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Marine propeller optimisation through user interaction and machine learning for
advanced blade design scenarios
Ioli Gypaa, Marcus Janssonb and Rickard Bensowa

aMechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden; bKongsberg Maritime Sweden AB, Kristinehamn, Sweden

ABSTRACT
The complexity of the marine propeller design process is well recognised and is related to contradicting
requirements of the stakeholders, complex physical phenomena, and fast analysis tools, where the latter
are preferred due to the strict time limitations under which the entire process is carried out. With all this
in mind, an optimisation methodology has been proposed and presented earlier that combines user
interactivity with machine learning and proved to be useful for a simple blade design scenario. More
specifically, the blade designer manually evaluates the cavitation of the designs during the optimisation
and this information is systematically returned into the optimisation algorithm, a process called
interactive optimisation. As part of the optimisation, a machine learning pipeline has been implemented
in this study, which is used for cavitation evaluation prediction in order to solve the user fatigue problem
that is connected to interactive optimisation processes. The proposed methodology is investigated for
two case studies of advanced design scenarios, relevant for a real commercial situation, that regard
controllable-pitch propellers for ROPAX vessels, and the aim is to obtain a set of optimal, competent
blade designs. Both cases represent scenarios with several design variables, objectives and constraints
and with conditions that have either suction side or pressure side cavitation. The results show that the
proposed methodology can be used as a support tool for the blade designers to, under strict time
constraints, find a suitable set of propeller designs, some of which can be considered equal or even
superior to the delivered design.
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1. Introduction

Marine propeller design, when performed as an everyday task for
industrial applications, must be carried out within strict time limit-
ations. It is not efficient to systematically implement experiments
and high-fidelity simulations in the design process, therefore fast
analysis tools of lower fidelity are preferred, based on for example
lifting line theory, vortex lattice and boundary element methods
(BEM). Automated optimisation is increasingly investigated as a
potential support tool in constrained, multi-objective problems
within marine propeller design. The general concept of automated
optimisation is that the most decisive design features, in terms of
system performance, are parameterised and by alternating values
of those design parameters, new optimal designs/solutions are cre-
ated which fulfil the objectives of the problem. Depending on each
propeller design and project, the design parameters are among
others the propeller diameter, blade area ratio, pitch, camber,
skew, rake, while the typical objectives are related to the propeller
efficiency, strength, cavitation, pressure pulses and others. The
overall goal through an optimisation process is to obtain one
unique propeller design that is considered optimal based on the
problem’s objectives, constraints and requirements (Gypa 2021).

Automated optimisation is performed more systematically with
the use of optimisation algorithms in order to search the design
space efficiently and find one or a set of optimal designs. Popu-
lation-based, nature-inspired stochastic optimisation algorithms,
like genetic algorithms (GAs), particle swarm optimisation (PSO),

ant colony optimisation, are primarily utilised and preferred to
for example deterministic optimisation algorithms, since they cle-
verly and fast guide the exploration to areas of the design space
with the optimal solutions. The optimisation eventually provides
the designers with a set of optimal designs (Gypa 2021).

Automated optimisation has been utilised by several research
groups (Berger et al. 2014; Vesting 2015; Foeth and Lafeber 2015;
Huisman and Foeth 2017; Gaggero et al. 2017; Valdenazzi
et al. 2019; Törnros et al. 2019; Tadros et al. 2022; Guan
et al. 2022; Karimi et al. 2022) for blade design optimisation pro-
blems. Vesting (2015) worked with automated optimisation exten-
sively and the main focus was on the investigation of different
optimisation algorithms, such as the non-dominated sorting gen-
etic algorithm (NSGA-II) (Deb et al. 2002) and PSO, including
extensions with metamodels. Different geometrical modifications
and constraint-handling methods, mainly related to cavitation,
were implemented in the process. Berger et al. (2014) presented
an optimisation methodology for full scale propellers working
behind a ship, where at a first stage a BEM tool was combined
with an optimisation algorithm and at a second stage some designs
were further evaluated by a Reynolds Average Navier-Stokes
(RANS) tool. A similar approach was presented by Huisman and
Foeth (2017), where the NSGA-II was combined with a BEM tool
for solving two propeller optimisation tools with several objectives
and constraints. Gaggero et al. (2017) worked on a multi-objective
optimisation problem of a cavitating propeller of a high-speed craft,
where a genetic algorithm (GA) was combined with a BEM tool.
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After the optimisation, some designs were manually selected by the
blade designer for further evaluation by a RANS-based CFD tool
and one design was validated by cavitation tunnel tests. Valdenazzi
et al. (2019) presented a practical optimisation tool for the hydro-
acoustic optimisation of naval propellers, which was performed in
three stages and in each stage different optimisation objectives
and analysis tools were selected. An industrial application was pre-
sented by Törnros et al. (2019), where a competitive multi-objective
PSO was combined with a BEM tool for the optimisation of a pro-
peller geometry in a complex scenario with three operating con-
ditions. Some Pareto designs were further evaluated by a RANS-
based CFD tool. Tadros et al. (2022) coupled a commercial propel-
ler design tool with a non-linear interior-point algorithm and uti-
lised it for an optimisation problem with the overall goal to select
two optimal ducted controllable-pitch propellers (CPPs) and with
two objectives, to maximise the efficiency and minimise the fuel
consumption. An automated optimisation methodology was pre-
sented by Guan et al. (2022), where fluid-structure interaction,
design of experiment and the NSGA-II were combined with overall
goal to ensure the desirable thrust and the structural strength of the
propeller. Karimi et al. (2022) suggested an improvement on the
standard PSO by modified chaotic self-governing groups of par-
ticles and applied this for the solution of a two-objective marine
propeller optimisation problem. Most of the above-mentioned
studies have given satisfactory results in terms of performance.
However, as we have previously described in Gypa et al. (2021),
automated optimisation is hard to implement in industrial appli-
cations successfully due to the following reasons:

. The optimisation algorithms are difficult to set-up to reach a
converged solution; this involves the definition of the design
space and the parameters that control the optimisation process.

