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SUMMARY

Motivated by cross-validation’s general ability to reduce overfitting and mean square error, we
develop a cross-validation-based statistical theory for general point processes. It is based on the 15

combination of two novel concepts for general point processes: cross-validation and prediction
errors. Our cross-validation approach uses thinning to split a point process/pattern into pairs of
training and validation sets, while our prediction errors measure discrepancy between two point
processes. The new statistical approach, which may be used to model different distributional
characteristics, exploits the prediction errors to measure how well a given model predicts validation 20

sets using associated training sets. Having indicated that our new framework generalizes many
existing statistical approaches, we then establish different theoretical properties for it, including
large sample properties. We further recognize that non-parametric intensity estimation is an
instance of Papangelou conditional intensity estimation, which we exploit to apply our new
statistical theory to kernel intensity estimation. Using independent thinning-based cross-validation, 25

we numerically show that the new approach substantially outperforms the state of the art in
bandwidth selection. Finally, we carry out intensity estimation for a dataset in forestry (Euclidean
domain) and a dataset in neurology (linear network).

Some key words: kernel intensity estimation; Papangelou conditional intensity; prediction; spatial statistics; thinning

1. INTRODUCTION 30

A point process in a general space (Daley & Vere-Jones, 2003, 2008; Kallenberg, 2017) can be
viewed as a generalized random sample, where we allow the sample size to be random and/or
the sample points to be dependent random variables; an independent and identically distributed
(iid) sample is called a Binomial point process (van Lieshout, 2000). Consequently, they have
been extensively applied to analyse and model various event data sources, e.g. in forestry and 35

epidemiology (Diggle, 2014). As one typically observes only one point pattern, i.e. point process
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2 O. CRONIE ET AL.

realization, classical iid sample statistics is infeasible and, in addition, likelihood estimation
is generally intractable (van Lieshout, 2000). This has led to the development of a range of
innovative statistical approaches (Coeurjolly & Lavancier, 2019), where the associated estimation
criteria to be optimized, which take the full observed pattern as input, are not (explicitly) based on40

predictive estimation ideas. Generally speaking, models with small cross-validation errors yield
good out-of-sample prediction performances and tend to result in little overfitting and small mean
square errors (Hastie et al., 2009; Arlot & Celisse, 2010). Hence, a general cross-validation-based
statistical theory for point processes could reduce mean (integrated) square errors when fitting
different distributional characteristics, but such a theory does not currently exist.45

This paper addresses the development of a general cross-validation approach as well as a cross-
validation-based predictive statistical theory for general point processes. Our cross-validation
approach, which is inspired by our previous work on point process subsampling (Moradi et al.,
2019), is defined through thinning and allows us to consider a form of conditional iid sampling of
a point process. Besides cross-validation, our statistical approach is further based on a new notion50

of point process prediction errors, which is inspired by our previous work on non-parametric
intensity estimation (Cronie & van Lieshout, 2018). Our prediction errors, which allow us to
measure the quality of a proposed estimate, can be thought of as measures of discrepancy between
two point processes. More specifically, any prediction error is given by the difference between two
parametrized terms, a random one and a deterministic one. The random term is a sum over the first55

point process, where each summand depends on i) the second point process, ii) a point of the first
point process, and iii) a candidate parameter. The deterministic term is equal to the expectation of
the random term if and only if the candidate parameter is set to the true one, for a well specified
model. When the two point processes coincide, i.e. under auto-prediction, in a certain setting our
prediction errors reduce to so-called innovations, originally introduced by Baddeley et al. (2005,60

2008) to define residuals for (Papangelou) conditional intensity models. Our prediction errors
further reduce to various loss functions for existing estimation approaches, e.g. i) the approach of
Takacs (1986) and Fiksel (1984) for conditional intensity modelling (Coeurjolly et al., 2016), with
pseudo-likelihood estimation as a special case, ii) the quasi-likelihood approach of Guan et al.
(2015) for parametric intensity estimation, which has composite-/Poisson- and Palm-likelihood65

estimation (Coeurjolly & Lavancier, 2019) as special cases, and iii) the non-parametric intensity
estimation approach of Cronie & van Lieshout (2018). By combining our two new concepts, we
arrive at the definition of our new statistical theory, referred to as point process learning due to its
similarities with risk minimization in statistical learning (Vapnik, 1999).

We establish different properties and variations of point process learning, in particular how it can70

be applied to parametric product density/intensity estimation and conditional intensity estimation.
We then focus on non-parametric intensity estimation, which we indicate is an instance of
conditional intensity estimation. In particular, we apply our new approach to bandwidth selection
in kernel intensity estimation, when the cross-validation is achieved through independent thinning.
We find that point process learning numerically outperforms the state of the art, i.e. the Cronie &75

van Lieshout (2018) approach, in terms of mean integrated square error, regardless of the degree
of spatial interaction in the underlying point process.

For readability, in the main text we state all theory for first-order/univariate statistics and defer
higher-order statements and proofs to the supplementary material of the paper. Throughout, labels
starting with the prefix ‘S’ refer to items in the supplementary material.80
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A cross-validation-based statistical theory for point processes 3

2. PRELIMINARIES

2.1. Point processes and distributional characteristics
Consider a general (complete separable metric) space S, which is endowed with a notion of size

in the form of a (locally- and σ-finite Borel) reference measureA 7→ |A| =
∫
A du,A ⊆ S; we here

reserve the notation “⊆” for Borel sets of S. For convenience, one may think of S = Rd, d ≥ 1, 85

equipped with the d-dimensional Euclidean metric d(u, v) = ‖u− v‖ and Lebesgue measure | · |,
or a linear network S = L =

⋃k
i=1 li, i.e. a union of connected line segment li ⊆ R2, where d(·, ·)

is the shortest-path metric and | · | represents arc length integration on L (Baddeley et al., 2015;
Cronie et al., 2020); see Figure 1 for illustrations. Throughout, we will implicitly assume that
functions are sufficiently measurable/integrable, and we abbreviate the terms almost sure(ly) and 90

almost everywhere by a.s. and a.e..
Given a suitable probability space (Ω,F ,pr), a point process X = {xi}Ni=1, 0 ≤ N ≤ ∞, in

S may be defined as a random element in the measurable space (X ,N ) = (XS ,N ) of point
patterns/configurations x = {x1, . . . , xn} ⊆ S, 0 ≤ n ≤ ∞, which are locally finite, i.e. where
the cardinality #(x ∩A) =

∑n
i=1 1(xi ∈ A) is finite for bounded A ⊆ S (Daley & Vere-Jones, 95

2003, 2008; Møller & Waagepetersen, 2004). A member xi of a point pattern x or a point process
X is commonly called an event. We identify X with the random measure X(A) = #(X ∩A),
A ⊆ S, which is simple, meaning that a.s. X({u}) ∈ {0, 1}, u ∈ S, i.e. X has at most one event
at any location.

