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Abstract. Scientific discovery in biology is difficult due to the complex-
ity of the systems involved and the expense of obtaining high quality
experimental data. Automated techniques are a promising way to make
scientific discoveries at the scale and pace required to model large bio-
logical systems. A key problem for 21st century biology is to build a
computational model of the eukaryotic cell. The yeast Saccharomyces
cerevisiae is the best understood eukaryote, and genome-scale metabolic
models (GEMs) are rich sources of background knowledge that we can
use as a basis for automated inference and investigation.

We present LGEM+, a system for automated abductive improvement
of GEMs consisting of: a compartmentalised first-order logic framework
for describing biochemical pathways (using curated GEMs as the expert
knowledge source); and a two-stage hypothesis abduction procedure.

We demonstrate that deductive inference on logical theories created
using LGEM+, using the automated theorem prover iProver, can predict
growth/no-growth of S. cerevisiae strains in minimal media. LGEM+

proposed 2094 unique candidate hypotheses for model improvement.
We assess the value of the generated hypotheses using two criteria: (a)
genome-wide single-gene essentiality prediction, and (b) constraint of
flux-balance analysis (FBA) simulations. For (b) we developed an algo-
rithm to integrate FBA with the logic model. We rank and filter the
hypotheses using these assessments. We intend to test these hypothe-
ses using the robot scientist Genesis, which is based around chemostat
cultivation and high-throughput metabolomics.
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1 Introduction

An important aspect of modern biology is improving our understanding of cellu-
lar processes, and the complex interactions between genes, proteins and chemical
species. Systems biology is the research discipline that tackles this complexity.
Saccharomyces cerevisiae, commonly known as “baker’s yeast”, is an excellent
model organism used for the study of eukaryote biology. This is due to the avail-
ability of tools for easy genetic manipulation, and low cultivation cost, enabling
targeted experiments to characterise the system. S. cerevisiae’s was the first
eukaryotic genome to be fully sequenced [10] and there is a wealth of knowl-
edge about the gene functions, many of which are conserved or expected to have
equivalents in other eukaryotes, including humans [5]. Metabolic network mod-
els (MNMs) represent the cellular biochemistry of an organism and the related
action of enzymatic genes; such models which seek to integrate knowledge from
the entire organism are known as genome-scale metabolic models (GEMs).

The scientific discovery problem we address is to add knowledge to or reduce
S. cerevisiae GEMs such that quality is increased. Model quality in GEMs
is multi-faceted—desirable properties of a model include: predictive power;
metabolic network coverage; and parsimony. There are trade-offs between dif-
ferent desirable properties [11]. Foremost, however, is the predictive power of
the GEM. Ultimately the aim is to understand the entities, mechanisms and
adaptations that govern yeast growth in different environments.

Given a draft model, improvement consists broadly of three stages: hypoth-
esise refinements to the model; conversion of refined model to a format suitable
for simulation; and evaluation based on experimental evidence and internal con-
sistency [24]. Repetition of these stages consists a scientific discovery process.
Evaluation is dependent on executing simulations using a mathematical formal-
ism, however optimising a model for a specific formalism is not the objective—
any improvements that are made to a GEM within a certain framework should
translate to improvements in the underlying knowledge.

Challenges for the future of genome-scale modelling of S. cerevisiae include:
improving annotation; removing noise from low-confidence components; and
adding reactions to eliminate so-called “dead-end” compounds [1]. To multi-
ply the efforts of human researchers, previous work has investigated automating
parts of the scientific method. GrowMatch was a technique developed to resolve
inconsistencies between predictions and experimental observations of single-gene
mutant strains of Escherichia coli [15]. Other approaches to metabolic network
gap-filling have exploited answer-set programming, the most complete of which
is MENECO which is designed to efficiently identify candidate additions to draft
network models [19].