. The different requirements on each scenario-based design situ-
ation are difficult to formulate into a single well-posed optimis-
ation problem; e.g. several operating conditions may need to be
considered, with different cavitation nuisance requirements in
each.

. The constraint handling fails due to the fact that: (a) the physics
involved in some constraints (e.g. erosion risk, radiated sound)
is too complicated to be represented by semi-empirical evalu-
ations within the strict time limitations, and b) the number of
feasible designs developed during the optimisation can become
too low to be useful.

. The performance prediction of the tools have high uncertainty in
some regions and guide the optimisation in the wrong area of the
design space.

Therefore it is considered more reliable and efficient to use a tra-
ditional manual design process than a fully automated optimisation
(Vesting 2015; Kongsberg hydrodynamic design team 2020). Man-
ual design is defined in this study as the design that the blade
designer has designed without using any optimisation tools. The
designer’s expertise needs to be part of the design and optimisation
procedure, rather than be replaced. Based on this, the approach we
have previously followed is the interactive optimisation, where the
blade designer is involved in the blade design optimisation process
systematically (Gypa et al. 2020, 2021). More specifically in Gypa
et al. (2021), cavitation images of the designs resulting from the
optimisation were presented to the blade designer, who evaluated
their cavitation characteristics and subsequently this information
was utilised by the interactive genetic algorithms (IGAs) in order
to guide the optimisation towards areas of the design space with
high performance according to the objectives and satisfactory

cavitation characteristics according to the blade designer. The
method was utilised for a simple blade design scenario with positive
results.

A problem that occurs in interactive optimisation processes is
that the engineers need to evaluate a high number of individuals
manually, something that is laborious and leads to human fatigue
(Wahde 2008). In Gypa et al. (2021), we used a machine learning
(ML) classification algorithm, the support-vector machines
(SVMs) (Vapnik 1995), as support in the optimisation. The
designer’s evaluations were used as training for the SVM model
and when a new optimisation run was performed, the model gave
a prediction of the cavitation evaluation of the new designs, instead
of requiring manual evaluations by the designer. The ML
implementation was further developed in Gypa et al. (2022), and
a machine learning pipeline (MLP) was used that investigated five
ML classification algorithms instead of only one, with the aim to
ensure as high prediction accuracy as possible. Doijode
et al. (2022a, 2022b) also approached the marine propeller optimis-
ation problem by combining a dynamic optimisation method with
supervised and unsupervised machine learning methods and a BEM
analysis tool and the results showed a 30% reduction in compu-
tational cost compared to a traditional automated optimisation
approach.

In the present study, the proposed methodology that combines
the interactive optimisation with the MLP as an implemented
part of the optimisation, is used for two case studies for advanced
design scenarios with several design variables, objectives and con-
straints, and with conditions that have either suction side (SS) or
pressure side (PS) cavitation. The overall goal is to investigate
how the proposed methodology performs in a more complex scen-
ario and if it is actually possible to obtain solutions that are compe-
tent and equivalent or even better than the manual design within
limited time.

2. Methodology

The general concept of the methodology is that an optimisation
process has as a starting point a baseline propeller geometry and
the goal is to obtain a new optimised geometry with higher per-
formance and with a satisfactory and feasible geometry, with satis-
factory cavitation performance and characteristics, based on the
designer’s preference, and all this in a realistic time frame. In the
proposed methodology interactive optimisation with a machine
learning pipeline are combined. The entire interactive optimisation
and MLP framework is presented in Figure 1 and the methodology
is described in this section.

The required input for the optimisation is a baseline geometry
and a well-defined optimisation set-up. The baseline is provided
by the blade designer, who defines the design variables of the optim-
isation problem, along with the variable ranges, the objectives, the
constraints and the optimisation parameters. In the tools of the pro-
posed methodology, B-splines are utilised to represent the curves of
the distributions of all design variables and this is described in detail
in Gypa et al. (2023). The optimisation parameters depend on the
selected optimisation algorithm and in the proposed methodology
the NSGA-II is utilised. Thus the parameters are related to the
size of the population, number of generations, different operators
like mutation, crossover etc.

The optimisation starts by running the NSGA-II, which searches
the design space in a smart manner and guides the optimisation
towards areas of the design space with high performance. The
goal of using the NSGA-II, or any optimisation algorithm, is to
obtain a detailed Pareto frontier efficiently, that fulfils the objectives
in the best way possible. Optimisation processes usually consist of
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several smaller optimisation cycles, which are referred as optimis-
ation runs, and they last from initiating them with a new set-up
or input until pausing them manually or finishing the loop.

After each of the initial optimisation runs, typically of smaller
size, the cavity shapes of all the designs are presented to the designer
and subsequently the designer decides which designs represent geo-
metries that result in satisfactory cavitation or not. The designs with

non-satisfactory cavitation characteristics are rejected by the
designer, whereas the remaining designs are considered accepted
and are candidates for continuation to the next optimisation run.
An example of how the cavitation images are presented to the
designers during the cavitation evaluation process is shown in
Figure 2. The designs are first presented to the designer, as in Figure
2(a), who rejects those designs with non-satisfactory cavity shape,
depending on the demands of the project, as in Figure 2(b).