The distribution of a point process X is most conveniently described by its (Papangelou) 100

conditional intensity, λ. It satisfies the Georgii–Nguyen–Zessin (GNZ) formula/theorem, which
states that (Daley & Vere-Jones, 2008)

E

{∑
x∈X

h(x,X \ {x})

}
=

∫
S
E {h(u,X)λ(u;X)}du

for non-negative (possibly infinite) and integrable h : S ×X → R. It has the interpretation that
the conditional probability of finding a point of X in an infinitesimal neighbourhood du of u ∈ S, 105

given that X agrees with x outside du, satisfies pr{X(du) = 1 | X ∩ S \ du = x ∩ S \ du)} =
λ(u; x)du (Coeurjolly et al., 2017). This interpretation is motivated by the fact that, for a finite
point process, i.e. if N = X(S) <∞ a.s., we can express λ as a ratio of Janossy densities, which
thus implies that λ(·) can be readily derived when the Janossy densities are known in closed form
(Daley & Vere-Jones, 2008). Unfortunately, the Janossy densities, which yield the likelihood 110

function, are generally not tractable (van Lieshout, 2000), but luckily there exist many models
with explicit forms for λ, e.g. Poisson, Cox (Møller & Waagepetersen, 2004), Hawkes (Yang et al.,
2019), Markov (van Lieshout, 2000) and hybrid Gibbs (Baddeley et al., 2015) point processes.
Regarding dependencies in X , when y ⊆ x, if λ(·; y) is smaller/larger than or equal to λ(·; x), we
call X attractive/repulsive. 115

By letting h in the GNZ formula be constant over its second argument, we obtain the
Campbell formula, which yields that E{λ(u;X)} = ρ(u), the intensity function of X , where
E{X(A)} =

∫
A ρ(u)du, A ⊆ S. Heuristically, pr{X(du) = 1} = E{X(du)} = ρ(u)du and

whenever ρ(·) ≡ ρ > 0 is (non-)constant, we say that X is (in)homogeneous.
By replacing X by the point process consisting of all distinct n-tuples of elements of X , 120

Xn
6= = {(x1, . . . , xn) ∈ Xn : xi 6= xj if i 6= j} ⊆ Sn, we obtain nth-order conditional intensities

λ(n) and product densities/intensities ρ(n) (Coeurjolly et al., 2017); see Section S5.1 for details.
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4 O. CRONIE ET AL.

2.2. Point process statistics
Assume that we observe/sample a point pattern x = {x1, . . . , xn} within some, potentially

bounded, study region/domain W ⊆ S, |W | > 0, which has been generated by X ∩W , for125

some unknown point process X . Here, in contrast to the classical iid setting, we have only one
realization of the random element of interest.

Statistical settings typically deal with estimation of some particular characteristic of X and it
turns out that the associated estimators can be characterized by what we will refer to as a general
parametrized estimator family ΞΘ = {ξθ : θ ∈ Θ}, where130

ξθ(u; x), u ∈ S, x ∈ X , θ ∈ Θ, (1)

are real-valued and ξθ(·; x) is either non-negative or integrable for any x. Typically, Θ ⊆ Rl, l ≥ 1,
but one could imagine other forms of parametrization; cf. Vapnik (1999). When each ξθ is constant
over x ∈ X , i.e. it does not depend on x, we set

ξθ(u; x) ≡ ξθ(u), u ∈ S, x ∈ X , θ ∈ Θ. (2)135

This definition naturally extends to the nth-order setting; see Section S5.3.
To carry out estimation, one typically finds a minimizer, an estimate θ̂ = θ̂W (x) ∈ Θ, through

some loss function L(θ) = L(ξθ, x,W ), θ ∈ Θ. Ideally, L(θ) is constructed such that the estima-
tor, θ̂W (X), properly describes the characteristic of interest, in some suitable distributional sense,
e.g. a mean square error sense. When we do not work under model miss-specification, we assume140

that the true characteristic of interest is parametrized by some θ0 ∈ Θ. Many common statistical
frameworks (Møller & Waagepetersen, 2017; Coeurjolly & Lavancier, 2019) can be expressed
through general parametrized estimator families with accompanying loss functions. Examples
include parametric product density/intensity estimation, ρ(n)

θ , θ ∈ Θ, n ≥ 1, encompassing also
Palm likelihood estimation and K-function-based minimum contrast estimation, taking the form145

(2), as well as parametric conditional intensity estimation, λθ, θ ∈ Θ, and non-parametric product
density/intensity estimation, which have the form (1). Mathematically speaking, a non-parametric
intensity estimator ρ̂θ (van Lieshout, 2012) has the form of a parametrized conditional intensity; it
is an attractive model since the addition of a point to x (close to u) increases the value of ρ̂θ(u, x).