Logical inference can be applied to generate and improve metabolic models:
induction allows us to generalise models from data; given a theory we can draw
conclusions using deduction; and abduction enables us to form hypotheses to
improve consistency with empirical data. In this work we use first-order logic
(FOL) to simulate the metabolic network, an approach first proposed in 2001
[20]. A FOL model was used to generate functional genomics hypotheses then
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tested by a robot scientist [13]; logical induction and abduction was applied to
identify inhibition in metabolic pathways after introduction of toxins [23]; and an
FOL model constructed in Prolog using the GEM iFF708 [7] as the background
knowledge source was used to predict single-gene essentiality [25]. Huginn is a
tool that uses abductive logic programming (ALP), and demonstrates the ability
to improve metabolic models and suggest in vivo experiments [21].

A core advantage of our model—both over these previous FOL approaches
that used Prolog, and over bespoke algorithmic methods such as MENECO—
is that we use first order theorem provers (FOTPs) to perform deductive and
abductive inference. This removes a large part of the burden of abductive algo-
rithm design and simulation. For the reasoning tasks we use the FOTP iProver
[14]. We extended iProver to include abduction inference. iProver is a saturation-
based theorem prover that saturates via consequence finding algorithms which
are well-suited to abduction [22]. Other declarative programming techniques that
we tried, for example Prolog, and SAT solvers based on backtrack search algo-
rithms (e.g. CDCL), lacked certain features that enable abduction. Using FOTPs
will also allow us to combine different deduction and abduction strategies.

Furthermore, our model is capable of deductive and abductive reasoning at
scales far greater than previous FOL approaches. The ability to reason at scale
is particularly important for the automation of scientific discovery in eukaryotic
biology where the domain is complex and data are expensive to generate.

One current limitation of our FOL framework is that we do not include
information on reaction stoichiometry. To integrate quantitative modelling, we
propose in this paper a method to combine flux balance analysis (FBA) and
logical inference to validate metabolic pathway configurations found by LGEM+.

The main contributions of LGEM+ as presented in this paper are: (1) a
compartmentalised FOL model of yeast metabolism; (2) a two-stage method for
the abduction of novel hypotheses on improved models; (3) scalable methods for
evaluating these models and hypotheses; and (4) an algorithm to integrate FBA
with abductive reasoning.

2 Methods

2.1 The First-Order Logic Framework

We chose FOL as the language to express the mechanics of the biochemical path-
ways. FOL allows for a rich expression of knowledge about biological processes,
such as reactions and enzyme catalysis. We use FOL to express our knowledge
about how entities are known to interact, for example that a reaction has sub-
strates and products, and possibly some required enzyme. By contrast, a propo-
sitional logic framework would be unable to express these higher level concepts
and as such would be less suitable for abduction. The method and model we
design is independent of the specific network, meaning that although here we
apply LGEM+ to S. cerevisiae, this modelling framework could equally well be
applied to other organisms.
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Fig. 1. Processes in LGEM+. (A) defining the logical theory, including abduction
of missing compounds to enable viability of base strain; (B) single-gene essentiality
prediction; (C) abduction of hypotheses from ngG errors; (D) using FBA to assess
viability of each hypothesis; and (E) repeating single-gene deletion to assess viability
of each hypothesis.

We define five predicates in the first-order language: met\2, gn\1, pro\1,
enz\1, and rxn\1. The semantic interpretation of these predicates is outlined in
Table 1. Here a cellular “compartment” refers to a component of the cellular
anatomy, e.g. mitochondrion, nucleus or cytosol.

Table 1. Predicates used in the logical theory of yeast metabolism. Forward and reverse
reactions are represented separately in the model, thus a “positive flux” through a
reversed reaction indicates the reaction flux is negative.