One of the key parameters of the IGAs is the number of individ-
uals per generation, as the first generation of the next optimisation
run will be comprised of only accepted designs from the previous
round. If the required number of individuals for the next run is lar-
ger than the number of accepted designs, then mutation and cross-
over are used for the accepted individuals to create new ones in
order to fill in the missing individuals; if the number is smaller,
then the accepted individuals are sorted according to the NSGA-
II and only the best are passed on to the next run; if the number
is equal, then the first generation is comprised of all previously
accepted designs.

The optimisation runs that involve manual evaluations compose
the interactive optimisation process. The goal is to promote areas of
the design space that suits the designer’s preferences on cavitation
performance, so that the algorithm goes towards those areas in the
following runs. The designer decides how many interactive runs are
required. By combining the NSGA-II with the manual cavitation
evaluations, we aim for high performance and for feasible propeller
geometries in terms of cavitation performance according to the
guidance of the designer.

The next step is to use all this information produced by the
interactive optimisation, in order to speed up the optimisation pro-
cess by training an ML model and predicting the cavitation evalu-
ation of the following runs. The ML model is an optional support
function, proven to be useful for runs with large populations, that
reduces the risk of user fatigue by performing automatic evalu-
ations. More specifically, an MLP has been implemented in the
optimisation, where the entire dataset of the interactive optimis-
ation is used as input. Nested cross-validation (NCV) is used for
investigating various hyperparameters of different ML algorithms
and finally have the best model for each algorithm as an output.
The best output of these models is the one that has the hyperpara-
meters that give the highest accuracy and this is selected as the final
model. This final model is used for cavitation nuisance prediction of
new optimisation runs. Further information on the MLP is pre-
sented in Section 2.1.

While performing the entire process of the MLP, one or more
new optimisation runs are carried out, where there is no interactiv-
ity included. These runs have a larger total population, in order to
produce more designs, and the resulting ML model of the MLP is
used for prediction of the cavitation evaluation. Input in this
model is the dataset of the interactive optimisation, including the
binary manual cavitation evaluation by the designers, which trains
the model. When the model is trained, a prediction is done for the
cavitation evaluation of the new dataset from the new optimisation
runs.

A final run is performed and at the end of it, the designer evalu-
ates the cavity shape only of the designs that compose the Pareto
frontier. The designer decides on one or a set of the most suitable
optimal designs, among the accepted ones, compares them to the
baseline, selects one design and performs minor manual geometri-
cal modifications, if necessary. This design is the trade-off between
the objectives, and the quantitative and qualitative constraints.

Note that the blade designers are not involved in the ML process
at all and no prior knowledge on ML is required for using the
optimisation tool. The blade designers are only asked to manually

Figure 1. Interactive optimisation and MLP framework (This figure is available in
colour online).
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evaluate cavitation characteristics at specific runs and to evaluate
the final Pareto frontier, so that they decide on the final designs.
The ML process gives as an output the accepted and rejected
designs directly, based on the predicted cavitation evaluation.

2.1. Machine learning pipeline

The MLP has been described in detail in Gypa et al. (2022), and is
summarised here for completeness. The input of the MLP involves

the most important features (input features) of the dataset from the
interactive optimisation and the binary manual evaluation by the
blade designer. Then NCV, nested cross-validation, is used,
which is an effective way to incorporate hyperparameter tuning
of different ML algorithms. The NCV process has two main
loops, the outer and the inner, which are shown in Figure 3.
K-fold cross-validation (CV) is carried out in both loops. The pur-
pose of the outer loop is to split the dataset into training and testing
sets K1 times, by using K-fold CV, and later input each training set

Figure 2. Cavitation evaluation dialogue box (a) Designs with cavity shape presented to the designer. (b) Rejected designs by designer (This figure is available in colour
online).

4 I. GYPA ET AL.



Figure 3. NCV process (This figure is available in colour online). Gypa et al. (2022)
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into the inner loop. The testing sets will be used in the end for vali-
dation of the best models.

The purpose of the inner loop is to investigate which hyperpara-
meters are the best for the targeted ML algorithm, in order to
achieve the highest accuracy. This is done by first splitting the
input dataset (which is the training dataset of the outer algorithm)
into training and testing sets K2 times, again by using K-fold CV.
Then the values of the hyperparameters are explored through the
grid search method, which is an exhaustive search process that
loops through a pre-defined hyperparameter space of the targeted
algorithm. Every combination of hyperparameters is fitted to the
ML algorithm for each one of the K2 training sets, and the accuracy
is validated through the inner testing sets. The ML algorithm is
finally refitted on the whole dataset by using the best found hyper-
parameters and the accuracy of the model is computed.

Due to the fact that we compare also different ML algorithms,
there is one additional loop in the methodology, where the inner
loop of the NCV process is repeated for each one of the algorithms.
Note that each algorithm has different hyperparameters, and their
ranges must be defined before the NCV process begins.

The output is one model for each ML algorithm by the inner
loop, where the best hyperparameters have been selected. In the
outer loop, the mean prediction accuracy is computed for each
algorithm and the one that offers the highest accuracy is selected.
This is considered the best model of the pipeline and is saved.
When there is a new dataset, it is inputted in the best model and
a prediction is done for the cavitation of the designs of the new
dataset. The entire ML process has been implemented with the
aid of the Scikit-learn machine learning library in Python
(Pedregosa et al. 2011).

2.2. Computational tools

The hydrodynamic analysis tool we use in this study for the predic-
tion of the propeller performance and the sheet cavitation is the
vortex lattice method code MPUF-3A (He et al. 2010; He 2010),
which has extensively been used and validated over many years
(Fuhs 2005; Moulijn 2015). The geometry of the propeller blade
is represented by a lattice of discrete vortices and sources, distribu-
ted on the mean camber surface of the blade (Vesting 2015). The
kinematic boundary condition on the blade surface is considered
for the strength of the vortices, where the wetted portion of the
blade surface is impermeable to the fluid, and the Kutta condition
is applied at the trailing edge, where the flow should leave the trail-
ing edge in a tangential direction (Lee 1979).