We will illustrate our new theory by focusing on non-parametric intensity estimation, in150

particular kernel intensity estimation (van Lieshout, 2012): for a point pattern x ⊆W ⊆ S = Rd,

ρ̂θ(u, x) =
∑
x∈x

κθ(u− x)

eθ(u, x)
=
∑
x∈x

θ−dκ{(u− x)/θ}
eθ(u, x)

, u ∈W, (3)

where the kernel κ is a symmetric density function and eθ is an edge correction term compensating
for potential interactions with points outside W ; examples include eθ(u, x) =

∫
W κθ(v − x)dv,

which ensures that
∫
W ρ̂θ(u, x)du = #x, and eθ(u, x) ≡ 1, which represents no edge correction.155

The main challenge here is optimal selection of the bandwidth, i.e. the smoothing parameter
θ ∈ Θ = (0,∞), as, generally speaking, the kernel choice has a much less pronounced role than
the chosen θ (Silverman, 1986). For other, possibly non-Euclidean, domains, κ and thereby the
kernel estimator may look somewhat different and also be quite abstract (Di Marzio et al., 2014;
McSwiggan et al., 2017; Rakshit et al., 2019; Mateu et al., 2020). In certain cases, however, there160

are straightforward extensions of (3); see Section S4 for the case of linear networks.
Our main focus in this paper will be bandwidth selection, and we here follow Cronie &

van Lieshout (2018), who, in the context of Takacs–Fiksel estimation, implicitly suggested the
following for non-parametric intensity estimation: fit (3) to x, using a suitable conditional intensity
estimation method, to obtain θ̂ and the final intensity estimate ρ̂

θ̂
(·; x). We see that if the method is165
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A cross-validation-based statistical theory for point processes 5

doing a good job in the sense that ρ̂
θ̂

= λ
θ̂

is close to the conditional intensity λ ofX , we have that
ρ̂
θ̂
(·; x) ≈ λ(·; x) ≈ E[λ(·;X)] = ρ(·); the last approximation follows since, on average, λ(·; x)

is close to the expectation of λ(·;X). Since we apply the same model ρ̂θ, θ ∈ Θ, regardless of the
(unknown) underlying distribution, this is (in general) an instance of model misspecification.

3. THINNING-BASED CROSS-VALIDATION 170

3.1. Thinning
Heuristically, a thinning Z ⊆ X is generated by applying some rule/mechanism to X which

either retains or deletes each x ∈ X (Chiu et al., 2013). At the same time, marked point processes
are used when each event carries additional information, not directly connected to S, e.g. a label,
a quantitative measurement, a function or a set (Chiu et al., 2013; Cronie & van Lieshout, 2016; 175

Ghorbani et al., 2020). We next formalize thinning through bivariate markings of point processes.

DEFINITION 1. Given a point process X = {xi}Ni=1 ⊆ S, a thinning Z of X with retention
probability p : S ×X → [0, 1] may be defined as the marginal point process Z = {x : (x,m) ∈
X̆,m = 1} of a bivariate marking X̆ = {(xi,mi)}Ni=1 ⊆ S ×M, M = {0, 1}, of X . Here,
mi = m(xi) ∈M, i = 1, . . . , N , for some (possibly random) marking function m(·), governing 180

the retention probability. We let the reference measure onM be the counting measure.
When X̆ is independently marked, i.e. the marks are independent conditional on X, whereby

the retention probability p(u), u ∈ S, does not depend on X , we say that Z is an independent
thinning. If, in addition, p(·) ≡ p ∈ [0, 1], we say that Z is a p-thinning.

Independent thinnings are particularly tractable and in Theorem 1 we provide important results 185

on such thinnings, which will be used to establish certain properties of our statistical theory.
Theorem 1 is stated and proved in the general nth-order setting in Section S5.

THEOREM 1. Let Z be a p-thinning of a point process X on S, with retention probability
p(u) ∈ (0, 1), u ∈ S. Given Y = X \ Z, for any non-negative or integrable h : S ×X → R,

E

{∑
x∈Z

h(x, Y )

}
= E

{∑
x∈Y

h(x, Y \ {x}) p(x)

1− p(x)

}
. 190

Moreover, provided that they exist, the conditional intensity and the intensity of Z a.e. satisfy

λZ(u, Z)
a.s.
= p(u)E{λX(u;X) | Z},

ρZ(u) = p(u)ρX(u),

where λX and ρX are the conditional intensity and the intensity of X . Moreover, the associated
Palm intensities (see Section S5) satisfy ρ!

Z(u|v) = p(u)ρ!
X(u|v). Given the associated marked

point process representation X̆ in Definition 1, when the conditional intensities of X̆ and Y exist,
they satisfyE[λ̆{(u, 1); X̆} | Y ] = λY (u;Y )p(u)/{1− p(u)} for almost all u ∈ S. In particular, 195

for a p-thinning with retention probability p ∈ (0, 1), we set p(·) ≡ p above.

3.2. Cross-validation for point processes
Broadly speaking, cross-validation refers to a family of techniques which, in different ways,

repeatedly split the dataset x into a training set xTi ⊆ x and a validation set xVi = x \ xTi , i =
1, . . . , k, with the aim of assessing a model’s generalizability (Arlot & Celisse, 2010); we here use 200

the terms training, validation and test sets in a rather loose fashion. In the classical random sample
setting, generalizability is often described in terms of out-of-sample prediction performance with
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6 O. CRONIE ET AL.

respect to “new” data, i.e. additional draws from the underlying distribution. The notion of “new”
data makes little sense in the context of point processes, where one is typically dealing with just
one realization of a sample which (potentially) possesses both dependence and a random sample205

size. However, the equally common terms “unseen” and “hold-out” make more sense here since
they have a clear meaning for point processes, namely splitting through thinning.

