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Abstract
Given cusp forms 𝑓 and g of integral weight 𝑘 ⩾ 2, the
depth two holomorphic iterated Eichler–Shimura inte-
gral 𝐼𝑓,g is defined by ∫ 𝑖∞

𝜏 𝑓(𝑧)(𝑋 − 𝑧)𝑘−2𝐼g (𝑧; 𝑌) d𝑧,
where 𝐼g is the Eichler integral of g and 𝑋,𝑌 are formal
variables. We provide an explicit vector-valued modu-
lar form whose top components are given by 𝐼𝑓,g . We
show that this vector-valued modular form gives rise to
a scalar-valued iterated Eichler integral of depth two,
denoted by 𝑓,g , that can be seen as a higher depth gen-
eralization of the scalar-valued Eichler integral 𝑓 of
depth one. As an aside, our argument provides an alter-
native explanation of an orthogonality relation satisfied
by period polynomials originally due to Paşol–Popa. We
show that𝑓,g can be expressed in terms of sums of prod-
ucts of components of vector-valued Eisenstein series
with classical modular forms after multiplication with a
suitable power of the discriminantmodular formΔ. This
allows for effective computation of 𝑓,g .
MSC 2020
11F11 (primary), 11F30, 11F75 (secondary).

IteratedEichler–Shimura integrals have received a lot of interest in recent years. For example, they
have been studied extensively by Brown [2–4], especially in the context of iterated extensions of
motives and multiple modular values. They have also been related to what are known as higher
ordermodular forms byDiamantis [7]. Furthermore, they are closely related to the string theoretic
notion of modular graph functions [5, 6, 8, 9].
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In this paper, we examine iterated Eichler–Shimura integrals of depth two in more detail. We
first recall the definition of usual Eichler integrals. There are two kinds of them, scalar-valued and
polynomial-valued ones, and they are given as follows. Let𝑓 ∈ S𝑘, 𝑘 ∈ ℤ⩾2, be a cusp form of level
one, 𝑋 a formal variable, and 𝜏 ∈ ℍ in the Poincaré upper half plane, then the polynomial-valued
Eichler integral 𝐼𝑓( ⋅ ; 𝑋) and the scalar-valued Eichler integral 𝑓 are given by

𝐼𝑓(𝜏; 𝑋) = ∫
𝑖∞

𝜏

𝑓(𝑧) (𝑋 − 𝑧)𝑘−2 d𝑧 and 𝑓(𝜏) = ∫
𝑖∞

𝜏

𝑓(𝑧) (𝜏 − 𝑧)𝑘−2 d𝑧. (0.1)

Note that 𝐼𝑓(𝜏; 𝜏) = 𝑓(𝜏). If 𝑓, g ∈ S𝑘 are cusp forms, the depth two Eichler–Shimura integral is
given by

𝐼𝑓,g (𝜏; 𝑋, 𝑌) = ∫
𝑖∞

𝜏

𝑓(𝑧) (𝑋 − 𝑧)𝑘−2 𝐼g (𝑧; 𝑌) d𝑧. (0.2)

This Eichler–Shimura integral is well-understood and its definition can readily be generalized to
arbitrary depths [14, 15]. We provide a scalar-valued analogue 𝑓,g to 𝐼𝑓,g . It is given by

𝑓,g (𝜏) = ∫
𝑖∞

𝜏

𝑓(𝑧) g (𝑧) d𝑧. (0.3)

We are not aware of any previous occurrence of 𝑓,g in the literature, but remark that its definition
generalizes the one of 𝑓 in a straightforwardway. The first main focus of this paper is to provide a
connection between the geometrically motivated 𝐼𝑓,g and its classical counterpart 𝑓,g paralleling
the connection of 𝐼𝑓 to 𝑓 . The second main focus of this paper is to provide a framework that
enables the effective computation of 𝑓,g following the approach taken in [1].
We study 𝑓,g and 𝐼𝑓,g using the language of vector-valued modular forms. The work of Brown

[4] implies via arguments of Mertens–Raum [16] that 𝐼𝑓,g is a component of a vector-valued mod-
ular form. However, they do not specify this vector-valued modular form explicitly. This is the
purpose of our first theorem.
For an integer 𝖽 ⩾ 0, sym𝖽(𝑋) denotes the 𝖽th symmetric power of the standard representation,

whose representation space is the spaceℂ[𝑋]𝖽 of complex polynomials in𝑋 of degree atmost 𝖽.We
write sym𝖽(𝑋, 𝑌) for the tensor product sym𝖽(𝑋) ⊗ sym𝖽(𝑌), and ℂ[𝑋, 𝑌]𝖽 for its representation
space. There is a sym𝖽(𝑋)-invariant pairing on ℂ[𝑋]𝖽 × ℂ[𝑌]𝖽 denoted by ⟨ ⋅ , ⋅ ⟩. For the precise
definitions, see Section 1.
Echoing 𝐼𝑓,g and 𝑓,g , we consider the following two related representations:

𝜌𝑓,g ∶ SL2(ℤ) ⟶ GL(ℂ[𝑋, 𝑌]𝑘−2 ⊕ ℂ[𝑋]𝑘−2 ⊕ ℂ),

𝛾 ⟼

⎛⎜⎜⎜⎝
sym𝑘−2(𝑋, 𝑌)(𝛾) 𝜙𝐼g (𝛾; 𝑌) ⋅ sym

𝑘−2(𝑋)(𝛾) 𝜓𝑓,g (𝛾)

0 sym𝑘−2(𝑋)(𝛾) 𝜙𝐼𝑓 (𝛾)

0 0 1

⎞⎟⎟⎟⎠ , and
(0.4)

𝜌𝑓,g ∶ SL2(ℤ) ⟶ GL(ℂ ⊕ ℂ[𝑋]𝑘−2 ⊕ ℂ),

𝛾 ⟼

⎛⎜⎜⎜⎝
1 −𝜙∨

𝐼g
(𝛾) 𝜓𝑓,g (𝛾)

0 sym𝑘−2(𝑋)(𝛾) 𝜙𝐼𝑓 (𝛾)

0 0 1

⎞⎟⎟⎟⎠ ,
(0.5)
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158 MAGNUSSON and RAUM

where for a cusp form ℎ ∈ S𝑘 and a formal variable𝑊, we set

𝜙∨
𝐼ℎ
(𝛾)(𝑣) =

⟨
𝜙𝐼ℎ (𝛾

−1), 𝑣
⟩
, 𝑣 ∈ ℂ[𝑋]𝑘−2, with 𝜙𝐼ℎ (𝛾;𝑊) = ∫

𝑖∞

𝛾(𝑖∞)

ℎ(𝑧) (𝑊 − 𝑧)𝑘−2 d𝑧

and

𝜓𝑓,g (𝛾) = ∫
𝑖∞

𝛾(𝑖∞)

𝑓(𝑧) (𝑋 − 𝑧)𝑘−2 𝐼g (𝑧; 𝑌) d𝑧, 𝜓𝑓,g (𝛾) = ∫
𝑖∞

𝛾(𝑖∞)

𝑓(𝑧) g (𝑧) d𝑧.

Recall that 𝜙𝐼ℎ is a parabolic sym
𝖽(𝑋)-cocycle, see Section 1 and for example [12].

As mentioned previously, our first main theorem provides an explicit vector-valued modular
form of type 𝜌𝑓,g with 𝐼𝑓,g as a component, thus amending Brown’s results [4]. We write M𝑘(𝜌)

for the space of weight 𝑘 modular forms of type 𝜌, which is defined in Subsection 1.2.

Theorem A. Let 𝑘 ⩾ 2 be an even integer, and let 𝑓, g ∈ S𝑘 . Then the arithmetic type 𝜌𝑓,g given
by (0.4) is well-defined, and we have that

⎛⎜⎜⎝
𝐼𝑓,g
𝐼𝑓
1

⎞⎟⎟⎠ ∈ M0

(
𝜌𝑓,g

)
.

The relation between 𝜌𝑓,g and 𝜌𝑓,g , and also between 𝐼𝑓,g and 𝑓,g , is provided by the
contraction map 𝜋 ∶ sym𝖽(𝑋, 𝑌) → ℂ, given by

𝜋(𝑝 ⊗ 𝑞) = ⟨𝑝, 𝑞⟩, 𝑝 ∈ ℂ[𝑋]𝖽, 𝑞 ∈ ℂ[𝑌]𝖽. (0.6)

In particular, we provide the following theorem.

Theorem B. Let 𝑘 ⩾ 2 be an even integer, and let 𝑓, g ∈ S𝑘 . Then the arithmetic type 𝜌𝑓,g is well-
defined, and the contraction map (0.6) induces a pushforward morphism 𝜋∗ ∶ 𝜌𝑓,g → 𝜌𝑓,g given by
𝜋∗(𝑝, 𝑞, 𝑧) = (𝜋(𝑝), 𝑞, 𝑧). Furthermore, we have that

𝜋∗◦
⎛⎜⎜⎝
𝐼𝑓,g
𝐼𝑓
1

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝑓,g
𝐼𝑓
1

⎞⎟⎟⎠ ∈ M0(𝜌𝑓,g ).