The cavitation prediction is based on an iterative process,
according to Kerwin et al. (1986), where a 2D cavitating profile sec-
tion is considered and the cavity interface is represented by includ-
ing sources whose strengths must be solved for in each time step.
For the 3D solution, the cavity length is adjusted for all sections
for the time step. This is done by considering radial stripes of the
blade that are solved until convergence is accomplished, starting
from the hub until the tip of the blade and back. Each blade section
is thus constructed by this set of stripes in the flow field by combin-
ing the undisturbed inflow and the induced flow of the other
stripes. The solutions are computed for only one blade, the key-
blade, in order to save computational cost. Subsequently, it is
assumed that the strengths of the vortices and sources on the
other blades correspond to those that were calculated for the key-
blade (Vesting 2015) at that position. Additionally, in this study a
fixed blade wake is being taken into consideration. MPUF-3A
includes also the effect of the hub, the wake alignment in circumfer-
entially averaged inflow with an arbitrary shaft inclination angle
and the nonlinear thickness loading coupling (Kinnas et al. 2003).

3. Case studies

The proposed methodology is tested by investigating two case
studies with two separate propeller designs, Design I and Design
II. Both designs regard twin CPPs for two ROPAX vessels, operat-
ing with constant engine rpm and represent commercially relevant
tasks. The mission profile for each vessel/propeller is different, but
the goal for both cases is to investigate the ability to find good blade
designs that fulfil the customer requirements through the proposed
optimisation procedure; the attained designs are compared with the
delivered manual design by the blade designer. Both cases represent
complex scenarios with several design variables, objectives and con-
straints, and the last are both quantitative and qualitative. In
addition to this, operating conditions with cavitation on either
the SS or the PS are investigated, something that further perplexes
the entire process. The challenge for both designs is that except
improving the performance of the objectives, when most of them
are contradicting, the cavity shape should be controlled as well,
based on the preference of the designer. The task of the designers
prior to the optimisation is to define the most important objectives
of each problem, select the design variables that affect those objec-
tives and set-up the constraints. The selection of the design vari-
ables therefore entirely depends on the propeller optimisation
problem that is being solved.

3.1. Optimisation set-up

The baseline geometry for each one of the two case studies is the
result of design routines based on the vessel characteristics, the mis-
sion profiles and the selected conditions. The design variables of the
optimisation process for Design I are the pitch over the propeller
diameter (P/D), the camber (FM) and the leading edge modification
(HM), at different blade sections. The HM refers to a design
enhancement done to the leading edge of the propeller blade and
is utilised as a means to change the angle of attack tolerance to miti-
gate PS cavitation. For Design II, there are also some additional
design variables, the chord length (L) and the skew (SK), at different
blade sections. More details on the design space, the objectives and
constraints of the two designs follow.

3.1.1. Design I
There are seven design variables (�x ) for Design I:

. P/D at blade sections 0.194R, 0.7R and 1.0R

. FM at 0.194R, 0.7R and 0.95R

. HM at 0.8R

The P/D and FM range +10% from the values of the baseline
design at all blade sections. The baseline value of HM is 0, thus
the designer sets some pre-defined minimum and maximum values,
based on experience. Two operating conditions are investigated,
which will be referred to as CI−A and CI−B. Condition CI−A is the
design condition and in condition CI−B the propeller operates at
a point with delivered power of approximately 40% MCR, con-
sidered as the lowest loaded condition with two operating propel-
lers. The objectives, which are presented in Table 1, are the
maximisation of the efficiency (η) in CI−A and the minimisation
of the cavity volume (cav-vol) in both CI−A and CI−B. There is
one quantitative constraint, the thrust coefficient KT , which varies
+1% from the baseline KTB and two qualitative constraints, the
shape of the cavitation at the most critical angle at the two
conditions.
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3.1.2. Design II
Design II has the following ten design variables (�x):

. P/D at the blade Sections 0.197R, 0.7R and 1.0R

. FM at 0.197R, 0.7R, 0.95R

. L at 0.8R

. SK at 0.6R and 1.0R

. HM at 0.8R

The values of the P/D at all blade sections, the FM at 0.7R and
0.95R, the L and the SK at all blade sections range +10% from
the values of the baseline design. The baseline values for the FM
at 0.197R and the HM at 0.8R are 0, so some pre-set minimum
and maximum values are set by the designer, based on experience.
Two operating conditions are investigated here as well, referred to
as CII−A and CII−B. Condition CII−A is the design condition and in
condition CII−B the propeller operates at a point with delivered
power of approximately 40% MCR, considered as the lowest loaded
condition with two operating propellers. The objectives, which are
presented in Table 2, are the maximisation of (η), the minimisation
of the pressure pulses (pp) and the minimisation of cav-vol at con-
dition CII−A and the minimisation of cav-vol at CII−B.

There are two quantitative constraints in this problem. The first
one is the thrust coefficient KT , which varies +1% from the baseline
KTB. The other constraint is related to the stress load, which should
not exceed a specific set value for the MCR condition. If a design
exceeds this value, a penalty (Vesting 2015) is given to it and will
most probably not end up in the first front of the specific generation.
There are also two qualitative constraints, the shape of the cavitation at
the most critical angle for the two operating conditions.