Predicate Arguments Natural language interpretation

met\2 metabolite, compartment “Metabolite X is present in cellular compartment Y”

gn\1 gene identifier “Gene X is expressed”

pro\1 protein complex identifier “Protein complex X is available (in every cellular compartment)”

enz\1 enzyme category identifier “Enzyme category X is available”

rxn\1 reaction “There is positive flux through reaction X”

Clauses in our model are one of seven types, each expressing relationships
between entities in terms of the predicates given above. These types of clauses
are listed below, and we provide a graphical overview and example statements
in Fig. 2.
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– Reaction activation clauses state that all substrate compounds for a specific
reaction being present in the correct compartments, together with availability
of a relevant enzyme, implies the reaction is active.

– Reaction product clauses state that a reaction being active implies the
presence of a product compound in a given compartment.

– Enzyme availability clauses state that the availability of the constituent
parts (proteins) of an enzyme imply the availability of the enzyme. Enzymes
sometimes act in complexes made up of two or more proteins, and different
enzymes that catalyse the same reaction are called isoenzymes.

– Protein formation clauses state that the presence in the genome of a gene
that codes for a specific protein implies the availability of that protein.

– Gene presence clauses are statements expressing either the presence or
absence of a particular gene in the genome.

– Metabolite presence clauses are statements expressing the presence of a
particular compound in a specific compartment.

– Goal clauses represent a biological objective, usually the presence in the
cytosol of a set of compounds deemed essential for growth, but could also be
another pathway endpoint or intermediary compound.

2.2 Assessing Growth and Production of Compounds

Yeast growth is dependent on the production of essential chemical products—
intermediary points or endpoints of biochemical pathways within the organism.
The core of these biochemical pathways is the enzymatic reactions, and they
are facilitated by diffusion of chemicals within cellular compartments, includ-
ing the cytosol, and passive or active transport across compartment boundaries
or the cell membrane. Certain products are deemed essential for growth, so if
production of these compounds is inhibited then the organism is inviable.

Logical inference was performed using the automated theorem proving soft-
ware iProver (v3.7) which was chosen due to its performance and scalability as
well as completeness for first-order theorem finding. The general formulation of
the problem provided to iProver is to identify whether a theory, T , “entails”
a goal, G. In other words that the goal is a logical consequence of the theory
(T � G). Here T is a set of logical axioms that encode, using the formalism
defined in Sect. 2.1: knowledge from the GEM; the medium in which the yeast is
growing, represented by axioms in the theory for the presence of compounds in
the extracellular space; the availability of ubiquitous compounds in each cellular
compartment and the extracellular space; and the presence and expression of
genes. Deduction can be used to analyse pathways and reachable metabolites. In
the case of growth/no-growth simulations, G represents the availability of all the
essential compounds in the cytoplasm. So if T � G we say that there is growth,
otherwise not. Other goals used here are the availability of other endpoints of
biochemical pathways. T and G are provided to iProver in plain text files and
plaintext proofs are output. The logical proofs (that the goal is reachable) found
by iProver correspond to detected biochemical pathways.
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Fig. 2. Conversion of genome-scale metabolic model provided in SBML to logical the-
ory. (A) A reaction is encoded in SBML using identifiers to represent the substrates
and products, and a logical rule for enzyme availability (GPR = “gene-protein-reaction
rule”). (B) The information contained on each reaction is encoded using logical formu-
lae into a set of clauses; predicate definitions are provided in Table 1. Here equation (1)
is the reaction activation clause. “∧” is a conjunction symbol (“AND”), meaning all of
the literals in the expression must be true for the RHS of the clause to be true; “∨” is
a disjunction symbol (“OR”). So we can read (1) as: “reaction r 0889 is active if all of
the metabolites in the set {s 0340, s 1207} are present in the cytoplasm and at least
one of the isoenzymes is present”. Similarly equation (2) describes the condition for
a relevant enzyme to be present; equations (3a,b) describe the conditions for each of
these isoenzymes to be formed; and equations (4a-c) are the reaction product clauses
and state that “if reaction r 0889 is active then each of its products is present”.