We next introduce a family of representations 𝜌𝜙1,𝜙2 . We construct its members from pairs of
parabolic sym𝖽(𝑋)-cocycles (𝜙1, 𝜙2) satisfying a certain orthogonality relation, see Subsection 2.1
and specifically Theorem 2.2. Theorem B implies that 𝜌𝜙𝐼𝑓 ,−𝜙𝐼g is well-defined and equals 𝜌𝑓,g .

Remark. Our characterization of pairs (𝜙1, 𝜙2) for which 𝜌𝜙1,𝜙2 is well-defined in conjunction
with our result that 𝜌𝑓,g is well-defined implies that 𝜙𝐼𝑓 and 𝜙𝐼g satisfies the aforementioned
orthogonality relation. This relation between cocycles has previously been obtained by Paşol–
Popa [17] in the language of period polynomials. Theorem B thus gives an alternate explanation of
Paşol–Popa’s result in level 1. The case of general levels treated by Paşol–Popa can be incorporated
into our setting by introducing induced representations.
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In Section 3, we provide a framework based on vector-valued Eisenstein series that allows
for effective computation of modular forms of type 𝜌𝜙1,𝜙2 , that is, of forms that transform like
the representation 𝜌𝜙1,𝜙2 (see Subsection 2.1 for the definition). This builds upon the framework
developed in [1], and in particular enables us to evaluate 𝑓,g .
To prepare for the setup of this framework, we record that the representation 𝜌𝜙1,𝜙2 features a

function 𝜓 ∶ SL2(ℤ) → ℂ that behaves similar to a 1-cocycle. Specifically, it satisfies

𝜓(𝛾1𝛾2) = 𝜓(𝛾1) + 𝜓(𝛾2) +
⟨
𝜙2(𝛾

−1), 𝜙1(𝛾)
⟩
, 𝛾1, 𝛾2 ∈ SL2(ℤ),

𝜓(𝑆) = −1

2

⟨
𝜙2(𝑆

−1), 𝜙1(𝑆)
⟩
, 𝜓(𝑇) = 0.

We also remark that in the case of 𝜙1 = 𝜙𝐼𝑓 and 𝜙2 = −𝜙𝐼g , this function coincides with 𝜓𝑓,g .
Let 𝑘 be an integer, and let (𝜙1, 𝜙2) be a pair of parabolic cocycles for which 𝜌𝜙1,𝜙2 is well-

defined. Then we define the vector-valued Eisenstein series of weight 𝑘 ∈ ℤ, 𝑘 > 2 + 𝖽 and type
𝜌𝜙1,𝜙2 by

𝐸𝑘(𝜏; 𝜌𝜙1,𝜙2) =
(
𝐸
[2]

𝑘
(𝜏; 𝜙1, 𝜙2), 𝐸

[1]

𝑘
(𝜏; 𝜙1), 𝐸𝑘

)𝑇
, (0.7)

where 𝐸𝑘 is the classical Eisenstein series of weight 𝑘, and where

𝐸
[1]

𝑘
(𝜏; 𝜙1) =

∑
[𝛾]∈Γ∞∖SL2(ℤ)

𝜙1(𝛾
−1)

(𝑐𝜏 + 𝑑)𝑘
and 𝐸

[2]

𝑘
(𝜏; 𝜙1, 𝜙2) =

∑
[𝛾]∈Γ∞∖SL2(ℤ)

𝜓(𝛾−1)

(𝑐𝜏 + 𝑑)𝑘
.

The series 𝐸[1]

𝑘
(⋅; 𝜙1) is called the generalized second-order Eisenstein series of type (sym𝖽(𝑋), 𝟏)

associated to (𝜙1, 1) and was a subject of study in [1], in which it was shown that it converges
absolutely and locally uniformly on ℍ for 𝑘 > 2 + 𝖽, and where its Fourier series expansion was
provided. As for 𝐸[2]

𝑘
(𝜏; 𝜙1, 𝜙2), we show that it converges in the same region and provide its

Fourier series expansion in Theorem 3.1.
To state our last main theorem, we write M∙ for the graded ring of modular forms, and given

a representation 𝜌, M∙(𝜌) for the corresponding graded M∙-module of modular forms of type 𝜌.
Furthermore, if𝑀 is aM∙-module, 𝐼 ⊆ 𝑀 is a submodule, and 𝑓 ∈ M∙, then the saturation of 𝐼 at
𝑓 is theM∙-module

(𝐼 ∶ 𝑓∞) =
{
g ∈ 𝑀 ∶ ∃𝑛 ∈ ℤ⩾0. 𝑓

𝑛g ∈ 𝐼
}
.

Recall also that given a parabolic sym𝖽(𝑋)-cocycle𝜙, we have the representation 𝟏 ⊞𝜙∨ sym
𝖽(𝑋) ∶

SL2(ℤ) → GL(ℂ ⊕ ℂ[𝑋]𝖽) given by

(𝟏 ⊞𝜙∨ sym
𝖽(𝑋))(𝛾) =

(
1
⟨
𝜙(𝛾−1), ⋅

⟩
0 sym𝖽(𝑋)(𝛾)

)
.

We provide the following theorem.

Theorem C. Let 𝖽 ⩾ 0 and 𝑘0 > 2 + 𝖽 be integers and let 𝜙1, 𝜙2 be parabolic sym𝖽(𝑋)-cocycles
making 𝜌𝜙1,𝜙2 well-defined (see Theorem 2.2). Let also

E⩾𝑘0
(𝜌𝜙1,𝜙2) = span M∙

{
𝐸𝑘(𝜏; 𝜌𝜙1,𝜙2) ∶ 𝑘 ⩾ 𝑘0

}
.
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160 MAGNUSSON and RAUM

Then

M∙(𝜌𝜙1,𝜙2) =
(
E⩾𝑘0

(𝜌𝜙1,𝜙2) + 𝜄
(
M∙(𝟏 ⊞𝜙∨

2
sym𝖽(𝑋))

)
∶ Δ∞

)
,

where 𝜄(𝑓, g) = (𝑓, g , 0)𝑇 .

SinceM∙(𝟏 ⊞𝜙∨
2
sym𝖽(𝑋)) is described in [1] as the saturation at Δ of generalized second-order

Eisenstein series and classical modular forms, Theorem C indeed implies that modular forms of
type 𝜌𝜙1,𝜙2 can be expressed in terms of sums of products of (vector-valued) Eisenstein series with
classical modular forms, after multiplication with a suitable power of Δ.

1 PRELIMINARIES

In this section, we define the notation we use throughout the paper, and revisit the basic theory of
Eichler cohomology, extensions of arithmetic types, and vector-valuedmodular forms. For further
details, we direct the reader to [19] and [16].
The special linear group of degree two over the integers, is given by

SL2(ℤ) =
{(𝑎 𝑏

𝑐 𝑑

)
∈ ℤ2×2 ∶ 𝑎𝑑 − 𝑏𝑐 = 1

}
.

It is a fact that SL2(ℤ) is generated by the matrices 𝑆 = ( 0 −1
1 0 ) and 𝑇 = ( 1 1

0 1 ). The parabolic
subgroup Γ∞ ⊆ SL2(ℤ) is given by Γ∞ = ⟨𝑇,−1⟩. We also let 𝑈 = 𝑇𝑆.
The upper-half planeℍ is given byℍ = {𝜏 ∈ ℂ ∶ Im(𝜏) > 0}. For 𝛾 = ( 𝑎 𝑏

𝑐 𝑑 ) ∈ SL2(ℤ) and 𝜏 ∈ ℍ,
the Möbius action is given by

𝛾𝜏 =
𝑎𝜏 + 𝑏

𝑐𝜏 + 𝑑
.

Given a ℂ-vector space 𝑉, a function 𝑓 ∶ ℍ → 𝑉, an integer 𝑘, and an element 𝛾 = ( 𝑎 𝑏
𝑐 𝑑 ) ∈

SL2(ℤ), we define a new function 𝑓|𝑘𝛾 ∶ ℍ → 𝑉 by(
𝑓||𝑘𝛾)(𝜏) = (𝑐𝜏 + 𝑑)−𝑘𝑓(𝛾𝜏).

We record that this gives rise to a right-action of SL2(ℤ) on the space of holomorphic functions
from ℍ to 𝑉, which we call the slash-action.
Let 𝑉 be a ℂ-vector space with a norm ‖ ⋅ ‖, and let 𝑓 ∶ ℍ → 𝑉 be a function. If there exists a

real number 𝑎 ∈ ℝ such that for all 𝛾 ∈ SL2(ℤ) it holds uniformly in Re(𝜏) that

‖‖(𝑓||𝑘𝛾)(𝜏)‖‖ = 𝑂(Im(𝜏)𝑎) as Im(𝜏) → ∞, (1.1)

we say that 𝑓 has moderate growth. If instead we have that for all 𝛾 ∈ SL2(ℤ) it holds that

‖‖(𝑓||𝑘𝛾)(𝜏)‖‖→ 0 as Im(𝜏) → ∞, (1.2)

we say that 𝑓 is cuspidal. Note that the conditions (1.1) and (1.2) are independent of the choice of
norm on 𝑉.
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Let 𝑘 be an integer. Then if 𝑓 ∶ ℍ → ℂ is a holomorphic function of moderate growth satisfying
that

𝑓||𝑘𝛾 = 𝑓 for all 𝛾 ∈ SL2(ℤ),

we call 𝑓 a (scalar-valued) modular form of weight 𝑘. If 𝑓 is cuspidal, it is called a cusp form.
The set of modular forms of weight 𝑘 forms a ℂ-vector space denoted byM𝑘. The corresponding
subspace of cusp forms is denoted by S𝑘. If 𝑓 ∈ M𝑘, we let the conjugatemodular form 𝑓𝑐 be given
by

𝑓𝑐(𝜏) = 𝑓(−𝜏).