DEFINITION 2 (POINT PROCESS CROSS-VALIDATION). Given k ≥ 1 thinnings Z1, . . . , Zk
of a point process X ⊆ S, we refer to the collection of pairs (XT

i , X
V
i ) = (Yi, Zi), Yi = X \ Zi,

i = 1, . . . , k, as a cross-validation splitting/partitioning. For a point pattern x, we write (xTi , x
V
i ).210

If we have access to k′ ≥ 1 independent copies X1, . . . , Xk′ of X , we consider k splits for
each Xi, giving k × k′ training-validation pairs. Clearly, we may carry out the partitioning in an
infinite number of ways by using different thinning strategies. However, dependent thinnings are
hard to deal with since, for arbitrary point processes, it is generally hard to derive distributional
properties for them; we essentially have no control over the dependence structures between the215

training and validation sets. In classical k-fold cross-validation, x is split into k folds, having
(approximately) the same fixed cardinality, and in each round, i = 1, . . . , k, the ith fold plays the
role of xVi , while the union of the remaining k − 1 folds plays the role of xTi . By setting k = #x,
so that xVi = {xi} and xTi = x \ {xi}, i = 1, . . . ,#x, we obtain leave-one-out cross-validation.
These sequential algorithms do not result in independent thinning, since the assignment of a point220

of x to a given fold depends on the assignments of other points; a fold runs full once it contains
a given number of points of x. Thus, due to the related intractability, we will not look closer at
these. Instead, we argue that cross-validation procedures for point processes should be based on
independent thinning. The main argument is that then, as we saw in Theorem 1, we have control
over distributional properties of most characteristic of interest, e.g. intensity functions. There are,225

however, infinitely many ways to carry out independent thinning.
For simplicity reasons, we argue that cross-validation procedures for point processes should

be based on p-thinning; see Figure 1 for illustrations in two different spatial domains. Next, we
provide two p-thinning-based procedures: Monte-Carlo cross-validation which, in the literature,
is also referred to as repeated random sub-sampling validation, and multinomial cross-validation,230

which is our variant of classical k-fold cross-validation. The main difference between the two
is that the latter, which is computationally more efficient than the former, involves only one
parameter, k, and does not allow for xVi and xVj , i 6= j, to overlap.

DEFINITION 3. Given k ≥ 1 p-thinnings z1, . . . , zk, p ∈ (0, 1), of a point pattern x, we define
Monte-Carlo cross-validation as setting xVi = zi and xTi = x \ zi, i = 1, . . . , k.235

Given some k ≥ 2, randomly label the point pattern x with iid marksm(x) ∈ {1, . . . , k}, x ∈ x,
from a multinomial distribution with parameters k and p1 = . . . = pk = 1/k. We define (k-fold)
multinomial cross-validation by xVi = {x ∈ x : m(x) = i} and xTi = x \ xVi , i = 1, . . . , k.

In Monte-Carlo cross-validation, for any point pattern x and a suitable function f on X ,
by the law of large numbers and the central limit theorem, conditionally on X = x, the mean240

k−1
∑k

i=1 f(XV
i ) converges a.s. to E[f(XV

1 )] and weakly to a Gaussian random variable; in
practice, associated statistical procedures may be stopped when we see indications of convergence.
Further, when p ≈ 0 we obtain something similar to the classical leave-one-out approach, where
the advantage of the former over the latter is that by Theorem 1 we have theoretical control over
distributional properties of XT

i and XV
i . In multinomial cross-validation, each validation set is245

a p-thinning with retention probability 1/k and each training set is a p-thinning with retention
probability 1− 1/k = (k − 1)/k, whereby various distributional properties are known, e.g. the
intensity of XV

i is ρp(·) = ρ(·)/k; recall Theorem 1. Moreover, for large datasets, multinomial
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A cross-validation-based statistical theory for point processes 7

and classical k-fold cross-validation should yield very similar results since, proportionally, the
point counts of the folds become approximately the same in the two. Additionally, common 250

rules of thumb for k-fold cross-validation in the iid setting (Arlot & Celisse, 2010), e.g. k = 5 or
k = 10, do not necessarily apply in the current context. Sometimes, there are optimal choices for
p and k such that our new statistical approach performs better with Monte-Carlo cross-validation
than with multinomial cross-validation, but such choices seem related to e.g. the sample size or
the dependence structure of X (Section 5.2). 255

Fig. 1: A point pattern x ⊆W ⊆ S together with a partition {Wi}ki=1, yielding validation sets
xVi = x ∩Wi, i = 1, . . . , k ≥ 2, as well as a p-thinning-based training-validation pair (black dots
indicate validation points). Left: Euclidean domain, S = R2. Right: Linear network, S = L.

Another natural and appealing approach here is block cross-validation (Roberts et al., 2017):
choose k ≥ 1 subsets Wi ⊆W , i = 1, . . . , k, potentially a partition of W , and let xVi = x ∩Wi;
see Figure 1 for an illustration. This is a form of independent thinning-based k-fold cross-
validation, where the ith fold is obtained through the retention probability pi(u) = 1(u ∈Wi),
u ∈W , i = 1, . . . , k. Note the philosophical difference between this, where we sample “from 260

left to right/top to bottom”, and the p-thinning-based approach, where we sample “from above”.
As our general statistical theory in Section 5 accommodates any (independent) thinning-based
cross-validation approach, this extrapolation/interpolation kind of approach can also be combined
with our new theory. However, in contrast to Definition 3, where the procedures are governed
by the hyperparameters k and p, we here see a few challenges. E.g., it is not evident how to best 265

choose the sets Wi for an unknown model (cf. Mattfeldt et al., 2013), the counts #xVi may be
highly varying, and we might introduce edge effects to be corrected for (Cronie & Särkkä, 2011;
Chiu et al., 2013; Baddeley et al., 2015).

In Section S1 we further discuss alternatives to and merits of Definition 3. Moreover, Section
S3.2 illustrates that, in addition to training and validation sets, we may generate test sets by 270

treating each training set as an original point pattern to which cross-validation is applied.

4. POINT PROCESS PREDICTION

4.1. Prediction errors
Our statistical approach heavily relies on a new notion of prediction errors for point processes,

which e.g. may be used to predict properties of one point process from another point process. 275

DEFINITION 4 (POINT PROCESS PREDICTION ERRORS). Let ΞΘ = {ξθ : θ ∈ Θ} andHΘ =
{hθ : θ ∈ Θ} be two general parametrized estimator families, both either of the form (1) or
(2). We refer to the members ofHΘ as test functions. The associated families of (HΘ-weighted)
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8 O. CRONIE ET AL.

bivariate prediction errors {Ihθξθ (A; z, y) : A ⊆ S, y, z ∈ X}θ∈Θ and univariate prediction errors

{Ihθξθ (A; y) : A ⊆ S, y ∈ X}θ∈Θ are defined as the (signed) Borel measures280

Ihθξθ (A; z, y) =
∑
x∈z∩A

hθ(x; y \ {x})−
∫
A
hθ(u; y)ξθ(u; y)du, (4)

and Ihθξθ (A; y) = Ihθξθ (A; y, y). In particular, when ΞΘ and HΘ are of the form (2) then

Ihθξθ (A; z, y) = Ihθξθ (A; z) =
∫
A hθ(u)I1

ξθ
(du; z) for any y, z ∈ X and A ⊆ S.

