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For a Fistful of Qubits:
Computational Quantum Chemistry on Near-Term Quantum Computers

MÅRTEN SKOGH

Department of Chemistry and Chemical Engineering
Chalmers University of Technology

Abstract

Quantum computing has been touted as a great new frontier of computation, pushing the
limits ofwhatwe considerwithin reach of computation. While not all problems are expected
to be efficiently solved by a quantum computer, quantum chemistry is among those where
many have speculated on near-term quantum advantage. A leading approach to near-term
advantage comes in the form of variational quantum algorithms. In particular, variations of
the Variational Quantum Eigensolver (VQE) algorithm form popular choices for chemistry
on noisy quantum hardware.

This thesis dives into the topic of quantumcomputing in the noisy-intermediate scale era
using variational quantum algorithms, the VQE in particular. Leveraging both classical sim-
ulations as well existing quantum computers, challenges of near-term quantum computing
are explored. A parameter transfer approach is tested, aimed at helping speedup optimiza-
tion variational parameters; an error mitigation strategy requiring close to no overhead is
developed to reduce errors; and to help gauge the quality of quantum calculations beyond
the point of quantum advantage, the topology of the electron density is analyzed. In addi-
tion, the application of near-term quantum computers to non-Born–Oppenheimer problems
is explored, both for static anddynamic cases. The extension to the non-Born–Oppenheimer
opens for new qubit reduction schemes which are analyzed.

Exploration of the limits of near-term quantum hardware and algorithms forms a com-
mon thread among the topics investigated. While quantum advantage still remains out of
grasp for current generations of quantum computers, hope for near-term advantage remains.
By pushing the boundaries, useful quantum computing might come one step closer.

Keywords: computational chemistry, quantum computation, variational quantum algo-
rithms, quantum error mitigation, nonadiabatic processes
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“I wish to God these calculations had been executed by steam.”

— Charles Babbage
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CHAPTER1

Introduction

Chemistry is fundamental to all life on Earth, and humans are no exception. On the con-
trary, we might be even more dependent on chemistry than any other species that has ever
called this planet home. “Better living through chemistry” might as well have been the slo-
gan for humanity1. Whether it be the proteins in our bodies or the medicines we design to
interact with these, the combustion of fuels for energy or the redox reactions that power our
smartphones; chemistry forms a crucial foundation for our modern way of life.

The way by which useful chemicals were found was long dominated by chance discov-
eries. Someone mixed two or more things (usually involving substantial heating), the result
showed interesting properties andwas passed onto other proto-chemists [2]. While it to this
day remains important to mix elements and molecules together to see what comes out, we
have evolved our selection processes for these substances through a thorough understand-
ing of the underlying principles guiding the formation of new substances. While this under-
standing can help the experimental chemist to mix substances based on so-called chemical
intuition [3], it often requires fairly complex experiments that take time and resources. Mod-
ern computers offer chemists a powerful complement to experiments that can be both faster
and cheaper [4]. Calculations can also offer new insight into the quantumworld of chemical
reactions by extracting properties that are challenging to obtain in the lab.

By turning the theoretical work ofmany generations of chemists into computer code, the
possibilities for new and exciting predictions have opened up. As we strive for molecules
andmaterialswith ever better tailored properties, the demand formore computation follows.
This hunger for ever more powerful calculations has largely been satiated by the simulta-
neous increase in computational power, eloquently predicted by Gordon Moore to roughly
double every two years; the now famousMoore’s law [5]. WhileMoore’s lawhasmore or less
held true forwell over half a century, its end has time and time again been predicted to be just
around the corner. Even though these predictions have so far not turned out true, there are
physical limits to the exponential growth of “cramming”2 transistors onto silicon. Sooner
or later, the smallest components will reach the size of atoms and the current methods for
controlling the 1’s and 0’s will no longer work [6–8]. At this scale, quantum effects dominate

1“Better Things for Better Living... Through Chemistry” was a slogan adopted by the company Du Pont in
1935 [1]. It is often quoted as simply “Better living through chemistry”.

2Cramming is the actual word used by GordonMoore in 1965 in his article “Cramming more components
onto integrated circuits”.

1



CHAPTER 1. INTRODUCTION

the properties of matter, leading to quantum effects that are detrimental to the type of com-
putation we today rely on. Thus, the quantum realm puts a limit on the theoretical power of
our current model of computation. Perhaps paradoxically, the same quantum effects might
act to allow a new type of computer, vastly more powerful for certain calculations.

The initial ideas of using quantum effects in computing were put forward in the early
1980’s [9, 10]3. Since then, the development of algorithms and hardware have both taken
off. Already at the time of writing, a plethora of quantum devices and software are available
for researchers, engineers, andhobbyists alike to get their handswet in this burgeoning field.
Nonetheless, we have yet to see a useful quantum computation take place on a quantum
computer, although terms such as quantum supremacy and quantum advantage have been
used from time to time [11, 12].

This thesis should be seen as a child of its time, a time of much hype and speculation, of
quantum apostles and classical skeptics. It has been awork originating in the space between
academia and industry, in the overlap of physics, chemistry, and computer science. Working
with the near-term applications in focus, trying to push the abilities of existing and soon-
to-come hardware. To this end, an array of possible avenues have been pursued, and the
structure of the thesis has beenmade to put the various topics explored into a larger context.

The chapters have been written to accommodate readers coming from different back-
grounds, going into most of the theoretical background needed to understand the research
presented later on. Chapter 2 gives a background to the fundamental quantum physics,
chemistry, and computation common to all of the subsequent chapters and all appended
papers. The following chapters dive into topics encompassing the research presented in pa-
pers II–III. Chapter 3 focuses on the problem of optimizing variational quantum algorithms,
and how one can improve their convergence. Chapter 4 takes a look at the perhaps most
challenging part of quantum computing: the noise. Chapter 5 raises the question how one
can gauge the quality of a quantum simulation as we move towards a situation where a clas-
sical calculation can no longer be used for validation. Chapter 6 discusses the relaxation of
the Born–Oppenheimer (BO) approximation, and the simulation of quantum dynamics on
quantum computers. Chapter 7 provides a short summary of the appended papers. Finally,
Chapter 8 offers concluding remarks and an outlook on the future of the field.

1.1 Classical, Quantum, and Conventional

Writing on this topic has proven an interesting exercise in phrasing oneself correctly. I often
find myself writing phrases such as “classical quantum chemistry”, which on a second read
through baffles even the author. I will, therefore, lay forth some conventions below, which
I hope will ease the reader’s experience, and spare myself from further baffling.

Classical Used as to distinguish from the idea of “modern” physics and chemistry, i.e.,
theories based on quantumor relativity theory. Classical will also distinguish between
the ideas of classical and quantum computing.

3However, the real breakthrough of quantum computing came with the discovery of factorization on quan-
tum computers, discovered by Peter Shor in 1994, referred to as Shor’s algorithm. This breakthrough threat-
ened to break the RSA encryption scheme, which is heavily dependent on the use of large prime factors and
the cost of factorization.

2



1.2. CALCULATION, SIMULATION, AND EMULATION

Quantum Aword that will be used to both refer to the idea of quantum chemistry as well
as quantum computing.

Conventional Using a phrase such as “classical quantum chemistry” has proven confus-
ing to many a reader. To mitigate some confusion, the word conventional chemistry
calculations will be used to refer to classical computing applied to quantum chemistry
problems.

1.2 Calculation, simulation, and emulation

An additional duo of words with similar meaning are formed by calculation, simulation, and
emulation. In this thesis, a calculation will refer to the execution of an algorithm to yield a
resulting value. Simulation, on the other hand, is the act of mimicking a physical system on
a machine, quantum or classical. The term emulation will be used to refer explicitly to the
use of a classical computer to simulate (emulate) a quantum computer.

Calculation The execution of an algorithm in order to obtain a specific value.

Simulation The explicit attempt to imitate the behavior of a physical system using a com-
puter of any sort.

Emulation Use of a classical computer to simulate a quantum computer.

3
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CHAPTER2

Quantum, Computing, and Chemistry

Quantum computing is often seen as heralding a new era in computational chemistry, al-
lowing for solutions to classically intractable problems [13]. While this is true in the fault-
tolerant regime [14], the current generation of Noisy Intermediate-Scale Quantum (NISQ)
computers do not have the same theoretical underpinning [15]. Contemporary quantum
computation has more in common with the advent of classical computing than the smart-
phones and high-performance computational clusters we today take for granted.

The century or so that classical computers have been available has given us an excep-
tional set of tools and tricks to help deal with the otherwise extremely hard problem of sim-
ulating quantum systems. While these developments have been of utmost importance to
chemistry, and science in general, they also offer stiff competition to any up-and-coming
computational method wishing to prove itself. Exponential speedup is theoretically guaran-
teed for certain quantum algorithms and problems [16, 17], see for example Shor’s algorithm
for integer factorization [18, 19]. However, the cases where this speedup exists often come
with caveats. For example, the quantum phase estimation algorithm for extracting ground
state energies requires an initial overlap with the ground state solution that might not be
trivial to achieve [14].

This chapter will go through most of the underlying theory, laying the foundation for
later chapters.

2.1 Quantum Mechanics and Quantum Chemistry

Fundamental to modern theoretical chemistry, quantum mechanics has been hailed as the
most accurate theory of all time [20]. This accuracy also applies to the properties and behav-
iors of atoms andmolecules. Although the equations needed tomodel these behaviors often
are deceivingly concise, any numerical evaluation is, for all but the smallest systems, infeasi-
ble. The inability to accurately simulate quantummechanical systemswas well-known early
on in the development of quantum theory. Paul Dirac famously stated [21]

5



CHAPTER 2. QUANTUM, COMPUTING, AND CHEMISTRY

The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be solvable. It, therefore, be-
comes desirable that approximate practical methods of applying quantum
mechanics should be developed, which can lead to an explanation of the
main features of complex atomic systems without too much computation.

“

”

As mentioned in the previous chapter, these initial problems have been offset to some
degree by the introduction of computers. Of equal, or perhaps even greater, importance have
been many of the theoretical developments and approximations implemented to reduce the
computational load.

2.1.1 Dirac Notation and Second Quantization

As we add more particles to our calculations, we soon start to see that the work required to
solve the equations becomes increasingly more demanding. We call the resulting problem a
many-body (or 𝑛-body) problem, and these, except for a select number of cases, do not have
a closed-form solution.

One insight that greatly aids in the treatment of many quantum mechanical problems
is the concept of indistinguishability. indistinguishability tells that quantum particles with
equal quantum numbers are fundamentally impossible to distinguish. That is to say, all elec-
trons with the same spin are indistinguishable, the same goes for protons and neutrons, or
any elementary particle. If all particles are the same, then there is no need to keep track of in-
dividual particles. Instead, we can look at occupation of quantum states. In fact, occupation
number representation is a phrase commonly used to refer to this view of quantummechan-
ics, another common name is second quantization. In this thesis and in all the appended
papers, the second quantization approach is utilized.

Fundamental to the occupation representation is the idea of a basis set, a set of functions
that canbeoccupied. Thebasis set is a set of functions, {𝜙1, … , 𝜙𝑙, … , 𝜙𝑁}, that forms abasis
for theHilbert spacewhere thewave function is defined. Wewillmakeuse of braket notation
to describe our quantum states, where the state vector is given by the ket, | ⋅ ⟩, defined as a
sum of weighted basis states

Ψ(𝒓) → |Ψ⟩ = ∑
𝑘

𝑐𝑘 |𝑛1, … , 𝑛𝑙, … , 𝑛𝑁⟩ (2.1)

where 𝑐𝑘 is theweight of eachbasis state. Theprobability interpretationof thewave function
requires that

∑
𝑘

|𝑐𝑘|2 = 1. (2.2)

The corresponding bra, ⟨ ⋅ |, defines a covector to | ⋅ ⟩ as

⟨Ψ| = |Ψ⟩† . (2.3)

The ket, |𝑛1, … , 𝑛𝑙, … , 𝑛𝑁⟩, collects information of the occupation of the basis functions 𝜙𝑙
as 𝑛𝑙. Since we will be primarily concerned with the treatment of fermions, and fermions

6



2.1. QUANTUM MECHANICS AND QUANTUM CHEMISTRY

must fulfill the exclusion principle, the occupations must be either 0 or 1, i.e., 𝑛𝑙 ∈ {0, 1}.
This binary representation makes for a convenient shorthand notation (which also applies
to qubits)

|𝑛1, … , 𝑛𝑙, … , 𝑛𝑁⟩ = |𝑚⟩ , 𝑚 = ∑
𝑙

𝑛𝑙2(𝑙−1). (2.4)

Another important concept in second quantization comes in the form of ladder opera-
tors, or creation and annihilation operators, 𝑎†

𝑙 and 𝑎𝑙. These operators act on a state and
the occupation, 𝑛𝑙, according to

𝑎†
𝑙 |0𝑙⟩ = |1𝑙⟩ , 𝑎†

𝑙 |1𝑙⟩ = 0 (2.5)

𝑎𝑙 |1𝑙⟩ = |1𝑙⟩ , 𝑎𝑙 |0𝑙⟩ = 0 (2.6)

Two terms that will be used from time to time are Hilbert and Fock space. The Hilbert
space is a linear (vector) spacewith a normdefined by an inner product [22]. TheFock space,
in turn, is a Hilbert space spanned by the occupation basis, {|𝑘⟩} [23]. A common term used
in chemistry is active space, which seems to, more or less, correspond to the Fock space.

2.1.2 Chemical Basis Sets and Orbitals

Asmentioned, in the second quantized picturewe are interested in describing our atoms and
molecules in terms of basis functions, 𝜙𝑙, that approximate the truemolecular wave function.
The conventional way of constructing a molecular basis is to start with a set of Atomic Or-
bitals (AOs) which are then linearly combined to formMolecular Orbitals (MOs). Both the
AOs and MOs form a basis for the same Hilbert space.

According toKato’s cusp condition, the electrondensitymust have cusps1 at the location
of the atomic nuclei [24], a feature that also has to be present in the underlying orbitals. A
type of orbital that satisfies Kato’s condition is the Slater-type orbital (STO) [25]. However,
the overlap of STOs is computationally costly to calculate accurately. It is worth noting that
there is no expected quantum advantage for these integral evaluations. The radial part of
the STO is given by

𝑅(𝑟) = 𝐶 𝑟𝑛−1𝑒−𝜁𝑟 (2.7)

where 𝑛 corresponds to the natural quantum number, 𝐶 is a normalization constant, and 𝜁
relates to the nuclear charge.

A common compromise is to approximate the expensive STOswith the help of a number
of Gaussian functions centered on the atomic nuclei, STOs. These approximated STOs are
referred to as Slater-type orbital approximated as𝑛Gaussian functions (STO-𝑛G),where𝑛 is
the number of Gaussian functions used in the approximation. The STO-𝑛G is an example of
aminimal basis set, whereminimal refers to the use of a single basis function to describe each
orbital occupied in the atom [23]. For modern conventional calculations, minimal basis sets
are no longer seen as valid for most types of calculations, and a basis such as a correlation-
consistent basis set (cc-pV𝑛Z) [26] is more commonly used [13]. These larger basis sets
introduce more basis functions to describe the AOs, allowing for more flexibility, but also
increasing the size of the corresponding Hilbert space.

As mentioned, a common approach to go from AOs to MOs is the Linear Combination
of Atomic Orbitals (LCAO) which are combined to form MOs [27]. The MOs form the

1A cusp is a point on a curve at which, if you move along the curve, you would have to abruptly reverse
direction.
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basis set we then use to form our state |Ψ⟩. Finding the linear combinations is often done
using the Hartree–Fock (HF) method, which optimizes the orbitals to give a single Slater
determinant minimal solution [23].

Inmany sizeable chemistry calculations, a substantial number of theMOs either become
close to fully occupied or completely unoccupied. To reduce computational load, one can
limit the number of orbitals under consideration, the active space. A common assumption
is to fill the core MOs and freeze these, and similarly remove the MOs with the highest
HF energy. Active spaces are often represented as a tuple (𝑒, 𝑜). Here, 𝑒 is the number of
electrons and 𝑜 is the number of spatial orbitals in the active space.

While a minimal basis set is today far from being considered accurate, it is widely used
in quantum computing, owing to the low number of qubits required to represent it. Some
argue that minimal basis sets should not be used in quantum computing as they have long
been superseded by more accurate basis sets. On the other hand, one could argue that with
the limited number of qubits available, a minimal basis set is more suited to the problems
being considered. Using a large basis will, in many cases, require reducing the active space
substantially.

In addition to the basis set approaches described above, other methods exist to create an
approximate basis for the wave function, such as the basis set-free approach of Kottmann et
al. [28].

2.1.3 The Molecular Hamiltonian

To accurately describe chemistry, a quantum mechanical approach is necessary. What ul-
timately dictates the behavior of atoms and molecules is the molecular Hamiltonian, �̂�𝑚𝑜𝑙.
Themolecular Hamiltonian describes the kinetic and potential energy of all interacting par-
ticles (nuclei and electrons) in the molecule, where one considers one- and two-body terms

�̂�𝑚𝑜𝑙 = �̂�𝐴 + �̂�𝐴𝐵 = ∑
𝑝𝑞

ℎ𝑝𝑞 𝑎†
𝑝𝑎𝑞 + ∑

𝑖𝑗𝑘𝑙
ℎ𝑝𝑞𝑟𝑠 𝑎†

𝑝𝑎†
𝑞𝑎𝑟𝑎𝑠 (2.8)

Often themolecular Hamiltonian is further divided into nuclear and electronic terms, as
well as all cross terms resulting from their interaction

�̂�𝑚𝑜𝑙 = �̂�𝑁 + �̂�𝑁𝑁 + �̂�𝑁𝑒 + �̂�𝑒𝑒 + �̂�𝑒. (2.9)

Here, �̂�𝑁 and �̂�𝑒 correspond to nuclear and electron kinetic energies, and �̂�𝑁𝑁, �̂�𝑁𝑒, �̂�𝑒𝑒
to nuclear-nuclear, nuclear-electron, and electron-electron interactions, respectively.

The coefficient ℎ𝑝𝑞 and ℎ𝑝𝑞𝑟𝑠 in Eq. (2.8) are integrals on the form

ℎ𝑝𝑞 = − ∫ 𝜙∗
𝑝(𝒓)1

2
∇2𝜙𝑞(𝒓) d𝒓 (2.10)

ℎ𝑝𝑞𝑟𝑠 = ∫ 𝜙∗
𝑝(𝒓)𝜙∗

𝑞(𝒓) 𝑍𝐴𝑍𝐵
|𝒓𝑨 − 𝒓𝑩|

𝜙𝑟(𝒓)𝜙𝑠(𝒓) d𝒓, (2.11)

where 𝜙𝛾, 𝛾 ∈ {𝑝, 𝑞, 𝑟, 𝑠} are spin orbitals.
A common approach to simplify and reduce the computational cost of molecular cal-

culations is to impose the so-called Born–Oppenheimer (BO) approximation, named after
physicists Max Born and J. Robert Oppenheimer. The BO approximation, in essence, re-
sults from the separation of time scales that the nuclei and electrons move at, resulting from
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the large difference in mass. Consequently, the electrons are able to almost instantaneously
adapt to anymovement of the nuclei. Aswill be discussed inChapter 6 there are caseswhere
this approximation breaks down. By applying the BO approximation, we reduce our molec-
ular problem to that of the electronic structure problem, which only concerns itself with
the task of optimally constructing the electron wave function, interacting with an effective
potential of the nuclei. Eq. 2.9 then simplifies to

�̂�𝑚𝑜𝑙 = �̂�′
𝑒 + �̂�𝑒𝑒 + 𝑉𝑁𝑁. (2.12)

where �̂�′
𝑒 combines the kinetic energy 𝐻𝑒 and the nuclear potential interaction with the

electrons. The nuclear-nuclear interaction is demoted from an operator to a classical poten-
tial 𝑉𝑁𝑁, losing its “hat” ( ̂) in the process. The BO approximationwill be discussed inmore
detail in Chapter 6, where the effects of relaxing the BO approximation are also discussed.