Note that if 𝑓 has the Fourier series expansion 𝑓(𝜏) =
∑

𝑛⩾0 𝑐𝑛𝑒(𝑛𝜏), then 𝑓𝑐 has the Fourier series
expansion 𝑓𝑐(𝜏) =

∑
𝑛⩾0 𝑐𝑛𝑒(𝑛𝜏).

Finally, we denote the trivial representation of SL2(ℤ) by 𝟏, so that 𝑉(𝟏) = ℂ and 𝟏(𝛾)𝑧 = 𝑧 for
all 𝛾 ∈ SL2(ℤ) and 𝑧 ∈ ℂ.

1.1 Cohomology and extensions of arithmetic types

An arithmetic type is a finite-dimensional complex representation of a subgroup Γ ⊆ SL2(ℤ). In
the present paper, we restrict our scope to arithmetic types of SL2(ℤ).
If 𝜌 and 𝜎 are arithmetic types, the ℂ-vector space of (𝜌, 𝜎)-cocycles is given by

Z1(𝜌, 𝜎) =
{
𝑓 ∶ SL2(ℤ) → Hom(𝑉(𝜌), 𝑉(𝜎)) ∶ 𝑓(𝛾1𝛾2) = 𝜎(𝛾1)𝑓(𝛾2) + 𝑓(𝛾1)𝜌(𝛾2)

}
,

and the subspace of (𝜌, 𝜎)-coboundaries is given by

B1(𝜌, 𝜎) =
{
𝑓 ∶ SL2(ℤ) → Hom(𝑉(𝜌), 𝑉(𝜎)) ∶∃ℎ ∈ Hom(𝑉(𝜌), 𝑉(𝜎)). 𝑓(𝛾) = 𝜎(𝛾)ℎ − ℎ𝜌(𝛾)

}
.

If a cocycle 𝜙 ∈ Z1(𝜌, 𝜎) vanishes on every element of Γ∞, we call it parabolic. The space of
all parabolic cocycles (or coboundaries) is denoted by Z1pb(𝜌, 𝜎) (or B

1
pb(𝜌, 𝜎)). We will identify

Hom(𝟏, 𝑉(𝜎)) with 𝑉(𝜎).
Given a parabolic cocycle 𝜙 ∈ Z1pb(𝜎, 𝜌), we define the arithmetic type 𝜌 ⊞𝜙 𝜎 by 𝑉(𝜌 ⊞𝜙 𝜎) =

𝑉(𝜌) ⊕ 𝑉(𝜎) and

(𝜌 ⊞𝜙 𝜎)(𝛾)(𝑣, 𝑣
′) =

(
𝜌(𝛾)𝑣 + 𝜙(𝛾)𝑣′, 𝜎(𝛾)𝑣′

)
. (1.3)

The first parabolic cohomology group is the quotient H1
pb(𝜌, 𝜎) = Z1pb(𝜌, 𝜎)∕B

1
pb(𝜌, 𝜎). We

record that H1
pb(𝜎, 𝜌) is isomorphic to the group of parabolic extension classes of 𝜎 by 𝜌, denoted

by Extpb(𝜎, 𝜌). In particular, the following map is a well-defined isomorphism of groups

Extpb(𝜎, 𝜌) ∋ [0 → 𝜌 → 𝜌⊞𝜙 𝜎 → 𝜎 → 0] ⟼ 𝜙 + B1
pb(𝜎, 𝜌) ∈ H1

pb(𝜎, 𝜌).

In particular, this means that given cocycles 𝜙1 and 𝜙2, it holds that 𝜌 ⊞𝜙1
𝜎 is isomorphic to

𝜌 ⊞𝜙2
𝜎 if and only if 𝜙1 and 𝜙2 are cohomologous.

Note that by the cocycle relations, an arbitrary cocycle 𝜙 ∈ Z1pb(𝜌, 𝜎) is fully determined by its
value at 𝑆.
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162 MAGNUSSON and RAUM

1.2 Vector-valued modular forms

Let 𝑘 be an integer and let 𝜌 be an arithmetic type. Given a function 𝑓 ∶ ℍ → 𝑉(𝜌) and an element
𝛾 ∈ SL2(ℤ), we define 𝑓|𝑘𝛾 ∶ ℍ → 𝑉(𝜌) by(

𝑓||𝑘,𝜌𝛾)(𝜏) = 𝜌(𝛾−1)
(
𝑓||𝑘𝛾)(𝜏).

A vector-valued modular form of type 𝜌 and weight 𝑘, is a holomorphic function of moderate
growth 𝑓 ∶ ℍ → 𝑉(𝜌) satisfying that

𝑓||𝑘,𝜌𝛾 = 𝑓 for all 𝛾 ∈ SL2(ℤ).

If a vector-valued modular form 𝑓 of type 𝜌 and weight 𝑘 is cuspidal, we call it a cusp form.
The space of vector-valued modular forms of weight 𝑘 and type 𝜌 is denoted by M𝑘(𝜌). The
corresponding subspace of cusp forms is denoted by S𝑘(𝜌).
We remark that scalar-valuedmodular forms ofweight 𝑘 are the same as vector-valuedmodular

forms of type 𝟏. That is, we have the equalitiesM𝑘(𝟏) = M𝑘 and S𝑘(𝟏) = S𝑘.
For an arithmetic type 𝜌 we let the graded module of modular forms of type 𝜌 be given by

M∙(𝜌) =
⨁
𝑘∈ℤ

M𝑘(𝜌).

If𝑀 is anM∙-module, 𝐼 ⊆ 𝑀 is a submodule of𝑀, and 𝑓 ∈ M∙ then we recall that the saturation
of 𝐼 at 𝑓 is given by

(𝐼 ∶ 𝑓∞) =
{
g ∈ 𝑀 ∶∃𝑛 ∈ ℤ⩾0. 𝑓

𝑛g ∈ 𝐼
}
.

1.3 Symmetric powers

Let 𝖽 ⩾ 0 be an integer. Then we let ℂ[𝑋]𝖽 be the space of polynomials with coefficients in ℂ of
degree at most 𝖽. We define the arithmetic type sym𝖽(𝑋) by 𝑉(sym𝖽(𝑋)) = ℂ[𝑋]𝖽, and

sym𝖽(𝑋)(𝛾)𝑝 = 𝑝||−𝖽𝛾−1 = (−𝑐𝑋 + 𝑎)𝖽𝑝

(
𝑑𝑋 − 𝑏

−𝑐𝑋 + 𝑎

)
, where 𝛾 =

(
𝑎 𝑏
𝑐 𝑑

)
∈ SL2(ℤ) and 𝑝 ∈ ℂ[𝑋]𝖽.

We remark that sym𝖽(𝑋) is a model of the 𝖽th symmetric power of the standard representation of
SL2(ℤ), explaining the notation. The group ring ℂ[SL2(ℤ)] acts linearly on ℂ[𝑋]𝖽 by

𝛾.𝑝 = sym𝖽(𝑋)(𝛾)𝑝 and (𝑐1𝛾1 + 𝑐2𝛾2)𝑝 = 𝑐1(𝛾1.𝑝) + 𝑐2(𝛾2.𝑝),

where 𝛾, 𝛾1, 𝛾2 ∈ SL2(ℤ) and 𝑐1, 𝑐2 ∈ ℂ. Asmentioned in the introduction there exists a symmetric
pairing ⟨ ⋅ , ⋅ ⟩ ∶ ℂ[𝑋]𝖽 × ℂ[𝑌]𝖽 → ℂ given by

⟨𝑝, 𝑞⟩ = 𝖽∑
𝑖=0

(−1)𝑖
(
𝖽

𝑖

)−1

𝑝𝑖𝑞𝖽−𝑖 ,

satisfying ⟨𝛾.𝑝, 𝛾.𝑞⟩ = ⟨𝑝, 𝑞⟩ for any 𝑝 ∈ ℂ[𝑋]𝖽, 𝑞 ∈ ℂ[𝑌]𝖽, and 𝛾 ∈ SL2(ℤ). As ⟨ ⋅ , ⋅ ⟩ is invari-
ant and bilinear, we have an equivariant contraction map 𝜋 ∶ ℂ[𝑋, 𝑌]𝖽 → ℂ given by 𝜋(𝑝 ⊗ 𝑞) =
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⟨𝑝, 𝑞⟩. There is also a related antisymmetric bilinear form ⟨⟨ ⋅ , ⋅ ⟩⟩ ∶ ℂ[𝑋]2
𝖽
→ ℂ given by

⟨⟨𝑝, 𝑞⟩⟩ = ⟨𝑇−1.𝑝 − 𝑇.𝑝, 𝑞
⟩
.

