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A B S T R A C T

Presented are 24 non-dimensional buckling curves to estimate the strengths of Fibre-Reinforced Polymer (FRP)
square plates having four simply supported edges and subjected to in-plane uniaxial and uniform in-plane
compression. The curves are constructed by the authors from a parametric numerical analysis using ABAQUS®

software with changing variables for: material properties; initial geometrical imperfections; laminate lay-ups;
and plate thicknesses. These strength curves express relationships for the buckling reduction factor with plate
slenderness, and account for post-buckling strength. We observe that regardless of the laminate lay-up (except
for purely unidirectional), the choice of FRP material and the magnitude of the initial geometrical imperfection
the predicted buckling reduction factors display a meaningful correlation with plate slenderness. Presented is
a proposed unified buckling design curve, defined as the lower bound to 18 of the 24 ABAQUS®-generated
buckling curves. This new curve is benchmarked by the authors against experimental test results extracted from
the literature and it is found that there is a reasonable agreement. The authors recommend that the proposed
buckling design curve has the potential to be introduced into structural design standards as a procedure to
design the buckling strengths of FRP plates.
1. Introduction

Fibre-Reinforced Polymer (FRP) composites in the form of thin-
walled laminated structures are widely utilized around the world in
different engineering applications. Their outstanding specific strengths
and stiffnesses, fatigue endurance, corrosion resistance and lightweight
characteristics have made them attractive structural materials in ma-
rine and aerospace sectors. Desirable mechanical properties, decreasing
project costs [1], improved durability [2], sustainability credentials [3]
and possibilities for prefabrication [4] have also made FRPs a structural
material of choice for applications in civil engineering works. Among
other application areas, transport infrastructure such as bridges [5–9],
tunnel linings [10], underground culverts [11] and sheet piles [12] has
taken advantage of FRP composites being a viable type of construction
material. Due to increasing interest in the application of FRPs in the
construction sector, Work Group 4 Fibre Reinforced Polymer Structures
entrusted to CEN/TC 250 (the CEN Technical Committee responsible
for the suite of structural Eurocodes) has prepared the Technical Speci-
fication document Design of Fibre-Polymer Composite Structures (CEN/TS
19101:2022) [13], which is to be the basis for the future Eurocode with
the same scope and content.

New-build FRP structures are constructed of thin-walled
elements [8], and it is acknowledged that their structural design is often
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governed by excessive deformations [14] or instabilities (i.e., mecha-
nism of buckling) [15]. The basic building blocks of these structural
elements is laminated plates. Theoretical perfectly flat laminated plates
of FRP materials subjected to in-plane compression loads will firstly
respond with in-plane displacements only, but when the compression
stress is high enough, out-of-plane displacements occur. Plate buckling
is the latter of these structural responses being characterized in terms
of critical load and out-of-plane deformations. At the elastic critical
buckling load, these deformations can become excessive. In classical
buckling theory, the compression load vs. out-of-plane displacement
curve shows a bifurcation behaviour at this critical load, at which
the plate response is distinctly different before and after; with only
in-plane deformations immediately before and with ‘excessive’ out-of-
plane deformations immediately after. Elastic critical buckling loads for
laminated plates can be predicted using the classical buckling theory
of first-order that is derived using the Kirchhoff hypothesis, stating
‘‘Normal to the mid-plane remain straight and normal as the plane
deforms into a surface’’ [16]. The response of plates and their strengths
for loading above their critical buckling loads is the focus of this
contribution to knowledge and understanding. We consider the post-
buckling response of compressed plates during which they can resist
further compressive stress before experiencing ultimate failure by FRP
material fracture.
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Technical Specification (CEN/TS 19101:2022) [13] recommends
in Section 8 using the elastic critical buckling loads (as stresses)
for a representative measure for the ultimate strength of laminated
plates, and thereby as the basis for design values. While consider-
ing elastic critical buckling loads is straightforward, for FRP plates
with intermediate slenderness it will result in conservative strength
estimations, mainly because the first-order approach neglects the post-
buckling reserve strength [17,18]. Moreover, according to the study
reported herein, it may result in unsafe design strengths for plates
having relatively low slenderness. Furthermore, elastic critical buckling
loads would normally not be enough for design and the procedure
needs separate checks for material failure using appropriate failure
criteria [19]. To reliably predict the load capacity of compressed FRP
plates, the ultimate strength analysis must account for material stiff-
ness degradation associated with post-buckling deformations and ply
failures. In addition, test results do show that rectangular plates sub-
jected to in-plane uniform and uniaxial compression can experience a
significant influence on load-carrying capacity in the presence of initial
geometrical imperfections [20], underlining the importance in stress
analysis studies of this inherent and uncertain physical variable.

Buckling stress analysis of rectangular FRP laminated plates, with
various displacement and in-plane loading boundary conditions, has
been the subject of numerous analytical and numerical studies since
the 1960s. Early studies for this important subject are limited to de-
termining the critical elastic buckling loads of perfectly flat plates
subjected to in-plane uniaxial compression or shear, having different
displacement and stress boundary conditions. It is notable that several
analytical and numerical solutions have been proposed and for an
introduction to these outcomes six references are given [21–26]. There
is also a significant amount of research devoted to studying the post-
buckling behaviour of compressed slender plates, specifically of FRP
laminates [27–31], where both analytical and numerical methods are
employed to predict the instability onset and post-buckling loads. When
practical to do so, the predictive performance has been evaluated
by comparing with experimental test results. The effects on buckling
behaviour of the presence of initial geometrical imperfections in the
FRP plates have been included, see for example Refs. [21,31].

From a literature review we observe that less attention has been
paid to formulating the post-buckling reserve strength and to using this
data to construct and recommend a proposed design approach for the
buckling strength of compressed FRP plates. This finding we attribute
to two facts, which are that:

1. to achieve realistic numerical predictions, global damage mod-
els, such as ply elimination upon detection of ply-level failure
should be avoided and instead localized progressive damage
models at the ply-level need to be used.

2. the product-based-design approach and popularity of design by
testing [5] in aerospace, marine and transportation sectors are
reasons for a barrier to developing a unified design approach
based solely on numerical results.