2.2 Quantum Computation

Quantum computation forms an extension of the classical theory of computation, opening
up new possibilities, and bringing some seemingly unsolvable problems closer to a solution.
While the quantum computer can, in theory, do what a regular computer can, the idea that
quantum computers will replace its classical counterparts in the near term is far from real-
istic. Nevertheless, the idea of applying quantum computers to quantum mechanical prob-
lems, such as the electronic structure problem in Section 2.1.3, is still a leading candidate
for useful quantum computation [13, 29].

2.2.1 Complexity in Computation

As the motivation behind quantum computation primarily comes from the promise of solv-
ing certain problems faster than would be possible classically. What is fast and what is slow
is often determined through the evaluation of algorithmic complexity. Complexity in the
context of algorithms usually refers to one of two things: time complexity or space complex-
ity. Time complexity concerns itself with the study of the scaling behavior of algorithms as
the problem size grows, while space complexity similarly describes the amount of memory
required for different problem sizes.

The time complexity of an algorithm, 𝑇 (𝑛), is often hard to determine exactly. Instead
one opts to find an upper limit to the time complexity for large problem (𝑛 → ∞) instances,
𝒪(𝑔(𝑛)), where the function 𝑔(𝑛) provides an asymptotic upper bound, i.e. lim𝑛→∞ 𝑇 (𝑛) ≤
𝑔(𝑛), and the lower complexity limit, Ω(ℎ(𝑛)), such that lim𝑛→∞ 𝑇 (𝑛) ≥ ℎ(𝑛)2. These are
usually referred to as the “worst” and “best” case scaling, respectively. Often, most of the
focus is given to the upper bound, 𝒪(𝑛) as the worst case is the limiting factor [16, 30].

Quantum advantage, or quantum supremacy, is defined as problems where a quantum
computer could solve a previously exponential problem in polynomial time. That is, taking

2This is a bit hand-wavy, proper definitions are

𝒪(𝑔(𝑛)) ⟹ lim sup
𝑛→∞

|𝑇(𝑛)|
𝑔(𝑛) < ∞

Ω(ℎ(𝑛)) ⟹ lim inf
𝑛→∞

|𝑇(𝑛)|
𝑔(𝑛) > 0

9
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a problem from𝒪(𝑒𝑛) on a classical computer, to𝒪(𝑛𝑐) on a quantummachine. Other advan-
tages exist as well, such as a quadratic speedup for Grover’s algorithm, 𝒪(𝑛) → 𝒪(

√
𝑛) [31].

In addition to the worst-case analysis of the algorithm, the speed of the underlying hard-
ware also plays and important role when trying to predict a cross-over point, i.e., a point
where a quantum computer will outperform a classical computer. Often the term quantum
resources is used to refer to the qubit and gate requirements needed to implement certain
algorithms, forming an additional measure of complexity.

2.2.2 Quantum Information

Quantum computing encompasses and extends upon classical computing, meaning that any
computation that can be performed on a classical computer can also be implemented on a
quantum computer [16]. As a consequence, most of the classical information theory devel-
oped since the 1920s by the likes of Alan Turing [32] and Claude Shannon [33], also applies
to quantum computers. For this reason, the field of quantum computation forms an overlap
of computer science and quantum physics, with terminology and concepts deriving from
both.

The fundamental unit of information for quantum computing is the qubit (quantum bi-
nary digit, or quantumbit). The qubit, like its classical counterpart, has twoorthogonal states
|0⟩ and |1⟩. However, unlike its classical counterpart, all combinations

|Ψ⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ (2.13)

are also valid qubit values, under the one restriction that

|𝑎|2 + |𝑏|2 = 1. (2.14)

Note that 𝑎 and 𝑏 are allowed to be complex values.
The state of a single qubit can be visualized using theBloch sphere, named after physicist

Felix Bloch [34]. To see how this visualization works, we will re-express equation 2.13 in a
polar form. Since 𝑎 and 𝑏 are complex numbers, we can rewrite these as 𝑎 = sin(𝜃/2), 𝑏 =
cos(𝜃/2)𝑒𝑖𝜙 which gives

|Ψ⟩ = sin
𝜃
2

|0⟩ + cos
𝜃
2

𝑒𝑖𝜙 |1⟩ . (2.15)

The polar form of Eq. 2.15 naturally maps to a sphere of radius 1, see Figure 2.1. Ameasure-
ment of a state on the Bloch sphere corresponds to projecting the state onto a line passing
through the origin. One often assumes that this line is the 𝑧-axis, commonly referred to as
the computational basis.

Assuming that onemeasures in the computational basis, the act ofmeasuringwill always
yield the result |0⟩ or |1⟩, i.e., a single measurement collapses the state and yields one bit of
information.

While the Bloch sphere and the state vectors are commonly seen in quantum compu-
tation, these representations primarily deal with pure states. As we introduce noise and
interactions with the environment, we need another complement to the pure state repre-
sentation. For so-called mixed states, an alternative representation comes in the form of
density matrices, 𝜌, defined from an ensemble of states |𝜓𝑙⟩ where each state is associated
with a probability 𝑝𝑙 [16, 22]

𝜌 = ∑
𝑙

𝑝𝑙 |𝜓𝑙⟩ ⟨𝜓𝑙| . (2.16)
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Figure 2.1: The Bloch sphere. The two states on the poles of the Bloch sphere form
the computational basis, |0⟩ and |1⟩. Points on the equator (yellow) correspond to equal
superpositions, |𝑎| = |𝑏| = 1√

2 . Single measurements of the qubit project the qubit to one

of the measurement eigenstates. Several averaged measurements of a state 𝑎 |0⟩ + |1⟩ (blue
dot) corresponds to a projection onto the measurement axis (green diamond), the ̂𝑧-axis in
this case.

The density matrix representation can also be used to represent pure states. In the case
of pure states, the density matrix is can be defined as

𝜌|Ψ⟩ = |Ψ⟩ ⟨Ψ| . (2.17)

2.2.3 What Quantum Computing Can and Cannot Do

Quantum computing is often described to the public as a panacea to all computational ail-
ments. Everything from helping to solve climate change [35], to faster gaming [36], financial
trading [37] and faster than light communication [38] are often cited as lyingwithin the grasp
of future quantum computers. While some of the things being touted are true, many things
are not. The impact of quantum computing will most likely not be as far-reaching as that
of the classical computer, simply due to the remarkable efficiency of the classical computer.
There are only a few things that a classical computer cannot do that a quantum computer
might be able to do better. However, those things happen to be of great importance.

2.3 Quantum Algorithms for Quantum Chemistry

The new quantum revolution offers two major avenues for simulating quantum mechanical
systems. The first is to construct another quantummechanical system that behaves like the
system we are targeting, but for some reason, is easier to control, manipulate, or study. Us-
ing an approach like this is referred to as quantum simulation [39]. The second option is to
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perform calculations using a quantum computer. While this thesis is primarily concerned
with the latter, one can argue that the current generation of quantum computers lands some-
where between these two; not being genuine simulators, while simultaneously falling short
of being true universal computational machines.

The descriptions herein will be limited to gate-based quantum computing and make
heavy use of the circuit model for quantum computing [40, 41]. While the gate-based cir-
cuit model is themost common abstraction, there are other types of quantum computational
models that can be utilized, such as measurement based [42], continuous variable [43], and
adiabatic quantum computing [44] to mention a few.

2.3.1 The Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) is a so-called variational quantum algorithm,
designed to solve quantum mechanical eigenvalue problems on NISQ hardware [45]. By
leveraging a parameterized ansatz the VQE allows for finding minimum energies, even in
noise energy landscapes. Often referred to as a hybrid quantum algorithm, the VQE divides
its computational workload between both the classical and quantum computer. The VQE
algorithm is outlined in Figure 2.2. For all the appended papers, the VQE has been the
variational algorithm of choice for identifying ground state solutions.

In a traditional VQE calculation, the algorithm as a whole can be viewed as trying to
transform an initial guess |𝜓𝑖𝑛𝑖𝑡⟩ into the problem ground state |𝜓𝐺𝑆⟩ such that properties
of the ground state can be evaluated. To our help we have a parameterized unitary ansatz
𝑈(𝜽) dependent on the variational parameters 𝜽. In this light, the VQE algorithm can be
seen as the classical minimization problem

min
𝜽

⟨𝜓𝑖𝑛𝑖𝑡 ∣ ̂𝑈†(𝜽)�̂� ̂𝑈(𝜽)∣ 𝜓𝑖𝑛𝑖𝑡⟩ = min
𝜽

⟨𝜓(𝜽) ∣�̂�∣ 𝜓(𝜽)⟩ = min
𝜽

⟨𝐸(𝜽)⟩ (2.18)

where the quantum computer is a black box that, based on the parameters it is fed, evalu-
ates the energies of the trial states. While the VQE is a specific instance of a variational
algorithm, most variational algorithms utilize the optimization loop of Figure 2.2.

Looking at the time complexity of VQE, it is often dependent on the ansatz chosen and
measurement scheme used. For example, theUnitary Coupled-Cluster including Single and
Double excitations (UCCSD) ansatz will scale as 𝒪(𝑛2𝑁4) with the number of orbitals, 𝑛,
and electrons,𝑁, [46] much like conventional Coupled-Cluster including Single andDouble
excitations (CCSD) [47]. Where theVQEdoes offer an advantage is in its ability to represent
the exponential state of an arbitrarywavefunction, something that is prohibitively expensive
on a classical machine.

2.3.2 Problem Encoding

The first part of any calculation on a quantum computer is to decide how to encode the
problemonto qubits. For the electronic structure problem,we seek to use qubits to represent
spin orbital occupations. A common mapping (also called mapping) the Jordan–Wigner
(JW) fermionic encoding [48, 49]. This is a straightforward mapping whereby each qubit 𝑞𝑖
represents one basis function 𝑓𝑖 in the basis set. In the case of one function per orbital, each
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Figure 2.2: A overview of the VQE algorithm. A Quantum Processing Unit (QPU) and a
Classical Processing Unit (CPU) work in tandem to minimize the measured energy. As the
state preparation and ansatz are applied, quantum noise and errors affect the prepared state.
Measurement yields the energy which can subsequently be improved by error mitigation.
A classical optimizer is then used to update the ansatz parameters 𝜽. The figure is adapted
from Paper I.

qubit represents the occupation of an orbital. In short the JWmapping looks like

|𝑓1, 𝑓2, … , 𝑓𝑛⟩⏟⏟⏟⏟⏟⏟⏟
Fermionic state

JW
−→ |𝑗1, 𝑗2, … , 𝑗𝑛⟩⏟⏟⏟⏟⏟

Qubit state

. (2.19)

The next step in the JW mapping is to map also the quantum mechanical operators. In
most cases, it is enough to map the fermionic creation and annihilation operators 𝑎† and 𝑎.

The JW transformation of 𝑎†
𝑟 and 𝑎𝑟 are defined as

𝑎†
𝑟 = (𝑋𝑟 + 𝑖𝑌𝑟)𝑍→

𝑟 (2.20)

𝑎𝑟 = (𝑋𝑟 − 𝑖𝑌𝑟)𝑍→
𝑟 (2.21)

where 𝑋, 𝑌 and 𝑍 are the Pauli matrices (also called the Pauli gates in quantum computing)

𝑋 = [0 1
1 0] , 𝑌 = [ 0 𝑖

−𝑖 0] , 𝑍 = [1 0
0 −1] . (2.22)

The 𝑍→
𝑟 operator makes sure that the resulting encoding is anti-symmetric with respect to

the exchange of any two states. It applies the Pauli 𝑍 gate to all qubits with an index less
than 𝑟,

𝑍→
𝑟 =

𝑟
∏
𝑖=1

𝑍𝑖. (2.23)
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The JW encoding offers a straightforward mapping. However, the 𝑍→
𝑟 operation in

Eq. (2.23) maps a fermionic operator acting on a single spin orbital 𝑖, to a qubit operator
on several qubits. In the worst case, a single 𝑎† or 𝑎 operator maps to an operation on all
qubits.

Other encodings are available for fermionic problems, such as the parity and the Bravyi–
Kitaev encodings [50, 51]. In particular, the parity encoding has found use for electronic
structure problems [52]

|
Spin-up

⏞⏞⏞⏞⏞𝑓1↑, … , 𝑓𝑛𝛼↑,
Spin-down

⏞⏞⏞⏞⏞𝑓1↓ … , 𝑓𝑛𝛽↓⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Fermionic state

parity

−−−→ ∣𝑝1, 𝑝2, … , 𝑝𝑛𝛼
, … , 𝑝𝑛𝛼+𝑛𝛽

⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Qubit state

, (2.24)

where so-called spin-block order has been used in the ordering of fermionic occupations,
i.e., all spin-up orbitals are ordered in one continuous block, followed by a similarly ordered
block of spin-down occupations.

The reason for the adoption of parity encoding primarily lies in the ease of qubit tapering,
i.e., reduction of the number of qubits, corresponding to particle symmetries such as total
particle number and total spin. The parity encoding, as the name suggests, encodes the
parity 𝑝 of the occupation, not the occupation itself. Specifically, each qubit 𝑞𝑖 stores the
parity 𝑝𝑖 of all spin orbitals 𝑓𝑗 for all 𝑗 ≤ 𝑖. We can write this as

𝑝𝑖 = (
𝑖

∑
𝑗=0

𝑓𝑗) mod 2. (2.25)

To understand how the parity encoding helps to reduce the number of qubits, one can
look at Eq. (2.24) and see that for a system with fixed number of electrons (𝑛𝛼 + 𝑛𝛽 =
constant) the total parity, i.e., 𝑝𝑛𝛼+𝑛𝛽

will never change since the sum of all occupations will

be constant. Similarly, for a system with fixed spin (𝑛𝛼 = constant, 𝑛𝛽 = constant) the
parity of the first spin blocks, 𝑝𝑛𝛼

, will remain unchanged.
An alternative parity mapping can also be made where the spin-blocks are encoded in-

dependently as

𝑝𝑖,𝜂 = (
𝑖

∑
𝑗=0

𝑓𝑗,𝜂) mod 2. (2.26)

where 𝜂 ∈ ↑, ↓.
Since the two qubits that correspond to these conserved parities will maintain a con-

stant value, they can be removed from consideration, a process called tapering [52]. The
parity mapping paired with tapering is something we have made use of in most of the ap-
pended papers. In Paper IV, we extend the tapering to also include nuclei, specifically pro-
tons, which is further discussed in Chapter 6. Additional symmetries can also be identified
through more sophisticated analysis [53]. Further discussion on qubit reduction schemes
can be found in Chapter 6 and Paper IV.

2.3.3 Wave Function Ansatz

The ansatz (plural ansätze) in the quantum computational sense is a unitary operation, 𝑈,
that takes an initial state |𝜓0⟩ to a trial state |𝜓𝑡⟩ as

𝑈 |𝜓0⟩ = |𝜓𝑡⟩ . (2.27)
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For NISQ algorithms, one often chooses a parameterized ansatz circuit, 𝑈(𝜃), such that the
parameters can be optimized according to Eq. (2.18).

There are several ways of constructing an ansatz, but one usually divides the ansätze into
chemically-inspired and hardware-efficient ansätze. The hardware-efficient ansätze gener-
ally are constructed in a layered manner, where each layer performs some combination of
entanglement between all qubits, and parameterized rotations of the qubits. The arguably
most common chemically-inspired ansatz is the Unitary Coupled-Cluster (UCC). The UCC
ansatz is defined as the unitary operator

𝑈UCC(𝜽) = 𝑒𝑇 −𝑇 † . (2.28)

The operator 𝑇 is, in turn, defined as a sum of 𝑘-particle operators

𝑇 = ∑
𝑘

𝑇𝑘 (2.29)

where

𝑇1 = ∑
𝑝𝑞

𝜃𝑝
𝑞𝑎†

𝑝𝑎𝑞 (2.30)

𝑇2 = ∑
𝑝𝑞𝑟𝑠

𝜃𝑝𝑞
𝑟𝑠𝑎†

𝑝𝑎†
𝑞𝑎𝑟𝑎𝑠 (2.31)

⋮

Compared to the conventional, non-unitary coupled-cluster operator, the UCC operator
is theoretically the more accurate operator [54]. The conventional coupled-cluster operator
does not preserve the norm of the wave function, and does require normalization, a step that
is exponentially hard on a classical computer. Many additional developments have modi-
fied the UCC approach in order to reduce the number of gates required for implementation.
Among these, the Adaptive Derivative-Assembled Pseudo-Trotter ansatz Variational Quan-
tum Eigensolver (ADAPT-VQE) [55], and those approaches based on it, e.g, [56, 57], are
perhaps the most promising for near-term applications.

Another ansatz with its roots in conventional computational methods is the class of
Quantum Imaginary Time Evolution (QITE) ansätze, primarily the Variational Quantum
Imaginary Time Evolution (VarQITE) which is well suited for NISQ devices. While imag-
inary time evolution has not been used to solve any ground state problem in this thesis, real
time evolution is used in Paper V and discussed in Chapter 6.

Hardware-efficient ansätze come in many shapes and sizes. The focus is often high ex-
pressivity while maintaining a low circuit depth. Rather than translating a conventional
method (such as coupled-cluster) to the quantum computer, hardware-efficient algorithms
use repeated patterns of rotations and entanglement to construct an ansatz that can poten-
tially generate a large number of states. This design draws parallels to the construction of
neural networks, wheremany repeated layers are used to approximate an unknown function.

2.3.4 Suzuki–Trotter Decomposition

Even after the encoding, it is common to find that the operator one wishes to implement is
not a native operation on a quantum computer. An example of this can be an operator

𝑈 = 𝑒𝐴+𝐵 (2.32)
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where 𝐴 and 𝐵 are both Pauli operators. Note that operators of the form 𝑒𝐴 are native
to many types of quantum hardware and can be implemented without approximation. As
such, we would like to express our non-native operation as a series of native operations. For
scalar-valued exponentiation, this is not a problem since 𝑒𝑎+𝑏 = 𝑒𝑎𝑒𝑏. However, unless 𝑒𝐴

and 𝑒𝐵 commute, 𝑒𝐴+𝐵 ≠ 𝑒𝐴𝑒𝐵. One can, of course, ignore this error and approximate the
sum in the exponent as the product 𝑒𝐴+𝐵 ≈ 𝑒𝐴𝑒𝐵 regardless. One can improve on this
approximation by applying a small part 𝐴

𝑛 and 𝐵
𝑛 repeated 𝑛 times. In fact, if one was to let

𝑛 → ∞, the result is exact
𝑒𝐴+𝐵 = lim

𝑛→∞
(𝑒𝐴

𝑛 𝑒𝐵
𝑛 )𝑛. (2.33)

This approximation is known as the first-order Suzuki–Trotter decomposition, also some
times referred to as Trotterization.