Single-Gene Essentiality Prediction. Here we seek to predict genes with-
out which S. cerevisiae cannot grow. We compare predictions against lists of
viable and inviable strains from a genome-wide deletion mutant cultivation for
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S. cerevisiae using several media [9]. In particular, we compare with cultivations
on a minimal medium with the addition of uracil, histidine and leucine. The
strain background used in this study was S288C, which has complete or partial
deletions for HIS3, LEU2, LYS2, MET17 and URA3—for our experiments we
remove these genes by default. Gene knockouts were performed by negating the
gene presence axiom in the logical theory (i.e. gn(gene) becomes ¬gn(gene)).

There are two basic error types with these predictions. We follow the naming
convention as in [15], that we have: (1) gNG inconsistency: a prediction of growth
when experimental data show no growth; and (2) ngG inconsistency: a prediction
of no growth when experimental data show growth. Inconsistencies arise from
three main sources: deficiencies in the prior knowledge; errors in the prediction
process; or conflicting empirical evidence. However it is the deficiencies in the
prior knowledge that are of most interest for scientific discovery, which we explore
next.

2.3 Abduction of Hypotheses

Abduction is used to suggest hypotheses that resolve inconsistencies between our
model and empirical data. As shown in Fig. 1(C) we select a reasonable set of
candidate hypotheses through a two-stage process: firstly, we generate hypothe-
ses; and secondly, we rank and filter these according to relevant scientific criteria.
Generating hypotheses using an automated theorem prover is general purpose.
Ranking and filtering heuristics will be domain-specific; here we describe the
heuristics that we used, but others could well be applied. Pseudo-code for the
abduction algorithm is provided in Algorithm 1.

Generating Candidate Hypotheses Using iProver. If the goal is not reach-
able (i.e. T � G) iProver abduces candidate hypotheses: sets Hi such that
∀i (T ∧ Hi � G). This is done by reverse consequence finding (T ∧ ¬G � ¬Hi).
For this project we extended iProver to include these features, which, not being
specific to biochemical reaction networks, could be used for automated discovery
in other scientific domains by constructing an appropriate FOL model. The form
of the hypotheses, Hi, is a set of clauses expressed in terms of the predicates
described above in Sect. 2.1. It is possible to restrict or guide the reverse con-
sequence finding algorithm in iProver to seek certain types of hypotheses. For
example a hypothesis could be: met(compound, compartment), that compound is
available in compartment. Such hypotheses are challenging to discover because
of the complexity of interaction in these networks.

None of the logical theories resultant from the conversion from Yeast8,
iMM904 and iFF708 was viable given the minimal medium and ubiquitous com-
pounds, even without any gene deletions, meaning one or more of the essential
compounds was not produced. iProver abduced hypotheses consisting of combi-
nations of compounds whose presence would enable viability of the base strain
(deletions for HIS3, LEU2, LYS2, MET17 and URA3), as shown in Fig. 1(A).
We chose the hypothesis with the fewest additional compounds.



LGEM+: A FOL Framework for Automated Improvement of MNMs 635

For ngG inconsistencies there exists a set of essential metabolites not being
produced that empirical data indicate will be produced given the specified geno-
type and conditions—in some sense the pathways in the model are incomplete.
Hypotheses in this scenario are those that repair an incomplete pathway: addi-
tional reactions; annotation of an isoenzyme for knocked out genes; or removal
of reaction annotations. For gNG inconsistencies there is a pathway in the model
that empirical data suggest should be interrupted but is not. Thus hypotheses
in this scenario will be those that interrupt a complete pathway: annotation of
a pathway-critical reaction with a gene that is in the set of knocked out genes;
removal of an isoenzyme annotation; or removal of reactions.