Regarding the interpretation of (4), which will be motivated in Section 4.3, for two point
processes Z and Y , the random (signed) measure Ihθξθ (A;Z, Y ), A ⊆ S, represents an empirical285

measure of how well Y predicts points of Z in A via ξθ and hθ; univariate prediction errors
thus correspond to auto-prediction. The test function hθ weights the associated contributions of
distinct points, ξθ is intended to describe the distributional properties of the superposition Z ∪ Y ,
and Ihθξθ (A;Z, Y ) estimates how well the specific choice θ ∈ Θ does in predicting points of Z
from Y . In some sense, this is a coupling idea. Further, by replacing the test function in (4) by290

either hθ(u;W ∩ y \ {u}) or 1(y ⊆W )hθ(u; y \ {u}), for some (possibly) bounded W ⊆ S, we
ensure that y ∈ X is contained in W . Indeed, a prediction error family forms a (signed) transition
kernel (Kallenberg, 2017) and it is straightforward to extend (4) to the nth-order case (see Section
S5), where we sum over zn6= ∩A ⊆ Sn and ξθ, hθ : Sn ×X → R.

To compute prediction errors in practice, we need to numerically approximate the integral in295

(4). Given any quadrature rule with quadrature points v ∈ X , z ⊆ v, and quadrature weights {wv :
v ∈ v},

∑
v∈vwv = |S|, we may exploit the Berman–Turner device (Berman & Turner, 1992) to

approximate the integral in (4), i.e. Ihθξθ (A; z, y) ≈
∑

v∈v∩A hθ(v; y){1(v ∈ z)− ξθ(v; y)wv}.

4.2. Auto-prediction: Innovations and classical statistical approaches
Before we turn to studying different properties of our prediction errors, we point to a connection300

between them and the so-called innovations of Baddeley et al. (2005, 2008), as well as the
related estimating equation approaches considered in the literature; see Møller & Waagepetersen
(2017); Coeurjolly & Lavancier (2019) and the references therein. An innovation coincides with
a univariate prediction error Ihθλθ (A;X), where X is some point process and ξθ(·; ·) = λθ(·; ·)
belongs to a parametric family of conditional intensity functions. It should be emphasized that305

Baddeley et al. (2005, 2008) used innovations to define point process residuals, obtained by
replacing θ by an estimate θ̂ in a univariate prediction error.

As an immediate consequence of the GNZ formula and the Campbell formula, we obtain
the following. If X has conditional intensity λ = λθ0 ∈ ΞΘ, where ΞΘ is of the form (1), then
E{Ihλ(W ;X)} = 0 for any test function h : S ×X → R. Also, If X has intensity ρ = ρθ0 ∈ ΞΘ,310

where ΞΘ is of the form (2), thenE{Ihρ (W ;X)} = 0 for any test function satisfying h(·; x) = h(·)
for any x ∈ X . In the case of conditional intensities, variance and covariance expressions can be
found in Baddeley et al. (2008); Daley & Vere-Jones (2008); Coeurjolly & Rubak (2013), while
extension to the nth-order case is straightforward. These observations indicate that univariate
prediction errors may sensibly be exploited as loss functions for parameter estimation. In particular,315

we may use L(θ; x) = Ihθξn
θ

(W ; x)2, θ ∈ Θ, to obtain an estimate. As we shall see, a particularly
interesting choice for HΘ is hθ(·; y) = f{ξnθ (·; y)}, θ ∈ Θ, for some suitable f : R→ R. In
fact, by using different test functions, univariate prediction errors yield many existing statistical
approaches as particular cases, e.g. quasi-likelihood, Poisson process likelihood, Palm-likelihood,
Takacs–Fiksel, pseudo-likelihood, non-parametric product density/intensity andK-function-based320
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A cross-validation-based statistical theory for point processes 9

minimum contrast estimation; see e.g. Diggle (2014); Møller & Waagepetersen (2017); Coeurjolly
& Lavancier (2019) and the references therein.

4.3. Properties of point process prediction errors
Below, in Theorem 2, which is proved and stated in nth-order form in Section S5, we derive

expectations for our prediction errors, together with necessary and sufficient conditions for the 325

prediction errors to have mean zero.

THEOREM 2. Given a point process X in S, let Z be an arbitrary thinning of X , with Y =
X \ Z, and let X̆ be the associated bivariate point process representation in Definition 1. Let
further ΞΘ = {ξ} andHΘ = {h} consist of one element each.

When ξ, h : S → R are of the form (2), we have that Ihξ (·;Z, Y ) = Ihξ (·;Z) satisfies 330

E{Ihξ (A;Z)} =

∫
A
h(u) {ρZ(u)− ξ(u)}du

for any A ⊆ S, where ρZ(·) denotes the intensity of Z. Moreover, this expectation is 0 for any
A ⊆ S and any test function h of the form (2) if and only if

ξ(u)
a.e.
= ρZ(u). (5)

If, instead, ξ, h : S ×X → R are of the form (1), when X̆ admits a conditional intensity 335

λ̆(·; X̆), for any A ⊆ S we have

E{Ihξ (A;Z, Y )} =

∫
A
E
[
h(u;Y )

{
λ̆{(u, 1); X̆} − ξ(u;Y )

}]
du.