Unless otherwise specified, the first-order Suzuki–Trotter decomposition with 𝑛 = 1
will be used in this thesis. The Trotterization error that can be introduced is discussed in
Chapter 6 and showcased in Paper V.
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CHAPTER3

VQE Optimization and Convergence

A major challenge for all variational quantum algorithms is that of large-scale, non-convex
optimization [58]. The large optimization landscapes1 resulting from variational quantum
algorithms are often riddled by local minima [65], and are prone to a phenomena known as
barren plateaus [62, 66–68] The two common variants of ansätze, chemically-inspired and
hardware-efficient, both present benefits and challenges during optimization. While chemi-
cally inspired ansätze often produce a more convex optimization landscape, with lower risk
of localminima, they require deep circuits; their hardware-efficient counterparts, in contrast,
produce compact circuits that in turn can leavemost optimizers trapped in sub-optimal solu-
tions [69]. As quantum circuits will unavoidably need to grow in order to provide any com-
putational advantage, the question of how to efficiently optimize them remains an important
one.

In Papers I and IV, we implement two related warm-start techniques to overcome some
of these challenges. In what follows, the challenge of optimization will be introduced and
the learnings of Papers I and IV will be put into context.

3.1 Cost Landscapes

For a general optimization problem, a cost (or loss) function is what one seeks to minimize,
𝐶(𝜽)2. Minimization of𝐶(𝜽) implies finding the parameters 𝜽 = [𝜃1, … , 𝜃𝑛]𝑇 that minimize
the value of 𝐶(𝜽). More concisely, this process can be expressed as

min
𝜽

𝐶(𝜽) = 𝐶(𝜽∗) = 𝐶∗ (3.1)

where the asterisk is used to indicate the parameters that give the globally optimal cost,
i.e., the exact solution 𝜽∗ and the global minimum 𝐶∗. For many problems in physics and

1While optimization problems encountered in the wild can be extremely high-dimensional — the open-
source large language model Llama from Meta has 65 billion parameters (6.5 × 1010) [59], and GPT-4 from
OpenAI is rumored to have over one trillion (1012) parameters [60] — one often borrows terms from geog-
raphy, (an inherently low-dimensional field), talking about landscapes [61], plateaus [62], and basins [63, 64]
formed by the cost function.

2Whether one wants to minimize a cost or maximize some gain, both problems can be seen as equivalent
by changing the sign of the cost function, 𝐶(𝜽) → −𝐶(𝜽)
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CHAPTER 3. VQE OPTIMIZATION AND CONVERGENCE

chemistry, the cost that one seeks to minimize is the energy, 𝐸. The goal is often finding
the ground state energy, 𝐸0. Expressing the ground state as a minimization problem rests
on the variational principle [22],

⟨𝜓(𝜽) ∣�̂�∣ 𝜓(𝜽)⟩
⟨𝜓(𝜽)|𝜓(𝜽)⟩

= 𝐸(𝜽) ≥ 𝐸0. (3.2)

This principle states that any trial wave function only ever gives an upper bound to the
ground state. The trial wave function can never give an energy lower than the ground state
energy. In other words, the lower the energy, the closer we get to the correct ground state
energy.

Gradient descent (also called steepest descent) algorithms are common approaches to
solving optimization problems like that of Eq. (3.2) [70, 71]. The basis for gradient descent
methods is straightforward: follow the negative gradient. The steepest descent algorithm is
based on iteration, generating new parameters 𝜽𝒊+1 as

𝜽𝑖+1 = 𝜽𝑖 − 𝛼∇𝐶(𝜽𝑖), (3.3)

where 𝛼 ≥ 0 is the step length. Most iterative methods require that an initial guess, 𝜽0 is
provided at the start of optimization. As will be shown in the following section, even though
gradient descent is a very powerful method, it struggles in non-convex cost landscapes.

3.1.1 Local Minima and Basins

While optimization of variational quantum algorithms can encompass many parameters,
large-scale optimization is nothing new, and a plethora of methods and strategies are avail-
able to those in need [72–75]. Nevertheless, the stochastic nature of hybrid quantum al-
gorithms has proven a challenge. The complex optimization landscape and its many local
minima is in part to blame.

Local minima are a common feature of many real world optimization problems. A local
minimum is the smallest solution in some neighborhood of the cost landscape, in contrast to
the global minimum, which is the minimum for the entire landscape. The local minimum is
often surrounded by a basin. The basin is a region of the cost landscape wherein, if one fol-
lows the negative gradient, one always ends up at the corresponding local minimum. These
basins thus trap many gradient-based methods.

An optimization landscape with many local minima is thus challenging to traverse as
conventional gradient descent methods easily get stuck in the local minima. In fact, if the
provided initial guess, 𝜽0, does not lie within the basin of the global minimum, the optimal
solution cannot be found. The importance of the initial guess should thus not be underesti-
mated.

A correct choice of optimizer is often crucial when trying to avoid local minima. Owing
to the prevalence of local minima, many optimizers have been developed to help overcome
the challenges. Examples include stochastic descent optimization algorithms [70, 76–78],
particle swarm optimizers [79, 80], and gradient-free approaches [81]. An optimizer that
has seen frequent use in the appended papers is the Simultaneous Perturbation Stochastic
Approximation (SPSA) [82].
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3.2. THE IMPORTANCE OF A GOOD GUESS

3.1.2 Barren Plateaus

An additional problem that often arises in variational quantum algorithms is that of a van-
ishing gradient, ∇⟨�̂�⟩ ≈ 0. This phenomenon is often referred to as a barren plateau (Fig-
ure 3.1). Here, for some operator �̂�, there is no gradient to follow during optimization. As
noise is added to the flat landscape, the true gradient is almost impossible to evaluate.

The causes for barrenplateaus are plenty: circuit expressiveness andparameter count [67,
68], noise [66, 83], the locality of the cost function [84, 85], and entanglement [86]. Recent
efforts have tried to create a unified theory for barren plateaus, creating a framework that
accounts for the mentioned causes [87, 88].

(a) Non-barren landscape. (b) Barren landscape.

Figure 3.1: Two-dimensional cost landscapes. A non-barren (a) landscape maintains a
non-zero gradient throughout most of its domain. A barren (b) landscape includes vast bar-
ren plateaus where the gradient is close to zero. The problem of barren plateaus worsens
with the dimensionality of the problem, like finding a needle in an 𝑑-dimensional haystack.

While barren plateaus are common in variational algorithms, there are several strategies
to try to avoid them. One such strategy is to find a proper starting point.

3.2 The Importance of a Good Guess

In contrast to classical neural networkswhere a random initialization of parameters is a com-
mon and effective initialization strategy [89], random initialization of variational quantum
circuits often leads to issues with local minima or barren plateaus [90]. In response, several
initialization strategies have been proposed [91–94].

Insteadof random initialization, optimizations in both conventional computational chem-
istry and the VQE often utilize an initial guess motivated by physical or chemical under-
standing. Commonly, the guess provides an approximate solution to the optimization prob-
lem at hand. This methodology, initialization from an approximate solution, is referred to as
performing a warm-start. In wave function methods, warm-starting is often performed by
providing the Hartree–Fock solution.

A properly chosen initial guess can often help avoid many of the issues associated with
both local minima and barren plateaus [95]. At the limit of the perfect initialization, i.e.,
initializing with the exact parameters, one ultimately avoids the problem of optimization
altogether, leaving only that of confirming convergence.
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3.3 Parameter Transfer

In Paper I, we analyze a warm-start approach for the problem of Potential Energy Surface
(PES) sampling. The method we apply, which we refer to as parameter transfer, is an ap-
proach derived from conventional computational quantum chemistry. While the problem
of PES sampling is specific, the idea of parameter transfer has broader applicability. In Pa-
per IV, we extend the parameter transfer approach to the transfer of parameters between
different levels of theory, from a BO calculation to a Nuclear-Electronic Orbitals (NEO) cal-
culation. The parameter transfer is by no means limited to these two cases.

Parameter transfer is the straightforward approach of taking a solution from one calcula-
tion and using it as the initial guess for a subsequent calculation, as illustrated in Figure 3.2.
This is a tried and tested approach, widely used in many disparate fields, including con-
ventional quantum chemistry, quantum optimization [92, 96–98], andmachine learning [99,
100]. The simplicity of the approachmakes it attractive to study also for theVQE algorithm.

Figure 3.2: Schematic representation of the parameter transfer approach allowing for
faster convergence. An initial calculation 𝑘 is performed and converged for a cost function
𝐶𝑘. The optimized solution, 𝜃

(𝑚𝑖𝑛)
𝑘 , is passed as an initial guess to the next optimization for

configuration 𝐶𝑘+1. Parameter transfer can help overcome both local minima and barren
plateaus.

To evaluate the performance of warm-start approaches, in Paper I we introduce themea-
sure of speedup, 𝑆. Speedup compares the number of iterations needed to converge VQE
calculations starting from the HF guess, 𝑁𝐻𝐹, as compared to using a parameter transfer
initial guess, 𝑁𝑃𝑇.

For the PES sampling of Paper I, we define the speedupwith respect to the source geom-
etry, 𝑹𝑺, and target geometry, 𝑹. These different geometries result in different Hamiltoni-
ans and cost landscapes. The difference between the two geometries is given by the vector
𝒅 = 𝑹 − 𝑹𝑺 and the speedup is defined as

𝑆(𝑹, 𝒅) = 𝑁𝐻𝐹(𝑹)
𝑁𝑃𝑇(𝑹, 𝒅)

− 1. (3.4)
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3.3. PARAMETER TRANSFER

Figure 3.3: Illustration of parameter transfer overcoming a local minimum in the target
cost function 𝐶𝐵. The local minimum is overcome by solving an initial problem 𝐶𝐴 with
a solution 𝜃𝑚𝑖𝑛

𝐴 lying within the basin of 𝐶𝐵. Using 𝜃𝑚𝑖𝑛
𝐴 as an initial guess allows for a

steepest descent search for 𝜃𝑚𝑖𝑛
𝐵 . Starting at any point outside the basin of 𝐶𝐵 (purple)

would not allow for steepest descent optimization, even though the point might lie closer.

While the speedup at a given position can be interesting, a perhaps more useful measure
is the average speedup across the PES

̅𝑆(𝒅) = 1
𝑛

∑
(𝑹,𝒅)

𝑆(𝑹, 𝒅), (3.5)

where the notation (𝑹, 𝒅) is used to denote the set of vectors𝑹 and 𝒅with a constant trans-
fer distance 𝑑 = |𝒅|. In effect, averaging all speedups for a given transfer distance 𝑑. One
can conclude from Eq. (3.4) that the speedup is limited by the convergence of the HF start-
ing point (or any other reference method one chooses). We find that this upper limit scales
as 𝑎𝑝𝑏 where 𝑝 is the number of the parameters. The values of coefficient and exponent are
found to be 𝑎 = 2.5 and 𝑏 = 0.25 (Figure 3.4).

The findings of Paper I indicate that the speedup offered by the transfer of optimal pa-
rameters in the PES drops of quickly with the distance 𝑑. For a fixed 𝑑 = 0.1Å we find the
average speedup up to be ̅𝑆0.1 = 0.7. The average speedup for the four convergence curves
presented in Paper IV gives 𝑆 = 1.0, reaching 𝑆 > 3 for the largest ansatz (42 parameters,
UCCSDT).

The effectiveness of parameter transfer is also affected by other problem circumstances,
such as the choice of optimizer, and whether or not the performed calculation is affected
by noise. Figure 3.5 highlights these specific factors, with Figure 3.5a showing the ideal
behavior of Eq. (3.5), and Figures 3.5b and 3.5c showing the impact of noise in calculations.
On the one hand, for the more noise-resilient SPSA optimizer, we see an increased speedup
with the use of parameter transfer (3.5b) in the noisy setting. On the other, for theCOBYLA
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Figure 3.4: Optimal speedup, achieved for 𝒅 = 0 (i.e., starting from an already converged
solution), as a function of the number of ansatz parameters, 𝑛. A function 𝑓(𝑥) = 𝑎𝑝𝑏 is
fitted, leaving out the highest parameter points (LiF), where 𝑎 = 2.5403 and 𝑏 = 0.2538.
The grey area are constructed as 𝑎𝑝𝑏±𝛽 (𝛽 = 0.1775), such that 50 % of all points fall within
the area.

optimizer, less suited to the noisy environment, we see barely any effect of parameter trans-
fer. An interesting feature of Figures 3.5b and 3.5c is the linear dependence on the transfer
distance.

An unexpected consequence of the𝑍2-symmetry tapering implemented in Paper IVwas
a sign change among some of the Hamiltonian terms and, by extension, the signs of some of
the UCCSD parameters. The sign change made direct parameter transfer incorrect. How-
ever, by identifying the operators where this sign change occurred, we could account for this
in the parameter transfer. Alternatively, one can change the signs of the Hamiltonian terms
to match directly.

Common to all warm start methods is the idea that one can solve a related, similar prob-
lem, and reuse the solution. This line of reasoning naturally begs the question what makes
two problems similar. While this question has come up during this work, no satisfying an-
swer has been reached.
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Figure 3.5: Effects of warm-start approach for three optimizers (a) SLSQP, (b) SPSA, and
(c) COBYLA. Noise-free simulations (a) as well as simulations including sampling noise (b)-
(c) are also included. Warm-starting affects thedifferent optimizers differently. Additionally,
the inclusion of sampling noise results in an almost linear speedup. The figure is reproduced
from Paper I.
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CHAPTER4

Errors and Noise — Improvise, Adapt,
and Overcome

Oneof the defining characteristics of current andnear-termquantumcomputers is the preva-
lence of noise and errors [15, 101, 102]. Reducing the effects of noise is thus a necessity for
any near-term algorithms. While variational algorithms can deal with some of the errors
that noise introduces, on account of their variational flexibility [103], additional efforts of-
ten have to be applied.

Noise and errors are nothing unique to quantum computing, an inherent part of classi-
cal computing and communication is to deal with noise and errors. Many of the techniques
used in quantum error correction and mitigation derive from classical methods, see for ex-
ample Richardson extrapolation [104] and the Hamming error correcting codes [105]. In
Paper II we introduce a low-overhead errormitigation scheme, specifically tailored for quan-
tum chemistry calculations on NISQ hardware.

4.1 Quantum Errors and Noise

In classical digital computation there is only one type of error, the bit flip. The bit flip is the
unwanted change of a 1 to a 0, or vice versa 0 to 1. In quantum computing a single qubit
can experience any erroneous rotation of the Bloch sphere. Analogous to the classical case,
bit flips can occur (|0⟩ → |1⟩ and |1⟩ → |0⟩), but also sign flips (|0⟩ + |1⟩ → |0⟩ − |1⟩ and
|0⟩ − |1⟩ → |0⟩ + |1⟩)1. Errors can come in a number of flavors, they apply any degree of
rotation, not just 𝜋 rotations corresponding to flips, and they can exhibit varying degrees of
correlation, amongst other properties. An exhaustive account for types of errors that can
effect a quantum computer is not in the scope of this thesis.

The causes of the noise and errors are multiple, however, common sources are applying
incorrect gates [106], State Preparation And Measurement (SPAM) errors [107, 108], and
interactions with the environment (such as the occasional cosmic ray [109, 110]), just to
name a few.

1Note that a change |0⟩ → − |0⟩ or |1⟩ → − |1⟩ corresponds to global phase changes, and does not affect
any observable measurements.
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A clear example of these type of errors arising from hardware is seen in the results of
Papers II and III. InPaper II circuits for bothH2 andHeH

+where implemented on the three
qubit Särimner superconducting qubit quantum computer. Only two of the three qubits
where used though. The H2 circuit had a single parameterized gate and one two-qubit gate
(Figure 4.1). The HeH+ circuit contained three parameterized gates with four two-qubit
entangling gates.

Figure 4.1: Quantumcircuit used to simulateH2 on theSärimner three-qubit device. Note
the single parameterized gate. Qubits 𝑞1 and 𝑞2 are initialized to the |𝑞1, 𝑞2⟩ = |00⟩ state.

Even for the short H2 circuit employed in Paper II, the effects of noise are substantial,
especially around the ground state solution (Figure 4.2). The larger error in and around the
minima (and maxima) can be motivated by imagining performing the same sweep of 𝜃 with
increased noise. As noise increases, the curvewill flatten out. At the point of “infinite” noise
the measured expectation value loses all dependence on 𝜃 and becomes a flat line, assuming
sufficient sampling. As will be shown in the next section, the state that one reaches in the
limit of high noise can be modelled as a maximally-mixed state.

Figure 4.2: Evaluation of the H2 Hamiltonian on the Chalmers Särimner three-qubit
quantum computer, using a one-parameter hardware-efficient ansatz (Figure 4.1). Substan-
tial errors are measured as a result of noise in the quantum calculation. The exact solution,
calculated throughnoise-free simulation, is also shown. Each point in the graph corresponds
to 5000 individual readouts of the Hamiltonian terms. Substantial errors are found in the
region surrounding the ground state solution.

For the longer three-parameter (𝜃𝐴, 𝜃𝐵, and 𝜃𝐶) circuit, errors are, as one might expect,
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4.1. QUANTUM ERRORS AND NOISE

even higher (Figure 4.3). Like the case for H2, the errors are most prominent at the location
of minima and maxima, with a similar flattening of the landscape occurring. A peculiar pat-
tern can also be seenwhere, for 𝜃𝐴,𝐵 ≈ −𝜋, the error increases along a row in the data. While
we do not have a satisfactory explanation for this particular feature, the error highlights the
sporadic nature of noise in quantum devices.

Figure 4.3: Results for calculation on the Chalmers Särimner three-qubit quantum com-
puter, using a three-parameter UCCSD ansatz (two of the parameters are equal, 𝜃𝐴 = 𝜃𝐵).
Substantial errors are measured as a result of noise in the quantum calculation. Each point
corresponds to 5000 individual readouts of the quantum state. Substantial errors are found
around the ground state solution.

While the sources of errors presented so far are all due to physical effects in hardware,
inaccuracies can also arise due to theoretical inaccuracies and approximations. An example
of this is Trotterization where an operator cannot be implemented as-is, and instead needs
to be approximated as a series of native operations. We see this error in PaperV, whereTrot-
terization errors contribute to a substantial deviation in the nuclear-electronic entanglement
during time evolution, see Figure 6.7.

The idea of errors in calculations has also brought up the discussion of accuracy as op-
posed to precision. In conventional computational chemistry, the concept of chemical accu-
racy exists as a well-definedmeasure of error with respect to experiment [111]. In particular
this value is often defined as an error of nomore than 1.6mHa (1 kcal/mol) [112]. In several
quantum computational papers targeting chemical calculations, chemical accuracy has been
used to refer to errors with respect to the error-free calculation at the same level of theory.
High-profile examples include [52] and [103]. As we discuss in Paper II, this is incorrect use
of the term, and we propose a new term chemical precision to represent the error with and
without noise, at the same level of theory.
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4.2 Modelling Quantum Noise

Similar to how the simulation of atoms and molecules is beneficial to the understanding of
those systems, simulations of quantum computers offer much insight into the behavior of
the physical machines. To accurately model a physical quantum computer one also needs
to include the effects of noise, see for example [113]. Accurately simulating the noise on a
quantum device is an even harder problem than simulating the logical quantum computer.
The extra complexity follows as the logical quantum computer is confined to its pure states,
clean fromany environmental effects. Thenoisy quantumcomputer on the other handneeds
to account for its environment, which might very well need a quantum treatment in and of
itself. For a systemwith a Hilbert space of dimension 𝑑, all quantum error operations can be
described as an operator-sum containing no more than 𝑑2 elements [16].