If𝑝 =
∑

𝑝𝑖𝑋
𝑖 ∈ ℂ[𝑋]𝖽, thenwe let𝑝 =

∑
𝑝𝑖𝑋

𝑖 ∈ ℂ[𝑋]𝖽. Note that the action of SL2(ℤ) commutes
with conjugation, so that 𝛾.𝑝 = 𝛾.𝑝.
Henceforth, we will identify ℂ[𝑋]𝖽 ⊗ ℂ[𝑌]𝖽 with ℂ[𝑋, 𝑌]𝖽; the space of polynomials in 𝑋 and

𝑌 of degree atmost 𝖽 in𝑋 and𝑌. Furthermore, wewill use the shorthand notation sym𝖽(𝑋, 𝑌) ∶=

sym𝖽(𝑋) ⊗ sym𝖽(𝑌). This coincides with the definition we used in the introduction.

1.4 The Eichler–Shimura isomorphism

We shall now briefly describe the Eichler–Shimura isomorphism between scalar-valued cusp
forms of weight 𝑘 ⩾ 2 and Z1pb(𝟏, sym

𝑘−2(𝑋)). This exposition follows [12]. It holds for arbitrary
integers 𝖽 ⩾ 0, but the case relevant in this paper is 𝖽 = 𝑘 − 2.
The space of parabolic (𝟏, sym𝖽(𝑋))-cocycles can be completely described as follows:

Z1pb
(
𝟏, sym𝖽(𝑋)

)
=
{
𝜙 ∶ SL2(ℤ) → ℂ[𝑋]𝖽 ∶ 𝜙(−𝐼) = 𝜙(𝑇) = 0 and

(1 + 𝑆).𝜙(𝑆) = (1 + 𝑈 + 𝑈2).𝜙(𝑆) = 0
}
,

Note that Z1pb(𝟏, sym
𝖽(𝑋)) is closed under complex conjugation. The space ℂ[𝑋]𝖽 splits up into its

“even part” and “odd part”. That is, we have ℂ[𝑋]𝖽 = ℂ[𝑋]+
𝖽
⊕ ℂ[𝑋]−

𝖽
with

ℂ[𝑋]+
𝖽
=
{∑𝖽

𝑖=0 𝑝𝑖𝑋
𝑖 ∈ ℂ[𝑋]𝖽 ∶ 𝑝2𝑗+1 = 0 for 0 ⩽ 2𝑗 + 1 ⩽ 𝖽

}
ℂ[𝑋]−

𝖽
=
{∑𝖽

𝑖=0 𝑝𝑖𝑋
𝑖 ∈ ℂ[𝑋]𝖽 ∶ 𝑝2𝑗 = 0 for 0 ⩽ 2𝑗 ⩽ 𝖽

}
.

We further write

𝑊𝖽 = Z1pb
(
𝟏, sym𝖽(𝑋)

)
(𝑆), 𝑊+

𝖽
= 𝑊𝖽 ∩ ℂ[𝑋]+

𝖽
, and 𝑊−

𝖽
= 𝑊𝖽 ∩ ℂ[𝑋]−

𝖽
.

Let 𝑓 ∈ S𝑘 be a cusp form of weight 𝑘 ∈ ℤ⩾2. Then we define the polynomial-valued Eichler
integral of 𝑓 as

𝐼𝑓(𝜏; 𝑋) = ∫
𝑖∞

𝜏

𝑓(𝑧) (𝑋 − 𝜏)𝑘−2 d𝑧, where 𝜏 ∈ ℍ.

If the variable is understood from context, it is omitted from the notation. Note that as 𝑓 vanishes
at the cusp, 𝐼𝑓(𝜏) is well-defined. We also see that for 𝜏 ∈ ℍ we have that 𝐼𝑓(𝜏) ∈ ℂ[𝑋]𝖽. Given
𝛾 ∈ SL2(ℤ), we let

𝜙𝐼𝑓 (𝛾) = 𝐼𝑓
||0,sym𝑘−2(𝑋)(1 − 𝛾−1) = ∫

𝑖∞

𝛾(𝑖∞)

𝑓(𝑧) (𝑋 − 𝜏)𝑘−2 d𝑧.
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164 MAGNUSSON and RAUM

We have that 𝜙𝐼𝑓 ∈ Z1(𝟏, sym𝑘−2(𝑋)) by construction, and as elements of Γ∞ stabilize the cusp
we also have that 𝜙𝐼𝑓 ∈ Z1pb(𝟏, sym

𝑘−2(𝑋)). We now set 𝑟𝑓 = 𝜙𝐼𝑓 (𝑆) ∈ 𝑊𝑘−2 and

𝑟𝑓,𝑛 = ∫
∞

0

𝑓(𝑖𝑡)𝑡𝑛 d𝑡 = Γ(𝑛 + 1)(2𝜋)−𝑛−1 L(𝑓, 𝑛 + 1) for 0 ⩽ 𝑛 ⩽ 𝑘 − 2,

where L(𝑓, ⋅ ) denotes the Hecke L-function associated to 𝑓. By the binomial theorem, we see
that

𝑟𝑓 =

𝑘−2∑
𝑛=0

𝑖−𝑛+1
(
𝑘 − 2

𝑛

)
𝑟𝑛(𝑓)𝑋

𝑘−2−𝑛.

Hence, we define 𝑟+
𝑓
∈ 𝑊+

𝑘−2
and 𝑟−

𝑓
∈ 𝑊−

𝑘−2
by

𝑟+
𝑓
=

∑
0⩽𝑛⩽𝑘−2

2∣𝑛

(−1)𝑛∕2
(
𝑘 − 2

𝑛

)
𝑟𝑓,𝑛𝑋

𝑘−2−𝑛 and 𝑟−
𝑓
=

∑
0⩽𝑛⩽𝑘−2

2∤𝑛

(−1)(𝑛−1)∕2
(
𝑘 − 2

𝑛

)
𝑟𝑓,𝑛𝑋

𝑘−2−𝑛,

so that 𝑟 = 𝑟− + 𝑖𝑟+. We can now provide the Eichler–Shimura isomorphism.

Theorem (Eichler–Shimura). It holds that the maps

S𝑘 ∋ 𝑓 ↦ 𝑟−
𝑓
∈ 𝑊−

𝑘−2
and

S𝑘 ⊕ ℂ ∋ (𝑓, 𝑧) ↦ 𝑟+
𝑓
+ 𝑧(𝑋𝑘−2 − 1) ∈ 𝑊+

𝑘−2

are isomorphisms of ℂ-vector spaces.

For proofs, see, for example, [18] or [13].We now state an important result related to the bilinear
form ⟨⟨⋅, ⋅⟩⟩. Recall first that the Petersson inner product (⋅, ⋅) ∶ M𝑘 × S𝑘 → ℂ is given by

(𝑓, g) = ∫SL2(ℤ)∖ℍ 𝑓(𝑥 + 𝑖𝑦)g(𝑥 + 𝑖𝑦)𝑦𝑘
d𝑥 d𝑦

𝑦2

We have the following theorem, due to Haberland and Paşol–Popa.

Theorem (Haberland [10] and Paşol–Popa [17]). Let 𝑘 ⩾ 2 be an even integer, and let 𝑓, g ∈ S𝑘 .
Then it holds that

⟨⟨𝑟𝑓, 𝑟g⟩⟩ = −6(2𝑖)𝑘−1(𝑓, g) and ⟨⟨𝑟𝑓, 𝑟g⟩⟩ = 0. (1.4)

To contextualize the assumptions of Theorem 2.2 in the next section, we recall the following:

Remark 1.1. Let 𝖽 ⩾ 0 be an even integer and let 𝑒 = 𝑋𝖽 − 1 ∈ 𝑊𝖽. Then the relations (1 + 𝑆).𝑒 = 0

and (1 + 𝑈 + 𝑈2).𝑒 = 0 imply that ⟨⟨𝑒, 𝑞⟩⟩ = 0 for all 𝑞 ∈ 𝑊𝖽. Conversely, the Eichler–Shimura
isomorphisms imply that if an element 𝑝 ∈ 𝑊𝖽 satisfies that ⟨⟨𝑝, 𝑞⟩⟩ = 0 for all 𝑞 ∈ 𝑊𝖽, then
𝑝 ∈ ℂ{𝑒}. This means that (𝑊𝖽∕ℂ{𝑒}, ⟨⟨⋅, ⋅⟩⟩) is a nondegenerate symplectic vector space, and by
applying the Eichler–Shimura isomorphisms to a basis of orthonormalizedHecke eigenforms one
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obtains an explicit isomorphism of (𝑊𝖽∕ℂ{𝑒}, ⟨⟨⋅, ⋅⟩⟩)with the standard complex symplectic vector
space, given by

(
ℂ2𝐷, (𝑥, 𝑦) ↦ 𝑥𝑇

(
0 −1𝐷
1𝐷 0

)
𝑦

)
,

where 𝐷 = dim(S𝖽+2), and 1𝐷 denotes the 𝐷 × 𝐷 identity matrix.