Assume further that E[λ̆{(u, 1); X̆}2] <∞ for | · |-almost any u ∈ S. Then, for any A ⊆ S and
test function h such that E{h(u;Y )2} <∞, we have that E{Ihξ (A;Z, Y )} = 0 if and only if

ξ(u;Y )
a.e.
= E

[
λ̆{(u, 1); X̆} | Y

]
. (6)

While Theorem 2 provides expressions for expecations of prediction errors, variance expres- 340

sions can be found in (S21) and (S26). These indicate that the variances are governed by the
dependence structure of (Y,Z) = (X \ Z,Z) and the test function. Moreover, the general expres-
sions in Theorem 2 are of limited practical use, but Corollary 1, which is proved and stated in
nth-order form in Section S5, shows that they become explicit when Z is an independent thinning.

COROLLARY 1. Assume the setting of Theorem 2. When Z is an independent thinning of X , 345

based on a retention probability function p(u) ∈ (0, 1), u ∈ S, then (5) reads ξ(u)
a.e.
= p(u)ρX(u)

and the right-hand side of (6) is given by

p(u)E{λX(u;X) | Y } = w(u, Z, Y )λX(u;Y ), (7)

where w(u, Z, Y ) = p(u)λX(u;Y )−1E{λX(u;X) | Y }; w(u, Z, Y ) ≤ p(u) if X is repulsive,
w(u, Z, Y ) ≥ p(u) if X is attractive and w(u, Z, Y ) = p(u) if X is a Poisson process, a.s.. 350

5. THE NEW STATISTICAL APPROACH

5.1. Point process learning
Given the definitions in Section 3.2 and 4.1, we can now specify our new statistical approach.

The philosophical argument here is that a good approach should result in a model which, given
the “current” (training) data, does well in predicting “unseen” (validation) data. 355
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10 O. CRONIE ET AL.

DEFINITION 5. Generate training-validation pairs (xTi , x
V
i ) ⊆W 2 ⊆ S2, i = 1, . . . , k, from

at least one realization of a point process X ⊆ S, in accordance with Section 3.2. Given either
the form (1) or (2), consider further a general parametrized estimator family ΞΘ = {ξθ : θ ∈ Θ}
and ki ≥ 1 test function familiesHijΘ = {hijθ : θ ∈ Θ}, j = 1, . . . , ki, for each i = 1, . . . , k. Let

Iij(θ) = Ih
ij
θ

ξθ
(W ; xVi , x

T
i ) =

∑
x∈xVi

hijθ (x; xTi )−
∫
W
hijθ (u; xTi )ξθ(u; xTi )du (8)

when ΞΘ andHijΘ are of the form (1), or let360

Iij(θ) = Ih
ij
θ

ξθ
(W ; xTi ) =

∑
x∈xTi

hijθ (x)−
∫
W
hijθ (u)ξθ(u)du (9)

when ΞΘ andHijΘ are of the form (2). We say that any method which generates estimates in Θ by
exploiting (8) or (9) belongs to the field of point process learning.

The use of (9) in fact results in a point process subsampling approach, very much akin to
the one proposed in Moradi et al. (2019), in the sense that it does not make explicit use of xVi ,
i = 1, . . . , k, which is different from actual cross-validation-based approaches.365

Once we have made a choice for ΞΘ = {ξθ : θ ∈ Θ}, which governs what we are interested in
fitting, some further choices remain to be made: the cross-validation approach with associated
parameters, how to combine the prediction errors to carry out the estimation and the test function
families employed. These, as well as other choices, may be viewed as hyperparameter choices.

When we do not want a training-validation pair with xVi and/or xTi being empty to influence the370

estimation, we must require that 1 ≤ #xVi and/or 1 ≤ #xTi . This may be achieved by replacing
Iij(θ) with Ĩij(θ) = IiIij(θ), for a suitable indicator function Ii, which in the case of (8) may be
absorbed into the test function. For (8), having xTi empty makes no sense, as this results in using
xTi = ∅ to predict xVi = x. Hence, in most cases, one would use Ii = 1(1 ≤ #xTi ≤ #x− 1) if
we consider (8) and Ii = 1(1 ≤ #xTi ≤ #x) if we consider (9), but sometimes the preferred375

choice may be to set Ii = 1 for all i = 1, . . . , k. We write Tk = {i ∈ {1, . . . , k} : Ii = 1}. As
usual, nth-order extensions are straightforward.

How to combine the prediction errors in Definition 5 depends on the statistical analysis
undertaken, but, motivated by Theorem 2, the essential idea is that all of them should be close to
0. We emphasize that a prediction error does not necessarily attain the value 0; cf. the “leave-one-380

out”-discussion in Cronie & van Lieshout (2018). Considering Ĩi(θ) = (Ĩi1(θ), . . . , Ĩiki(θ))>
and Ii(θ) = (Ii1(θ), . . . , Iiki(θ))>, i = 1, . . . , k, we see a couple of natural choices:

1. Assuming that ki = k0 ≥ 1, i = 1, . . . , k, we generate a point estimate in Θ by minimizing
a loss function L(θ) = fL({Ii(θ) : i ∈ Tk}), for some suitable fL : (Rk0)#Tk → Rk0 .

2. Denote the estimate resulting from minimizing θ 7→ Iij(θ)2, θ ∈ Θ, by θ̂ij =385

θ̂{(xTi , xVi ), p,W,ΞΘ,HijΘ} ∈ Θ for i ∈ Tk, j = 1, . . . , ki. The sample median and mean
of these estimates may serve as point estimates while empirical quantiles may serve as
confidence/uncertainty regions for the true parameter θ0 ∈ Θ. In addition, the mean/median
of ξ

θ̂ij
, i ∈ Tk, j = 1, . . . , ki, may serve as a point estimate of ξθ0 (cf. Moradi et al. (2019)).