3.1.3. Baseline and manual design
The optimisation has as a starting point the baseline design, which
is a basic design used as the starting point for both the manual
design and the optimisation, to ensure a fair comparison. The out-
come of the optimisation will be compared to the manual design,

which is delivered for manufacturing by the blade designer. The
percentage change of the performance of the objectives for the
manual design compared to the baseline design is presented in
Table 3 for Design I and in Table 4 for Design II. The manual
Design I has better performance in efficiency and PS cavity volume,
while the SS cavity volume is worse, but by only 1%. The manual
Design II offers better performance in pressure pulses and in
both SS and PS cavitation, while the efficiency is lower than the
efficiency of the baseline design, albeit only by 0.21%.

The cavity shape for manual and baseline designs of the pro-
pellers I and II is presented in Figure 4. One observes that the
cavity shape of both propeller designs is smoother on the blade
of the manual design. The key blade is represented by green col-
our, at the critical angle where there is maximum cavity volume.
For Design I, there is SS cavitation only in condition CI−A and PS
cavitation on condition CI−B. Similarly for Design II, there is SS
cavitation on condition CII−A and PS cavitation on condition
CII−B.

3.2. Optimisation and machine learning strategy

The same optimisation strategy has been followed for both propel-
ler designs. Three small sequential optimisation runs are performed
and at the end of every run the designer evaluates all the designs.
The evaluation is based on the preference of the designer, who
accepts or rejects the designs. The accepted designs are the candi-
dates for the first generation of the next optimisation run. Each
run has six generations and 52 individuals, which means in total
312 designs, out of which approximately one third to one half are
unique designs. This means that the blade designer evaluates
approximately 120 designs after every run.

Then a fourth run is performed for 18 generations with 52 indi-
viduals per generation, which gives a total of 936 designs with
approximately 300 unique designs. During this run, the data from
the first three runs are utilised as input training data for the
MLP. The outcome of the MLP is one ‘best’ ML model that gives
the highest mean accuracy, based on these input data; this model
is a combination of the selected ML algorithm and the selected
hyperparameters. The resulting ML model is used for the cavitation
evaluation of the unique designs in this larger run. The following
five ML classification algorithms are used: k-nearest neighbours
(Fix and Hodges 1989), neural networks (NNs) (Hopfield 1982),
decision trees (Quinlan 1986), SVMs and extreme gradient boost-
ing (Chen and Guestrin 2016).

A final fifth optimisation run is performed, consisting of 18 gen-
erations with 52 individuals per generation. The first generation of
this run consists of designs that were accepted in the cavitation
evaluation, which were predicted by the ML model, and offered
the highest performance. At the end of this final run, the designer
manually evaluates the cavitation of only the Pareto designs and
decides on one best design. This then concludes the optimisation
procedure.

At the end of this procedure, the optimal design is compared
with the manual, in order to understand to what degree a better
design has been obtained. To judge this can be a challenging task
because both the objectives and the cavitation shape have to be

Table 1. Objectives and constraints – Design I.

Objective/Constraint Description
max f1(�x) = hI−A Maximise efficiency in CI−A
min f2(�x) = cav-volI−A Minimise cavity volume in CI−A
min f3(�x) = cav-volI−B Minimise cavity volume in CI−B
g1(�x) = | KT

KT B
− 1| ≤ 1% Thrust coefficient constraint

g2(�x) Qualitative constraint on cavitation in CI−A
g3(�x) Qualitative constraint on cavitation in CI−B

Table 2. Objectives and constraints – Design II.

Objective/Constraint Description
max f4(�x) = hII−A Maximise efficiency in CII−A
min f5(�x) = ppII−A Minimise pressure pulses in CII−A
min f6(�x) = cav-volII−A Minimise cavity volume in CII−A
min f7(�x) = cav-volII−B Minimise cavity volume in CII−B
g4(�x) = | KT

KT B
− 1| ≤ 1% Thrust coefficient constraint

g5(�x) = stress load ≤ pre-set value Stress load constraint in MCR condition
g6(�x) Qualitative constraint on cavitation in CII−A
g7(�x) Qualitative constraint on cavitation in CII−B

Table 3. Performance manual Design I – percentage change compared to baseline.

Objective Difference [%]
max hI−A 0.53
min cav-volI−A 1.1
min cav-volI−B -43.8

Table 4. Performance manual Design II – percentage change compared to baseline.

Objective Difference[%]
max hII−A −0.21
min ppII−A −22.2
min cav-volII−A −33.4
min cav-volII−B −3.9
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considered. In addition to this, the blade designer may perform
manual geometrical modifications to the selected optimal designs,
so that a feasible final geometry ready to be delivered is obtained.

4. Results

The results are presented and discussed in this section for each
design separately. There are results related to the convergence of
the algorithm, the final obtained Pareto frontiers, which design(s)
the blade designer selected as optimal and why, which manual
modifications were performed, and how the geometry of the design
variables changed. There are also results related to the prediction
accuracy of the ML models.

4.1. Design I

4.1.1. Convergence
In Figure 5, the convergence of the algorithm for the three objec-
tives is presented. For each generation, designs with the best per-
formance in each objective (maximum for efficiency, minimum
for cavity volume) are plotted. The results are plotted as a percen-
tage change to the baseline design. Since elitism is one of the main
characteristics of the NSGA-II algorithm, the non-dominated
designs have the highest probability of being promoted to the
next generations. However, as shown in the figure, due to the
user-code interaction, it seems that the non-dominated designs
with the highest performance do not pass to the next generation,
because they get rejected by the designer. This is shown in the
three plots with the red ’*’ in generations 6, 12 and 18, which are
the generations before performing manual evaluations. The algor-
ithm has reached an optimum point, based on each objective, but
the first generation after the manual evaluations has an optimal
design with lower performance than before, but with cavitation
characteristics that follow the preference of the designer. This
means that the NSGA-II functions well towards finding optimum
solutions, but it seems that some of those are either inefficient or
undesirable. This is observed when using the MLP (generation
36) for the objective of the efficiency in Figure 5(a).