As accurately modelling the noise experienced by a quantum computer is computation-
ally expensive in and of itself, one often opts to approximate the effects of noise. Perhaps the
simplest choice of so called noise model is to approximate the noise as a depolarizing noise
channel. This type of noise model is what was used to model quantum noise in Papers II,
I, and III. The depolarizing noise channel can be modelled in different ways, the way used
in Papers II, I, and III is to introduce it as a probability 𝑝𝑑 that after each circuit gate an-
other gate 𝑃 ∈ {𝑋, 𝑌 , 𝑍} is applied. This random application of gates effectively maps the
resulting state onto the maximally-mixed state

𝜌 → 𝜆(1 − 𝜆)𝜌 + 𝜆
𝑑

𝑰 (4.1)

where 𝜆 is a parameter corresponding to the amount of noise and 𝑑 is the dimension of the
density matrix 𝜌. Specifically, 𝜆 relates to 𝑝𝑑 as

𝑝𝑑 = 𝜆
4

. (4.2)

To fulfill complete positivity, 𝜆 also needs to satisfy

0 < 𝜆 < 1 + 1
𝑑2 − 1

. (4.3)

Thedepolarizing channel canbe viewed as projectiononto the center of theBloch sphere,
ultimately projecting the entireBloch sphere to the origin, resulting in a uniformmixed state.
While the depolarizing noise model is easy and efficient to implement, it greatly simplifies
the noise processes and the resulting errors.

A more realistic result can be achieved by explicitly modelling aspects such as deco-
herence and dephasing, as well as by introducing more accurate gate errors. Additionally,
SPAMerrors can be included by also simulating the errors whenmeasuring. Thesemore re-
alisticmodels are not necessarilymuchmore costly than the depolarizing noisemodel [114].

4.3 Mitigation and Correction

When it comes to addressing the errors caused by quantumnoise, two regimes exist. Firstly,
there is the idea of error correction. This is the ideal type of correction where errors can be
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completely negated, retaining the correct quantum state for a set of logical qubibts. For error
correction, the logical qubits are encoded in several physical qubits. Secondly, there is the
idea of error mitigation, whereby some error is corrected in an observable, or a collection
of observables. However, the state itself is often left untouched. As error correction seeks
to correct the quantum state, it is inherently a quantum operation that has to be performed
before measurement. Error mitigation on the other hand is often a correction performed
after measurement, i.e., after the state has been collapsed.

One of themajor differences when correcting quantum errors, as compared to the classi-
cal case, is the care one must take as to not cause a collapse of any superposition needed for
calculations. In classical physics this is not a problem, we can measure the value of each bit
without changing their value. For the qubit this is no longer true. Bymeasuringwe force the
state of the qubit into one of its computational eigenstates |0⟩ or |1⟩. Thus by measuring a
superposition, |𝜓⟩ = 𝑎 |0⟩ + 𝑏 |1⟩, all information contained in the phase between the states
is lost, affecting any subsequent measurement.

Most variational algorithms have some degree of inherent error mitigation as they are
free to adapt their parameters to shifts in the cost landscape due to noise [103]. This effect
is however often far from enough. In response to this, several different error mitigation
techniques have been proposed. To list a few: zero-noise extrapolation [115], probabilistic
error cancellation [116], subspace expansion [117, 118], and many more, see [119–121].

Additionally, a mitigation method employed in Paper II was measurement (or readout)
error mitigation [122, 123], whereby a confusion matrix 𝑲 is constructed by state tomog-
raphy. The entries of the confusion matrix, 𝐾𝑛,𝑚, represent the probability of measuring
the state |𝑚⟩ after preparing state |𝑛⟩. The confusion matrix is then used to fit a model of
the SPAM errors. The model can be used for mitigation. In Paper II a least squares fitting
was used togetherwithBayesian unfolding [124]. As themeasurement errormitigation uses
tomography, it is limited to mitigating a small number of qubits.

A pitfall of some error mitigation techniques is the risk of over-correcting, i.e., giving a
value lower than what should be possible in the original problem. This is especially true for
extrapolation techniques. It should be noted that over-correction can violate the variational
principle, Eq. 3.2. Although, the reduced final error is often worth the risk.

4.3.1 Using a Reference

Another approach to error mitigation is to compare to already known values. While most of
the cost landscape is hard to classically simulate, a subset of points can be efficiently simu-
lated by a classical computer per theGottesmann–Knill theorem [125]. Circuits made solely
from gates in the Clifford group all fall in this category of being efficiently simulabel. As
such, one can exactly2 calculate what the quantum computer should yield at those points.

Perhaps the most straightforward implementation of this class of mitigation techniques
comes in the form of the Reference Error Mitigation (REM), introduced in Paper II. Fig-
ure 4.4 shows the underlying idea in the one-parameter case. Here, a single Clifford state
is used as a reference. By making the corresponding measurement on the quantum com-
puter, the error at the reference point can then be exactly determined. This error can then
be subtracted across the cost landscape.

2Your are only limited by the numerical accuracy of your computer, but in terms of current state-of-the-art
quantum computers, you are pretty much exact.
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Figure 4.4: Effects of noise and subsequent correction using a reference value. A theoret-
ically ideal optimization landscape (blue) with a true minimum (circle) and a reference point

(square). The exact curve is distorted due to noise effects, 𝜀(�̂�), measurements instead find
the noise-induced minimum and reference (yellow). Through estimation of the error at the

reference point (dashed line), a correction 𝑀(�̂�) (green) can be applied to the noisy results
to mitigate errors around the reference.

The effects of applying the REMmitigation is substantial for cases where the reference
lies reasonably close to the solution. The HF solution (𝜃 = 0) provides such a reference for
H2 at equilibriumbonddistance, seeFigure 4.5. The improvement inmeasured energy close
to the reference point is clear to see, andREMoutperforms themore complexmeasurement
error mitigation in and around the minimum.

There exists two natural extensions to the REM approach: making use of more Clifford
points, and/or using a higher order correction. One example is Clifford Data Regression
(CDR) [126] where a large number of Clifford points are used together with a regression
algorithm to find an error model that can be used to mitigate errors. However, a number of
additional Clifford based methods have been proposed [127–130]. These will collectively
be referred to as learning based methods. Learning based methods can use a number of
models to fit their measured test sets, and many more approaches will likely appear.

One can additionally view the measurement error mitigation, presented in the previ-
ous section, as a Clifford method as it prepares Clifford states and performs fitting. The
difference being the exponential number of Clifford states required to perform full state to-
mography. In Figure 4.6, the relation between the different approaches and their resources
requirements are sketched out.

A clear benefit of higher order mitigation strategies, such as the measurement error mit-
igation, is their ability to correct values across the the energy landscape. They also change
the shape of the landscape, potentially aiding in better gradient evaluation and by extension
easier optimization.
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Figure 4.5: Effects ofREMandmeasurementmitigation on experimental data from three-
qubit Särimner quantum computer. The application of REM and measurement error mit-
igation both reduce errors in the area around the minimum, with REM offering a better
correction.

Figure 4.6: Schematic of different Clifford based methods and their required resources.
Learning basedmethods can require a polynomial number of states to train on, while readout
error mitigation requires measurement of an exponential number of Clifford states. Com-
bined with the complexity of model used, the cost of mitigation increases with each extra
Clifford state used. REM uses a single Clifford state and a constant complexity mitigation
scheme, making it low cost.
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CHAPTER5

Approximating Calculation Quality

While quantum computers are currently becoming evermore powerful, classical computers
are still able to outperform them for most tasks, including quantum chemical calculations.
As long as this holds true, we can easily validate the output of quantum calculations by per-
forming the corresponding classical calculation. However, if at some point in the future a
quantum computer is able to outperform all their classical counterparts, how are we to know
that the quantum computer is giving us a correct answer? The conventional wisdom for
most of science has been to compare to experiments. As Richard Feynman put it [131]

It doesn’tmake any difference howbeautiful your guess is, it doesn’tmake
any difference how smart you are, who made the guess, or what his name
is. If it disagrees with experiment, it’s wrong. That’s all there is to it.

“

”

A drawback of experiments is that they are relatively expensive and often slow, resulting
in a long feedback cycle for any poor computational chemist trying to predict the results of
a yet to be performed experiment. It would be much more convenient if the the computa-
tional results could be pre-validated using either already available experimental data, or by
comparing to some other, cheaper computational method.

In Paper III we explore using the electron density and its topology as such a validation
measure.

5.1 Quantum Fidelity

If you are given two states 𝜌𝐴 and 𝜌𝐵, and asked to determine how similar these two states
are, how would you determine this? What is the measure of “likeness” for quantum states?
A common answer is the Uhlmann-Josza fidelity [132], more commonly called quantum fi-
delity, or just fidelity. For two quantum states 𝜌𝐴 and 𝜌𝐵, quantum fidelity defined as1

𝐹(𝜌𝐴, 𝜌𝐵) = (Tr [√√𝜌𝐴𝜌𝐵
√𝜌𝐴])

2
≤ 1, (5.1)

1Some authors instead define the fidelity asTr [√√𝜌𝐴𝜌𝐵
√𝜌𝐴], i.e., the square root of the value presented

here. Perhaps most notably this is the definition used in [16].
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where the 𝐹 = 1 if and only if 𝜌𝐴 = 𝜌𝐵 up to a global phase. For two pure states the fidelity
simplifies to

𝐹(|Ψ𝐴⟩ , |Ψ𝐵⟩) = |⟨Ψ𝐴|Ψ𝐵⟩|2 ≤ 1. (5.2)

However, one can imagine other measures of fidelity (or approximate fidelity as will be
discussed in the next section). To help facilitate development of fidelity measures, Richard
Josza proposed four (here presented as five) axioms that such ameasureℱ should satisfy [132,
133]

(J1a) ℱ(𝜌𝐴, 𝜌𝐵) ∈ [0, 1]
(J1b) ℱ(𝜌𝐴, 𝜌𝐵) = 1 if and only if 𝜌𝐴 = 𝜌𝐵

(J2) ℱ(𝜌𝐴, 𝜌𝐵) = ℱ(𝜌𝐵, 𝜌𝐴)
(J3) ℱ(|𝜓𝐴⟩ ⟨𝜓𝐴| , 𝜌𝐵) = ⟨𝜓𝐴| 𝜌𝐵 |𝜓𝐴⟩ = Tr[𝜌𝐴𝜌𝐵] if 𝜌𝐴 is a pure state

(J4) ℱ(𝑈𝜌𝐴𝑈†, 𝑈𝜌𝐵𝑈†) = ℱ(𝜌𝐵, 𝜌𝐴) for all unitaries 𝑈.

The Uhlmann-Josza fidelity satisfies all of the axioms. Other measures have been pro-
posed as well, see [132].

However, problems arise when trying to actually calculate the fidelity. Firstly, the states
in question are exponentially largemeaning that you would require exponential storage. On
top of the size of the states you would also have to perform an exponential number of calcu-
lations. Secondly, you would already need to have the correct solution in order to compare
the fidelity. As for how to perform the actual measurement, two options exist. Either the
states are compared on the quantum hardware directly, or the states are extracted from the
quantum device the comparison is made on a classical computer.

The idea of extracting a quantum state from a quantum computer requires performing
something known as full state tomography. A complete measurement of the quantum state
[16, 134, 135]. Given that a quantum state requires an exponential number of complex co-
efficients, and that a single measurement is limited to only provide a single classical bit of
information, quantum tomography is infeasible for all but the smallest states.

5.2 Approximating Fidelity

An alternative to measuring the actual fidelity is to measure a smaller set of operators that
approximate the fidelity. While the Hamiltonian can be such an operator, it is often used
in the variational setting. Minimizing the energy does not correspond to approximating the
fidelity as one does not get a measure of the states closeness to the correct state. However,
using extrapolation techniques [136] could possible qualify the Hamiltonian as an approxi-
mation for the fidelity.

Assuming 𝜌𝑡 to be a target state that one wishes to approximate, and 𝜌𝑝 a state that has

been prepared. One then seeks to find an observable, �̂�, that can approximate 𝐹(𝜌𝑡, 𝜌𝑝). In
other words

𝐹(𝜌𝑡, 𝜌𝑝) ≈ Tr[�̂�𝜌𝑝]. (5.3)

Ideally this observable is a so-called fidelity witness [137], 𝑊, an observable that fulfills
two criteria. Firstly, the expectation valueTr[𝑊𝜌𝑝] = 1 if and only if 𝜌𝑝 = 𝜌𝑡, and secondly,
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Tr[𝑊𝜌𝑝] ≤ 𝐹(𝜌𝑡, 𝜌𝑝). In other words, the expectation value of the witness is equal to 1 only
when we have prepared state, and for all other states, the witness measurement will be a
lower bound to the exact fidelity.

In Paper III we use the term fidelity witness in less strict sense to refer to any measure
that can be used to gauge the quality of a calculation. Below, the same convention will be
used.

5.3 Electron Density as a Fidelity Witness

Through the Hellmann-Feynman theorem, the electron density uniquely defines the forces
acting on a molecule in its ground state [138]. Thus a wave function that gives the cor-
rect electron density must also have full fidelity (𝐹 = 1) with the ground state. The elec-
tron density is additionally an experimental observable, to varying degrees, through trans-
mission electron microscopy [139], atomic force microscopy [140], sweeping tunneling mi-
croscopy [141], and, the perhaps the most accurate experimental method, X-ray diffraction
crystallography [142]. The uniqueness of the electron density, combined with being exper-
imentally observable, makes for an interesting candidate as fidelity witness.

The electron density2 𝜚(𝒓) is not a density in the sense that there would necessarily be 𝑥
number of electrons in a given volume with an electron density 𝑥. Instead, the electron den-
sity describes the probability of finding an electron at a given point in space, the probability
density.

In our second quantized picture, the electron density takes the form of a weighted sum
over all spin orbital products

𝜚(𝒓) = ∑
𝑖𝑗

𝐷𝑖𝑗 𝜙†
𝑖 (𝒓)𝜙𝑗(𝒓), (5.4)

where the coefficients 𝐷𝑖𝑗 are elements of the one-particle Reduced Density Matrix (1-
RDM), 𝑫. The elements of the 1-RDM are in turn defined as

𝐷𝑖𝑗 = ⟨Ψ ∣𝑎†
𝑖 𝑎𝑗∣ Ψ⟩ . (5.5)

While the conventional density matrix 𝜌 scales exponentially with the number of spin or-
bitals being considered, 𝒪(𝑒2𝑁), the 1-RDM scales quadratically, 𝒪(𝑁2), making it compu-
tationally efficient to compute.

An additional benefit of the 1-RDMcomes from itsmany properties and constraints [23],
making it a useful resource for error mitigation.An example of such a property is the trace
of the 1-RDM, Tr[𝐷], which needs to equal the number of the electrons in the system

Tr[𝑫] = ∑
𝑖

𝑛𝑖 = 𝑁, (5.6)

where 𝑛𝑖 is the number of electrons in spin orbital 𝑖,

𝑛𝑖 = ⟨Ψ ∣𝑎†
𝑖 𝑎𝑖∣ Ψ⟩ = 𝐷𝑖𝑖. (5.7)

2In an effort to reduce the risk for confusion 𝜚 is used for electron density, not to be confused with 𝜌 used
for density matrices.
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As stated, the many properties of the electron density, not least of which are being ex-
perimentally observable and efficient to compute, makes it an alluring fidelity witness. The
question that remains is how one would define the measure to go with the witness. One
approach to using the electron density in this capacity is to simply check the difference at
each point in space

𝐹𝜚(𝜚, 𝜚𝑊) = 1 − 1
2𝑁

∫ |𝜚(𝒓) − 𝜚𝑊(𝒓)|d𝒓. (5.8)

Here, the integral is normalized with respect to the number of electrons,𝑁. The normalized
integral itself in Eq. (5.8) is a measure of infidelity, (𝐹 − 1).

The integral in Eq. (5.8) is not necessarily easy to solve, and measuring every point in
space might prove experimentally challenging. An alternative approach is to select specific
points of the electron density where the comparison is made

𝐹 ′
𝜚(𝜚, 𝜚𝑊) = 1 − 1

𝐶
∑
𝐾

|𝜚(𝒓) − 𝜚𝑊(𝒓)|. (5.9)

Here, we sum the differences at𝐾 separate points. However, reducing the number of points
under consideration also makes the normalization more complicated. While for the entire
space the normalization parameter is twice the number of electrons, finding a similar con-
stant for a discrete set of points can prove difficult. Another question that arises as wemove
to the discrete case is how to choose these points. An intriguing choice is given by the crit-
ical points of the electron density, which can be identified through Bader analysis [143].

5.3.1 Topology of the Electron Density

In Paper III the critical points of the electron density are studied as a possible foundation
for a fidelity witness. The general approach we present is illustrated in Figure 5.1. The
process can be described as occurring in five steps: first a potential wave function is iden-
tified through some method (e.g., VQE). The 1-RDM is then constructed by measuring all
elements 𝐷𝑝𝑞. The 1-RDM is subsequently used to generate the electron density. Penulti-
mately, topological features, such as critical points are calculated, and, finally, compared to
the identified features of an experimental, or otherwise obtained, electron density.

Anapproach for analyzing the electrondensity is providedbyQuantumTheory ofAtoms
inMolecules (QTAIM) [144]. Front and center to QTAIM stands the electron density, and
through QTAIM analysis, critical points and atomic basins in the electron density are iden-
tified. Critical points are those points of the electron density where the gradient, ∇𝐷(𝒓), is
equal to zero or undefined, ∇𝐷(𝒓) = 0. An individual critical point can further be analyzed
by its the Laplacian

∇2𝐷(𝒓) =
⎡
⎢⎢⎢
⎣

𝜕2𝜚
𝜕𝑥2

𝜕2𝜚
𝜕𝑥𝑦

𝜕2𝜚
𝜕𝑥𝑧

𝜕2𝜚
𝜕𝑦𝑥

𝜕2𝜚
𝜕𝑦2

𝜕2𝜚
𝜕𝑦𝑧

𝜕2𝜚
𝜕𝑧𝑥

𝜕2𝜚
𝜕𝑧𝑦

𝜕2𝜚
𝜕𝑧2

⎤
⎥⎥⎥
⎦

. (5.10)

Critical points can then be classified based on the rank, 𝜂, and the signature, 𝜅, of the
Laplacian. These two values are often grouped as a tuple (𝜂, 𝜅), defining the class of the
critical point. Table 5.1 lists the four different classes and their names in QTAIM.

Attractors and Bond Critical Points (BCPs) were the main focus of Paper III, neverthe-
less, the methodology extends to treatments of all four classes. Attractors in QTAIM come
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Figure 5.1: a) Outline of the methodology presented in Paper III. The shown process is
divided into five steps starting with (1) using a quantum algorithm to find the wave function
of interest; (2) measuring the 1-RDM; (3) from the 1-RDM constructing the electron den-
sity; (4) identify relevant topological features of the electron density; and (5) compare the
identified features to a high-accuracy witness. b,c) Streamplots with overlaid Bond Critical
Points (BCPs) for a calculation on quantum hardware and a simulated witness. Figure is
reproduced from Paper III.

in two flavors: nuclear attractors, and Non-Nuclear Attractors (NNAs). The NNAs are a
curiosity in that they are local concentrations of electrons that do not coincide with any nu-
clei. NNAs are in fact referred to as (pseudo) atoms in QTAIM [145]. The minima along
the ridges that connect neighboring attractors are called BCPs. BCPs correspond to saddle
points in the electron density.

A notable result in Paper III is the dependence on the active space for the proposed wit-
ness. In particular, the symmetry of the active space is of importance. The most explicit
example of this is the results for HCN (see Table 5.2). The active space used for HCN con-
sisted solely of 𝜋-orbitals, and since the bond axis ofHCNperfectly coincides with the nodal
line of all 𝜋-orbitals, the electron density along the bond axis is not changed by the quantum
calculation. The denisty instead remains at the value reached by the preceding HF calcula-
tion. One thus has to take care when selecting points in the electron density.