In Section 5.2, where we focus on point process learning under p-thinning-based cross-validation,390

we will restrict ourselves to the case where HijΘ = HΘ = {hθ : θ ∈ Θ} for all i and j, i.e. we
use one single test function family for all training-validation pairs, whereby Ĩi(θ) = Ĩi1(θ) =
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A cross-validation-based statistical theory for point processes 11

IiIi1(θ) = IiIi(θ) and in the case of item (2) we have θ̂i = θ̂i1, i ∈ Tk. Moreover, we consider
the following choices for fL in item (1):

Lj(θ) =
1

k

k∑
i=1

|Ĩi(θ)|j ∝
1

#Tk

∑
i∈Tk

|Ii(θ)|j (j = 1, 2), (10) 395

L3(θ) =

{
1

k

k∑
i=1

Ĩi(θ)

}2

∝

{
1

#Tk

∑
i∈Tk

Ii(θ)

}2

, (11)

i.e. we find a parameter θ such that all prediction error terms are close to 0 in an average sense.
We have observed that even if θ 7→ |Ii(θ)|j is unidentifiable, i.e. is flat over a region of Θ
around the minimum, when averaging such functions as in (10), we generate loss functions with
seemingly smaller flat regions, which implicitly mitigates the unidentifiability. Moreover, since 400

positively weighted sums of convex functions and x 7→ |x|j , j = 1, 2, are convex, the form of
Ii(θ), which is governed by the test function, influences the convexity of e.g. (10). We further have
L1(θ)2 ≤ L2(θ) ≤ kL3(θ), by Hölder’s and Jensen’s inequalities, with equality when k = 1.

Concerning test function choices, motivated by Baddeley et al. (2005); Cronie & van Lieshout
(2018), a simple recommendation is hθ(·) = f{ξθ(·)}, where f(x) = x−γ and γ = 1/2, 1. We 405

have indications that γ = 1, which conveniently sets the integrals in (8) and (9) to |W | if ξθ
is positive on W , yields the estimators with the lowest variances and mean (integrated) square
errors of the two. In Section S3 we provide an in-depth discussion on hyperparameter choices, in
particular test function choices, and we introduce an algorithm for data-driven hyperparameter
selection. Moreover, in Section S6 we present results on consistency and asymptotic normality of 410

the estimators generated by (10) under p-thinning-based cross-validation.

5.2. Numerical evaluation: bandwidth selection using p-thinning-based cross-validation
We next apply our new theory to the problem of optimal bandwidth selection (recall Section

2.2) and numerically compare it to the state of the art, which is represented by the approach of
Cronie & van Lieshout (2018); by Section S2.1, this is an instance of auto-prediction. In addition, 415

in Section S4 we apply our new bandwidth selection approach to the two datasets illustrated in
Figure 1, i.e. a point pattern of tree locations on Barro Colorado Island, Panama, and a point
pattern of spines on one branch of the dendritic tree of a rat neuron.

We consider the p-thinning-based cross-validation approaches in Definition 3 and combine the
loss functions Lj(θ), j = 1, 2, 3, in (10)-(11) with the prediction errors in (8) and the indicator 420

Ii = 1(1 ≤ #xTi ≤ #x− 1). We here let ξθ(u; xTi ) = wλθ(u; xTi ) = wρ̂θ(u; xTi ), where w =
p/(1− p) is an approximation of a parametrized form of the weight function w(·) in (7):

wθ(u,X
V
i , X

T
i ) =

E{ρ̂θ(u;X)|XT
i }

ρ̂θ(u;XT
i )/p

=
ρ̂θ(u;XT

i ) + E{ρ̂θ(u;XV
i ) | XT

i }
ρ̂θ(u;XT

i )/p
≈ p+

p2

1− p
= w,

since ρ̂θ(u;X) = ρ̂θ(u;XT
i ) + ρ̂θ(u;XV

i ). Following our general recommendation, we further
let hθ(u, xTi ) = f{wρ̂θ(u; xTi )} = {pρ̂θ(u; xTi )/(1− p)}−γ , γ = 1/2, 1, whereby 425

Ii(θ) =
∑
x∈xVi

{
pρ̂θ(x, xTi )

1− p

}−γ
− p

1− p

∫
W

{
pρ̂θ(u, xTi )

1− p

}−γ
ρ̂θ(u, x

T
i )du. (12)

We first focus on γ = 1, which sets the integral in (12) to |W |. In both this and the state of the
art approach, which is implemented in the R package spatstat (Baddeley et al., 2015), for a
given realization x we let κ be the Gaussian kernel and eθ(·) ≡ 1 in (3), and once the bandwidth
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12 O. CRONIE ET AL.

θ̂ has been selected, the final intensity estimate ρ̂
θ̂

is generated using local edge correction,430

i.e. e
θ̂
(u, x) =

∫
W κ

θ̂
(v − x)dv. We simulate 100 realizations x onW = [0, 1]2 and find estimates

ρ̂
θ̂
(u) of the true intensity ρ(u), u = (u1, u2) ∈W , for a collection of models (a subset of the

models in Cronie & van Lieshout (2018)). For a given model and approach, we report IAB =∫
W |Ê{ρ̂θ̂(u,X)} − ρ(u)|du, ISB =

∫
W [Ê{ρ̂

θ̂
(u,X)} − ρ(u)]2du, IV =

∫
W v̂ar{ρ̂

θ̂
(u,X)}du

and MISE = ISB + IV, i.e. estimates of the integrated absolute bias, the integrated square bias, the435

integrated variance and the mean integrated square error.
The models we consider, which represent different kinds of spatial interaction (see Sec-

tion S5.1), are the following. A log-Gaussian Cox process (aggregation) with random inten-
sity Λ(u) = exp{Z(u)}, where the Gaussian random field Z has mean function (u1, u2) 7→
10 + 80u1 and covariance function (u, v) 7→ σ2 exp{−r‖u− v‖2}, (σ2, r) = (2 log 5, 50); here440

ρ(u) = (10 + 80u1) exp(σ2/2) and E{X(W )} = 250. A Poisson process (complete spatial
randomness) with intensity function ρ(u) = 10 + 480u1 and E{X(W )} = 250. A homoge-
neous determinantal point process (inhibition) with kernel (u, v) 7→ σ2 exp{−r‖u− v‖2},
(σ2, β) = (250, 50), independently thinned with retention probability u 7→ (10 + 80u1)/90 to
obtain an inhomogeneous version with ρ(u) = σ2(10 + 80u1)/90 and E{X(W )} ≈ 138.9.445

The results for the Cronie & van Lieshout (2018) approach are as follows. For the log-Gaussian
Cox process, IAB = 19.48, ISB = 963.47, IV = 17597.99 and MISE = 18561.47. For the Poisson
process, IAB = 15.80, ISB = 921.82, IV = 4408.21 and MISE = 5330.04, while for the determi-
nantal point process, IAB = 9.14, ISB = 276.75, IV = 2002.55 and MISE = 2279.31.