4.1.2. Pareto plots
The Pareto frontier for the performance of the three objectives is
presented in three Pareto plots in Figure 6, and the results are pre-
sented as a percentage change to the baseline design. The objectives
are plotted combined two by two, so that they are more comprehen-
sible to the reader. The designer during the cavitation evaluation of
the frontier has accepted 29 out of the 52 designs (56%). In Figures
6(a) and 6(b) it is shown that several non-dominated designs are
better than the manual design, shown with a red ‘*’ in the figure,
when it comes to efficiency CI−A vs. cavity volume CI−A and
efficiency CI−A vs. cavity volume CI−B. Regarding the objectives
cavity volume CI−A vs. cavity volume CI−B, the manual design
proved to be better than the entire Pareto front.

4.1.3. Optimal design & manual modifications
Out of the 29 accepted non-dominated designs, the designer selects
one that based on their preference offers the best trade-off in terms
of the objectives and the cavitation characteristics. This design,
which is referred to as optimal design, is shown in all three plots
of Figure 6 with the yellow circle ‘o’. The designer performs some
minor geometrical modifications, which are required in this project
so that the geometry is ready to be delivered for manufacturing. The
modifications are described below:

. Pitch curve: Local decrease at the tip and at the root up to 0.5R.

. Camber curve: Decrease at the tip due to bad shape of the
profiles. Increase at 0.5 –0.8R and reduce at the root to compen-
sate for higher pitch.

Figure 4. Cavity shape for baseline and manual designs with SS (left) and PS (right)
cavitation. (a) Baseline Design I – Conditions CI−A (left) and CI−B (right) (b) Manual
Design I – Conditions CI−A (left) and CI−B (right) (c) Baseline Design II – Conditions
CII−A (left) and CII−B (right) (d) Manual Design II - Conditions CII−A (left) and CII−B
(right) (This figure is available in colour online).
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Figure 5. Convergence of the algorithm for the three objectives, percentage change to baseline – Design I. (a) efficiency CI−A (b) cavity volume CI−A (c) cavity volume CI−B
(This figure is available in colour online).
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. Leading edge: Radius increase by 0.5 mm and HM curve increase
at 0.3 –0.5R to increase the angle of attack tolerance

. Chord length curve: Increase at 0.6 –0.8R to reduce the suction
side sheet cavitation.

. Skew: Increase angle by 1 degree to reduce pressure pulses.

From the designer’s modifications, it is evident that the chord
length could have been added as a design variable of the optimis-
ation problem, and maybe even better solutions could have been
obtained.

The manually improved optimal design or modified optimal
design is presented in Figure 6 with the ‘x’ marker. The percentage
change of the performance of the objectives for th optimal and the
modified optimal designs compared to the manual design is shown
in Table 5. The optimal design has better performance in efficiency

(0.14%), but higher cavity volume in CI−A (29%) and in CI−B

(28.6%). After the modifications of the designer, the modified opti-
mal design has a decreased efficiency compared to the manual
design by 0.17%, while the cavity volume in CI−A is improved by
31.2% compared to the manual design, and in CI−B by 7.8%.

4.1.4. Geometry
The curves of the design variables (P/D, FM, HM) for the baseline,
manual, optimal and modified optimal Design I are presented in
Figure 7. The values of the design variables have been hidden in
the plots for protection of commercial interests of Kongsberg Mar-
itime AB.

In Figures 7(a) and 7(b), the P/D and FM curves of the optimal
design have approximately the same shape as the curves of the base-
line. The manual modifications on the P/D curve by the blade
designer are minor compared to the optimal design. The modifi-
cations of the FM curve of the modified optimal design when com-
pared to the optimal design are more evident, with decreased values
from the root until the midchord of the blade and increased values
from the midchord until almost the tip. In Figure 7(c), the HM
curves are presented. No leading edge modification had been
applied on the baseline design, therefore it has zero values. The

Figure 6. Final Pareto frontier including: manual, baseline, optimal & mod. optimal designs, percentage change to baseline – Design I. (a) efficiency CI−A – cavity volume
CI−I (b) efficiency CI−A – cavity volume CI−B (c) cavity volume CI−A – cavity volume CI−B (This figure is available in colour online).

Table 5. Percentage change in performance of optimal and modified optimal
designs compared to manual – Design I.

Objective Optimal design [%] Mod. optimal design [%]
max hI−A 0.14 −0.17
min cav-volI−A 29.0 −31.2
min cav-volI−B 28.6 −7.8
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resulting HM curve shape of the optimal design has been modified a
lot by the blade designer, since at 0-0.5R the HM is zero and even-
tually the curve came to be very similar as the curve of the manual
design.

The modifications that have been performed by the blade
designer, especially in the P/D and FM curves, were required in

the specific project after the optimisation in order to obtain a repre-
sentative and realisable geometry. Also, the major modifications
done for the HM curve, could have been avoided with a better
set-up prior to the optimisation.

4.1.5. Cavitation
The cavity shape of the modified optimal design is shown in
Figure 8. The size of the cavity shape of both conditions CI−A

and CI−B is evidently smaller than the one of the manual design,
which is presented in Figure 4(b).