Even though we in Paper III did not test other methods for selecting these points, an
alternative approach can be to select points with respect to the active space being used. An
approach could be to subtract the electron density of the frozen orbitals, 𝜚𝐻𝐹 , from the total
electron density to yield the active space electron density

𝜚as = 𝜚 − 𝜚𝐻𝐹 . (5.11)

Such a selectionwould decrease the influence the choice of active space has. Although, such
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Table 5.1: The four different classes of critical points, and their respective names used in
QTAIM.

Class Description QTAIM name

(3,-3) Local maximum Attractor
(3,-1) Saddle point Bond Critical Point (BCP)
(3, 1) Saddle point Ring critical point
(3, 3) Local minimum Cage critical point

Table 5.2: Electron density and the Laplacian of the electron density at critical points
along the molecular bonds. The reference used is conventional CCSD/aug-cc-pVTZ calcu-
lations. The critical points of the HCN electron density do not change during the quantum
calculation. The table displays data from Paper III.

𝜚(𝒓) [Bohr−3
] ∇2𝜚(𝒓) [Bohr−5

]

Mol CP Noise-free Noisy Witness Noise-free Noisy Witness

H2a bond 0.2524 0.2506 0.2684 -0.7818 -0.7542 -1.2445

LiHb bond 0.0431 0.0399 0.0394 0.1437 0.1177 0.1553
Li2c NNA 0.0158 0.0134 0.0129 -0.0139 -0.0102 -0.0143
Li2c bond 0.0154 0.0132 0.0121 0.0017 -0.0025 0.0101
Li2c bond 0.0154 0.0132 0.0121 0.0022 -0.0019 0.0101
H-CNc bond 0.3934 0.3934 0.4831 1.3149 1.2480 -0.3586
HC-Nc bond 0.2635 0.2635 0.2990 -0.7468 -0.7346 -1.3241

a Calculated on Chalmers Särimner quantum computer.
b Calculated on IBM’s ibm_quito quantum computer.
c Simulated on classical hardware.

a subtraction could complicate comparisons with experimental values, as a similar transfor-
mation needs to be applied to the experimental electron density.

An outstanding challenge with the use of critical points is the normalization issue of
Eq. (5.9). Nevertheless, normalized or unnormalized, the electron density can still prove a
useful tool for gauging the quality of quantum calculations.
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Beyond Born-Oppenheimer

Introduced in section 2.1.3, the Born–Oppenheimer (BO) approximation is a routine ap-
proximation in most quantum chemistry calculations. However, for light nuclei the BO
approximation often breaks down. This is especially true for molecules containing hydro-
gen atoms [146]. As just so happens, hydrogen is the most abundant element in the uni-
verse [147], and also part of what is perhaps the most important molecule for life, water
(H2O). As such, going beyond Born-Oppenheimer approximation, can prove crucial for ap-
plications in fields such as bio-chemistry, pharmaceuticals, and green technology like hydro-
gen fuel cells [148–150]. In Papers IV andVwe investigated the implementation of non-BO
methods for near-term quantum computers. The calculations presented in this section were
all performed as noise-free emulations.

6.1 Born-Oppenheimer in More Detail

The advent of the BO came in a time with very limited computational power. Presented in
1927 [151], still the early days of quantummechanics, the BO approximation allowed physi-
cists to break the relatively big problems of atoms andmolecules into two smaller problems:
that of the electrons, and that of the nuclei. This split can reduce the size of theHilbert space
by many orders of magnitude.

Restating the BO approximation, the molecular wave function |Ψ⟩ can be separated into
two parts: one describing the nuclei, |𝜓𝑁⟩, and one describing the electrons, |𝜓𝑒⟩. Under
the BO approximation, |Ψ⟩ can be written as a product state |Ψ⟩ = |𝜓𝑁⟩ ⊗ |𝜓𝑒⟩, i.e., a state
without entanglement between nuclei and electrons. The product state allows for the two
sub-systems (the nuclear and electronic) to be solved almost independently. The remaining
interaction will be simpler than what is captured in the full wave function description, often
being a purely classical potential. Normally, one considers the electrons as interacting with
the potential formed by the protons, or vice versa, the protonsmoving in the potential of the
electrons.

Central to the BO approximation is the separation of scales. In particular the large dif-
ference in mass between the nuclei and the electron. Specifically, while the rest mass of the
proton (the hydrogen nuclei) is 1.672 × 10−27 kg, the electron’s rest mass is a mere 𝑚𝑒 =
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9.109 × 10−31 kg1 [152]. The ratio between the two is thus close to 1836 (
𝑚𝑝
𝑚𝑒

). The much

smaller mass of the electron allows it to quickly react to nuclear motion.

Another approximation that is often used in conjunction with the BO approximation is
the idea of clamped-nuclei, which states that the position of the nuclei is fixed [153]. In effect
the nuclei are approximated as point-like classical charges. The separable state and clamped
nuclei approximations are often taken as one and the same, however, this generally not the
case.

6.2 Nuclear-Electronic Orbitals

The effectiveness of theBOapproximation has been proven time and again, andmanymeth-
ods exist to account for some of the nuclear-electronic effects without having to abandon
the BO approximation. Examples include semi-classical approximations [154], Ehrenfest
dynamics [155, 156], surface hopping [157], and imaginary time path integral based meth-
ods [158]. Nonadiabatic effects near surface crossings and conical intersections are perhaps
the clearest examples of non-BO effects in chemistry [159]. Many processes in chemistry
are governed to some extent by these nonadiabatic effects. Examples include radiationless
decay [160], energy and charge transfer [161], and thermodynamic and spectroscopic phe-
nomena [162]. Further indication to the importance of a proper quantum treatment of nuclei
is given by quantum nuclear and kinetic isotope effects [163, 164], where the primary nu-
clear quantum effects are tunneling, zero point energy, and delocalization. These effects
can be substantial in a wide variety of cases, ranging from ultrafast spectroscopy [165], to
enzymatic reactions [149], and the deceivingly simple-looking hydrogen molecule [166].

At the limit of including all nuclei, the wave function reads as follows

|Ψ⟩ = |𝜙𝑒, 𝜙𝑛⟩ , (6.1)

where the the state can no longer be seen as a product state, |𝜙𝑒, 𝜙𝑛⟩ ≠ |𝜙𝑒⟩⊗|𝜙𝑛⟩. Amiddle
ground between the BO approximation and the fully quantum treatment can be reached by
adopting theNEO approach [167–170]. TheNEO framework allows to include some of the
nuclear quantumeffectswith the largest deBroiglewavelength. TheNEOwavefunction can
be written as

|Ψ⟩ = ∣𝜓𝑛,BO⟩ ⊗ |𝜓𝑒, 𝜓𝑛⟩ , (6.2)

where ∣𝜓𝑛,BO⟩ represent nuclei treatedunder theBOapproximation, while |𝜓𝑒, 𝜓𝑛⟩ contains
nuclei and electrons treated as part of a non-separable state. Figure 6.1 illustrates the three
approaches, going from a fully BO picture, through NEO, to a fully quantum treatment.

For both Paper IV and V the NEO approach was utilized to include some protons into
the wave function, with other nuclei being treated as classical point charges. As only pro-
tons were additionally included, all particles in the wave function are fermions. In general,
transitioning to an electron-nuclear wave function, also requires treating fermion-bosonic
systems, something that the NEO approach is fully capable of treating. The Hamiltonian

1As I find the precision with which experimentalists are able to measure these masses fascinating, here are
themasseswith evenmore decimals: 𝑚𝑝 = 1.672 621 923 69(51)×10−27 kg,𝑚𝑒 = 9.109 383 701 5(28)×
10−31 kg. Truly amazing!
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Figure 6.1: Schematic illustration of the transition from a BO approximation, through
the NEO representation, to a fully quantum treatment. In the clamped nuclei picture (left),
the nuclei are treated as charged single points in space. The NEO representation (middle)
allows to treat some nuclei (often the lightest) quantummechanically by introducing nuclear
basis functions. Finally, all nuclei can be treated as part of the wave function (right). The
width of the nuclear probability distribution are larger for lighter nuclei, 𝑟𝑙, than for heavier,
𝑟ℎ.

used in papers IV and V takes the shape

�̂�𝑁𝐸𝑂 = ∑
𝑖𝑗

ℎ𝑖𝑗𝑎
†
𝑖 𝑎𝑗 + ∑

𝑖𝑗𝑘𝑙
ℎ𝑖𝑗𝑘𝑙𝑎

†
𝑖 𝑎†

𝑗𝑎𝑘𝑎𝑙

+ ∑
𝐼𝐽

ℎ𝐼𝐽𝑎†
𝐼𝑎𝐽 + ∑

𝐼𝐽𝐾𝐿
ℎ𝐼𝐽𝐾𝐿𝑎†

𝐼𝑎†
𝐽𝑎𝐾𝑎𝐿

+ ∑
𝑖𝑗𝐼𝐽

ℎ𝑖𝑗𝐼𝐽𝑎†
𝑖 𝑎𝑗𝑎

†
𝐼𝑎𝐽

+ ∑
𝐴𝐵

𝑍𝐴𝑍𝐵
|𝑅𝐴 − 𝑅𝐵|

(6.3)

where, indices 𝑖, 𝑗 run over electron spin orbitals, 𝐼, 𝐽 run over protonic spin orbitals, and
𝐴, 𝐵 index classical nuclei. In addition to the electronic one- and two-particle integrals ℎ𝑖𝑗,
ℎ𝑖𝑗𝑘𝑙, the n� second quantized Hamiltonian contains the protonic one- and two-particle inte-
grals ℎ𝐼𝐽, ℎ𝐼𝐽𝐾𝐿, as well as the nuclear-electron ℎ𝑖𝑗𝐼𝐽 integral defined as per Eqs. (2.10) and
(2.11). The additional terms account for the nuclear kinetic energy and the interaction with
the classical nuclei (), as well as the nuclear-nuclear () and nuclear-electron () interactions.

We extend the UCC ansatz, to the NEO framework, which we will refer to the NEO-
UCC ansatz

𝑈NEO-UCC = 𝑒𝑇 −𝑇 †
(6.4)

where the cluster operator, 𝑇, is now defined as to also include the active nuclear orbitals.
The cluster operator reads as

𝑇 = ∑
(𝑜)

𝑇 (𝑜) = 𝑇 (1) + 𝑇 (2) + … (6.5)

where the excitation order 𝑜 accounts for both protonic and electronic excitations. Specifi-
cally, it sums the electron excitation order, 𝑒, together with the proton excitation order, 𝑝, as
𝑜 = 𝑒 + 𝑝.
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𝑇 = ∑
𝑜

𝑇 (𝑜) = ∑
𝑜

𝑜
∑
𝑒=1

𝑇 (𝑒,𝑜 − 𝑒). (6.6)

Explicitly expanding these operators in terms of fermionic creation and annihilation opera-
tors gives

𝑇 (1) = 𝑇 (1,0) + 𝑇 (0,1) = ∑
𝑖𝑗

𝜃𝑖
𝑗 𝑎†

𝑖 𝑎𝑗 + ∑
𝐼𝐽

𝜃𝐼
𝐽𝑎†

𝐼𝑎𝐽 (6.7)

𝑇 (2) = 𝑇 (2,0) + 𝑇 (1,1) + 𝑇 (0,2)

= ∑
𝑖𝑗𝑘𝑙

𝜃𝑖𝑗
𝑙𝑘 𝑎†

𝑖 𝑎†
𝑗𝑎𝑘𝑎𝑙 + ∑

𝑖𝑗𝐼𝐽
𝜃𝑖𝐼

𝑗𝐽 𝑎†
𝑖 𝑎𝑗𝑎

†
𝐼𝑎𝐽 + ∑

𝐼𝐽𝐾𝐿
𝜃𝐼𝐽

𝐿𝐾 𝑎†
𝐼𝑎†

𝐽𝑎𝐾𝑎𝐿 (6.8)

⋮

It is clear from this definition that the NEO-UCC forms a superset to the conventional
electronic UCC, with additional terms for the protonic and the mixed excitaions. It is im-
portant to note that the crucial terms, those taking us beyond the BO effects, are the mixed
terms, i.e., where 𝑒 ≠ 0, 𝑝 ≠ 0. The optimal parameters 𝜽 can be found using the variational
principle, see Eq. (2.18).

As it stands, Eqs. (6.7) and (6.8) represent the generalized NEO-UCC operators. The
generalized UCC operator allows for multideterminantal reference states [171]. However,
since most ansätze act on a single-determinant HF state, the excitations are normally re-
stricted as to go from initially occupied orbitals to unoccupied orbitals. This is also the case
in Papers IV and V.While the generalized operators do offer higher expressivity and poten-
tially higher accuracy [54], it suffers from the large number of gates needed for implementa-
tion.

In Paper IV we found that including mixed doubles 𝑇 (1,1) and triples 𝑇 (2,1) for H2 im-
proves the energy by roughly 1mHa. Also in Paper IV, we found the proton tunneling bar-
rier inmalonaldehyde is widely overestimated in the BO using Complete Active Space Con-
figurational Interaction (CASCI) (11.962mHa) as compared to the inclusion of nuclear de-
grees of freedom in the corresponding Nuclear-Electronic Orbital Complete Active Space
Configurational Interaction (NEOCASCI) (5.011mHa). Both of these calculations high-
light the importance of non-BO interactions when striving for chemical accuracy.

6.3 Qubit Mapping

With the tools to represent, prepare, and measure the NEO wave function, what remains is
tomap the states and operators to qubit representation. As discussed in section 2.3.2, several
encodings exist that can map a fermionic problem to a problem represented on qubits. As
the Jordan-Wigner offers perhaps themost straightforward and pedagogicalmapping, albeit
not the most efficient, it is a good starting point.

Extending the JW encoding to the combinedNEOwave function can be done in several
ways. A convenient starting point is to order the orbitals by particle type and spin. That is,

42



6.4. INCLUDING DYNAMICS

a ket describing a Slater determinant would thus be encoded as

|Ψ⟩ = ∣𝜓𝑝, 𝜓𝑒⟩ = |
𝛼−protons

⏞⏞⏞⏞⏞⏞⏞𝑓𝑝
𝑛𝑝

𝛼+𝑛𝑝
𝛽
, … , 𝑓𝑝

𝑛𝑝
𝛼+1, 𝑓𝑝

𝑛𝑝
𝛼
, … , 𝑓𝑝

1⏟⏟⏟⏟⏟
𝛽−protons

,
𝛼−electrons

⏞⏞⏞⏞⏞⏞⏞𝑓𝑒
𝑛𝑒

𝛼+𝑛𝑒
𝛽
, … , 𝑓𝑒

𝑛𝑒
𝛼+1

, 𝑓𝑒
𝑛𝑒

𝛼
, … , 𝑓𝑒

1⏟⏟⏟⏟⏟
𝛽−electrons

⟩. (6.9)

Using the JW encoding, the mapping is simply one-to-one, that is, each qubit directly
encodes the occupations of a fermionic orbital, thus giving the corresponding qubit state

|Ψ⟩ = |
𝛼−protons

⏞⏞⏞⏞⏞⏞⏞𝑞𝑝
𝑛𝑝

𝛼+𝑛𝑝
𝛽
, … , 𝑞𝑝

𝑛𝑝
𝛼+1, 𝑞𝑝

𝑛𝑝
𝛼
, … , 𝑞𝑝

1⏟⏟⏟⏟⏟
𝛽−protons

,
𝛼−electrons

⏞⏞⏞⏞⏞⏞⏞𝑞𝑒
𝑛𝑒

𝛼+𝑛𝑒
𝛽
, … , 𝑞𝑒

𝑛𝑒
𝛼+1

, 𝑞𝑒
𝑛𝑒

𝛼
, … , 𝑞𝑒

1⏟⏟⏟⏟⏟
𝛽−electrons

⟩. (6.10)

The fermionic operators are mapped using the parity encoding, according to Section 2.3.2.
This allowed tapering of four qubits, corresponding to the four classes of distinguishable
particles: 𝛼- and 𝛽-spin electrons and protons. We further identified 𝑍2-symmetries corre-
sponding to point group symmetries, and spin polarization, making tapering of additional
qubits possible. The suggested tapering schemes halves the number of qubits needed to
represent the H2 molecule, as shown in Table 6.1.

Table 6.1: Resource estimations for theH2molecule implementedwithin theNEO frame-

work. The three different tapering schemes are applied in succession. |{�̂�}| indicates the
number of Pauli terms in the encodedHamiltonian after application of the different tapering
schemes. Table is reproduced from Paper IV.

# Two-qubit Gates

Reduction # Qubits TwoLocal NEO-UCCSD |{�̂�}|

None 16 968 2546 861
+Four-qubit 12 558 2204 828

+PG symmetry 11 465 1472 825
+Spin projection 8 255 1202 428

6.4 Including Dynamics

The NEO framework, so far only applied to static problems, can be extended to the time-
dependent case. The evolution of a quantum system over time is something that we will
refer to as quantum dynamics.

The time-evolution of a wave function with a given Hamiltonian �̂� from a starting time
𝑡0 to some time 𝑡𝑓 reads as follows

∣Ψ(𝑡𝑓)⟩ = 𝒰(𝑡𝑓, 𝑡0) |Ψ(𝑡0)⟩ , (6.11)

where the time-evolution operator is defined as

𝒰(𝑡𝑓, 𝑡0) = 𝒯 exp[−𝑖 ∫
𝑡𝑓

𝑡0

�̂�(𝑡)𝑡 d𝑡] . (6.12)
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Here,𝒯 is the time-ordering operator which ensures that any product that could arise in the
exponent is ordered such that operators acting at a time 𝑡1 are to the right of operators acting
at a time 𝑡2, where 𝑡1 < 𝑡2.

The integral in Eq. 6.12 can be approximated as a sum

−𝑖 ∫
𝑡𝑓

𝑡0

�̂�(𝑡)𝑡 d𝑡 ≈ −𝑖 ∑
𝑘

�̂�(𝑡𝑗)𝛿𝑡𝑗 (6.13)

which in turn can be Trotterized to give an iterative form

∣𝜓𝑘+1⟩ = 𝑒−𝑖𝐻𝑗Δ𝑡𝑗 ∣𝜓𝑗⟩ = 𝑈(𝑡𝑗 + Δ𝑡, 𝑡𝑗) ∣𝜓𝑗⟩ . (6.14)

Classical implementations of the time evolution often employ numeric differential equa-
tion solver, as finding an analytical expression for Eq. (6.12) may prove difficult. The Euler
forward method gives perhaps the simplest example,

∣𝜓𝑘+1⟩ = ∣𝜓𝑗⟩ − 𝑖Δ𝑡𝐻(𝑡𝑗) ∣𝜓𝑗⟩ (6.15)

whereby one approximates the evolution for the duration Δ𝑡 as being 𝐻(𝑡𝑗).
More elaborate methods exist as well. A common type of solver for these types of differ-

ential equations is theRunge–Kutta family ofmethods (which includesEuler forward) [172].
In Paper V we use fourth-order Runge–Kutta as a reference to benchmark our quantum im-
plementation.

6.4.1 Time-Dependent Hamiltonian

We setup a model system for proton transfer in the double-well potential present in malon-
aldehyde (Figure 6.2). The PESwas identified by performing a series of single-point calcula-
tions moving the proton between the two oxygen atoms, using second orderMøller–Plesset
perturbation theory (MP2) in the non-BO setting. The remaining atoms in the molecular
scaffold were frozen, and taken fromMP2 structure optimization in 𝐶𝑠 symmetry.