Turning to the new approach, with γ = 1, in Figure 2 and Figure 3 we present, respectively,450

the results for Monte-Carlo cross-validation, with p = 0.1, 0.3, 0.5, 0.7, 0.9 and k = 400, and
multinomial cross-validation, with k = 2, 3, . . . , 10, based on the loss functions Lj(θ), j = 1, 2, 3.

Comparing Figure 2 and Figure 3 with the results for the state of the art, we see that, regardless
of the choices of p, k and model, all point process learning approaches outperform the state
of the art in terms of MISE. Although the state of the art performs slightly better in terms of455

bias, it performs comparatively poorly in terms of variance, which is consequently the reason
for its higher MISE; it is worth emphasizing that it is precisely the lower variance which ensures
that the Cronie & van Lieshout (2018) approach outperforms its predecessors (Moradi et al.,
2019). We do, however, hypothesize that if p→ 0 in the Monte-Carlo cross-validation case
(possibly in combination with k →∞), or k →∞ in the multinomial cross-validation case (e.g.460

in combination with L3), we would reach the same bias level as the state of the art, but still with
a significantly lower MISE. We also see that the message in Figure S1, γ = 1/2, is the same in
terms of performance with respect to the state of the art. In the Monte-Carlo cross-validation case,
we further emphasize that increasing k beyond 100 essentially has little/no effect on the chosen
performance measures, so our general suggestion is to fix k ≥ 100. One alternative here is to465

sequentially increase k and stop once the loss function shows signs of convergence (guaranteed
by the law of large numbers). We further conclude that multinomial cross-validation is the go-to
method if computational costs are the main priority, whereas Monte-Carlo cross-validation is
the go-to method if precision is prioritized; e.g., 2-fold multinomial cross-validation is roughly
400 times faster than Monte-Carlo cross-validation with k = 400 and p = 0.5. To exemplify,470

on a 2021 Apple MacBook with 64 gb ram and an M1 processor, selecting the bandwidth for
one realization of the aggregated model in the 2-fold multinomial cross-validation case takes
approximately 2.5 seconds (user/elapsed time) with our current implementation, versus 0.02
seconds for the spatstat implementation of the Cronie & van Lieshout (2018) approach; neither
makes use of parallelization.475
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A cross-validation-based statistical theory for point processes 13

It seems that L3 favours a lower bias over a lower variance/MISE, whereas L2 favours the
opposite and L1 seems to offer some middle-ground between the two. In Figure 2 we further see
that in the case of Monte-Carlo cross-validation, p ∈ [0.5, 0.7] tends to be a safe/good choice,
which balances the trade-off between bias and variance, irrespectively of the degree of aggrega-
tion/inhibition of the underlying model. Moreover, it seems that the performance of multinomial 480

cross-validation in terms of MISE is the best when k = 2 (see Figure 3), which is equivalent to
Monte-Carlo cross-validation with p = 0.5, k = 1.

Fig. 2: Performance of the loss functions L1 (–), L2 (−−−) and L3 (· · · ), together with the
test function f(x) = 1/x, using Monte-Carlo cross-validation with p = 0.1, 0.3, 0.4, 0.7, 0.9 and
k = 400. Columns: log-Gaussian Cox process (left), Poisson process (middle) and determinantal
point process (right). Top row: IAB (grey curve, right axis) and IV (black curve, left axis). Bottom
row: ISB (grey curve, right axis) and MISE (black curve, left axis).

Fig. 3: The same structure as in Figure 2, using multinomial cross-validation with k = 2, 3, . . . , 10.
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14 O. CRONIE ET AL.

To shed some light on the choice of test function, in Section S2.2 we also explore γ = 1/2. The
overall conclusions regarding the hyperparameters p and k are the same as for γ = 1. Moreover,
in Figure S1, which illustrates the same setup as in Figure 2 but with only the loss function L2,485

we see that the new approach performs much better than the state of the art in terms of MISE.
Comparing the two test function choices, Figure 2 and Figure S1 reveal that γ = 1/2 reduces the
bias with respect to γ = 1, but at the cost of increased variance, and thus also MISE. Moreover, in
Section S3.2 we let our data-driven hyperparameter selection algorithm, Algorithm 1, select k
in the case of multinomial cross-validation, which yields a performance essentially on par with490

our rule of thumb, k = 2. On the other hand, in the case of Monte-Carlo cross-validation, the
performance essentially corresponds to keeping p = 0.9 fixed (for computational reasons we here
fixed k = 100), which is suboptimal to our rule of thumb, i.e. p ∈ [0.5, 0.7]; it should be noted
though that the gain in MISE from performing well with the log-Gaussian Cox process, which
corresponds to fixing p = 0.9, is much bigger than the loss in MISE from performing relatively495

poorly with the other models. We thus see that there is merit to Algorithm 1, in particular since
we in practice have no knowledge of the underlying process.

6. DISCUSSION

As our new approach outperforms the state of the art in non-parametric intensity estimation,
framed as a conditional intensity estimation problem, it will likely have a central role in the future500

of point process statistics. We have indicated a few classical statistical approaches for parametric
modelling of (conditional) intensities, which are based on univariate prediction errors/innovations.
We believe that these could be improved by reframing them within our new framework.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes additional background material,
alternative cross-validation procedures, additional plots for the simulation study in Section S2.1,
hyperparameter selection, higher-order statements and proofs of the results in the main text,
examples of kernel intensity estimation for two datasets (in a Euclidean domain and on a linear510

network), and different asymptotic results.
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