It is noted that for the application of models to satisfy 1 it is neces-
sary to use advanced numerical methods and considerable computing
resources. We observe that advanced finite element software may not
be time- and cost-effective to structural engineering practitioners for
the design of civil engineering works, and so they desire to con-
duct supportive design checks in accordance with structural design
standards, such as the Eurocode part under preparation (see CEN/TS
19101:2022 [13]). This background knowledge supports the need for
the development of easy-to-use, yet dependable, design procedures to
scope the ultimate limit state failure of FRP laminated plates when the
initial mode of failure is due to buckling, followed by material failure.

In this paper, the authors present such a design procedure in the
form of a non-dimensional unified buckling curve. In this contribution
the scope of the proposed strength curve is for square plates with
2

symmetric, balanced FRP laminates (not with unidirectional reinforce-
ment) subjected to in-plane uniform and uniaxial compression load
and having simply supported boundary conditions along the four sides.
Importantly, the numerical predictions used to construct the curves ac-
count for both the post-buckling reserves of strength and the reductions
of strength owing to initial geometrical imperfections. Moreover, em-
ploying finite element analysis for determining post-buckling responses
will inherently include the effect of shear deformation.

2. Numerical analysis and the finite element modelling

2.1. Material properties and plate variables

To commence the numerical parametric study, it is first necessary
to define a restricted, yet effective range of variables for the plate
dimensions and the FRP materials. Modelled is a square plate having
side lengths of 500 mm of different laminations of either E-glass epoxy
or T300 carbon epoxy. For these two FRP materials the matrix is always
of the epoxy resin Fiberite 934. Presented in Table 1 are the assumed
material properties taken from [32] for the individual plies having a
unidirectional reinforcement of carbon or glass fibres. Column (1) in
the table gives the 12 material properties with their notation. In column
(2) are the units and the property values are in columns (3) and (4). It
is assumed for constitutive modelling in the finite element simulations
that there is a linear elastic relationship between stress and strain up
to the point of the ultimate failure of the unidirectional materials.

When the continuously aligned fibres in a ply are aligned with the
principal direction in the laminate the direction of these fibres is 0-
degrees, which is the direction in which the compression load for the
buckling instability is applied. Plies are oriented at 90-degrees when
fibres are aligned perpendicular to the laminate’s principal direction.
Next, we specify the laminates used in the study. Listed in Table 2 are
four lay-ups, with column (1) defining these to be: unidirectional (here-
after abbreviated to UD); 0-dominated; 45-dominated; quasi-isotropic.
Each lay-up is associated with a lamination code that is defined in
column (2), where x is to be replaced by the numbers in column (3).
x is either the number of plies or repetitions of a group of plies, for
UD, 0-dominated and quasi-isotropic lay-ups, has six different integers,
resulting in laminates with six different total number of plies or thick-
nesses. For the numerical study Table 2 defines a total of 26 unique
laminate lay-ups. With a constant thickness of 0.6 mm assumed for
each ply. Table 3 lists that there are eight different thicknesses with
column (1) listing their code numbers. Thickness code numbers 7 and 8
are only relevant to the 45-dominated lay-ups and represent the 12 and
20-ply laminates, as indicated by the asterisks in Table 3. Column (2) in
Table 3 gives the number of constant thickness plies and the laminates’
thicknesses are listed in column (3). The variation in thickness of the
plates is seen to be from 4.8 mm (for 8 plies) to 28.8 mm (for 48 plies);
note that the side dimensions of the square plate are fixed at 500 mm.

The final variable to be specified is for a plate’s out-of-plane ge-
ometrical imperfection. Table 4 reports the three magnitudes for this
initial imperfection. Column (1) lists the magnitudes as a ratio of the
side dimension b (equal to 500 mm) and column (2) gives them in terms
of out-of-plane displacements as 0.05, 2.5 and 5 mm. The smallest at
0.05 mm is assumed to represent an almost perfectly manufactured
laminate (500 by 500 mm), whilst magnitudes of 2.5 and 5 mm are
taken to represent ‘medium’ to ‘large’ imperfections. This range in
magnitudes is justified by previous numerical studies conducted by
Fallah et al. [20] and Hayman et al. [33].

Every numerical model is allocated a unique label of the format
X_Y_Z_T, as introduced by the information presented in Table 5. Column
(1) lists the four components in the labelling scheme with columns (2)
and (3) for the variables’ notations and their descriptions, respectively.
For example, label G_0_10,000_3 is for the model consisting of: E-
Glass-epoxy plies (X); 0-dominated lay-up (Y ), imperfection b/10,000
(0.01%) or 0.05 mm (Z); thickness code 3 (for 14.4 mm) (T ).
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Table 1
Material properties for a ply of unidirectional E-glass epoxy and a unidirectional T300
carbon epoxy [32].

Material property Unit E-glass epoxy Carbon epoxy

(1) (2) (3) (4)

Fibre volume fraction - 0.45 0.60
Longitudinal modulus, 𝐸11 GPa 38.6 148
Transversal modulus, 𝐸22 GPa 8.27 9.65
Major Poisson’s ratio, 𝜈12 – 0.26 0.30
In-plane shear modulus, 𝐺12 GPa 4.14 4.55
Transverse shear modulus, 𝐺13 GPa 4.14 4.55
Transverse shear modulus, 𝐺23 GPa 4.14 4.55
Longitudinal tensile strength, 𝑋T MPa 1062 1314
Longitudinal compressive strength, 𝑋C MPa 610 1220
Transverse tensile strength, 𝑌 T MPa 31 43
Transverse compressive strength, 𝑌 C MPa 118 168
In-plane shear strength, 𝑆LT MPa 72 48

Table 2
Lay-ups and their unique laminate code (variable x in column (2) is replaced by the
numbers in column (3)).

Lay-up Laminate code Value of x

(1) (2) (3)

Unidirectional (UD) [0𝑥]s 4, 8, 12, 16, 20, 24
0-dominated [90/±45/0𝑥]s 1, 5, 9, 13, 17, 21
45-dominated [90/±45𝑥∕0]s 1, 2, 3, 4, 5, 7, 9, 11
Quasi-isotropic [[90/±45/0]𝑥]s 1, 2, 3, 4, 5, 6

Table 3
Different number of plies and plate thicknesses.