Heuristics for Ranking and Filtering Hypotheses. We filter hypotheses to
only include either: (a) addition of one or more compounds (i.e. containing only
atoms using the met predicate); or (b) the presence of one or more particular
enzyme groups for a reaction (i.e. containing only atoms using the enz predicate).
The motivation is that the subsequent model improvement step (to repair the
pathway) for case (a) would be to add reactions to the model that produce the
hypothesised metabolites, and for case (b) to either identify an isoenzyme for
hypothesised groups or remove the annotation for the deleted gene for one of
these reactions. We also remove hypotheses that introduced availability of one
or more of the target compounds in the cytosol, as this would directly ensure
the goal was reached but is of no scientific value.

We applied two criteria to assess the merit of each hypothesis. Firstly, by
using our FBA constraint method, as shown in Fig. 1(D) and described in
Sect. 2.4. Around half of the hypotheses resulted in infeasible solutions or very
small growth—this means perhaps there might be something else that is missing
from the model, and so we have not got a reasonable hypothesis. The second
criteria was evaluating the impact each hypothesis had on the overall error in
single-gene essentiality prediction, as shown in Fig. 1(E). If the total number of
ngG errors fixed is greater than the number of gNG errors introduced then this
is a good hypothesis. Another, more conservative, approach would be to only
add hypotheses to the model that do not introduce any gNG errors.

A final heuristic was whether hypotheses contained compounds that were
not produced by any reaction in the GEM, meaning adding a suitable reaction
that produces this compound would repair the error. These hypotheses could
be tested experimentally by constructing a deletion mutant, cultivating with
minimal medium and after observing growth, using metabolomic analysis (e.g.
with mass spectrometry) to identify if the hypothesised intermediary metabo-
lite set is present. If there were a reaction already in the GEM that produced
the compound there could be other deficiencies in the model that need address-
ing first, for example gene annotation for those reactions. In this case iProver
abduces hypotheses of case (b) above. Currently LGEM+ can hypothesise to
remove gene annotation, but this could be extended to include a search for an
isoenzyme based on similarity (e.g. sequence similarity) to the knocked out gene.
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Algorithm 1. Abduction using LGEM+

1: procedure AbductionSingleGene
2: H ← ∅
3: for gene in all genes in theory do
4: ˜T ← T � Make a copy of the base theory
5: ˜T ← ˜T \ {gn(gene)} ∪ {¬gn(gene)} � Construct deletant

6: Use iProver to deduce if goal is reachable by identifying if ˜T � G
7: if ˜T � G then � Growth prediction
8: continue
9: else if ˜T � G then � Non-growth prediction

10: if gene is essential then � No growth observed; no error
11: continue
12: else if gene is not essential then � Growth observed; ngG error
13: Abduction of potential hypotheses set Hgene using iProver
14: H ← H ∪ Hgene

15: end if
16: end if
17: end for
18: Filter and rank H =

⋃

gene∈theory

Hgene, according to heuristics, e.g. Section 2.3

19: end procedure

2.4 Constraining Flux Balance Analysis Simulations Using Proofs

Flux balance analysis (FBA) finds a reaction flux distribution, ν, given stoi-
chiometric constraints from the GEM and a biologically relevant optimisation
objective, f(ν), for example maximisation of biomass production [8,18]. FBA
assumes the metabolism is in steady state, resulting in the constraint Sν = 0,
where S is the stoichiometric matrix for the metabolic network and ν is the
reaction flux vector (S ∈ Z

m×n, where m is the number of compounds and n is
the number of reactions in the metabolic network).

maximize
ν∈Rn

f(ν1, . . . , νn)

subject to Sν = 0
νLB
i ≤ νi ≤ νUB

i , i = 1, . . . , n.

Whilst the stoichiometric matrix is fixed, the upper and lower bounds for
each reaction can be set to achieve relevant results. Existing methods to set
these bounds include integrating experimental measurements of fluxes, or using
enzyme turnover rates and availability [4]. We use FBA to assess the feasibility
of proofs found using iProver by: setting reaction bounds based on pathways
activated in the proof; and then solving the resultant optimisation problem. We
are able to do this neatly as both use the same GEM as the knowledge source.
The procedure is outlined in Algorithm 2.