2 FROM EXTENSIONS TO EICHLER–SHIMURA INTEGRALS

In this section, we show that polynomial- and scalar-valued depth two Eichler–Shimura inte-
grals can be regarded as components of vector-valued modular forms of type 𝜌𝑓,g and 𝜌𝑓,g ,
respectively.

2.1 The extension 𝝆𝝓𝟏,𝝓𝟐

Let 𝖽 ⩾ 0 be an even integer. For 𝜙 ∈ Z1pb(𝟏, sym
𝖽(𝑋)), we let

𝜙∨(𝛾)(𝑣) =
⟨
𝜙(𝛾−1), 𝑣

⟩
. (2.1)

The invariance of the pairing implies that 𝜙∨ ∈ Z1pb(sym
𝖽(𝑋), 𝟏), and that (2.1) defines an

isomorphism of ℂ-vector spaces from Z1pb(𝟏, sym
𝖽(𝑋)) to Z1pb(sym

𝖽(𝑋), 𝟏).
Given parabolic cocycles 𝜙1, 𝜙2 ∈ Z1pb(𝟏, sym

𝖽(𝑋)) and a function 𝜓 ∶ SL2(ℤ) → ℂ, we let
𝜌𝜙1,𝜙2,𝜓 ∶ SL2(ℤ) → GL(ℂ ⊕ ℂ[𝑋]𝖽 ⊕ ℂ) be given by

𝜌𝜙1,𝜙2,𝜓(𝛾) =

⎛⎜⎜⎝
1 𝜙∨

2
(𝛾) 𝜓(𝛾)

0 sym𝖽(𝑋)(𝛾) 𝜙1(𝛾)

0 0 1

⎞⎟⎟⎠ , 𝛾 ∈ SL2(ℤ). (2.2)

We have the following proposition.

Proposition 2.1. Let 𝜙1, 𝜙2 ∈ Z1
pb
(𝟏, sym𝖽(𝑋)), and let 𝜓 ∶ SL2(ℤ) → ℂ be a function. Then the

following are equivalent.

(i) 𝜌𝜙1,𝜙2,𝜓 is a representation.
(ii) For all 𝛾1, 𝛾2 ∈ SL2(ℤ), it holds that 𝜓(𝛾1𝛾2) = 𝜓(𝛾1) + 𝜓(𝛾2) + 𝜙∨

2
(𝛾1)𝜙1(𝛾2).

(iii) (𝜙∨
2
, 𝜓) ∈ Z1

pb
(sym𝖽(𝑋) ⊞𝜙1

𝟏, 𝟏).
(iv) (𝜓, 𝜙1)

𝑇 ∈ Z1
pb
(𝟏, 𝟏 ⊞𝜙∨

2
sym𝖽(𝑋)).

Furthermore, if any of these conditions hold, then

𝜌𝜙1,𝜙2,𝜓 = 𝟏 ⊞(𝜙∨
2
,𝜓)

(
sym𝖽(𝑋) ⊞𝜙1

𝟏
)
=
(
𝟏 ⊞𝜙∨

2
sym𝖽(𝑋)

)
⊞(

𝜓
𝜙1

) 𝟏.
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166 MAGNUSSON and RAUM

Proof. Let 𝜌 = 𝜌𝜙1,𝜙2,𝜓 and let 𝛾1, 𝛾2 ∈ SL2(ℤ). Then using the cocycle relations, and the fact that
sym𝖽(𝑋) is a representation, we find that

𝜌(𝛾1)𝜌(𝛾2) =

⎛⎜⎜⎝
1 𝜙∨

2
(𝛾1𝛾2) 𝜓(𝛾2) + 𝜙∨

2
(𝛾1)𝜙1(𝛾2) + 𝜓(𝛾1)

0 sym𝖽(𝑋)(𝛾1𝛾2) 𝜙1(𝛾1𝛾2)

0 0 1

⎞⎟⎟⎠ .
We have that 𝜌 is a representation if and only if it is a homomorphism and therefore we see that
(i) is equivalent to (ii).
Continuing, we have that (𝜙∨

2
, 𝜓) ∈ Z1pb(sym

𝖽(𝑋) ⊞𝜙1
𝟏, 𝟏) if and only if

(
𝜙∨
2
(𝛾2), 𝜓(𝛾2)

)
+
(
𝜙∨
2
(𝛾1), 𝜓(𝛾1)

)(
sym𝖽(𝑋) ⊞𝜙1

𝟏
)
(𝛾2) =

(
𝜙∨
2
(𝛾1𝛾2), 𝜓(𝛾1𝛾2)

)
.

On the other hand, we have that(
𝜙∨
2
(𝛾2), 𝜓(𝛾2)

)
+
(
𝜙∨
2
(𝛾1), 𝜓(𝛾1)

)(
sym𝖽(𝑋) ⊞𝜙1

𝟏
)
(𝛾2)

=
(
𝜙∨
2
(𝛾2) + 𝜙∨

2
(𝛾1)sym

𝖽(𝑋)(𝛾2), 𝜓(𝛾2) + 𝜙∨
2
(𝛾1)𝜙1(𝛾2) + 𝜓(𝛾1)

)
=
(
𝜙∨
2
(𝛾1𝛾2), 𝜓(𝛾1) + 𝜓(𝛾2) + 𝜙∨

2
(𝛾1)𝜙2(𝛾2)

)
.

Hence, it is clear that (iii) is equivalent to (ii). In the same way, we find that (iv) is equivalent to
(ii), which finishes the proof. □

For a fixed pair of cocycles (𝜙1, 𝜙2), there is at most one function 𝜓 satisfying the conditions of
Proposition 2.1.

Theorem 2.2. Let 𝖽 ⩾ 0 be an even integer and let 𝜙1, 𝜙2 ∈ Z1
pb
(𝟏, sym𝖽(𝑋)). Then there exists a

function𝜓 satisfying the conditions of Proposition 2.1 if and only if ⟨⟨𝜙1(𝑆), 𝜙2(𝑆)⟩⟩ = 0. Furthermore,
if such a function exists, it is unique and is given by

𝜓(𝑆) = −
1

2
𝜙∨
2
(𝑆)𝜙1(𝑆).

Proof. Let 𝜓 ∶ SL2(ℤ) → ℂ be a function and let 𝜌 = 𝜌𝜙1,𝜙2,𝜓. Recall that SL2(ℤ) has the
presentation ⟨𝑆, 𝑇 ∶ 𝑆4 = (𝑆𝑇)6 = 1⟩. Hence, we have that 𝜌 is a representation if and only if

𝜌(𝑆)4 = 1 and (𝜌(𝑆)𝜌(𝑇))6 = 1.

However, we find that

𝜌(𝑆)2 =

⎛⎜⎜⎝
1 0 2𝜓(𝑆) + 𝜙∨

2
(𝑆)𝜙1(𝑆)

0 1𝖽 0

0 0 1

⎞⎟⎟⎠ and
(𝜌(𝑆)𝜌(𝑇))3 =

⎛⎜⎜⎝
1 0 3𝜓(𝑆) + 𝜙∨

2
((𝑆𝑇)2)𝜙1(𝑆) + 𝜙∨

2
(𝑆𝑇)𝜙1(𝑆)

0 1𝖽 0

0 0 1

⎞⎟⎟⎠ ,
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SCALAR-VALUED DEPTH TWO EICHLER-SHIMURA INTEGRALS OF CUSP FORMS 167

where 1𝖽 is the 𝖽 × 𝖽 identity matrix. Hence, 𝜌 is a representation if and only if

2𝜓(𝑆) + 𝜙∨
2
(𝑆)𝜙1(𝑆) = 0 and

3𝜓(𝑆) + 𝜙∨
2
((𝑆𝑇)2)𝜙1(𝑆) + 𝜙∨

2
(𝑆𝑇)𝜙1(𝑆) = 0.

We have that𝜙∨
2
((𝑆𝑇)2) = 𝜙∨

2
(𝑆𝑇) + 𝜙∨

2
(𝑆𝑇)𝑆𝑇, that𝜙∨

2
(𝑆𝑇) = 𝜙∨

2
(𝑆)𝑇, and that𝑇𝜙1(𝑆) = 𝜙1(𝑇𝑆).

With 𝑈 = 𝑇𝑆, this yields that the above is equivalent to

𝜓(𝑆) = −1

2
𝜙∨
2
(𝑆)𝜙1(𝑆) and

𝜙∨
2
(𝑆)(2𝜙1(𝑈) + 2𝜙1(𝑈

2) − 3𝜙1(𝑆)) = 0.

