3,4). e–g Numerical Wigner functions of the m-component cat (m = 2,3,4)
obtained through QuTip48.
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photon pump amplitude V, where the Nth peak (away from the native
qubit frequency) corresponds to the probability of the Fock state Nj i
with photon number N. By fitting the multi-peak spectra to a Poisson-
distribution function, we can extract the average photon number
N =α2. Therefore, we can figureout the linear relationship between the
photon pump amplitude V and the values of α, namely, α =G ⋅V, where
G is the scale factor between displacement α and amplitude V.

In addition, to calibrate the photon more precisely under a low
photon number (N < 5), we can also get the relationship α =G ⋅V by
fitting the Wigner distribution of the coherent state with [Fig. 5e]:

W =
2
π
expð�2ðα � α0Þ2Þ

=
2
π
expð�2ðG � V � α0Þ2Þ,

ð12Þ

where α0 is the initial displacement.
These relationships are used for the nonlinearity, Wigner

function and lifetime measurements discussed in the main text.
However, because of the flux-dependent nonlinearity, the photon-
number distribution does not satisfy Poisson function when the
frequency shift N ⋅ K is comparable with the linewidth of the pump

pulse (≈2 MHz for the 500 ns pump pulse). The photon number
calibrationmethods above are therefore only available forΦ ~ 0.4Φ0

with K=2π
�� ��< 2MHz.

Nonlinearity characterization
The Hamiltonian of the SNAIL element with three large Josephson
junctions (with Josephson energy EJ) and one smaller junction (βEJ) can
be written as (same as Eq. (1)):

USNAILðφsÞ= � βEJ cosðφsÞ � 3EJ cosðφext�φs
3 Þ, ð13Þ

where φext is the external magnetic flux induced phase through the
SNAIL loop, φs is the phase different between the two ports of SNAIL.
Coupledwith a resonator (represented by capacity C and inductance L):

H =C Φ0
2

2
_φ2 +Uðφ,φsÞ, ð14Þ

Uðφ,φsÞ = 1
2 ELðφ� φsÞ2 +USNAILðφsÞ, ð15Þ

where φ is the mode canonical phase coordinate and EL =Φ0
2=L is

the inductive energy. After Taylor expansion around the minimum
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point of potential U, the Hamiltonian of second quantization
is28,29

HSNAIL�Res = _ωsa
ya+ g3ða+ayÞ3 + g4ða+ayÞ4, ð16Þ

where

_ωs =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ECEJc2

q
, ð17Þ

_g3 = c3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC_ωs

p
=6c2, ð18Þ

_g4 = c4EC=12c2, ð19Þ

cj =
1
EJ

djU
dφj

�����φm, ð20Þ

EC = e
2=2C: ð21Þ

The energy level n is:

En=_=nωs + 6ðg4 � 5g3
2=ωsÞnðn+ 1Þ: ð22Þ

Thus, the Kerr coefficient of SNAIL-terminated resonator can be
written as

_K =
d2En

dn2 = 12_ g4 �
5g3

2

ωs

� �
: ð23Þ

The design parameters β and EJ, also the relationship between injected
current and flux φext can be extracted by fitting the fluxmodulation of
the SNAIL-terminated resonator frequency (Fig. 6) with Eq. (22)28.

We developed two methods for the Kerr coefficient character-
ization, namely, single-tone and two-tone measurements. The single-
tone measurement is only suitable for smaller Kerr coefficient (e.g.
K=2π
�� ��<2MHz). To contrast, largerKbringsmore frequency shift with
a similar photon number. When the frequency shift is larger than the
linewidth of the single pulse, the nonlinearity can be measured by the
two-tone method.

In a single-tone measurement, in order to keep the frequency
sensitivity, we choose a relatively long pulse with a pulse length up to
500 ns, then we sweep the pulse frequency with following a condi-
tional π-pulse which can excite the qubit only if the cavity is empty.
Therefore, it can be regarded as a photon probe. With different pump
powers, we can see the shift of resonant frequency Δf which obeys:

K=2π = f N � f N�1, ð24Þ

K=2π =Δf =N, ð25Þ

where N is the average photon number. For example, in Fig. 2c, we
see the frequency shift with different displacement (i.e. pump
amplitude). By linearly fitting the relationship of the frequency shift
and the average photon number, we get the Kerr coefficient [Fig. 7a].
If K is too large ( K=2π

�� ��>2MHz), however, it is not possible to cover
the frequency range with a single tone. Then, we treat the SNAIL-
terminated resonator as a three level system with an anharmonicity
K. To verify it, Rabi oscillations between energy levels ( 0j i $ 1j i and
1j i $ 2j i) are measured [Fig. 7b]. Here, the conditional qubit π
pulse is also modified to be only valid for 0j i, 1j i or 2j i, respectively.
Thus, K is represented by the frequency difference of the first two
pulses as

K=2π = f ð 1j i $ 2j iÞ � f ð 0j i $ 1j iÞ: ð26Þ
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The measurement results from single-tone and two-tone methods
agree with the theoretical calculation very well [Fig. 2a].

Wigner tomography
The Wigner function of the states is obtained by the parity measure-
ment. For definition, the Wigner function can be described as

W ðγÞ= 2
π
Tr½Dð�γÞρDðγÞP�, ð27Þ

P = eiπa
ya = ð�1ÞN, ð28Þ

By applying a displacement D( − γ) to a density operator ρ, we get
a new state with density operator:

ρ0 =Dð�γÞρDðγÞ: ð29Þ

Thus, the Wigner function W(γ) is proportional to the average of
parity operator P which can be measured with the sequence in Fig. 8a.
Here, we apply two π/2 pulses to the ancillary qubit. With a time spa-
cing π/χ between two pules, this sequence can be treated as a parity
measurement where the state of qubit g

�� �
( ej i) corresponds to

P = − 1(1). The mechanism can be described in the qubit Bloch sphere
[Fig. 8e] and signal spectrum [Fig. 8b–d]. The sequence to qubit is π
(2π) pulse if photon number N is even (odd). Considering the fre-
quency shift of qubit, we employ a function of sincðtÞ= sinðtÞ=t to
cover a larger spectrum range uniformly.

States preservation
After the process of states generation, the cat states are preserved by
turning the flux bias off. Here, the Wigner functions are measured
after a certain evolution time Δt. As shown in Fig. 9b–d, the Kerr-
induced evolution is ideally prevented, the fidelity of 2-component
cat ( αj i± i �αj i) state is 89.1%, 81.9% and 75.8% after
(0, 100, 200 ns).

Data availability
The data that support the findings of this study are available infigshare
[https://doi.org/10.6084/m9.fgshare.23694369].
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