Thickness code Number of plies Plate thickness [mm]

(1) (2) (3)

1 8 4.8
2 16 9.6
3 24 14.4
4 32 19.2
5 40 24
6 48 28.8

7 12a 7.2
8 20a 12.0

aOnly used for 45-dominated FRP plates (for x = 2 and 4).

Table 4
Three different initial imperfections based on the plate width of 500 mm.

Initial imperfection (% of plate sides) [mm]

(1) (2)

b/10000 (0.01%) 0.05
b/200 (0.5%) 2.5
b/100 (1%) 5

Table 5
Description for plate labelling X_Y_Z_T.

Component Variable’s notation Description

(1) (2) (3)

X G E-glass-epoxy material
C Carbon-epoxy material

Y

UD Unidirectional lay-up
0 0-dominated lay-up
45 ±45-dominated lay-up
Q Quasi-isotropic lay-up

Z
10000 Imperfection b/10000
200 Imperfection b/200
100 Imperfection b/100

T 1–6 or 1–8 Thickness 4.8 to 28.8 mm (c.f. Table 3)
3

2.2. Finite element modelling methodology

In what follows the authors present the finite element modelling
methodology that they adopted to achieve reliable and relevant predic-
tions of buckling strengths using the variables defined in Section 2.1. To
conduct the numerical study we used the commercial software package
ABAQUS® 2017 [34]. As specified in Section 2.1 square laminated
plates, with simply supported displacement boundary conditions, hav-
ing side dimension 500 mm are subjected to uniform uniaxial and
in-plane compression in the 0◦ direction for the lay-ups in Table 2.
The mesh is comprised of quadratic eight-node elements (type S8R)
possessing reduced integration and with six degrees of freedom at each
node. The plate volume is modelled as a deformable planar shell in
three-dimensional space. The Free Mesh Technique [34] is employed to
create the mesh. To find the largest practical element size for acceptable
numerical accuracy with minimum computing time the authors first
conducted a convergence study. As a representative example, the plate
with the [90/±45/09]s lay-up was chosen, with the plate having square
elements of varying side dimensions in the range of 10 to 90 mm
at 10 mm increments. The failure stress (𝜎fail), from a second-order
buckling analysis and the ultimate compressive stress (𝜎c), from a first-
order compressive analysis (both to be introduced later), were obtained
and plots were constructed with element side dimension. Because it
was found that a side dimension of ca. 40 mm (41.6 mm or 12
elements along a 500 mm length) or lower results in converged results
(i.e., variation less than 5%), this element size was adopted to construct
the finite element models.

The simply supported displacement boundary condition was mod-
elled by constraining to zero out-of-plane displacements (i.e., perpen-
dicular to the plane surface) along all four sides of the plates. Moreover,
modelling required restraining the (mid-surface) in-plane displacement
perpendicular to the loaded 0-direction along the side and opposite to
the compressed (loaded) side, and the in-plane displacement parallel to
the load direction along the non-loaded sides. Next, the rotation along
the four sides was permitted to simulate the condition of knife edge
supports for the simply supported boundary condition.

Compression load was modelled by applying a constant axial dis-
placement along the side without in-plane displacements set to zero.
Using the variables presented in Tables 1–4 a total of 156 different
plate models were solved using ABAQUS®. 78 of these plates are of E-
glass-epoxy and the other 78 plates are of carbon-epoxy. Each material
group of 78 plates consists of 18 plates of UD, 0-dominated or Quasi-
isotropic lay-ups and 24 plates of 45-dominated lay-ups. To manage
this large number of analyses a Python script was written to create and
solve the simulations, and to export the output results for processing
and evaluation.

2.3. Numerical analysis

The elastic critical loads and shapes of the first buckling mode are
obtained from linear Eigenvalue analyses (first-order modelling). It is
the shape of the first buckling mode that is employed to introduce into
the mesh specification the initial geometrical imperfection, as specified
in Table 4. Modelling of the geometrical imperfection is by having
double curvature over the square mesh of 500 × 500 mm with the
maximum out-plane-displacement at the centre.

In post-buckling analysis the effects of large deformations (> half
the plate’s thickness) are considered to make the modelling a non-
linear geometrical analysis. Riks analysis is used in ABAQUS® to extract
the non-linear post-buckling behaviour. Hashin failure criteria [35]
are adopted for an integrated progressive failure analysis. Including
progressive failure in the non-linear Riks analysis approach does create
possible numerical convergence difficulties owing to severe soften-
ing behaviour and element stiffness degradation. To overcome this
computational problem, the modelling methodology introduces viscous

®
regularization, as offered as an analysis option in ABAQUS [36]. To
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prevent any troublesome numerical divergence, this scheme regulates
the tangent stiffness matrix of elements to be positive for small time
increments and stabilizes the damage evolution problem by introducing
viscosity coefficients into the material modelling [34]. The progres-
sive failure and the adoption of material stiffness degradation in the
modelling are explained in Section 2.4.

Three types of structural analyses are conducted to calculate the
necessary parameters required to construct buckling curves, and they
are:

(i) Linear elastic buckling analysis: to obtain the relevant eigenmodes
and eigenvalues to the first buckling mode and the elastic critical
buckling stress, 𝜎crit. In this analysis a compressive load, P, of
1000 kN is applied as a shell edge load along the loaded side to
perform this type of analysis. The elastic critical buckling stress
was calculated by:

𝜎crit =
(𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒) × 𝑃

𝐴
(1)

where A is the plate’s cross-sectional area, given by 500 times
the plate’s thickness (see Table 3).