Having identified three stationary structureswhere the proton is located on left and right
minima (𝐶𝑠 equilibrium), respectively, and top of the barrier (𝐶2𝑣 transition state), we used

them to create three NEOHamiltonians: �̂�𝐿, �̂�𝑀, and �̂�𝑅. These Hamiltonians, based on
the HF orbitals, sharing the same active space for the protons, while the electronic active
space differs. Specifically, the electronic active space is composed of HF orbitals where the
classical proton is located in the left, right, andmiddle positions in theBOpicture. The time-
dependentHamiltonian is expanded as a linear combination of three differentHamiltonians
with time-dependent coefficients

�̂�(𝑡) = 𝛼(𝑡)�̂�𝐿 + 𝛽(𝑡)�̂�𝑀 + 𝛾(𝑡)�̂�𝑅, (6.16)

where the coefficients fulfill 𝛼(𝑡) + 𝛽(𝑡) + 𝛾(𝑡) = 1. An illustration of the evolution of the
coefficients is given in Figure 6.4.

The resulting time-dependent Hamiltonian models the coupled proton-electron dynam-
ics, showcasing nuclear quantum effects beyond the BO approximation.
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VR

VM

VL

Figure 6.2: Illustration of the malonaldehyde molecule and the three proton centers
(blue, orange, and green). The gray curve represents the underlying PES and is not to scale.
The electronic potentials (𝑉𝐿, 𝑉𝑀, 𝑉𝑅) associated with the different stationary points are
sketched by fitting a third-order polynomial.

6.4.2 Quantum Algorithms for Time Evolution

Several options exist for simulating quantum time evolution on quantum computers. For
adiabatic evolution, one can use the VQE to find the ground state at all given times 𝑡, effec-
tively giving the time evolution. For nonadiabatic evolution, the evolution will no longer
follow the ground state energy. An alternative approach is to encode all the steps taken in
a process such as Eq. (6.14) into the quantum circuit. In such an approach, each time evo-
lution step, 𝑒𝑖𝐻𝑖𝛿𝑡𝑖 , Suzuki–Trotter decomposition. In Paper V this Trotterized approach is
chosen, implementing a first-order Trotterization, results of which will be discussed in the
next section. The explicit Suzuki–Trotter decomposition used was

𝒰1(𝑡𝑓, 𝑡0) ≈
𝑡𝑁−1

∏
𝑡𝑗=𝑡0

𝑈(𝑡𝑗 + Δ𝑡, 𝑡𝑗) =
𝑡𝑁−1

∏
𝑡𝑗=𝑡0

𝐾
∏
𝑘=1

𝑒−𝑖ℎ𝑘(𝑡𝑗+Δ𝑡/2)𝑃𝑘Δ𝑡, (6.17)

where 𝑃𝑘 are the Pauli terms in the encoded Hamiltonian.
An alternative approach to the Trotterized scheme shown in Figure 6.5 is Variational

Quantum Time Evolution (VarQTE) [173], where the time evolution can be approximated
by a much shorter circuit. A challenge with the VarQTE approach is the need to approxi-
mate the fidelity of a state, a problem that will be further explored in Chapter 5.

InPaperVwe employ theTrotterization schemeusingSuzuki first-order decomposition,
for both the adiabatic and the nonadiabatic regimes, Figure 6.6. Comparing to a classical
calculation utilizing fourth-order Runge–Kutta, the calculations on the emulated quantum
computer perform well, closely following the Runge–Kutta reference.

The difference in rate of the protonic versus electronic dynamics is clear to see when
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Figure 6.3: Part of the electronic and protonic active space used for setting up �̂�𝐿, �̂�𝑀,

and �̂�𝑅, illustrating the delocalization of electrons and the top-most proton.
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Figure 6.4: Mixing coefficients of the threeHamiltonians used to simulate time evolution
in Paper V. The effective Hamiltonian is constructed as �̂� = 𝛼(𝑡)�̂�𝐿 + 𝛽(𝑡)�̂�𝑀 + 𝛾(𝑡)�̂�𝑅,
with 𝛼(𝑡) + 𝛽(𝑡) + 𝛾(𝑡) = 1. Reproduced from Paper V.

comparing the protonic and electronic occupations (second and third panels from the bot-
tom in Figure 6.6). The protonic occupation slowly evolves, with some oscillations arising
due to slight deviations from the instantaneous ground state. The electrons in contrast show
high frequency oscillations through out, albeit with lower amplitudes.

Comparing the adiabatic and nonadiabatic cases, the adiabatic calculation shows signifi-
cantly less oscillations in theprotonic occupations, owing to the slower driving of the system.
The same cannot be said for the nonadiabatic case, where the occupations oscillate signifi-
cantly. Similar behaviors can be seen in the energies of the two systems, where the adiabatic
energy smoothly changes for the three Hamiltonians. An interesting feature of the nonadi-
abatic evolution is decreased amplitude in the oscillations of the electronic occupation.

An important point to make in regards to Figure 6.6 is the ability of the adiabatic evolu-
tion of to reach the ground states of each Hamiltonian during time-evolution. Reaching the
ground states verifies that the evolution is indeed adiabatic.
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Figure 6.5: Trotterized time evolution circuit. An initial state, |Ψ0⟩, is prepared bymeans
of UCC or some other stationary state solver, 𝑈𝑝𝑟𝑒𝑝.. |Ψ0⟩ is then evolved according to the
Trotterized approximation 𝑈𝑘 ≈ exp[𝑖𝐻𝑘Δ𝑡].

6.4.3 Nuclear-Electron entanglement

TheNEOapproach allows for evaluation of the entanglement between nuclei and electrons.
One measure of entanglement is the von Neumann entropy (also called entanglement en-
tropy)2, defined as [175, 176] By bipartioning the system into electronic and nuclear sub-
spaces, the entanglement between the two subspaces can be measured.

𝑠 = −Tr [𝜌𝑒 ln 𝜌𝑒] = −Tr [𝜌𝑝 ln 𝜌𝑝] (6.18)

The resulting entanglement entropy can be seen in Figure 6.7.
A substantial deviation from the expected entropy can be seen in the adiabatic case. This

error is due to size of the time steps,Δ𝑡, differing between the two methods leading to a no-
ticeable Trotterization error. This can be resolved by either decreasing the time step, or in-
creasing the order of the Trotterization. Looking at the exact values, the adiabatic evolution
effectively returns to the initial entanglement, as is to be expected from the symmetry of the
system. This is in agreement with the recovery of the Hamiltonian ground states shown in
Figure 6.6. In the nonadiabatic case the entanglement instead continues to increase, reach-
ing a maximum as the simulation ends. The asymmetry and higher entanglement is indica-
tive of nonadiabatic behavior induced by nonadiabatic evolution.

2Compare to the classical Shannon entropy 𝑠 = − ∑𝑖 𝑝𝑖 ln𝑝𝑖. If the von Neumann entropy is expressed

in terms of eigenvectors |𝜙𝑙⟩ and eigenvalues 𝜆𝑙, then 𝜌 = ∑ 𝜆𝑙 |𝜙𝑙⟩ |𝜙𝑙⟩ and the two measures align, 𝑠 =
∑𝑙 𝜆𝑙 ln𝜆𝑙 [174].
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Figure 6.6: Adiabatic (left) and nonadiabatic (right) time evolution performed by Suzuki–
Trotter decomposition. The gray, dashed line is a near-exact reference calculated using
fourth-order Runge–Kutta. Reproduced from Paper V.

Figure 6.7: Fidelity and proton-electron entanglement during adiabatic (left) and nona-
diabatic (right) time evolution. The dashed lines are a near-exact reference calculated using
fourth-order Runge–Kutta. The entanglement shows a substantial error in the adiabatic do-
main, owing to larger time step and insufficient Trotterization used in the time evolution.
Figure is reproduced from Paper V.
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Summary of Papers

Paper I

Accelerating Variational Quantum Eigensolver Convergence using Parameter
Transfer

A common computational task in chemistry is the calculation of a Potential Energy Sur-
face (PES). This involves determining the energy of a molecular system as a function of the
atomic positions of the molecule, and in turn often comes down to somehow sampling this
surface with a number of points. The time to solution for many VQE calculations is often
prohibitively expensive, both on simulators and real quantum hardware. It is therefore im-
portant that these times are reduced. One way to improve upon this is to borrow ideas from
conventional calculations and try to relate points on the PES such that one can reuse con-
verged parameters from one calculation to warm-start the next.

This paper explores this methodology on simulated VQE calculations with a varying
degree of separation between the points being studied as well as for systems with a different
degree of fidelity with the Hartree-Fock state. We find that the reduction of optimization
iterations required scales with the number of parameters in the circuit, and that the speedup
this incurs also scales inverselywith the fidelity of the trial statewith theHartree-Fock state.
For a set transfer distance of 0.1Å (Figure 7.1), the achieved speedup across PESs varies
greatly, with an average of of 73 % across the test set.
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Figure 7.1: Speedup for an assortment of small molecules at a transfer distance 𝑑 of 0.1Å.
Molecules are sorted according to the number of parameters in the respective VQE ansatz.
Thewidth of each violin is in proportion to the number of points along the PES that achieve
the given speedup. The figure is reproduced from Paper I.

Paper II

Reference-State Error Mitigation: A Strategy for High Accuracy Quantum Com-
putation of Chemistry

Perhaps themost substantial hindrance to quantum computing today is the amount of noise
experienced during computation. For those doing calculations on NISQ hardware there
is seldom a result that does not require substantial post-processing through several noise-
mitigation steps. There exists several methods to accomplish this, however, many require
substantial amounts of pre- or post-processing in the form of additional operator measure-
ments, noise extrapolation, or other types of mitigations.

In this paper we present a simple and almost zero-overhead mitigation technique. The
method which we name Reference Error Mitigation (REM) can drastically increase the ac-
curacy for many types of chemical NISQ calculations. By leveraging an initial state in the
VQE optimization procedure, often chosen to be the Hartree-Fock state, we can correct for
a substantial amount of the noise in the Fock space close to our initial guess. Figure 7.2
shows the effects of REM along the PES of H2 and HeH

+.
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Figure 7.2: Mitigation effects of on the PESs for H2 and HeH
+. In addition, readout

error mitigation is employed. The lower figures show the error, with the shaded region
corresponding to 1.6mHa. The figure is reproduced from Paper II.

Paper III

The Electron Density: A Fidelity Witness for Quantum Computation

As quantum computers become more powerful, there might come a time where the calcu-
lations they perform are no longer classically tractable to exactly verify. To help verify the
results of future quantum computers, we implement a fidelity surrogate based on the topo-
logical features of the electron density. We find that the effectiveness of the surrogate is
heavily dependent on the symmetry and properties of the studied molecule, and the active
space under consideration.
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Figure 7.3: Differences in the electron densities between (top) noisy and noise-free (mid-
dle) mitigated and noise-free, and (bottom) mitigated and near-exact witness for H2, LiH,
Li2, and HCN. The figure is reproduced from Paper III.

Paper IV

A quantum computing implementation of nuclearelectronic orbital (NEO) the-
ory: Toward an exact pre-Born–Oppenheimer formulation of molecular quan-
tum systems

Quantum computing brings the promise of larger and more complex chemical simulations,
and offers to open up calculations that have previously often been neglected. One such av-
enue is to relax the restrictions imposed by the BO approximation.

In this paper we explore how such an relaxation could be implemented on near-term
quantum hardware. We utilize the NEO framework to include nuclear orbitals in a VQE
calculation, showing how the qubit and gate requirements in the circuits can be reduced
substantially by looking at the problem symmetries. We additionally implement a parameter
transfer strategy, similar to that analyzed in Paper I.

We implement a NEO-UCC algorithm for two molecules: H2 and malonaldehyde. The
results of including varying orders of excitaions in the NEO-UCC for H2 is shown in Ta-
ble 7.1
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Table 7.1: Ground state energies for H2, calculated using BO and NEO approaches. The
errors decrease as higher order excitations are included. The effect of pure nuclear single
and double excitations (S(0,1)D(0,2)) is minimal. Table is reproduced from Paper IV.

Method Energy/Ha Error/Ha

NEOFCI -1.066121
NEOHF -1.041487 0.024634

S(0,1)D(0,2) -1.041487 0.024634

S(1,0)D(2,0) -1.065040 0.001082

S(1,0)D(2,0)D(1,1) -1.066037 0.000084

S(1,0)D(2,0)T(2,1) -1.065063 0.001059

S(1,0)D(2,0)D(1,1)T(2,1) -1.066117 0.000004

SD(2,0)D(0,2) -1.065049 0.001073

SDT(2,1) -1.066121 0.000001

N
E
O
U
C
C

SDT -1.066121 0.000001

Paper V

Nonadiabatic Nuclear–Electron Dynamics: A Quantum Computing Approach

Quantumdynamics offers an interesting avenue for quantumcomputing, simulating the time
evolution of chemical systems. Time accurate time evolution is computationally expensive
to classically perform and is a such a candidate for quantum simulation.

Building on the methodology we developed in Paper IV, we implement a trotterized
scheme to perform quantum dynamics and proton transfer in the malonaldehyde molecule.
The dynamics is performed both in the adiabatic and nonadiabatic regimes. The effect of
trotterization is also studied, andwe find that errors owing to poor approximation in the trot-
terized operator incurs substantial errors in the measured nuclear-electron entanglement.

53



CHAPTER 7. SUMMARY OF PAPERS

54



|1000⟩|1000⟩
CHAPTER8

Conclusion and Outlook

The goal of this thesis has been to investigate how near-term quantum computers can be
used to study chemical concepts. Tangential topics such as error mitigation and optimiza-
tion were discovered and incorporated along the way.

The parameter transfer strategy presented in Paper I builds upon methods from con-
ventional chemistry. The method proved effective and somewhat versatile, with similar ap-
proaches being implemented successfully for bothPES sampling and for transferring param-
eters between levels of theory. Application and development of parameter transfer strate-
gies will most likely happen naturally as related problems are found. As quantum computers
becomemore powerful andharder to classically emulate, one can imagine a timewhere small
calculations are carried out in advance, validated with a classical machine, and then used to
warm-start a larger quantum calculation.

An additional topic that came up during the work on transferring parameters was the
idea of having a measure of similarity between problems. This type of measure would then
help predict when and where parameter transfer could be useful, and perhaps explain why.
Such ameasurewould likely drawparallels to the fidelity axioms of Josza, listed inChapter 5.
Such a measure could indicate how much speedup should be expect from a given transfer.
Having a value on expected speedup could in turn lead to a sort of hyper optimization where
an optimal set of calculations can be planned out such that one feeds into the next. Much
like the use of HF to initialize post-HFmethods. Further development could help overcome
one of the challenges facing the fault-tolerant quantum phase estimation algorithm: the re-
quirement of an initial overlap with the ground state.

As quantum computers becomemore powerful, and hopefully at some point surpass our
ability to simulate them classically, we will enter a period where access to physical quan-
tum computers will become crucial. The current process of validating quantum calculations
consist to a large part in comparing to noise- and error-free calculations, performed on clas-
sical computers. This type of validation will become infeasible for calculations involving
more than 30 or 40 qubits, and outright impossible as we approach 100 qubits [11]. The
method proposed in Paper III is an attempt to look ahead, to help gauge the quality of yet
to be realized calculations. Future work in this direction should focus on creating a proper
measure, such that the values generated can be used to also quantitatively to gauge quality
of calculations.

The REM method proved surprisingly efficient at reducing errors in the ground state
energy. The ease of use and the low cost alsomakes it a good choice for an initial mitigation,
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before perhapsmore powerful, but costlier, methods are implemented. REMalsoworkswell
when applied together with some other mitigation strategies, such as readout mitigation. A
possible extension to the method presented herein, could come in the form of higher level
extrapolation and inclusion of more points. A draw back of the current method is that it
leaves the shape of the cost landscape unchanged. An higher-order extrapolation technique
would additionally allow for corrections of the shape. The points used for extrapolation do
not need to be new Clifford states. An option is to use the same reference state but change
the noise level, taking inspiration from methods such as Richardson extrapolation.

For future calculations, effort should also be put towards incorporating more realistic
noise models. Explicit depolarizing and dephasing noise, as well as readout errors should be
used. With experimental data, such as that presented herein, an accurate noise model could
most likely be constructed. Having an accurate noise model would in turn allow to get more
value out of experiments as one can be better prepared.

Taking a step beyond theBOapproximation proved both challenging and rewarding. As
the calculations naturally require more resources, much effort was put into reducing these
requirements. The non-BO calculations performed in this thesis demonstrated a possible
approach to time-evolution on near-term quantum computers. However, the Trotterization
method employed produces quantum circuits that are far too deep for current quantum com-
puters. Going forward, it is thus crucial to reduce the circuit depth. If the circuit depth can
be sufficiently reduced, quantum time-evolution and NEO dynamics can prove interesting
cases for physical NISQ computers.

As the work in this thesis was in part performed at, and as part of, AstraZeneca, many of
the discussions where had on the topic of industrial relevance. What needs do the pharma-
ceutical industry have that are answered by quantum computing? The ideas of non-BO and
quantum time evolution in Papers IV and V came frommy colleagues at AstraZeneca. Both
methods exist today, however, they are often seen as too computationally expensive formost
use cases. Quantum computers would hopefully lower the cost of such calculations, making
them relevant for industrial use.

When quantum computers are presented to industry, and the public at large, it is often
the increased accuracy that is presented, offering to perform previously impossible calcula-
tions. However, precision and accuracy are not necessarily what is requested by industry.
Value in quantum computing could also be found in performing calculations with current
day accuracy, but at reduced cost. This would effectively allow for more parallelism when,
e.g., screening large amount of molecules and conformers. This is a particular interesting
application for NISQ computers, as they hopefully bridge the gap to fault-tolerant quantum
computing. Unfortunately, the crossover point where quantum computers start to outper-
form classical ones seem to be far into the future [177].

In general, the idea of any computational advantage in the NISQ era is controversial.
Quantum computers boasting hundreds of qubits have been developed, yet the largest cal-
culations consist of closer to 20 qubits, and some even using HF as the level of theory [103].
Nevertheless, the fact that classically simulating more than tens of qubits soon becomes im-
possible still instills hope for quantum usefulness [15].
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Abstract
One impediment to the useful application of variational quantum algorithms in quantum
chemistry is slow convergence with large numbers of classical optimization parameters. In this
work, we evaluate a quantum computational warm-start approach for potential energy surface
calculations. Our approach, which is inspired by conventional computational methods, is
evaluated using simulations of the variational quantum eigensolver. Significant speedup is
demonstrated relative to calculations that rely on a Hartree–Fock initial state, both for ideal and
sampled simulations. The general approach of transferring parameters between similar problems is
promising for accelerating current and near-term quantum chemistry calculations on quantum
hardware, and is likely applicable beyond the tested algorithm and use case.

1. Introduction

Quantum computing has been proposed as a possible next step in the field of computational chemistry,
especially when applied to highly correlated systems [1]. Theoretical proof of potential quantum speedup
exists for problems involving highly correlated systems [2, 3]. However, these results rely on fault-tolerant
quantum computers. While quantum computing has come a long way, fault-tolerant computing is yet to be
realized [4–6]. While the technology matures, other avenues to useful quantum computing are being
explored. The period leading up to fault-tolerant quantum computing is often referred to as the Noisy
Intermediate-Scale Quantum (NISQ) era [7]. Quantum devices in this regime are susceptible to many types
of errors and noise [8, 9].

Despite these impediments, algorithms have been designed to leverage existing NISQ hardware for
quantum chemistry calculations [1, 3, 10]. Several such approaches rely on so-called Variational Quantum
Algorithms (VQAs) [11]. These variational algorithms, a subset of which will be described in more detail
below, utilize a parameterized quantum circuit to generate trial states for which a cost (or loss) can be
evaluated through measurement on the NISQ device. By coupling the quantum computer to a classical
optimization algorithm, the circuit parameters can be optimized such that the cost is minimized. Even
though the addition of a classical optimization step allows for some level of noise suppression [11, 12],
several works [9, 12–15] have highlighted the challenges of optimizing the high dimensional parameter
spaces associated with these types of quantum circuits. While there is no formal proof that VQAs can
out-perform classical implementations, they are nonetheless useful in pushing the limits of near-term
quantum computation [16, 17].