4.2. Design II

4.2.1. Convergence
The convergence of the algorithm for the four objectives is pre-
sented in Figure 9 and the results are presented as a percentage
change to the baseline design. Similarly as with Design I,
the performance of the objectives of the designs worsens after the
generations 6, 12 and 18, where manual cavitation evaluations
were utilised. This drop of the performance is also observed with

Figure 7. Design variable curves for P/D, FM, HM including the designs: manual, baseline, optimal & modified optimal – Design I. (a) P/D (b) FM (c) HM (This figure is
available in colour online).

Figure 8. Cavity shape for modified optimal design with SS (left) and PS (right) cavi-
tation – Design I (This figure is available in colour online).
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the use of the MLP in generation 36, but the impact is less
significant.

4.2.2. Pareto plots
The Pareto frontiers for the performance of the four objectives are
presented in six Pareto plots in Figure 10, with the objectives com-
bined two by two. The results are presented as a percentage change
to the baseline design. The designer during the cavitation evalu-
ation of the frontier has accepted 23 out of the 52 designs (44%).
By comparing the manual design to the accepted Pareto designs,
there are several designs that can be considered better than the
manual design.

4.2.3. Optimal design & manual modifications
The blade designer selected one design (point with yellow circle ‘o’
in Figure 10), which has better performance than the manual design
in the efficiency, the cavity volume of condition CII−B and the
pressure pulses are almost the same. It is first checked whether
the design has a geometry that can be considered deliverable for
manufacturing without any manual modifications, and only
minor modifications are needed to achieve a production ready
blade. By comparing the two designs, the main geometrical differ-
ences are that the optimal design has lower blade area ratio
(EAR) compared to the manual design, something that led to higher
efficiency. The camber at the tip of the optimal design is higher than
the manual design, which offered lower cavity volume in condition
CII−A, but the lower values in the curve of the leading edge modifi-
cation led to increased cavity volume in CII−B. The cavity volume in
condition CII−B is actually quite high, but the advantage of the
higher efficiency prevails. Finally, the chord length distribution

was a bit flat at 0.7R, and the designer preferred a smoother geome-
try at that point. Therefore, the designer aimed at doing some
minor manual modifications in the camber, chord length and
leading edge modification curves, while maintaining the efficiency
constant. The modifications are the following:

. Pitch curve: Local increase at the tip of the blade.

. Camber curve: Decrease at the tip and the root in order to com-
pensate the increase of the pitch.

. Leading edge modification curve: Increase at the root, due to
some small indication of root cavitation on the PS.

. Chord length curve: Increase at 0.7R for creating a more smooth
curve.

The modified optimal design is presented in Figure 10 with the
‘x’ marker. The differences between the optimal and the modified
optimal designs are very small, and the modified optimal design
has slightly worse performance in the three objectives, but it main-
tains the same efficiency as the optimal design. However, the geo-
metry of the modified optimal design after the manual
modifications is considered acceptable to be manufactured. The
percentage change of the performance of the objectives for the opti-
mal and modified optimal designs compared to the manual design
is shown in Table 6.

4.2.4. Geometry
The curves of the design variables (P/D, FM, HM, L and SK) for the
baseline, manual, optimal and modified optimal designs are pre-
sented in Figure 11. The values of the design variables presented

Figure 9. Convergence of the algorithm for the four objectives, percentage change to the baseline – Design II. (a) efficiency CII−A (b) cavity volume CII−A (c) pressure pulses
CII−A (d) cavity volume CII−B (This figure is available in colour online).
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in the plots have been hidden for protection of commercial interests
of Kongsberg Maritime AB.

The shape of the P/D curves in plot 11(a) of all designs are quite
similar. The values of the modified optimal design at the root until
the midchord are increased, and from the midchord until the tip are
decreased, compared to the values of the optimal design. In

Figure 10. Final Pareto frontier including: manual, baseline, optimal & mod. optimal designs, percentage change to baseline-Design II. (a) efficiency CII−A – cavity volume
CII−I (b) efficiency CII−A – pressure pulses CII−A (c) efficiency CII−A – cavity volume CII−B (d) cavity volume CII−A – pressure pulses CII−A (e) cavity volume CII−A – cavity volume
CII−B (f) pressure pulses CII−A – cavity volume CII−B (This figure is available in colour online).

Table 6. Percentage change in performance of optimal and modified optimal
designs compared to manual – Design II.

Objective Optimal Design [%] Mod. Optimal Design [%]
max hII−A 0.83 0.83
min ppII−A 0.4 1.3
min cav-volII−A −17.5 −16.8
min cav-volII−B 58.0 64.5
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Figure 11. Design variable curves for P/D, FM, HM, L, SK including the designs: manual, baseline, optimal & modified optimal – Design II. (a) P/D (b) FM (c) HM (d) L (e) SK
(This figure is available in colour online).
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addition to this, the optimal design follows the shape of the baseline
design. The shape of the FM curve in plot 11(b) of the optimal
design at 0.5 –0.8R is increased compared to all other designs.
The HM curve is presented in plot 11(c) and similarly as for Design
I, no leading edge modification had been applied on the baseline
design. The result of the optimisation for the optimal design is a
bell-shaped curve. However, the designer has modified the HM
curve both for the manual and the modified optimal designs, by
increasing the HM value at the blade root, decreasing at the mid-
chord and from the midchord until the blade tip, there is a bell-
shaped curve. The L curves are presented in 11(d), and all designs
have approximately the same shape. The optimal design has more
increased values at 0.45 –0.9R compared to the manual and
modified optimal designs. Finally, the SK curves, presented in
plot 11(e), have almost the same shape and values in all designs.

Similarly as for Design I, the manual modifications performed
by the blade designer on the P/D, FM, L and SK curves were
required in the specific project so that a realistic geometry is
finally obtained. The major modifications done for the HM curve
could have been avoided with a better set-up prior to the
optimisation.