However, applying the identity (1 + 𝑈 + 𝑈2).𝜙1(𝑆) = 0 to expand 2𝜙1(𝑆) and then (1 + 𝑆).𝜙1(𝑆) =

0 to simplify the expression, we obtain that

2
(
𝜙1(𝑈) + 𝜙1(𝑈

2)
)
− 3𝜙1(𝑆) = 2

(
𝜙1(𝑈) + 𝜙1(𝑈

2) + 𝑈.𝜙1(𝑆) + 𝑈2.𝜙1(𝑆)
)
− 𝜙1(𝑆)

= 2
(
𝑇.𝜙1(𝑆) + 𝑇𝑆𝑇.𝜙1(𝑆) + 𝑈2.𝜙1(𝑆)

)
− 𝜙1(𝑆) = 2𝑇.𝜙1(𝑆) − 𝜙1(𝑆),

so that 𝜙∨
2
(𝑆)(2𝜙1(𝑈) + 2𝜙1(𝑈

2) − 3𝜙1(𝑆)) = ⟨2𝑇−1.𝜙2(𝑆) − 𝜙2(𝑆), 𝜙1(𝑆)⟩. To finish the proof we
have to identify the right-hand side with ⟨⟨𝜙2(𝑆), 𝜙1(𝑆)⟩⟩ = ⟨(𝑇−1 − 𝑇).𝜙2(𝑆), 𝜙1(𝑆)⟩. To this end,
note that for any element 𝐻 ∈ ℂ[SL2(ℤ)] the expression ⟨𝐻.𝜙2(𝑆), 𝜙1(𝑆)⟩ only depends on the
image of 𝐻 in the double quotient (1 + 𝑆)∖ℂ[SL2(ℤ)∕ ± 𝐼]∕(1 + 𝑆). Denoting equality in this
quotient by ≡, the result follows from (1 + 𝑈 + 𝑈2).𝜙1(𝑆) = 0 and

𝑇−1 − 1 + 𝑇 = 𝑆𝑈−1 − 1 + 𝑈𝑆−1 = 1 + (𝑆𝑈−1 − 1)(1 − 𝑈𝑆−1)

≡ 1 + (−𝑈−1 − 1)(1 + 𝑈) = −𝑈−1 − 1 − 𝑈. □

If a pair of cocycles (𝜙1, 𝜙2) ∈ Z1pb(𝟏, sym
𝖽(𝑋))2 satisfies that ⟨⟨𝜙1, 𝜙2⟩⟩ = 0, we call it admissible.

If (𝜙1, 𝜙2) is admissible, then we omit 𝜓 from the notation and write 𝜌𝜙1,𝜙2 = 𝜌𝜙1,𝜙2,𝜓.

2.2 Depth two Eichler–Shimura integrals

In this section, we describe depth two Eichler–Shimura integrals as components of vector-valued
modular forms of the types 𝜌𝑓,g and 𝜌𝑓,g , where 𝑓, g ∈ S𝑘, 𝑘 ∈ ℤ⩾2; defined in the introduction,
see (0.4) and (0.5).
Recall that for 𝑓, g ∈ S𝑘, 𝑘 ∈ ℤ⩾2, and indeterminates 𝑋 and 𝑌 we have the depth two

polynomial-valued Eichler–Shimura integral 𝐼𝑓,g ( ⋅ ; 𝑋, 𝑌) and the depth two scalar-valued
Eichler–Shimura integral 𝑓,g , given by

𝐼𝑓,g (𝜏; 𝑋, 𝑌) = ∫
𝑖∞

𝜏

𝑓(𝑧) (𝑋 − 𝑧)𝑘−2 𝐼g (𝑧; 𝑌) d𝑧 and 𝑓,g (𝜏) = ∫
𝑖∞

𝜏

𝑓(𝑧) g (𝑧) d𝑧, 𝜏 ∈ ℍ,

where 𝐼g (𝜏; 𝑌) = ∫ 𝑖∞
𝜏 g(𝑧)(𝑌 − 𝑧)𝑘−2 d𝑧 and g (𝜏) = 𝐼g (𝜏; 𝜏) are the polynomial-valued Eichler

integral and the scalar-valued Eichler integral.
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168 MAGNUSSON and RAUM

Recall that for 𝛾 ∈ SL2(ℤ), we have that 𝜓𝑓,g (𝛾; 𝑋, 𝑌) = ∫ 𝑖∞
𝛾(𝑖∞) 𝑓(𝑧) (𝑋 − 𝑧)𝑘−2 𝐼g (𝑧; 𝑌) d𝑧. Let

also

𝜙𝐼g ⋅ sym𝑘−2(𝑋) ∶ SL2(ℤ) → Hom(ℂ[𝑋]𝑘−2, ℂ[𝑋, 𝑌]𝑘−2) be given by(
𝜙𝐼g ⋅ sym𝑘−2(𝑋)

)
(𝛾)𝑝 = 𝜙𝐼g (𝛾) ⋅ sym

𝑘−2(𝑋)(𝛾)𝑝.

With this notation, we have that

𝜌𝑓,g = sym𝑘−2(𝑋, 𝑌) ⊞(𝜙𝐼g ⋅sym
𝑘−2(𝑋),𝜓𝑓,g )

(
sym𝑘−2(𝑋) ⊞𝜙𝐼𝑓

𝟏
)
. (2.3)

We have that (𝐼𝑓, 1)𝑇 ∈ M0(sym
𝑘−2(𝑋) ⊞𝜙𝐼𝑓

𝟏), see [1], and for the depth two polynomial-valued
Eichler–Shimura integral we have the following theorem.

Theorem 2.3. Let 𝑘 ⩾ 2 be an integer, and let 𝑓, g ∈ S𝑘 . Then the arithmetic type 𝜌𝑓,g given by (0.4)
or (2.3) is well-defined, and we have that

⎛⎜⎜⎝
𝐼𝑓,g
𝐼𝑓
1

⎞⎟⎟⎠ ∈ M0(𝜌𝑓,g ).

Proof. For convenience, we use the shorthand notation | for |0,sym𝑘−2(𝑋,𝑌), 𝜙 for 𝜙𝐼g ⋅ sym𝑘−2(𝑋),
and 𝜌 for 𝜌𝑓,g . Through direct calculation, we see that 𝜙 ∈ Z1pb(sym

𝑘−2(𝑋), sym𝑘−2(𝑋, 𝑌)). By a
standard change of variables (see [12]), we also obtain that

𝜙𝑓,g (𝛾, 𝜏) ∶= 𝑟
(
𝐼𝑓,g
||(1 − 𝛾−1)

)
(𝜏) = 𝜓𝑓,g (𝛾) + 𝜙(𝛾)𝐼𝑓(𝛾

−1𝜏), 𝛾 ∈ SL2(ℤ). (2.4)

To finish the proof of the transformation behavior, we record that

𝜌(𝛾−1)
⎛⎜⎜⎝
𝐼𝑓,g (𝛾𝜏)

𝐼𝑓(𝛾𝜏)

1

⎞⎟⎟⎠ −
⎛⎜⎜⎝
𝐼𝑓,g (𝜏)

𝐼𝑓(𝜏)

1

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝐼𝑓,g |(𝛾 − 1) + 𝜙(𝛾−1)𝐼𝑓(𝛾𝜏) + 𝜓𝑓,g (𝛾

−1)

0

0

⎞⎟⎟⎠ = 0.

Let now 𝛾1, 𝛾2 ∈ SL2(ℤ). Then (2.4) implies that 𝜙𝑓,g (𝛾1𝛾2, 𝜏) = 𝜓𝑓,g (𝛾1𝛾2) +

𝜙(𝛾1𝛾2)𝐼𝑓(𝛾
−1
2
𝛾−1
1
𝜏). On the other hand, we have that

𝜙𝑓,g (𝛾1𝛾2, 𝜏) =
(
𝐼𝑓,g
||(1 − 𝛾−12 )|𝛾−11 )(𝜏) + (𝐼𝑓,g ||(1 − 𝛾−11 )

)
(𝜏)

= 𝜙(𝛾1𝛾2)𝐼𝑓(𝛾
−1
2 𝛾−11 𝜏) + 𝜙(𝛾1)

(
𝐼𝑓(𝛾

−1
1 𝜏) − 𝛾2.𝐼𝑓(𝛾

−1
2 𝛾−11 𝜏)

)
+ 𝛾1.𝜓𝑓,g (𝛾2) + 𝜓𝑓,g (𝛾1).

However, (𝐼𝑓|0,sym𝑘−2(𝑋)(1 − 𝛾−1))(𝜏) is independent of 𝜏, and thus we have that

𝜙𝐼𝑓 (𝛾2) = (𝐼𝑓
||0,sym𝑘−2(𝑋)(1 − 𝛾−12 ))(𝛾−11 𝜏) = 𝐼𝑓(𝛾

−1
1 𝜏) − 𝛾2.𝐼𝑓(𝛾

−1
2 𝛾−11 𝜏).
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SCALAR-VALUED DEPTH TWO EICHLER-SHIMURA INTEGRALS OF CUSP FORMS 169

We thus obtain the identity

𝜓𝑓,g (𝛾1𝛾2) = 𝛾1.𝜓𝑓,g (𝛾2) + 𝜓𝑓,g (𝛾1) + 𝜙(𝛾1)𝜙𝐼𝑓 (𝛾2). (2.5)

This leads immediately to the fact that (𝜙, 𝜓𝑓,g ) ∈ Z1pb(sym
𝑘−2(𝑋) ⊞𝜙𝐼𝑓

𝟏, sym𝑘−2(𝑋, 𝑌)), and
hence 𝜌 is well-defined. □

An analogous statement holds for 𝑓,g .
Theorem 2.4. Let 𝑘 ⩾ 2 be an integer, and let 𝑓, g ∈ S𝑘 . Then the arithmetic type 𝜌𝑓,g given by (0.5)
is well-defined, and we have that

⎛⎜⎜⎝
𝑓,g
𝐼𝑓
1

⎞⎟⎟⎠ ∈ M0(𝜌𝑓,g ).