Flux values are measured in mmol g−1
DWh−1 and metabolite concentrations

vary substantially between compounds, so finding a forcing threshold which is
appropriate for all reactions is not straightforward. For our FBA simulations we
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used the Python package cobrapy (version 0.26.3) [6]; in the absence of relevant
documentation on a suitable threshold, we found in a discussion for a MATLAB
implementation of COBRA that a suitable threshold should be set at 1×10−9 [2].

Algorithm 2. Constraining FBA solution given a logical theory T and a goal G

1: function FBAConstrain(GEM, T , G, ν0) � ν0 is minimum flux threshold for
activation

2: Use iProver to find proof of T � G � The goal is reachable
3: i ← 1
4: while i ≤ N do � N is the number of reactions in the GEM
5: if ri active in the proof in the forward direction then
6: νLB

i ← ν0 � Force reactions to have positive flux
7: else if ri active in the proof in the reverse direction then
8: νUB

i ← −ν0

9: end if
10: i ← i + 1
11: end while
12: Solve FBA problem (Sν = 0) with resultant flux bounds
13: return (ν, growthValue, solutionStatus) ∈ R

N × R × {optimal, infeasible}
14: end function

2.5 Sources of Knowledge

The primary source of the knowledge about reactions and associated genes is
the GEM Yeast8 (v8.46.4.46.2) [16]. This was chosen due to its broad coverage
of the reactions and gene associations as well as its specificity to the organism
S. cerevisiae. The other two GEMs used were: iMM904 [17] and iFF708 [7]. (We
include iFF708 as a background knowledge source partly to enable comparison
with previous logical modelling approach [25].) The models are stored using
Systems Biology Markup Language (SBML). The software written to convert
a GEM SBML file to a logical knowledge base is available in the supporting
material, and follows the process described below and shown in Fig. 2.

We use three reference lists of compounds from [25]; these are shown in the
first column of the files on the LGEM+ GitHub repository1 corresponding to:
(1) all compounds deemed essential for growth in S. cerevisiae2; (2) compounds
assumed ubiquitous during growth assumed to be present throughout the cell
regardless of initial conditions, such as H2O and O2

3; and (3) the growth media
for the experiments, in this case yeast nitrogen base (YNB) with addition of
ammonium, glucose and three amino acids (uracil, histidine and leucine)4.

1 https://github.com/AlecGower/LGEMPlus.
2 src/model-files/essential-compounds-{model}.tsv.
3 src/model-files/ubiquitous-compounds-{model}.tsv.
4 src/model-files/ynb-compounds-{model}.tsv.
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Each compound in these lists has an associated Kyoto Encyclopedia of Genes
and Genomes (KEGG) [12] identifier. We matched compounds in the curated
GEMs based firstly on KEGG ID, otherwise using the species name or synonyms.
Some of the compounds we wish to include do not have corresponding entities
in the GEMs used as background knowledge. Therefore there are discrepancies
between the reference lists and the compiled lists.

3 Results

Automated Theorem Proving Software can be Used to Estimate
Single-Gene Essentiality given a Prior Network Model. Using three
GEMs—Yeast8, iMM904 and iFF708—as background knowledge sources we
conducted single-gene deletant simulations to assess essentiality of each gene
and compared against a genome-wide deletion mutant cultivation [9]. Detailed
descriptions of these methods are provided in Sect. 2, and context in the overall
method in Fig. 1(B). A summary of the single-gene essentiality prediction results
is provided in Table 2.

When compared to previous qualitative methods our method showed state of
the art results [25,26]. Yet quantitative prediction using FBA achieves a higher
precision and recall. These error rates indicate how much is still to be learnt
about yeast metabolism. We also found that gene essentiality predictions vary
somewhat depending on the prior.