(ii) Second-order post-buckling analysis: to predict the failure
stress, 𝜎fail, defined as the maximum load along the ABAQUS®-
generated load–displacement curve divided by the plate’s cross-
sectional area (A). 𝜎fail is required to determine the buckling
reduction factor, 𝜒 , as introduced in Section 3. This non-linear
buckling analysis allows for non-linear deformations to be de-
termined for the compressed plates with their predefined initial
geometrical imperfections (see Table 4). To apply the com-
pression load in the second-order buckling analyses, all the
nodes along the loaded side of the plates are constrained to a
master node to which the predefined displacement is introduced.
To capture the behaviour after instability the Riks analysis is
employed with ABAQUS® using the arc-length on the static
equilibrium path in the load–displacement space. The arc-length
is not constant with the user controlling the size of the steps and
normally when the numerical solution tends to be unstable the
step size is adjusted, and the iterative solution is calculated back
and forth around the point of instability until it gets through. The
value of the pre-defined displacement ranges from 5.5 to 13 mm,
being dependent on the lay-up as defined in Table 2.

(iii) First-order linear analysis: to calculate the ultimate compres-
sive strength, 𝜎c, of the laminates. This strength is defined
as the maximum stress from the ABAQUS®-generated com-
pression load–deformation curve and is required to determine
both the buckling reduction factor, 𝜒 , and slenderness 𝜆 (see
Section 3). Numerical analysis is performed in the same way as
the second-order post-buckling analysis of (ii), but now without
the modelling including initial imperfections and second-order
effects. Importantly, these first-order simulations do involve
linear elastic behaviour before damage initiation and progres-
sive degradation of element stiffness using the Hashin ply-level
failure criteria following initiation of failure in the first ply.

2.4. Progressive failure

The concept of progressive failure employed in the analysis is based
on successively reducing a plate’s stiffness by reducing certain ply-
level element stiffnesses as plies undergo progressive damage. Different
failure criteria are used to capture the initiation and propagation of
the damage, and ABAQUS® offers the modelling option to simulate
anisotropic damage in FRP laminates. Because the response of un-
damaged FRP material is linearly elastic, the modelling methodology
can neglect any plastic deformations since they are not necessary for
the analysis of FRP laminates. As mentioned earlier, Hashin’s fail-
ure criteria [35] are employed at the ply-level in the elements to
4

predict the onset of damage, and the damage evolution law for pro-
gressive failure is based on energy dissipation during the damage
process and the assumption applied in ABAQUS® modelling for linear
material softening [34]. In other words, the stress–strain curve after
the damage initiation (maximum stress) reduces linearly to zero at the
maximum strain value. Input values of fracture energies for the damage
evolution laws were established by the authors by back-calculation
after using ABAQUS® to numerically simulate the test results reported
in [33]. More detailed information about these simulations can be
found in [37]. The damage analysis used in this study has material
stiffness degradation at the ply level in elements, and the stress–strain
response of the laminate is defined by [34]:

𝜎c = 𝐶d ⋅ 𝜀c (2)

where:
𝜎c is the compressive direct stress,
𝜀c is the compressive direct strain,
𝐶d is the elasticity matrix that reflects damage within a ply, and is

expressed by:

𝐶d =
1
𝐷

×

⎡

⎢

⎢

⎢

⎢

⎣

(

1 − 𝑑f
)

𝐸11
(

1 − 𝑑f
) (

1 − 𝑑m
)

𝜈12𝐸11 0
(

1 − 𝑑f
) (

1 − 𝑑m
)

𝜈12𝐸22
(

1 − 𝑑m
)

𝐸22 0

0 0
(

1 − 𝑑s
)

𝐺12 ×𝐷

⎤

⎥

⎥

⎥

⎥

⎦

(3)

here:
𝐷 = 1 − (1 − 𝑑f )(1 − 𝑑m)𝜈12𝜈21,
𝑑f is the current state of the fibre damage,
𝑑m is the current state of the matrix damage,
𝑑s is the current state of the shear damage,
𝐸11 is the modulus of elasticity in the fibre direction (Table 1),
𝐸22 is the modulus of elasticity in the direction perpendicular to

ibre direction (Table 1),
𝐺12 is the in-plane shear modulus (Table 1),
𝜈12 and 𝜈21 are Major and Minor Poisson’s ratios (Table 1), with

21 = 𝜈21.(𝐸22∕𝐸11).
Note that the elastic constants for plies of both the E-glass-epoxy

nd carbon-epoxy FRP materials are reported in Table 1.
Damage initiation refers to the onset of material degradation at a

oint within a ply. In ABAQUS® the failure criteria for damage initi-
tion can be based on Hashin’s theory [35], which considers the four
ifferent damage initiation mechanisms of: fibre tension failure; fibre
ompression failure; matrix tension failure; and matrix compression
ailure. The formulae being continually checked (at ply-level and in
very element) for the status of these criteria are:

ibre tension (�̂�11 ≥ 0) ∶ 𝐹 t
f =

(

�̂�11
𝑋T

)2
+ 𝛼

(

𝜏12
𝑆L

)2
(4)

Fibre compression (�̂�11 < 0) ∶ 𝐹 c
f =

(

�̂�11
𝑋C

)2
(5)

Matrix tension (�̂�22 ≥ 0) ∶ 𝐹 t
f =

(

�̂�22
𝑌 T

)2
+
(

𝜏12
𝑆L

)2
(6)

Matrix compression (�̂�22 < 0) ∶ 𝐹 c
m

=
(

�̂�22
2𝑆T

)2
+

[

(

𝑌 C

2𝑆T

)2
− 1

]

�̂�22
𝑌 C

+
(

𝜏12
𝑆L

)2
(7)

The variables in Eqs. (4) to (7) are:
F is the failure index for a failure criterion that when < 1.0 there is

no failure and when equal to 1.0 or higher there is failure,
t and c are superscripts with the failure index for tension and

ompression,
f and m are subscripts with the failure index for fibres and matrix,
𝑋T is the longitudinal tensile strength (value in Table 1),
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𝑋C is the longitudinal compressive strength (value in Table 1),
𝑌 T is the transverse tensile strength (value in Table 1),
𝑌 C is the transverse compressive strength (value in Table 1),
𝑆L and 𝑆T are the longitudinal and transverse shear strengths that

take the value of 𝑆LT in Table 1.
The original form of Eq. (4) has coefficient 𝛼 that determines the

contribution of the shear stress to the fibre tensile damage initiation
criterion. By setting 𝛼 to 0 and 𝑆T = 0.5𝑌 C the failure criterion is set
to the form proposed by Hashin and Rotem [38], while setting 𝛼 to 1.0
yields the form by Hashin [35] that has been adopted in this study.