4.2.5. Cavitation
The cavity shape of the modified optimal design is shown in
Figure 12. The size of the PS cavity shape of condition CII−B is
much higher than the one of the manual design, but the advantage
of higher efficiency was deemed more important according to the
designers for the specific scenario, especially as the level of pressure
pulses could be kept constant.

4.3. Machine learning results

The ML results for both designs are presented in this section. The
MLP was utilised after the third optimisation run and the best
ML model in each case was used for the cavitation evaluation pre-
diction of the entire population of the fourth run. The best ML
algorithm of Design I is the NN, which offered a prediction accu-
racy of 79.5% with the following hyperparameters:

. activation function for the hidden layer = tanh

. alpha = 0.05

. hidden layer sizes = (50, 100, 50)

. learning rate = constant

. maximum iterations = 100

. solver = adam (stochastic gradient-based optimiser)

The best ML algorithm for Design II is the SVM, which offered
an accuracy equal to 72.8%, with the following hyperparameters:

. C = 100

. gamma = 0.01

. kernel = radial basis function

By comparing the results of the prediction accuracy of the
studies in Gypa et al. (2021), Gypa et al. (2022) to the present
study, the accuracy has dropped. However, the prediction accuracy
of the model cannot be better than the manual evaluations that it
has been trained on, since it only reflects the performance of the
manual evaluation. In more detail, in this scenario SS and PS cavi-
tation are evaluated for the same scenario. The designer judges the
cavitation characteristics of each design by looking at both types of
cavitation. This means that the decision on whether a design is
accepted or not becomes harder and for some similar designs
that the cavitation differences are very small, the blade designer
might evaluate them inconsistently. Since the manual evaluations
are utilised as input to the ML models, this input can be inconsist-
ent as well. Thus, it is reasonable that the prediction accuracy
decreased.

ML is used as part of the optimisation process, with the expec-
tation to accelerate the efficiency of the design process. With a pre-
diction accuracy of 70–80%, some designs will pass to the first
generation of the next optimisation run as accepted even though
they were actually not. However, the NSGA-II still promotes
designs with the highest performance to the following generations.
Therefore even with lower predictability, ML is a useful tool for the
optimisation, because the designers will not manually evaluate the
cavitation of the designs of an entire run.

Apart from the prediction accuracy of an ML model, under-
standing and explaining the output of the model is important as
well. This can be done with the aid of SHAP (SHapley Additive
exPlanations) values (Lundberg and Lee 2017). The goal of SHAP
values is to explain the prediction by computing the contribution
of each feature to the prediction. In Figure 13, the variable impor-
tance plots for Designs I and II are shown. Variable importance
plots show which variables contribute most to the predictive
power of the model. The x-axis presents the average of the absolute
SHAP values per feature and the y-axis presents the features in des-
cending order of importance. In Figure 13(a), the P/D at 1.0R is the
most important feature, while the HM at 0.8R and FM at 0.19R are
the least important features. Similar results are obtained from
Figure 13(b), where again the P/D at 1.0R is the most important fea-
ture, followed by the L at 0.8R and FM at 0.7R. The P/D at 0.2R and
HM at 0.8R are the least important features for the prediction of the
SVM.

5. Concluding remarks

A methodology is proposed in this study for solving constrained,
multi-objective blade design optimisation problems efficiently, as
an everyday task of industrial applications. The methodology com-
bines interactive optimisation with machine learning. The blade
designer evaluates cavitation characteristics as part of the optimis-
ation systematically and this information is used for guiding the
algorithm towards solutions with the desirable cavitation character-
istics and for training machine learning models that are later used
for prediction of cavitation evaluation.

The case studies consider two advanced propeller designs of
twin CPPs for ROPAX vessels. Both scenarios were complex, repre-
senting real commercial design tasks involving several design vari-
ables, objectives and constraints and with conditions that have
either suction side or pressure side cavitation. The challenge has
been to find optimal solutions that will fulfil the objectives and

Figure 12. Cavity shape for modified optimal design with SS (left) and PS (right)
cavitation – Design II (This figure is available in colour online).
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Figure 13. SHAP values: variable importance plots. (a) Design I (b) Design II (This figure is available in colour online).
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quantitative constraints, and in parallel have satisfactory cavitation
characteristics.

The obtained designs were compared to the delivered manual
designs by the blade designer. The results of both case studies
showed that the optimisation procedure led to higher performance.
Both Pareto frontiers included several designs that were better com-
pared to the manual designs, in terms of performance and cavita-
tion characteristics. Minor manual modifications were performed
by the blade designer, in order to obtain ready-to-be-manufactured
geometries.

Using ML proved to be a useful support tool of the optimisation,
which accelerated the process, since the designers did not evaluate
the optimisation runs with larger populations of individuals. For
the input of the ML, there were some designs that it was harder
for the designer to decide whether they should be accepted or
not, because for example they had satisfactory SS cavitation, but
the PS cavitation was on the limit. This led to inconsistent evalu-
ations for some designs, something that should be investigated
further.

The proposedmethodology found to be a good support tool of the
entire optimisation process, according to the results and the blade
designers. However, in order to better understand the further
needs for the specific tool, more information is needed by the
designers after utilising it for their everyday design tasks. A human
factor research with the participation of blade designers could aid
towards that direction. There are several questions that need to be
answered, such as after how many user evaluations do the blade
designers feel fatigued, if they should be enabled to alternate the geo-
metry of the designs during the optimisation and for which design
scenarios should the MLP be used. This process could also create
ideas on more new interactive steps that could lead to faster conver-
gence and to more efficient solutions. Also, through a human factor
study, it would be possible to quantify the cost benefit of using the
proposed methodology, compared to a solely manual process.
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