Simulation times for gene knockouts also appear to scale linearly with the
size of the network. Comparing network size to average gene knockout simu-
lation times for the three GEMs tested, we see that the mean (±1 s.d.) times
for one knockout simulation were: 0.52 s ± 0.09 s for iFF708 (1379 reactions);
0.67 s ± 0.12 s for iMM904 (1577 reactions); and 1.46 s ± 0.32 s for Yeast8 (4058
reactions).

Abductive Reasoning Allows for Identification of Possible Missing
Reactions. We apply the LGEM+ abduction procedure to model improvement,
here demonstrated on the Yeast8 model. For each of the 41 ngG errors in the
single-gene deletion task, we generated candidate hypotheses according to meth-
ods described in Sect. 2.3. In total we generated 2094 unique hypotheses; some
hypotheses would result in an error correction for several genes. We ranked and
filtered these hypotheses according to domain-specific heuristics, finding 681 of
these were valid, i.e. only containing met (633) or enz (48) predicates. The FBA
evaluation outlined in Sect. 2.4 indicated 534 hypotheses that could be balanced
by the reactions forced in the model, 118 of which were valid. There were 14
hypotheses that were valid and also resulted in a net improvement on the single-
gene prediction task.

Strict Essentiality Criteria and Incomplete Annotation may Explain
ngG and gNG Inconsistencies. If just one essential compound is not pro-
duced we have no growth. One result of this setup is a relatively low precision
in the single-gene essentiality prediction. Of the 72 deletions predicted inviable
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Table 2. Comparative prediction results for single-gene essentiality using LGEM+

across three background knowledge sources: Yeast8 (v8.46.4.46.2); iMM904; and
iFF708, with comparison to: (a) an FBA-simulation with a viability threshold on
growth rate set at 1×10−6h−1 (according to [16]); and (b) another qualitative prediction
method, the “synthetic accessibility” approach taken by Wunderlich et. al. [26]. The
empirical data used as truth data for these statistics were taken from a genome-wide
screening study using a minimal medium [9]. The FOL model performance represents
an improvement on previous qualitative method.

Base GEM Yeast8 iMM904 iFF708 Yeast8 (FBA) Syn. Acc. [26]

# predictions (#genes in GEM) 1056 (1150) 827 (905) 566 (619) 1068 (1150) 682

NG Recall (ngNG/*NG) 0.193 (31/161) 0.266 (33/124) 0.140 (14/100) 0.447 (72/161) 0.119 (14/118)

NG Precision (ngNG/ng* ) 0.431 (31/72) 0.478 (33/69) 0.778 (14/18) 0.459 (72/157) 0.292 (14/48)

gNG Rate (gNG/*NG) 0.807 (130/161) 0.734 (91/124) 0.860 (86/100) 0.553 (89/161) 0.881 (104/118)

ngG Rate (ngG/*G) 0.046 (41/895) 0.051 (36/703) 0.009 (4/466) 0.094 (85/907) 0.060 (34/564)

F1 score 0.266 0.342 0.237 0.453 0.169

Shorthand : *NG-observed no growth; *G-observed growth; ng* -predicted no growth.
(Note that the performance statistics for the synthetic accessibility method are taken
directly from the authors’ report so there may be a difference in truth data to those
used to evaluate our model.)

by our model, 41 of these are shown to result in experimentally viable mutant
strains (ngG errors).

For several genes in the L-arginine biosynthesis pathway the only essential
metabolite not reachable in the model was L-arginine. These resulted in ngG
errors despite the pathway structure and previous empirical evidence showing
that null mutants for genes in this pathway (e.g. for ARG1 [3]) are auxotrophic
for L-arginine (i.e. L-arginine was not produced). These results demonstrate that
the model can successfully identify behaviour of the metabolic network consistent
with other experimental evidence and not the genome-wide screen results [9].
These cases are candidates for experimental testing, and highlight the potential
of such models to inform laboratory experimental design and research direction.