�̂�11, �̂�22, 𝜏12 are the components of the effective stress tensor �̂� at the
ply level in an element used to evaluate the initiation criteria, which is
computed by:

�̂� = 𝐌𝜎 (8)

where vector 𝜎 is the true stress and M is the damage operator and
expressed according to:

𝐌 =

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1
(

1 − 𝑑f
) 0 0

0 1
(

1 − 𝑑m
) 0

0 0 1
(

1 − 𝑑s
)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

(9)

In Eq. (9) 𝑑f , 𝑑m and 𝑑s are internal (damage) variables that character-
ze fibre, matrix and shear damage within a ply within an element, and
erived from the damage variables 𝑑tf , 𝑑

c
f , 𝑑

t
m and 𝑑cm, which correspond

to the four mechanisms as follows:

𝑑f =

{

𝑑tf if �̂�11 ≥ 0

𝑑cf if �̂�11 < 0

}

(10)

𝑑m =

{

𝑑tm if �̂�22 ≥ 0

𝑑cm if �̂�22 < 0

}

(11)

𝑑s = 1 −
(

1 − 𝑑tf
) (

1 − 𝑑cf
) (

1 − 𝑑tm
) (

1 − 𝑑cm
)

(12)

Because none of 156 plates analysed are loaded with a shear com-
ponent it has been appropriate in the modelling methodology to ignore
any in-plane shear-generated failure. Prior to any damage initiation and
evolution, the damage operator, M, in Eq. (9) is equal to the identity
matrix, so that �̂� = 𝜎. Once damage initiation and damage progression
exist for at least one of the four failure mechanisms defined by Eqs. (4)
to (7), M becomes significant in the criteria for damage initiation
of the other mechanisms. Based on effective stress levels calculated
during ABAQUS® analyses from Eq. (9) the three damage variables
by Eqs. (10) to (12) are determined at each integration point in every
element in all plies, and they take different values for fibre and matrix
and for tension and compression stresses. The ABAQUS® analysis uses
Eqs. (4) to (12) to reduce the plate’s stiffness in the non-linear analysis
(ii) (refer to Section 2.3) by way of progressive reductions in elements
and plies as the compression loading increases above its value for the
initiation of first ply failure (which occurs first in one element and one
ply and shall be one of the four failure mechanisms).

3. Generation of buckling curves

The hypothesis for this study is that it is practical to create non-
dimensional buckling curves for failed FRP plates with different lay-ups
that has a consistent format to the flexural buckling curves (for design
of column members of steel) in Eurocode standard EN 1993-1-1:2005
(6.3.1.2). For steel, the abscissa axis for the slenderness, 𝜆, and ordinate
xis for the buckling reduction factor 𝜒 , are defined by:

𝜆 =

√

𝑓y
𝜎cr

(13)

𝜒 =
𝜎max ≤ 1.0 (14)

𝑓y

5

here:
𝑓y is the yield strength of the grade of steel,
𝜎cr is the elastic critical stress for the relevant buckling mode based

n the gross cross-sectional properties of the section,
𝜎max is the maximum stress at ultimate failure.
To create equivalent buckling curves for simply-supported FRP

lates (subjected to uniform uniaxial and in-plane compression), we
eplaced 𝑓y with 𝜎c (predicted by ABAQUS® first-order compression
nalyses (iii)) and 𝜎max with 𝜎fail (predicted by ABAQUS® second-order
uckling analyses (ii)). This transforms Equations (13) and (14) to be:

𝜆 =
√

𝜎c
𝜎crit

(15)

𝜒 =
𝜎fail
𝜎c

(16)

where:
𝜎c is the compressive strength (or crushing strength) of the plate

(without geometrical imperfection) using ABAQUS® first-order analysis
(iii),

𝜎crit is the elastic critical buckling stress obtained from Eq. (1),
𝜎fail is the ultimate compressive stress for plate failure, considering

the post-buckling behaviour, obtained from non-linear Riks analysis
(with geometrical imperfection).

4. Results and discussion

4.1. Second-order post-buckling analysis

Plotted in Figs. 1(a) to 1(d) are curves for compression load, P, with
out-of-plane deformation (at centre of the square plates) for laminates
having different FRP materials, ply lay-ups, thicknesses and initial
geometrical imperfection, as specified in Tables 1–4. In the four plots
the black curves (lowest group of three), dark grey (middle group)
and light grey (top group) coloured curves are for thicknesses of 9.6
(number 2), 19.2 (number 4) and 24 mm (number 5), respectively.
As can be seen from the curves in the figures, increasing the initial
imperfection from b/10,000 to b/100 (𝑏 = 500 mm) results numerically
in a diminishing bifurcation-response for a smoother transition into
the post-buckling region (i.e., continuous deformation under increasing
P, without sudden deformations associated with drastic changes in
structural plate stiffness). It can be seen from the characteristics of
the curves that the initial imperfection magnitude also has different
effects on the ultimate load, which gives us 𝜎fail. For plates analysed
with relatively high slenderness (i.e., 𝑥 = 2 for smallest thicknesses
(refer to Table 2)) the magnitude of the initial imperfections did not
adversely affect the ultimate compression load. However, for plates
analysed with relatively medium and low slenderness (when 𝑥 = 4
and 5), in which their critical stresses for elastic buckling are close to
the compressive strength of the laminates, there is higher sensitivities
to imperfection magnitudes and reductions in ultimate load carrying
capacities become significant, as seen in Figs. 1(a) to 1(d). Such a
response of imperfect plates subjected to compression is observed also
when the material is steel (before yielding), and this fact justifies why
the strength capacity is governed by the internal compressive stress
redistribution after buckling. These findings agree with experimental
test results on FRP plates reported by Fallah et al. [20] and Hayman et
al. [33]. Based on the known physical behaviour we have that 𝜎fail is
determined on dividing the maximum P by the cross-sectional area of
the plate, A.