Proof. The argument is parallel to the one for Theorem 2.3. □

Combining Theorems 2.3 and 2.4 with the contraction map 𝜋 ∶ sym𝑘−2(𝑋, 𝑌) → 𝟏, we obtain
our next theorem.

Theorem 2.5. Let 𝑘 ⩾ 2 be an even integer, and let 𝑓, g ∈ S𝑘 . Then we have that

𝜋∗◦
⎛⎜⎜⎝
𝐼𝑓,g
𝐼𝑓
1

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝑓,g
𝐼𝑓
1

⎞⎟⎟⎠ ,
where 𝜋∗ ∶ 𝜌𝑓,g → 𝜌𝑓,g is the pushforward along the map (0.6), given by 𝜋∗(𝑝, 𝑞, 𝑧) = (𝜋(𝑝), 𝑞, 𝑧).

Proof. Let 𝛾 ∈ SL2(ℤ) and 𝑝 ∈ ℂ[𝑋]𝑘−2, then

𝜋
(
𝜙𝐼g (𝛾) ⋅ sym

𝑘−2(𝑋)(𝛾)𝑝
)
=
⟨
𝜙𝐼g (𝛾), 𝛾.𝑝

⟩
=
⟨
𝛾−1.𝜙𝐼g (𝛾), 𝑝

⟩
= −

⟨
𝜙𝐼g (𝛾

−1), 𝑝
⟩
,

and therefore 𝜋◦(𝜙𝐼g ⋅ sym
𝑘−2(𝑋)) = −𝜙∨

𝐼g
. That is, 𝜋∗ maps 𝜌𝑓,g to 𝜌𝑓,g as claimed.

We consider the difference

𝜋∗◦
⎛⎜⎜⎝
𝐼𝑓,g
𝐼𝑓
1

⎞⎟⎟⎠ −
⎛⎜⎜⎝
𝑓,g
𝐼𝑓
1

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝜋◦𝐼𝑓,g − 𝑓,g

0

0

⎞⎟⎟⎠ ∈ M0(𝜌𝑓,g ).

As the two bottom components vanish, we conclude that 𝜋◦𝐼𝑓,g − 𝑓,g ∈ M0. As 𝑓 and g are cusp
forms, the zeroth Fourier coefficient of 𝜋◦𝐼𝑓,g − 𝑓,g vanishes, and we obtain the equality stated
in the theorem. □

Remark 2.6. Theorem 2.4 implies that the pair of cocycles (𝜙𝐼𝑓 , −𝜙𝐼g ) yields a representation, for
whichwe see that 𝜌𝑓,g = 𝜌𝜙𝐼𝑓 ,−𝜙𝐼g

. Combining this with the orthogonality relation in Theorem 2.2
we obtain an alternate proof of Paşol–Popa’s identity in level 1, as mentioned in the introduction.
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170 MAGNUSSON and RAUM

3 EISENSTEIN SERIES AND SATURATION

Let 𝑘 and 𝖽 ⩾ 0 be integers, and let (𝜙1, 𝜙2) ∈ Z1pb(𝟏, sym
𝖽(𝑋))2 be admissible. In this section,

we provide the Eisenstein series of type 𝜌𝜙1,𝜙2 and weight 𝑘, converging absolutely and locally
uniformly on ℍ for 𝑘 > 2 + 𝖽. We also prove a more detailed version of Theorem C.

3.1 Eisenstein series

Let 𝖽 ⩾ 0 and 𝑘 > 2 + 𝖽 be even integers, and let (𝜙1, 𝜙2) ∈ Z1pb(𝟏, sym
𝖽(𝑋))2 be an admissible pair

of parabolic cocycles. Then the weight 𝑘 Eisenstein series of type 𝜌𝜙1,𝜙2 is given by the series

𝐸𝑘(𝜏; 𝜙1, 𝜙2) =
∑

[𝛾]∈Γ∞∖SL2(ℤ)

(
0
0
1

)|||𝑘,𝜌𝜙1,𝜙2 𝛾 =

⎛⎜⎜⎜⎝
∑

[𝛾]∈Γ∞∖SL2(ℤ)
𝜓(𝛾−1)(𝑐𝜏 + 𝑑)−𝑘

𝐸
[1]

𝑘
(𝜏; 𝜙1)

𝐸𝑘

⎞⎟⎟⎟⎠ ,

where 𝜓 is given as in Theorem 2.2, 𝐸𝑘(𝜏) =
∑

[𝛾]∈Γ∞∖SL2(ℤ)
(𝑐𝜏 + 𝑑)−𝑘 and 𝐸[1]

𝑘
(𝜏; 𝜙1) is the weight

𝑘 generalized second-order Eisenstein series of type (sym𝖽(𝑋), 𝟏) associated to 𝜙1, given by

𝐸
[1]

𝑘
(𝜏; 𝜙1) =

∑
[𝛾]∈Γ∞∖SL2(ℤ)

𝜙1(𝛾
−1)

(𝑐𝜏 + 𝑑)𝑘
.

By [1, Lemma 3.10], we have that 𝐸[1]

𝑘
(𝜏; 𝜙1) converges absolutely and locally uniformly for 𝑘 >

2 + 𝖽. Its Fourier series expansion is given in Theorem 3.8 of the same paper. We write

𝐸
[2]

𝑘
(𝜏; 𝜙1, 𝜙2) =

∑
[𝛾]∈Γ∞∖SL2(ℤ)

𝜓(𝛾−1)

(𝑐𝜏 + 𝑑)𝑘
.

Note that as 𝜙1 and 𝜙2 are parabolic, we have that

𝜓(±𝑇𝑚𝛾𝑇𝑛) = 𝜓(𝑇𝑚𝛾𝑇𝑛) = 𝜓(𝛾𝑇𝑛) = 𝜓(𝛾), (3.1)

for any𝑚, 𝑛 ∈ ℤ, so that 𝜓 descends to a function on the double quotient Γ∞∖SL2(ℤ)∕Γ∞.
We now have the following theorem.

Theorem3.1. Let 𝖽 ⩾ 0and𝑘 > 2 + 𝖽 be even integers, let (𝜙1, 𝜙2) ∈ Z1
pb
(𝟏, sym𝖽(𝑋))2 be anadmis-

sible pair, and let 𝜓 be given as in Theorem 2.2. Then 𝐸[2]

𝑘
(𝜏; 𝜙1, 𝜙2) converges absolutely and locally

uniformly on ℍ and has the following Fourier series expansion

𝐸
[2]

𝑘
(𝜏; 𝜙1, 𝜙2) =

∑
𝑛⩾1

𝑒(𝑛𝜏)
(−2𝜋𝑖)𝑘

(𝑘 − 1)!

∑
[𝛾]∈Γ∞∖SL2(ℤ)∕Γ∞

[𝛾]≠1

𝑛𝑘−1𝑒(𝑛𝑑∕𝑐)𝜓(𝛾−1)

𝑐𝑘
.
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Proof. Reorganizing the defining series for 𝐸[2]

𝑘
(𝜏; 𝜙1, 𝜙2), we obtain∑

[𝛾]∈Γ∞∖SL2(ℤ)

𝜓(𝛾−1)(𝑐𝜏 + 𝑑)−𝑘 =
∑

[𝛾]∈Γ∞∖SL2(ℤ)∕Γ∞

∑
𝑚∈ℤ

𝜓(𝑇−𝑚𝛾−1)(𝑐(𝜏 + 𝑚) + 𝑑)−𝑘.

However, by (3.1) we have that 𝜓(𝑇−𝑚𝛾−1) = 𝜓(𝛾−1) and thus we obtain the Fourier series
expansion by applying Lipschitz’ summation formula.
As for convergence, we note that it is enough to show that |𝜓(𝛾−1)|≪𝜖 |𝑐|𝖽+𝜖 where [𝛾] ∈

Γ∞∖SL2(ℤ)∕Γ∞ and [𝛾] ≠ 1.
To obtain this bound, we use a bijection between Γ∞∖SL2(ℤ)∕Γ∞ and continued fractions. We

first have a bijection 𝑠1 ∶ Γ∞∖SL2(ℤ)∕Γ∞ → ℚ ∩ [0, 1) ∪ {∞} given by 𝑠1([𝛾]) = 𝑑′∕𝑐′ + ⌈−𝑑′∕𝑐′⌉
where (𝑐′, 𝑑′) = sgn(𝑐, 𝑑) ⋅ (𝑐, 𝑑). Let now 𝑆 be given by

𝑆 =
{
(0), ()

}
∪
{
(0, 𝛼1, … , 𝛼𝑙) ∶ 𝑙 ⩾ 1, 𝛼𝑙 ⩾ 2, ∀1 ⩽ 𝑗 < 𝑙. 𝛼𝑗 ⩾ 1

}
.