In the Yeast8 model there are 4058 reactions, 1425 (35%) of which have no
enzyme annotation and 540 (13%) are annotated with a set of isoenzymes that
do not have a specific gene in common. Thus nearly half of all reactions will not
be affected by single-gene deletions, which is likely to account for a portion of
the 130 gNG inconsistencies in LGEM+ single-gene essentiality predictions.

Pathways Output from LGEM+ Overlap with FBA Simulations. In the
case of predicting growth, LGEM+ outputs reaction pathways. FBA simulations
output a reaction flux distribution, and from this we can use a flux threshold
for reaction activate to obtain reaction pathways. When comparing reaction
pathways obtained from both methods, for each deletant simulation just over
50% of reactions in the LGEM+ derived pathways are also active in the FBA
pathways. However, only around 30% of reactions in FBA derived pathways are
also active in the LGEM+ derived pathways.

Using pathways derived from the FBA constraint method described in
Sect. 2.4, we investigated the gNG errors. Of the 130 errors, 50 of them resulted in
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pathways that the FBA method indicated were unfeasible (i.e., they resulted in
low or zero growth). This would mean that by including this constraint method in
the LGEM+ framework we could eliminate these errors. However doing so would
also falsely predict 56 viable deletant strains as inviable (new ngG errors).

4 Discussion and Conclusion

Scientific discovery in biology is difficult due to the complexity of the systems
involved and the expense of obtaining high quality experimental data. Auto-
mated techniques that make good use of background knowledge, of which GEMs
are prime examples, will have a strong starting point. LGEM+ seeks to do just
that by using FOL combined with a powerful theorem prover, iProver.

We efficiently predicted single-gene essentiality in S. cerevisiae using a first-
order logic (FOL) model. Our method showed state of the art results compared
to previous qualitative methods, yet quantitative prediction using FBA achieves
a higher precision and recall.

We designed and implemented an algorithm for the abduction of hypothe-
ses for improvement of a GEM. We found 633 hypotheses proposing availability
of compounds in specific compartments, and therefore indicate possible missing
reactions, 118 of which were validated through FBA constraint and 14 of which
resulted in improvements in the single-gene essentiality prediction task. These
heuristics help to select more promising hypotheses for experimentation; further
selection will be informed by viability or cost of experiment design. We intend
to test these hypotheses using the robot scientist Genesis, which is based around
chemostat cultivation and high-throughput metabolomics. As we scale the sys-
tem we can adjust parameters in the heuristics, or introduce new heuristics, to
return only the most promising hypotheses.

Measuring performance statistics relative to the number of genes in a model,
rather than the number of genes in the organism, presents some challenges when
designing a learning process to improve this performance (e.g. GrowMatch [15]).
This highlights the need for better model assessment criteria to drive abduction.
We have attempted here to provide an example with the constraint of FBA
solutions. Future work could certainly be directed to defining such criteria and
integrating them into LGEM+.

The logical theory developed here was focused on efficient inference on bio-
chemical pathways. A challenge for future development is to extend the first-
order vocabulary to improve the power and performance of LGEM+. Extending
the vocabulary could mean: including more predicates, increasing the arity (num-
ber of arguments) of predicates, and introducing other logical clause forms. All
to better encode biological processes, for example more detail regarding enzyme
availability, integration of gene regulation and signalling or introducing time-
dependent processes. Aligning the logic more closely with existing ontologies, for
example the Systems Biology Ontology (SBO), would ensure the theory remains
useful and semantically precise as it is extended. This is a common challenge
across the scientific discovery community as we move further toward joint teams
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of human and robot scientists—ontologies provide a common language. Using
FOL allows us to work toward connecting LGEM+ with external knowledge
bases.

The best way to test hypotheses is through in vivo experimentation. Inte-
grating LGEM+ into an automated experimental design process would enable
the next generation of robot scientists.
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