4.2. Compressive strength

Determined using first-order compressive analyses Figs. 2(a) to
2(d) present a series of load (P) with in-plane displacement curves
for several different plates whose labels are defined by content in
Tables 1–5. Note that constant variables are for the FRP material being
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C

Fig. 1. Compression load with out-of-plane displacement curves for different plates defined from Tables 1–5: (a) plate G_UD_Z_T; (b) plate G_Q_Z_T; (c) plate C_0_Z_T; (d) plate

_Q_Z_T. (Z = 10,000; 200; 100 (correspond to 0.05, 2.5 and 5 mm imperfection), and 𝑇 = 2, 4, 5 corresponding plate thicknesses of 9.6, 19.2 and 24 mm.)
E

E-glass-epoxy and the initial geometrical imperfection being 0.05 mm
(b/10,000). Figs. 2(a) and 2(b) are for the UD and 0-dominated lay-
up plates, and as expected the characteristics of the six curves for the
changing thicknesses (in both parts of the figure) show a structural
response that is linear elastic up to sudden (ultimate) failure (for 𝜎c)
indicated by a knee and a dramatic reversal in plate flexural stiffness.
As can be seen in Figs. 2(c) and 2(d), the response of both 45-dominated
and quasi-isotropic lay-ups is for a progressive failure, with the onset
of buckling signalled by a lowering of plate flexural stiffness, and then
at a higher compression stress, there is an ultimate failure (for 𝜎c), as
indicated by a reversal in plate stiffness. For several thicknesses there is
a second reduction in stiffness owing to first ply failure (but not more
ply failures) before the ultimate compression load is reached. Extracted
from the curves is the compressive strength, 𝜎c, which is calculated by
6

dividing the maximum P in the plots by the cross-sectional area of the
plate, A, which is 500 times the thickness (see Table 3).

4.3. Results of the parametric study

Plotted in Fig. 3 is the buckling reduction factor 𝜒 (given by
q. (15)) with (relative) slenderness 𝜆 (given by Eq. (16)) using the

results from analyses of 156 plate variations of FRP materials, lay-ups,
thicknesses and initial geometrical imperfections (as defined using data
in Tables 1–4). Numerical results are for square plates 500 × 500 mm
having simply supported boundary conditions and subjected to uniform
uniaxial and in-plane compression. In Fig. 3 are plotted 24 buckling
curves. For each of the four lay-ups (Table 2), the two fibre types (Ta-
ble 1) we have set of three curves, which are for the three imperfections
(Table 4) and slenderness values are given by the eight thicknesses
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Fig. 2. Curves for compression load with in-plane deformation from first-order failure analyses for different thicknesses of plates: (a) G_UD_10,000_T; (b) G_0_10,000_T; (c)
_45_10,000_T; (d) G_Q_10,000_T.
Fig. 3. Buckling reduction factor 𝜒 plotted with slenderness 𝜆 for all 156 laminated plates.
Table 3) with the 45-dominate lay-ups and six thicknesses (Table 3)
or the other three lay-ups (Table 2). It can be observed that these
4 buckling curves follow two distinct trends specified by grouping
ogether the six UD plate curves or the 18 multi-directional plate
urves. The order in which Table 2 lay-up curves appear in the plotting
from top to bottom) is: 45-dominated; quasi-isotropic; 0-dominated;
D. Regarding the difference in the 𝜒 −𝜆 relationships between the UD

group and multi-directional group, it is observed that the UD-generated
curves are considerably below the rest of the curves, with the highest
𝜒 at about 0.4. 𝜒 is observed to approach 1.0 from the analyses of the
120 plates within the other group. This finding is attributed to how
UD plates fail. Prior to the initiation of buckling deformations, the
7

compressive stress is uniformly distributed within these plates. When
buckling failure occurs UD plates lose stiffness in the ‘buckled’ region
and there is an internal stress redistribution to the ‘stiffer’ areas around
the simply supported sides, where there are no or small ‘buckling’
deformations. Fig. 4(a) illustrates the uniform compression stress states
throughout a UD plate prior to buckling. As depicted in Fig. 4(b)
the post-buckling mechanism is associated with the formation of a
transverse tension band as illustrated by the stress field arrows in the
figure. Because the Transverse tensile strength of UD laminates (from
Table 1, 𝑌 T for the E-glass-epoxy material is 31 MPa and for carbon-
epoxy 𝑌 T is 43 MPa) is a matrix governed strength, there is little, if
no post-buckling reserve strength compared to laminates of the other
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Fig. 4. (a) Plate subjected to compression loads before buckling: (b) Plate after buckling and the formation of the transverse tension band.
Fig. 5. Buckling reduction factor 𝜒 with slenderness 𝜆 for quasi-isotropic, 0- and 45-dominated lay-ups and a fitted curve (coloured black) to the lower-bound defined by Equations
(17) and (18).
b
d
t
d

lay-ups that possess higher transverse strengths because a proportion of
fibres are reinforcing in that direction. Moreover, the microstructure of
UD laminates in the transverse direction (combination of stiffer fibres
and softer matrix) results in stress concentrations negatively affecting
the transverse strength. It is noted that because UD laminates have
this structural weakness, they are not found in FRP structures where
these thin-walled elements are subjected to compressive forces. This
technical fact is justification not to include UD laminates in Section 5
where the authors present a proposed design buckling curve that scopes
multi-directional lay-ups.