For chemistry applications, the (currently) most common algorithm is the Variational Quantum
Eigensolver (VQE), which has been used to perform several quantum chemistry calculations on NISQ
hardware [18–22]. The VQE algorithm is briefly summarized below, and in more detail in, e.g. [3, 19, 23, 24].

© 2023 The Author(s). Published by IOP Publishing Ltd
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The number of parameters and energy evaluations required for VQE calculations can reach into the tens or
hundreds of thousands, even for small molecules [12]. The large number of parameters makes calculations
slow, and in some instances practically unfeasible. For example, more than 16 000 variational parameters and
69 qubits are required to describe a single hydrogen cyanide molecule using unitary coupled cluster theory
including single and double excitations (UCCSD) and a standard 6−31+ G(d) basis set. More advanced
versions of the VQE algorithm exist that reduce the number of parameters. However, the fundamental
challenge of high dimensional optimization remains as the size of the simulated system increases.

In this work, we outline and evaluate a general strategy for accelerating convergence of VQE-type [23–25]
algorithms through the use of a parameter transfer (PT) approach. We provide proof-of-concept calculations
that demonstrate speedup of VQE-based evaluation of potential energy surfaces (PESs) of molecules, both
for ideal simulations and in the presence of sampling noise.

2. The VQE algorithm

The objective of any VQA is to find the parameters θmin that minimize the value of some cost (loss) function
C(θ). How one defines the cost function varies. Nevertheless, some aspects of the cost function are common
to all implementations. The type of cost functions that we will discuss in this work can be seen as functions
of (1) a parameterized circuit, U(θ), and (2) a set of measurable operators (observables),

{
Ôk

}
, that sums to

the cost.
The VQE is a particular implementation of a VQA that aims to identify a set of parameters that minimize

the expectation value of a Hamiltonian [26]. The VQE algorithm can consequently be formulated as a
minimization problem

min
θ

E(θ) =min
θ

〈
Φ (θ)

∣∣Ĥ∣∣Φ (θ)
〉
, (1)

where the cost is the energy E(θ). Because we rely on the Born–Oppenheimer approximation, energy
minimization is performed for fixed nuclear coordinates R with the corresponding Hamiltonian Ĥ(R).
When formulated in second quantization this electronic Hamiltonian reads as,

Ĥ= ENN +
∑

hij â
+
i âj +

1
2

∑
hijkl â

+
i â

+
j âkâl . (2)

In equation (2), hij and hijkl are one- and two-electron integrals, and ENN is the classical nuclear-nuclear
repulsion energy, â+m and âm are the fermionic creation and annihilation operators for the spin orbitalm [27,
28]. As we simulate physical systems, the energy minimization of equation (1) is commonly subjected to
constraints, such as particle and spin conservation.

The implementation of VQE can be broken down into three main components: quantum circuit
execution, measurement, and classical optimization of parameters with respect to the expectation value
(figure 1). The quantum circuit itself can be represented by two unitary operators: the state preparation,
Uprep, and the ansatz, U(θ). The state preparation circuit acts on the all-zero state to create some initial state∣∣Φ init⟩ = Uprep

∣∣0 . . .0⟩. This initial state is then modified through the application of the ansatz to produce a
trial state |Φ (θ)⟩, that is U(θ) |Φ init⟩ = |Φ (θ)⟩. Measurements of relevant Pauli operators are subsequently
used to reconstruct the expectation value that, in turn, is used to guess a new set of parameters to be used in
the ansatz. This process is repeated until some convergence criterion is met. While the VQE algorithm may
appear straightforward, each step presents challenges that are critical for the quality of the calculation. A
more detailed description of how the electronic structure problem is mapped to a quantum circuit ansatz is
provided in the supporting information (SI).

A crucial part of the VQE algorithm, which can make or break any attempt at convergence, is providing a
suitable initial guess (state), |Φ init⟩, for the wavefunction (state preparation in figure 1). In this work, we
explore the general approach of accelerating convergence by transferring parameters from a previously
converged calculation or otherwise known solution.

3. Parameter Transfer (PT)

Central to the idea of PT is the existence of an underlying similarity between two problems. In many cases,
some form of commonality is apparent. For example, in chemistry, molecular structures might differ by a
minor chemical substitution, or be related by symmetry or conformation. An important class of problems
also related to similarity is quantum mechanical problems treated at different levels of theory or accuracy.
The level of theory might, for instance, be increased, by utilizing larger basis sets, more flexible
wavefunctions, or by limiting approximations in the Hamiltonian. Others, including one of us (MS), have
shown that PT can be used to accelerate post-Born–Oppenheimer VQE calculations, by relying on related

2
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Figure 1. Schematic of a Variational Quantum Algorithm. The procedure can be viewed as consisting of 3 major steps: circuit
execution, measurement, and classical optimization. The steps are repeated until convergence. The circuit execution can be
further sub-divided into state preparation and description of the ansatz.

Figure 2. A schematic illustration of the PT approach. Two VQA problems—source A and target B—overlap in a region where
problems can be considered similar. A set of converged parameters, θmin

A , are transferred from the source to be used as initial
parameters, θinit

B , in the optimization of the target problem.

Born–Oppenheimer approximation-based calculations [29]. In what follows, we will first briefly discuss PT
in the context of a general cost function, C(θ). We will then address the case of molecular ground state
energies (cf E(θ) in equation (1)).

Providing a general definition or measure of similarity is outside the scope of this work. We here view
similarity in terms of relations between the shape of the landscapes of two cost functions, CA (θA) and
CB (θB). Regions around minima of cost functions, θmin

A and θmin
B , are considered similar if the two minima

offer approximate solutions to the other, i.e. if CB

(
θmin
A

)
≈ CB

(
θmin
B

)
and CA

(
θmin
B

)
≈ CA

(
θmin
A

)
. Note

that the two cost functions need not have similar values, nor the same number of parameters. To understand
this seeming dichotomy, we can consider a simple example: the separate minimizations in x of y = x2 and
y = x4 + c. Both problems share the same solution in xmin = 0 while differing in cost at an arbitrary value x,
since c is unbound. For the purpose of optimization, it is important that the two convex regions surrounding
each minimum overlap (figure 2). Given that an overlap exist it is possible to start at θmin

A and follow the
steepest decent to reach θmin

B .
In the optimization problems considered herein, there is an underlying order to the calculations; one is

performed before the other. We use source to mean an initial calculation. Target, in contrast, refers to the
calculation to which the parameters are transferred and that we wish to accelerate.

3
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Figure 3. Schematic view of two VQE calculations being performed in series, where spirals represent gradual convergence towards
a ground state. The converged parameters, θmin

k , for a geometry Rk are passed to the next VQE calculation for geometry Rk+1. PT
thereby allows for shortcutting the optimization process, as compared to an otherwise default initial guess.

The underlying principle of PT is common practice in conventional quantum chemistry. For example,
PT can be useful for speeding up convergence of self-consistent field optimization in PES sampling, either by
transferring parameters between wavefunctions of neighboring geometries or different levels of theory. PES,
in turn, form the basis for evaluating equilibria and transition state geometries, reaction rates, spectroscopic
constants, and other properties of molecules. PT is also related to the field of transfer learning in machine
learning [30, 31]. The implementation of PT in quantum computation has thus far been limited. Promising
speedup for the Quantum Approximate Optimization Algorithm [32–37] and for VQA models [38] have
been demonstrated with similar approaches. IBM has implemented extrapolation (or bootstrapping)
methods in their Qiskit framework for the purpose of accelerating PES sampling of molecules [39]. However,
while some methods are available, testing and characterization of these methods is lacking. Overall, little is
known about the efficiency of PT when applied to the VQE, or in the presence of noise.

Here, we combine PT with VQE and apply it to the problem of PES sampling of molecules. Figure 3
illustrates how PT connects, and ideally accelerates, consecutive variational VQE optimizations on a PES, by
providing improved initial guesses. We emphasize that this combination of PT with VQE is but a small first
step towards extending PT to quantum computation of chemistry more generally. Some of us (MS) have
already built upon this first step and explore PT between levels of theory in another work [29].

The initial geometry, R0, in a PT-VQE PES evaluation is, naturally, performed without any transfer (as
there is no previous solution to transfer from). The subsequent calculation of a neighboring geometry, R1, is
then initiated using parameters θmin

0 , optimized for R0. Extending to the general case of neighboring
geometries Rk, and Rk+1, we utilize a converged source ground state, |Φ

(
θmin
Rk

)
⟩, as the initial guess for the

target ground state |Φ
(
θGS
Rk+1

)
⟩. The difference in geometry (the transfer step) is then d= Rk+1 −Rk and the

transfer distance is d= ||Rk+1 −Rk||. Here we intentionally leave the norm unspecified for the general case
since what constitutes distancemay vary between systems. We will apply PT to accelerate exploration of
relatively simple one-dimensional PES sampling using VQE. For this reason, we refer to Euclidean distances
(2-norm).

4. Quantifying speedup

To quantify the efficacy of PT-accelerated VQE, we compare it to the de facto standard method for chemically
inspired ansätze: Hartree–Fock (HF), a mean-field description of electron interactions [28]. We define
speedup for a given target geometry R and transfer step d as

S= S(R,d) = NHF(R,d)
NPT(R,d)

− 1, (3)

where, NHF and NPT are the number of times energy expectation values, ⟨E⟩, needs to be evaluated for
convergence to be reached with a HF and a PT initial guess, respectively. In our following evaluation of PT,
we will additionally present speedup averaged over all n considered combinations (R,d) where ∥d∥ = d,

S̄= S̄(d) = 1
n

∑
(R,d)

S(R,d) . (4)

Some optimization algorithms require additional evaluations as part of a setup routine, as discussed in
the supporting information.

4
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Figure 4. (a) Equation (4) averaged over all our tested systems. The grey area corresponds to the interquartile range (middle 50%
of values). Black lines are fitted rational functions, details are given in the supporting information. (b)–(e) Mean speedup in
STO-3G basis set simulations of LiF (8,8), NaCl (6,6), Li2 (2,8), and HCN (6,6), respectively. Values within parentheses denote the
size of active spaces as (electrons, orbitals).

5. Methods

All simulations were performed using the VQE algorithm implemented in Qiskit 0.39.3 [39] combined with
Gaussian 16, version B.01-AVX2 [40]. All calculations relied on Unitary Coupled Cluster Singles and
Doubles (UCCSD) theory, while basis sets and active spaces were varied as indicated in figure 4. We denote
the number of active orbitals and electrons using the notation (electrons, orbitals). Active spaces were
determined using Qiskit’s ActiveSpaceTransformer, limiting the active space to those orbitals closest to the
Fermi level. Molecular Hamiltonians were mapped to simulated qubits using parity encoding. All
simulations implemented two-qubit reduction, made possible by considering alpha and beta spin parity
conservation [41]. The resulting quantum circuits thus range in size from 2 to 14 qubits in the noise-free
simulations (details are provided in the SI).

We relied on Qiskit’s Sequential Least Squares Programming (SLSQP) [42] optimization algorithm for
exact simulations. Constrained Optimization By Linear Approximation (COBYLA) [43] and the
Simultaneous Perturbation Stochastic Approximation (SPSA) [44] optimization algorithms were both
evaluated for sampling-based simulations. Convergence of the SPSA algorithm was determined over the last
100 energy evaluations, by comparing ⟨E⟩ averaged over the first and last sets of 50 values. The calculation
was considered converged if the difference between the two sets were below a threshold of 0.0001 Ha.

Sampling and noise: Each combination of target and transfer geometry were run with the QASM
simulator in Qiskit, which performs sampling from an ideal statevector simulation (as opposed to exact
statevector). As a practical compromise between speed of simulation and sampling precision when using the
SPSA optimizer we took 32 786 (215) samples for each calculation. When using the COBYLA optimizer
1048 576 (220) samples were instead used, owing to the algorithm’s lower noise-resilience. These choices
retain a substantial contribution to stochastic noise in the simulations, and is similar in magnitude to what
can be expected in current and near-term hardware experiments [20]. To evaluate average performance,
multiple calculations were performed for both the HF starting guess and the PT implementation, the results
of which were averaged. Speedup for each point (R,d) was evaluated as an average over all possible
combinations of 10–15 separate calculations initialized with HF and PT. To limit computational cost
associated with these simulations, the considered circuit sizes were reduced to include only 2 (H2 and HeH+)
and 4 qubits (LiH).

6. Results and discussion

6.1. PT in noise-free VQE
To evaluate PT, we first look at noise-free (statevector) simulations. While not being faithful models of NISQ
hardware, noise-free simulations can provide valuable insight into the limits of quantum algorithms. By
removing the effects of noise, algorithmic errors can be separated from those caused by imperfect hardware

5
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Figure 5. Speedup quantified for a transfer distance d= 0.1 Å across the test set of molecular problems. Results are sorted by
number of parameters in the variational ansatz shown at the bottom of the figure, increasing from left to right. Mean values of
each distribution is indicated by a colored horizontal line between extrema (compare figure 4), while black horizontal lines mark
the medians. Widths of colored areas scale with the number of samples of a given PES with a given speedup.

and choices of peripherals such as optimizers. We will later return to assess the effects of sampling noise in a
subset of examples.

Our test set consist of 36 different quantum chemistry problems: PES of 10 molecules treated with
different basis sets and active spaces, which are detailed below. For each case, we consider the dissociation of
a single atom from a molecule, making a one-dimensional PES. In triatomics, such as BeH2, H2O and HCN,
a single H atom is dissociated, while all bond angles remain fixed.

The molecules we study cover a range of electronic structures in terms of electron correlation, including
both archetypical ionic dimers (HeH+ and NaCl) and covalently bound molecules (H2 and H2O). Our test
set was selected to represent a variety of parameter set sizes, quantum circuits and Hamiltonians of relevance
to current and near-term hardware experiments, while still allowing for classical simulation.

The speedup quantified for a given calculation will inevitably be linked to the choice of optimization
algorithm. Some such algorithms will function well for noiseless simulations, whereas others are more
suitable in the presence of noise. For noise-free optimization, we here rely on the SLSQP optimizer. SLSQP is
a representative optimizer for convex optimization in the absence of noise, commonly used in statevector
simulations of VQE [45–48]. As we later implement sampling noise, we will subsequently use the SPSA
algorithm, which is better adapted for optimization in the presence of noise. We stress that it is outside the
scope of this work to provide benchmarking of optimization algorithms (such benchmarking has been done
by others [49–51]). Nevertheless, we expect the general conclusion of our work–useful speedup with PT–to
hold for reasonable choices of optimizers.

One important limit to PT is the transfer distance d. As d approaches zero in the absence of noise the
transfer perfectly corresponds to the already converged solution. Figure 4(a) shows an expected decrease in
average and median speedup over our test set as a function of increasing transfer distance. Figures 4(b)–(e)
serve to illustrate the variety in speedup between calculations in our test set. We attribute these differences to
the suitability of the HF initial guess: there is less benefit to PT in systems that are well-described by a HF
state. In some cases, such as the H dissociation from HCN, the speedup is marginal or non-existent, except
for very short transfer distances.

For a transfer distance of 0.1 Å, which is a practical choice for PES sampling, we note an average speedup
of 70% (figure 4(a)). Note that the choice of a fixed transfer distance for all systems is far from optimal, and
0.1 Å is here merely chosen to facilitate comparison. In figure 5 we look further at the speedup corresponding
to this specific transfer distance, but additionally averaged over entire bond dissociation curves, from
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Figure 6.Mean speedup (S̄(d)) as a function of transfer distance d in: (a) exact (statevector) simulation combined with SLSQP
optimizer. Peak values at d= 0 are not shown. (b) Sampling-based simulations with SPSA optimizer. Colored shaded areas show
interquartile range over repeated calculations. (c) Sampling-based simulations utilizing the COBYLA optimizer. The COBYLA
optimizer performs poorly in the noisy setting, converging prematurely, resulting in similar performance for both HF and PT
initial states.

compressed bonds to equilibrated geometries and dissociation. Results in figure 5 correspond to calculations
with increasing number of circuit parameters from left to right. An overall trend is not apparent, except for
some molecules (like Li2) where an improvement with the number of parameters may be present. The PT
approach appears to perform well under noiseless conditions even for calculations exceeding 100 parameters.

6.2. Effects of measurement sampling
Even with fault-tolerant quantum computing, which is yet to be realized, one needs repeated sampling of
expectation values of the quantum system. Such sampling from a noise-less state introduces a stochastic
variability, or sampling noise. In this section, we reevaluate three of our test set calculations, H2 (2,2), HeH+

(2,2), and LiH (2,3), in the presence of sampling noise. Due to the presence of sampling noise, SLSQP is no
longer suitable (nor practically feasible) and we use the SPSA and COBYLA optimization algorithms
(figure 6).

The most notable difference in the performance of PT when sampling noise is introduced is a markedly
different dependence of speedup on transfer distance. Instead of a rapid decline, as in figure 4, speedup
appear to decrease linearly with increasing transfer distance. We attribute this difference to the inherently
larger challenge of optimization in the presence of noise. Figure 6(c) serves to highlight the importance of
choosing optimizers well suited for the task at hand. Even though convergence is reached with the COBYLA
optimizer, the number of evaluations at convergence decreases with increasing sampling noise, implying that
figure 6(c) reflects a poor choice in optimizer, not a failure of PT.

The large effect of even relatively low noise levels in combination with improper choices of optimizers,
highlights a challenge that NISQ algorithms face when being compared to conventional methods. We further
discuss optimizer suitability in the supporting information. Overall, our evaluation suggests the potential for
substantial PT-driven speedup both without and in the presence of sampling noise.

7. Conclusions

In this work, we have outlined and provided a proof-of-concept for PT, an approach for accelerating
consecutive VQE calculations. In our test set, PT provides an average speedup of 70%, as long as a suitable
optimization algorithm is used, compared to when a simulation is initialized by a standard HF initial state.
Speedup is apparent both in ideal and sampled statevector simulations, provided that source and target
geometries are reasonably (∼0.1 Å) close. Results can nevertheless vary substantially between molecular
systems, as expected. The PT approach does not appear sensitive to problem complexity, quantified in terms
of number of quantum circuit parameters. Simulations subjected to sampling noise also appear less sensitive
to the choice of transfer distance. Combined, these results lead us to conclude that PT is an attractive
approach for accelerating VQE convergence even for larger more correlated systems. While this study is
limited to PT within the context of PES sampling, we also stress that PT can be considered a general principle
extendable to other types of calculations. In particular, calculations involving transfer of parameters between
different levels of theory is a promising avenue, as shown in [29].
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Problem Details 

Figure S1 shows the quantum circuit for one of our test cases, the two-qubit quantum circuit corresponding to 

the calculation of H2 with an STO-3G basis set. Other circuits are available through the supplementary data link 

provided above. In Figure S1, the first gate, 𝑼, acting on 𝒒𝟎 comprises the state preparation, constructing a HF 

state. The remaining gates are part of the variational ansatz, which includes four parameterized gates. Since the 

ansatz used is the UCCSD and the basis set is minimal, the three parameters of the parameterized gates 

correspond to the two possible single excitations (t[0] and t[1]) and the double excitation (t[2]).  

Figure S1: Quantum circuit for the VQE calculations of H2 at the UCCSD/STO-3G level of theory. The circuit contains 

three parameters, t[0], t[1], and t[2] and two qubits 𝒒𝟎 and 𝒒𝟏. The VQE problem maps the electronic structure problem to 

the minimization given by Eq. (1). 