Then we have a bijection 𝑠2 ∶ 𝑆 → ℚ ∩ [0, 1) ∪ {∞}, given by 𝑠2(()) = ∞ and 𝑠2(0, 𝛼1, … , 𝛼𝑙) =

[0; 𝛼1, … , 𝛼𝑙], see [11]. For convenience, we set 𝛼0 = 0.
Let 1 ≠ [𝛾] ∈ Γ∞∖SL2(ℤ)∕Γ∞ be arbitrary and let 𝛼 = 𝑠−1

2
(𝑠1([𝛾])). We then have that

𝜓(𝛾−1) = 𝜓
(
𝑇−𝛼0𝑆−1⋯𝑇(−1)𝑙+1𝛼𝑙𝑆−1

)
= 𝜓

(
𝑆2(𝑙+1)𝑇−𝛼0𝑆⋯𝑇(−1)𝑙+1𝛼𝑙𝑆

)
= 𝜓

(
𝑇−𝛼0𝑆⋯𝑇(−1)𝑙+1𝛼𝑙𝑆

)
.

Let 𝛽𝑖 = (−1)𝑙−𝑖+1𝛼𝑙−𝑖 , 𝛿−1 = 𝐼, and 𝛿𝑖 = 𝑇𝛽𝑖𝑆𝛿𝑖−1, so that [𝛿𝑙] = [𝛾−1]. We then have that

𝜓(𝛿𝑖) − 𝜓(𝛿𝑖−1) = 𝜓(𝑆) + 𝜙∨
2
(𝑆)𝜙1(𝛿𝑖−1).

We thus find that

𝜓(𝛿𝑙) =

𝑙∑
𝑖=0

(𝜓(𝛿𝑖) − 𝜓(𝛿𝑖−1)) =

𝑙∑
𝑖=0

𝜙∨
2
(𝑆)
(
𝜙1(𝛿𝑖−1) −

1

2
𝜙1(𝑆)

)
.

Using the bound
∑𝖽

𝑗=0

(𝑑
𝑗

)−1
⩽ 2 + 4∕𝖽, which holds for 𝖽 ⩾ 1, we find that

||𝜙∨
2
(𝑆)
(
𝜙1(𝛿𝑖−1) −

1

2
𝜙1(𝑆)

)|| ⩽ 4‖𝜙2(𝑆)‖1‖‖𝜙1(𝛿𝑖−1) − 1

2
𝜙1(𝑆)

‖‖1.
Hence, we obtain the bound

|𝜓(𝛿𝑙)| ⩽ 4‖𝜙2(𝑆)‖1( 𝑙 + 1

2
‖𝜙1(𝑆)‖1 + 𝑙∑

𝑖=0

‖𝜙1(𝛿𝑖−1)‖1).
Lemma 3.10 in [1] tells us that for 𝛾 = ( 𝑎 𝑏

𝑐 𝑑 ) ∈ SL2(ℤ) with |𝑑| < |𝑐| we have that ‖𝜙1(𝛾−1)‖1 ⩽

𝐶𝖽|𝑐|𝖽, for a constant 𝐶𝖽 ∈ ℝ>0. In our case, we have that

|𝑑(𝛿−1
𝑖
)∕𝑐(𝛿−1

𝑖
)| = [𝛼𝑙−𝑖; 𝛼𝑙−𝑖−1, … , 𝛼𝑙] > 1 for 𝑖 < 𝑙,
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172 MAGNUSSON and RAUM

and thus we can apply the bound to (𝛿−1
𝑖
𝑆)−1. We have that 𝑆−1.𝜙1(𝛿𝑖) = 𝜙1(𝑆

−1.𝛿𝑖) − 𝜙1(𝑆) and‖𝑆−1.𝑣‖1 = ‖𝑣‖1, and thus we obtain
𝑙∑

𝑖=0

‖𝜙1(𝛿𝑖−1)‖1 ⩽ (𝑙 + 1)‖𝜙1(𝑆)‖1 + 𝑙∑
𝑖=0

‖𝜙1(𝑆−1𝛿𝑖−1)‖1 ⩽ (𝑙 + 1)‖𝜙1(𝑆)‖1 + 𝐶𝖽

𝑙∑
𝑖=0

|𝑐(𝛿−1
𝑖−1

𝑆)|𝖽
= (𝑙 + 1)‖𝜙1(𝑆)‖1 + 𝐶𝖽

𝑙∑
𝑖=0

|𝑑(𝛿−1
𝑖−1

)|𝖽.
However, |𝑑(𝛿−1

𝑖−1
)| is increasing in 𝑖, whence we obtain that

𝑙∑
𝑖=0

|𝑑(𝛿−1
𝑖−1

)|𝖽 ⩽ (𝑙 + 1)|𝑑(𝛿−1
𝑙−1

)| = (𝑙 + 1)|𝑐(𝛾)|𝖽.
In conclusion, we obtain that |𝜓(𝛾−1)| ⩽ 4‖𝜙1(𝑆)‖1(𝑙 + 1)( 3

2
+ 𝐶𝖽|𝑐|𝖽). As 𝛼 corresponds to a

continued fraction, we have that 𝑙 + 1 ≪ log(|𝑐|) and thus |𝜓(𝛾−1)|≪𝜖 |𝑐|𝖽+𝜖 as desired. □

3.2 Saturation

Let 𝖽 ⩾ 0 and𝑘 ⩾ 2 be even integers, let 0 ⩽ 𝑗 ⩽ 𝖽 be an integer, and let (𝜙1, 𝜙2) ∈ Z1
pb
(𝟏, sym𝖽(𝑋))2

be admissible.
In [1], the authors of this paper and Ahlbäck introduced the 𝑗th Eisenstein series of type 𝟏 ⊞𝜙∨

2

sym𝖽(𝑋) and weight 𝑘, given by

𝐸𝑘

(
𝜏; 𝟏 ⊞𝜙∨

2
sym𝖽(𝑋), 𝑗

)
=

∑
[𝛾]∈Γ∞∖SL2(ℤ)

( 0$𝑋−𝜏)𝑗 )||𝑘,𝟏⊞𝜙∨
2
sym𝖽(𝑋)𝛾, 𝜏 ∈ ℍ.

Let 𝑘0 > 2 + 𝖽 be an integer. Then the M∙-module of Eisenstein series of type 𝟏 ⊞𝜙∨
2
sym𝖽(𝑋) is

given by

E⩾𝑘0

(
𝟏 ⊞𝜙∨

2
sym𝖽(𝑋)

)
= span M∙

{
𝐸𝑘

(
𝜏; 𝟏 ⊞𝜙∨

2
sym𝖽(𝑋), 𝑗

)
∶ 𝑘 ⩾ 𝑘0, 0 ⩽ 𝑗 ⩽ 𝖽

}
.

Theorem 4.3 of [1] implies that for 𝖽 ⩾ 0 and 𝑘0 > 2 + 𝖽 it holds that(
E⩾𝑘0

(
𝟏 ⊞𝜙∨

2
sym𝖽(𝑋)

)
+ 𝜄(M∙)∶ Δ∞

)
= M∙

(
𝟏 ⊞𝜙∨

2
sym𝖽(𝑋)

)
, (3.2)

where 𝜄(𝑓) = (𝑓, 0)𝑇 . In Remark 4.4 of the same paper, we mention that the proof can be
generalized to higher depths by induction. Following this approach, we obtain our last theorem.

Theorem 3.2. Let 𝖽 ⩾ 0 be an even integer and 𝑘0 > 2 + 𝖽 be an integer, and (𝜙1, 𝜙2) ∈

Z1
pb
(𝟏, sym𝖽(𝑋))2 be admissible. Then it holds that

M∙(𝜌𝜙1,𝜙2) =
(
E⩾𝑘0

(𝜌𝜙1,𝜙2) + 𝜄1

(
E⩾𝑘0

(𝟏 ⊞𝜙∨
2
sym𝖽(𝑋))

)
+ 𝜄2(M∙)∶ Δ∞

)
,

where 𝜄1(𝑓, g) = (𝑓, g , 0)𝑇 and 𝜄2(𝑓) = (𝑓, 0, 0)𝑇 .
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Proof. Consider the following diagram

where 𝜇𝑖(𝑓, g) = (𝑓, g , 0)𝑇 and 𝜈𝑖(𝑓, g , ℎ) = ℎ for 𝑖 ∈ {1, 2}. It is clear that the rows are exact and
that the diagram commutes. We have that im(𝜈1) ⊆ im(𝜈2) and thus the map 𝜃 ∶ coker(𝜈1) →

coker(𝜈2) given by 𝜃(ℎ + im(𝜈1)) = ℎ + im(𝜈2) is well-defined. As 𝐸𝑘 = 𝜈1(𝐸𝑘(⋅; 𝜙1, 𝜙2)), it is also
injective. The Four Lemma now implies that the vertical map in the middle column is surjective
and thus an equality. Finally, we conclude the proof by applying (3.2) and observing that(

E⩾𝑘0
(𝜌𝜙1,𝜙2) + 𝜇1

(
(E⩾𝑘0

(𝟏 ⊞𝜙∨
2
sym𝖽(𝑋)) + 𝜄(M∙)∶ Δ∞)

)
∶ Δ∞

)
=
(
E⩾𝑘0

(𝜌𝜙1,𝜙2) + 𝜄1

(
E⩾𝑘0

(𝟏 ⊞𝜙∨
2
sym𝖽(𝑋))

)
+ 𝜄2(M∙)∶ Δ∞

)
. □
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