5. Design buckling curve

Based on using the numerical results from all multi-directional lay-
ups, the plotting in Fig. 5 introduces a non-dimensional design buckling
curve (the thick black solid curve) defined as the lower bound of all
 T

8

the 𝜒 − 𝜆 curves. The authors constructed the shape of the curve by
visual inspection using Maple® software with quadratic functions of
slenderness 𝜆. Fig. 5 is also Fig. 3 without the six UD buckling curves.
The formulae to the proposed curve can be expressed as:

𝜒 = 1 − 0.1𝜆
2

𝜆 ≤ 0.85 (17)

𝜒 = 0.5

𝜆
2
− 0.04

𝜆
− 0.03𝜆 + 0.3 𝜆 > 0.85 (18)

For a preliminary validation, the proposed ABAQUS®-generated
uckling design curve in Fig. 5 is benchmarked using experimental
ata taken from the literature. For this preliminary validation process
he authors used test results taken from Refs. [33,39–41]. Table 6 lists
ata on the glass and carbon fibre laminates in these four studies.
he relatively small number of benchmark points is attributed to the
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Fig. 6. Proposed design buckling curve given by buckling reduction factor 𝜒 with slenderness 𝜆 that is benchmarked against experimental test results in the literature.
n
(
𝜎
f
t

a

limited number of previous studies sourced by the authors with post-
buckling behaviour of unstiffened ‘simply supported’ plates subjected
to uniform uniaxial and in-plane compression that provides the nec-
essary information to calculate the non-dimensional parameters 𝜆 and

. The authors sought to find the closest experimental match to the
umerically simulated FRP plates to maintain a reliable benchmarking.
able 6 presents the relevant data for experiments used in the bench-
arking process. It should be noted that not all the tested plates are

quare, and the authors are aware that on buckling complete half-sine
aves might not have formed. Theory informs us that such plates will,

heoretically, buckle at higher loads and so the presented ABAQUS®-
generated buckling curve in Eqs. (17) and (18) should provide safe
predictions to elastic critical buckling loads. What is not known is the
behaviour of such plates in the post-buckling regime and the influence
of the goverening initial geometrical imperfection on their strengths.
Although the authors believe that ABAQUS®’s modelling and simula-
tion are reliable in accounting for these effects further research work
is needed to confirm our understanding. For the sake of completeness,
the authors have included test results for rectangular plates with and
without integer side-length aspect ratios. In Fig. 6 the experimental
data points are plotted with the design buckling curve (thick black solid
line). Non-dimensional parameters 𝜒 and 𝜆 for the test results were
ack calculated using the reported plate properties and ultimate failure
oads tabulated in Table 6.

Table 6 has 13 columns, with column (1) listing the references to a
otal of 45 test results, which are distributed into 11 test series. Column
2) gives the balanced symmetrical lay-ups for the multi-layered FRP
lates that always have 0◦ and 45◦ fibre orientations. Six of the 11
aminations also have fibre reinforcement oriented at 90◦. In column
3) are listed the number of test results in a series, which range from
ne to eight. Column (4) is for the FRP plies being either of Glass-
poxy (GE) or Carbon-Epoxy (CE). Laminate thicknesses are reported
n column (5), and t is from 1.75 to 20 mm. It is noted that only the
lates in the three experimental series with Hayman et al. [33] had a
hickness in the range scoped in the ABAQUS® simulations; all others
re <4.8 mm, which is the minimum thickness in Table 3. Column
6) is for the width of the plate (b) subjected to the uniform uniaxial
ompression, and column (7) is for the plate aspect ratio (l/b), with l
he length of the plate. The aspect ratios are in range of 1.0 to 5.09,
ith, again, only the series from Hayman et al. satisfying the ABAQUS®

atio of 1.0. Columns (8) to (10) report mean results for the three stress
alues of 𝜎 , 𝜎 and 𝜎 in Eqs. (15) and (16) required to calculate the
c crit fail

9

on-dimensional parameters 𝜆 and 𝜒 , which are presented in columns
12) and (13). Finally, column (11) in Table 6 is for the strength ratio
fail∕𝜎crit that gives, for the series of plates, a numerical value for the
ailure load in terms of critical elastic buckling load. It is observed that
his ratio ranges from 1.1 to 5.3.

As seen from column (12) in Table 6 the test results effectively cover
descent range of slenderness ratios, 𝜆, from 1.4 to 6.1. Plotted in Fig. 6

are the mean buckling reduction factor 𝜒 for the 11 series of tests (can
be with a single plate). Hayman et al. [33] provides to the benchmark-
ing exercise 20 test results. They comprise: seven points from Series
1 (red triangle symbol); six from Series 2 (purple triangle symbol);
and seven from Series 3 (blue diamond). Another three contributions
provide a total of 25 test results. Researchers Buskell et al. [39] provide
four points comprising Series 1 of two single tests (two green circle
symbols) and Series 2 (dark green cross symbol) and 3 (deep purple
plus symbol) for a single test result each. The experimental program
conducted by Chai et al. [37,40] provides 19 points, comprising Series
1 of eight test results (white cross inside a tawny square symbol), Series
2 with seven data points (red cross and red vertical line symbol), and
Series 3 for four tests (brown triangle symbol). Finally, the experimen-
tal work of Namdar and Darendeliler [38,41] provides two data points
from Series 1 (dark blue square) and 2 (white cross in blue square) with
a single test result each.

Overall, it is seen from the plotted mean test results that the
proposed design curve (thick black line in Fig. 6), given by Eqs. (17)
and (18), establishes, and on the low side, the experimental evidence
for post-buckling strengths with reasonable agreement, particularly for
𝜆 > 1.5. This is a promising outcome given the complexities in con-
ducting buckling experiments that reliably corresponded to the input
data in ABAQUS® simulations. The observed deviations, of course, are
attributed not only to the research methodology used to generate the
proposed curve, but also to several experimental sources of uncer-
tainties, such as from: plate aspect ratio, variability in ply material
properties; geometrical and other imperfections; effect of real boundary
conditions and loading rate effect.

Plotted in Fig. 7 are 120 ABAQUS®-generated ratios for 𝜎fail∕𝜎crit
with plate slenderness, 𝜆. The magnitude of the ratio gives the increased
strength gain on taking the ultimate failure load rather than the critical
elastic buckling load, as is recommended in CEN/TS 19101:2022 [13].
The information in Fig. 7 for multi-directional plates offers a useful
design aid in the sense that it can be used for a prediction of 𝜎fail,
providing the user has knowledge of 𝜎 and 𝜆. To obtain reliable and
crit
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Fig. 7. 𝜎fail∕𝜎crit with slenderness for the 156 plates in the ABAQUS®study.
Table 6
Properties of FRP plates used to benchmark the proposed design buckling curve.

Reference Lay-up No of
tests

Mat. t
[mm]

Plate size
(b) [mm]

l/𝑏c 𝜎c
[MPa]

𝜎crit
[MPa]

𝜎fail
[MPa]

𝜎fail∕
𝜎crit

𝜆 𝜒

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Hayman et al. (2011) Series 1 [30] [±45/04∕±45/03]S 7 GEa 9.7 320 1.0 233 53 103 1.8 2.10 0.44
Hayman et al. (2011) Series 2 [30] [±45/04∕±45/04∕±45/03]S 6 GE 15 320 1.0 234 121 175 1.4 1.39 0.75
Hayman et al. (2011) Series 3 [30] [±45/04∕±45/04∕±45/02]S 7 GE 20 320 1.0 747 296 338 1.1 1.59 0.45

Buskell et al. (1985) Series 1 [39] [0/90/45/-45]2S
1 CEb 2 113 3.04 837 59.1 168 2.8 3.76 0.20
1 2 94 3.56 837 98.9 266 2.7 2.91 0.32

Buskell et al. (1985) Series 2 [39] [0/45/-45/90]2S 1 CE 2 94 3.56 838 104 283 2.7 2.84 0.34
Buskell et al. (1985) Series 3 [39] [45/0/-45/90]S2 1 CE 2 113 3.04 837 60.0 162 2.7 3.74 0.19
Chai et al. (1991) Series 1 [40] [45/0/0/90/0/-45/0]S 8 CE 1.75 120 3.82 1107 33.7 179 5.3 5.74 0.16
Chai et al. (1991) Series 2 [40] [45/0/0/90/0/-45/0]S 7 CE 1.75 90 5.09 1107 57 228 4.0 4.41 0.21
Chai et al. (1991) Series 3 [40] [45/0/0/90/0/-45/0]S 4 CE 1.83 90 5.09 1107 62.4 220 3.5 4.21 0.20
Namdar and Darendeliler (2017) Series 1 [41] [45/0/45/0/45]S 1 CE 2.80 330 1.21 657 17.6 84.2 4.8 6.10 0.13
Namdar and Darendeliler (2017) Series 2 [41] [45/-45/0/45/90/90/-45/0]S 1 CE 2.94 330 1.21 471 22.9 86.9 3.8 4.54 0.18

aGlass fibre-epoxy.
bCarbon fibre-epoxy.
cAspect ratio (length/width).
conservative predictions for 𝜎fail a lower-bound curve has been intro-
uced in Fig. 7, and the blue coloured curve has the linear trendline
ormula:

=
𝜎fail
𝜎crit

= 1.05𝜆 − 0.7 (19)

It is to be noted that when plates are ‘stocky’ with relatively low
slenderness the mode of failure can be by material strength (i.e., 𝜎fail
is 𝜎c). Now we have 𝜎fail∕𝜎crit < 1 and Eq. (19) is invalid. In Fig. 7 the
almon pink shaded area in the bottom left is the zone where using
he critical elastic buckling load in design can result in misleading
trength predictions. Based on the lower-bound approximation given
y Eq. (19) the value of 𝜆 below which this phenomenon exists is 1.6.
t is concluded that it is necessary to pay more attention to the mode
f failure when designing FRP plates that have a ‘stocky’ slenderness.
egarding the test results presented in Table 6 only Series 2 and 3 by
ayman et al. [33] is with 𝜆 < 1.6. As seen from Table 6 the values of

𝜎fail∕𝜎crit for these two series are significantly smaller than the rest of
the series.
10
6. Concluding remarks and future work

The aim of this numerical study has been to investigate the feasi-
bility of proposing a unified non-dimensional design buckling curve
(buckling reduction factor with slenderness) for laminated plates of
Fibre Reinforced Polymer (FRP) materials subjected to uniform uni-
axial and in-plane compression. A parametric study using ABAQUS®
modelling and simulations was conducted with 156 plates scoping two
different FRP materials, four different lay-ups, three different initial
geometrical imperfections, and six or eight different laminate thick-
nesses. All plates were square, simply supported on four sides and with
side dimensions of 500 mm. Both post-buckling strengths and ultimate
compressive strengths were determined using a modelling method-
ology requiring both second-order nonlinear analysis and first-order
linear analysis. 24 buckling curves were constructed and grouping the
curves show correlations between the buckling reduction factor with
slenderness. The parameter tending to be the most decisive in the
variation of the buckling reduction factor is the type of lay-up in the



E. Olsson, J.T. Mottram, M. Al-Emrani et al. Thin-Walled Structures 183 (2023) 110346
lamination. The choice of FRP material at ply level and/or magnitude
of initial imperfection is found to have a lesser impact on post-buckling
responses to ultimate failure.

Visually, there is a distinct difference between the six numerical-
generated curves using results from the 36 unidirectional laminated
plates and the other 18 curves comprising results from the 120 multi-
directional laminated plates. A universal design buckling curve (and
its formulae) is proposed by fitting a curve to the lower bound of
the 18 buckling curves constructed from the analyses of the multi-
directional plates. For a preliminary comparison, 45 experimental test
results from four independent sources were used to benchmark the
proposed buckling design curve. This important comparison reveals
that the ABAQUS®-generated curve provides adequate predictions on
the low side with acceptable reliability.

Using numerical results for ultimate failure and critical elastic buck-
ling strengths (or loads) from the 120 multi-directional plates a lower-
bound linear trendline formula is presented to predict a conservative
ultimate failure load providing the user has knowledge of the critical
elastic buckling load and plate slenderness.

The outcomes presented in this paper are based on a numerical
parametric study, so to validate the new results (and the modelling
methodology), there is a requirement for additional reliable and rel-
evant experimental test results that scope the domain for FRP plate
buckling. Furthermore, similar numerical analyses for post-buckling
strengths of laminated plates need to be conducted with, for exam-
ple, different types of loading and displacement boundary conditions
to ensure that the proposed design buckling curve approach can be
generalized with the potential of developing a universal set of curves.
The goal of this research is to have recognized buckling curves that
can appear in the Eurocode part that is to be prepared following the
publication of the Technical Specification for Design of Fibre-Polymer
Composite Structures (CEN/TS 19101:2022).
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