To see the correspondence of the variational parameters to the UCC ansatz, it is beneficial to look at the 

definition of the UCCSD operator 

𝑼(𝒕) = 𝒆𝑻−𝑻+
, (𝑺𝟏) 

where, in the case of H2 in minimal basis, the cluster operator, 𝑻, is defined as 

𝑻 = 𝒕𝟎 𝒂𝟏
+𝒂𝟎 + 𝒕𝟏 𝒂𝟑

+𝒂𝟐 + 𝒕𝟐 𝒂𝟏
+𝒂𝟑

+𝒂𝟐𝒂𝟎 , (𝑺𝟐) 

where our three 𝒕 = [𝒕𝟎, 𝒕𝟏, 𝒕𝟐] parameters appear. Eq. S1 illustrates the relationship between the circuit 

parameters and the electronic structure problem. Application of the quantum circuit on the prepared state thus 

equals the unitary operation 

𝑼(𝒕)|𝚽𝟎⟩ = |𝚽(𝒕)⟩ . (𝑺𝟑) 

By measuring the state after application of the parameterized circuit, the energy can be calculated as the 

expectation value of the Hamiltonian 

𝑬 = ⟨𝚽(𝒕)|�̂�|𝚽(𝒕)⟩ . (𝑺𝟒) 
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In Eq. (S4), the Hamiltonian is expressed a sum of Pauli terms weighted by coefficients 𝒄𝒊, 

�̂� = ∑ 𝒄𝒊 𝝈𝒏−𝟏 ⊗ … ⊗ 𝝈𝟎  . (𝑺𝟓) 

The VQE solution (the ground state energy) to the electronic structure problem can thus be represented as the 

variational minimization given in Eq, (1). 

 

Effects of Optimizer Setup on Speedup 

How optimization is implemented varies greatly between optimization algorithms. In Figure S2 we give a 

generalized picture of optimization that we find relevant to PT. We wish to highlight the initial step of Figure S2, 

the setup. The setup is typically a one-time event, performed to calibrate optimizer parameters, or perform some 

minimal number of evaluations before checking convergence. For situations where convergence is reached 

following relatively few iterations, the setup stage might account for a substantial part of the total number of 

evaluations. We use 𝑁𝑠  to denote the number of evaluations required before performing a first optimization 

iteration. This distinction is brought up because our definition of speedup is somewhat sensitive to 𝑁𝑠 in those 

cases where convergence is rapid. The value of 𝑁𝑠 naturally varies between different choices of optimization 

algorithms, as well as their respective configuration. 

 
 

Figure S2: Schematic outline of a generic optimization procedure. A setup procedure is first performed to calibrate the 

algorithm and/or before convergence can be evaluated. The optimizer then iterates until convergence. The total number of 

function evaluations performed during optimization is the sum of those performed as part of the setup, 𝑁𝑠, and those performed 

as repeated iterations, 𝑁𝐼 . 

 

In practice, problems containing few (in our case quantum circuit) parameters will see the largest effect of the 

setup stage on evaluated speedup S, due to their generally rapid convergence. We can quantify the importance of 

this effect by letting 𝑁𝐻𝐹 = 𝑁𝑠 + 𝑁𝐼
(𝐻𝐹)

 and 𝑁𝑃𝑇 = 𝑁𝑠 + 𝑁𝐼
(𝑃𝑇)

, where 𝑁𝐼
(𝐻𝐹)

 and 𝑁𝐼
(𝑃𝑇)

 are the number of 

evaluations performed while iterating, starting from a HF and PT guess respectively. Speedup 𝑆  can then be 

expressed in terms of 𝑁𝐼
(𝐻𝐹)

 and 𝑁𝐼
(𝑃𝑇)

, 

𝑆(𝑹, 𝒅) =
𝑁𝐻𝐹

𝑁𝑃𝑇
− 1 =

𝑁𝑠 + 𝑁𝐼
(𝐻𝐹)

𝑁𝑠 + 𝑁𝐼
(𝑃𝑇)

− 1. (𝑆6) 

Eq. (S6) shows us that if both options (default and PT initialized) for calculation converge fast, such that 

𝑁𝐼
(𝐻𝐹)

≪ 𝑁𝑠  and 𝑁𝐼
(𝑃𝑇)

≪ 𝑁𝑠 , even optimal parameter transfer, 𝑁𝐼
(𝑃𝑇)

= 1 , will only correspond a marginal 

speedup.  

𝑆(𝑹, 𝒅) ≈
𝑁𝑠  

𝑁𝑠
− 1 = 0 . (𝑆7) 
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Analytical Approximation and Analysis of  �̅�(𝒅) 

To ease further study of PT it is helpful to identify an analytical representation of the underlying function, �̅�(𝒅). 

Figure 3 and S2 reveals  �̅�(𝒅) to be seemingly continuous and smooth for 𝒅 ≠ 𝟎. We expect the same to hold for 

other systems provided that no degenerate (or close to degenerate) states are present. The dependence of speedup 

on transfer distance, �̅�(𝒅), can for our test set be accurately captured by a polynomial fraction of the form 

�̅�(𝒅) =
𝑎1‖𝒅‖ + 𝑏1

𝑎2‖𝒅‖ + 𝑏2
 . (𝑆8) 

At its maximum, 𝒅 = 𝟎, Eq. (S7) simplifies to �̅�(𝟎) = �̅�𝑝𝑒𝑎𝑘 = 𝑏1/𝑏2. By assuming 𝑏1 = �̅�𝑝𝑒𝑎𝑘  and 𝑏2 = 1, 

Eq. (S8) reduces to, 

�̅�(𝒅) =
𝑎1‖𝒅‖ + 𝑆𝑝𝑒𝑎𝑘

𝑎2‖𝒅‖ + 1
 . (𝑆9) 

Eq. (S9) is the form we (successfully) use to fit the dependence of speedup to d throughout this work (Figure 

S3). This fitting is done by least squares fitting of 𝑎1 and 𝑎2 so to minimize the error with the calculated mean 

speedup, �̅�(𝒅).  

I



 4 

 
Figure S3: Averaged speedup, �̅�(𝒅), as a function of transfer step, 𝒅, for all investigated systems. A rational function given 

by Eq. (S8) is fitted to the simulated data (black line). Since the transfer step is a vector, its sign can vary depending on the 

relative position of source and target. The sharpness of the peak, in the one-dimensional case determined by the left and right 

derivatives at 𝒅 = 𝟎, is indicative of the sensitivity to transfer distance. 
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Data Summary and Error Analysis  

Figure S4 shows the PT speedup calculated for each combination of 𝑹 and 𝒅 in all tested systems. For most 

systems a clear ridge of high speedup can be seen for 𝒅 = 𝟎. Certain systems also show “steady state” behavior 

as the bond broken region is reached, whereby a constant speedup is maintained for most 𝒅. Figure S5 shows the 

corresponding difference in the converged energy when implementing PT as compared to starting optimization 

from a HF guess. The difference is for most instances within or close to the convergence limit 10−6 Ha, implying 

that both starting guesses in manage to find the ground state. A notable exception to this is CH2 (6,6), where PT, 

for some a small set of 𝑹 and 𝒅, manages to substantially converge below the converged HF guess (-0.03 Ha). 
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Figure S4: 𝑆(𝑹, 𝒅) for all tested systems and combinations of source and target geometries. The y-axis corresponds to the 

source geometry, while the x-axis corresponds to transfer step d, as defined in the main text.  Red and blue colors correspond 

to high and low speedup, respectively. A ridge of high speedup is consistently shown near 𝒅 = 𝟎. White (not to be confused 

with light grey) indicates a lack of data, typically seen for source geometries where nuclei are closer than 0.5 Å due to 

limitations in Gaussian 16. Some regions marked in white also correspond to lack of data due to failed convergence of the HF 

reference calculation. 
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Figure S5: Difference in converged energy (in Ha) when starting from a PT guess as compared to starting from a HF guess. 

The color of each data point gives the difference between the two starting strategies, with blue indicating convergence of PT 

to a lower energy and red vice versa. The convergence limit used was 10−6 Ha. White (not to be confused with light grey) 

indicates a lack of data, typically seen for source geometries where nuclei are closer than 0.5 Å due to limitations in Gaussian 

16. Some regions marked in white also correspond to lack of data due to failed convergence of the HF reference calculation. 
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Figure S6 shows the errors with respect to the exact diagonalization of the Hamiltonian when PT is used in 

conjunction with sampling noise. There is seemingly little connection between error and speedup, indicating that 

PT does not accelerate the convergence by sacrificing precision. 

 

 
Figure S6: Correlation between speedup, 𝑆(𝑹, 𝒅), and energy error. Color represents the proportion of calculations in each 

bin, the darker the more calculations with the given speedup and error. A convergence limit of 10−4 Ha was used for all 

systems.  

Suitability of COBYLA in Noisy Conditions 

Noise adds a substantial challenge to many optimizers. An example of a less suitable optimizer in a noisy setting 

is COBYLA. While this optimizer manages to reach convergence (Figure S7), reducing the sampling noise by 

increasing the number of samples increases the number of evaluations needed for convergence. This relation 

between sample size and evaluations indicates that the fast convergence is caused by the noisy environment. We 

consider this a “false” convergence, not truly finding the ground state, instead relying on noise to pass the 

convergence test. What further corroborates this interpretation is that all tested sample sizes fail to reach the 

chosen convergence limit of 10−4 Ha. 

 
Figure S7: Calculations performed with the COBYLA optimizer using varying number of samples (between 210 and 220). 

The number of samples used for each calculation is indicated by the color of each point. Blue indicates a low number of 

samples; green indicates a high number of samples. (a) The error decreases (almost) as the standard deviation of a normal 

distribution 𝜎/√𝑛  (black line). (b) Average number of function evaluations before PT convergence, 𝑁𝑃𝑇 for a given transfer 

step 𝒅. The number of evaluations needed to converge increases with the number of samples. 
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Quantum Circuit Details 

The focus of our work is to study the effects of increased parameter counts, beyond what is currently feasible on 

NISQ hardware, in combination with PT. The circuits we study therefore contain a varying number of gates, 

parameters, and qubits. Details of these quantum circuits are provided in Table S1. Graphical representations of 

a selection of the smaller and medium sized circuits are available through the SND link, provided at the first 

page of this document.   

 

Table S1: Quantum circuit details. The number of active electrons and orbitals determine the circuit size and number of 

parameters. 

Active Space Single-qubit gatesa Two-qubit gatesb Parameterized gates Parameters Qubits 

(2, 2) 13 4 4 3 2 

(2, 3) 322 172 40 8 4 

(2, 4) 883 560 84 15 6 

(2, 5) 1836 1276 144 24 8 

(2, 6) 3277 2416 220 35 10 

(2, 7) 5302 4076 312 48 12 

(2, 8) 8007 6352 420 63 14 

(4, 3) 322 172 40 8 4 

(4, 4) 1618 1096 152 26 6 

(4, 5) 4442 3284 360 54 8 

(4, 6) 9074 7080 640 92 10 

(4, 7) 15978 12924 1000 140 12 

(4, 8) 25570 21232 1440 198 14 

(6, 4) 883 560 84 15 6 

(6, 5) 4444 3284 360 54 8 

(6, 6) 11669 9200 828 117 10 

(6, 7) 23526 19268 1488 204 12 

(6, 8) 40975 34448 2340 315 14 

(8, 5) 1836 1276 144 24 8 

(8, 6) 9076 7080 640 92 10 

(8, 7) 23524 19268 1488 204 12 

(8, 8) 46916 39568 2688 360 14 

a: Excluding parameterized single-qubit gates. The single-qubit gates used are H, S, 𝑆†, and X. 
b: Only the CX (CNOT) gate was used. 

I





      
 
 
 
 

     Paper II 
      



      
 
 
 
 

     
      



Reference-State Error Mitigation: A Strategy for High Accuracy
Quantum Computation of Chemistry
Phalgun Lolur,∥ Mårten Skogh,∥ Werner Dobrautz, Christopher Warren, Janka Biznárová, Amr Osman,
Giovanna Tancredi, Göran Wendin, Jonas Bylander, and Martin Rahm*

Cite This: J. Chem. Theory Comput. 2023, 19, 783−789 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Decoherence and gate errors severely limit the
capabilities of state-of-the-art quantum computers. This work
introduces a strategy for reference-state error mitigation (REM) of
quantum chemistry that can be straightforwardly implemented on
current and near-term devices. REM can be applied alongside
existing mitigation procedures, while requiring minimal post-
processing and only one or no additional measurements. The
approach is agnostic to the underlying quantum mechanical ansatz
and is designed for the variational quantum eigensolver. Up to two
orders-of-magnitude improvement in the computational accuracy
of ground state energies of small molecules (H2, HeH+, and LiH) is
demonstrated on superconducting quantum hardware. Simulations
of noisy circuits with a depth exceeding 1000 two-qubit gates are
used to demonstrate the scalability of the method.

■ INTRODUCTION
Quantum computers hold a potential for solving problems that
are intractable on current and future computers.1,2 Quantum
chemistry is one of the research areas where quantum
advantage is expected in the near future.3−6 One of the
major challenges in realizing practical quantum computation of
chemistry is the sensitivity of quantum devices to noise. Errors
due to noise can be caused by several factors such as
spontaneous emission, control and measurement imperfection,
and unwanted coupling with the environment.7 Whereas
reliable error correction is expected in future quantum
computers, such fault-tolerant machines will put high demands
on both quality and number of physical qubits.4 Increasingly
robust hybrid algorithms2,8−10 are being designed for quantum
chemistry on near-term, noisy intermediate-scale quantum
(NISQ) devices.11 Unfortunately, noise causes such algorithms
to produce results, such as energies of molecules, that are of
relatively low quality, even as they rely on shallow quantum
circuits.12−15 We will return to discuss how one can define
quality in terms of accuracy and precision in this context.
The general challenge of noise in quantum hardware has

motivated the development of several methods for error
mitigation:16 readout/measurement error mitigation,17 zero
noise/Richardson extrapolation,18,19 Clifford data regression,20

training by fermionic linear optics (TFLO),21 rescaling as per
Arute et al.,22 probabilistic error cancellation,23 quantum
subspace expansion,24 postselection,25 McWeeny purifica-
tion,26 virtual state distillation,27 and symmetry verification28

are some examples of techniques exploited to improve the
quality of measurements of encoded Hamiltonians through
pre- or postprocessing. Some of these techniques have been
shown to offer improvements when computing energies of
small molecules with variational algorithms.26,29 A combination
of mitigation strategies is often a good approach to minimize
errors.
In this study, we report on a chemistry-inspired error-

mitigation strategy that can be combined with any variant of
the variational quantum eigensolver9,30 (VQE). Our approach,
reference-state error mitigation (REM), relies on postprocess-
ing that can be readily performed on a classical computer. The
method is applicable across a wide range of noise intensities
and is low-cost in that it requires an overhead of at most one
additional VQE energy evaluation. REM can readily be
employed together with other error mitigation methods, and
throughout this work we additionally use readout mitigation,
which corrects for hardware-specific nonideal correlation
between prepared and measured states.17,22 Readout mitigation
works by performing an initial calibration against a subset of
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Clifford gates, whereby known states are prepared and
measured; see the Supporting Information (SI).
The evaluation of computational accuracy in this work should

not be confused with chemical accuracy.31 We here use the term
computational accuracy specifically when comparing results of a
quantum calculation with the exact solution at that same level of
theory. Computational accuracy then, in the context of VQE
calculations, refers to how accurate a given VQE problem is
solved with respect to the given Hamiltonian and ansatz. This
accuracy can only be quantified so long as it is possible to solve
the problem without noise, e.g., using conventional quantum
chemistry (which we can still do; discussing the limits of
conventional quantum chemistry methods is outside the scope
of this work). Practical implementations of VQE on real
hardware currently suffer from drastic deficiencies in level of
theory, basis set size,32 proper consideration of the physical
environment (e.g., solvent effects), and dynamical effects.
These limitations keep quantum computation (including our
own) from accurately predicting real chemical processes. On
the other hand, chemical accuracy is the correct term for what is
required to make realistic predictions and is commonly defined
as an error of 1 kcal/mol (∼1.6 millihartree) from the exact
solution.9,15,26,33 We encourage the community to use the
appropriate terminology. The hunt for chemical accuracy in
the NISQ era is far from over.

■ METHODS
The goal of the VQE algorithm is to minimize the electronic
energy with respect to a set of quantum circuit parameters, i.e.,

(1)

where θ⃗ = [θ1, θ2, ..., θn], Ĥ is the molecular Hamiltonian, and
|Ψ(θ⃗)⟩ represents the parametrized trial state generated by the
VQE circuit. The VQE energy, EVQE(θ⃗), can therefore be
thought of as living on an n-dimensional surface in parameter
space. A one-dimensional representation of such a surface is
shown in orange at the top of Figure 1. The EVQE(θ⃗) surface is
associated with some degree of systematic and random noise
that can only be partially removed by accounting for state-
preparation and measurement errors through readout miti-
gation.
As the name suggests, the REM method rests on an

appropriate choice of a reference wave function, or reference
state. We recommend the reference state is (a) chemically
motivated, i.e., likely physically similar to the sought state, and
(b) fast (or at least viable) to evaluate using a classical
computer. These properties are often also desired in the choice
of initial guess for VQE, thus the initial point for optimization
is commonly a good choice of reference state. The Hartree−
Fock state is a practical example of an often-suitable reference
wave function that is based on a computationally efficient
mean-field description of the electronic potential. We rely on
Hartree−Fock as the reference state in this work, but we will
investigate different reference choices, better suited to more
strongly correlated problems, in future work.
For the REM method to be practically useful, the cost

associated with calculating the reference state has to be lower
than the actual VQE calculation. One way to evaluate the
relative cost of classical as compared to quantum computation
is to compare their respective computational complexity. A

Figure 1. (a) One-dimensional representation of the electronic energy E as a function of quantum circuit parameters θ⃗. The REM approach can be
explained as a four-step process: (1) A computationally tractable reference solution (such as Hartree−Fock) is computed on a classical computer.
(2) A quantum measurement of the VQE surface (orange) is made using parameters corresponding to the reference solution. (3) The difference in
energy calculated for the reference solution on classical and quantum hardware defines an error, ΔEREM. (4) The error estimate is assumed to be
systematic and is used to correct the VQE surface in the proximity of the reference coordinate. The resulting REM corrected surface and the exact
(noise-free) solution are represented by solid green and dashed red lines, respectively. Blue dots represent the coordinates of the reference
calculations, while diamonds indicate minima of the different energy landscapes. (b) The inset shows the remaining error after application of REM.
A possible difference in the location of the minima is indicated by θ⃗-shift (b). The difference in energy between the VQE and REM minima is
indicated by ΔEerror,REM.
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lower bound estimate of the cost of VQE is the number of
measurements required to evaluate the energy. In an ideal
scenario, i.e., without noise, such measurements approximately
scale as O(n4), where n is the number of basis functions. In
contrast, the cost of conventional Hartree−Fock calculations
have a practical scaling between O(n2) and O(n4).34

Once the parametrized reference state |Ψ(θ⃗ref)⟩ is prepared,
a determination of the resulting energy error ΔEREM at the
reference parameters can be made,

(2)

where Eexact(θ⃗ref) is the exact solution (up to numerical
precision) for the reference state, evaluated on a classical
computer. EVQE(θ⃗ref) refers to the energy evaluated from
measurements on a quantum computer at the reference
parameter value, θ⃗ref. The idea of approaching error mitigation
by comparing noisy measurements to noise-free tractable
classical calculations shares some commonality with mitigation
techniques such as Clifford data regression, TFLO, and the
rescaling technique of Arute et al.22 However, our method is
distinct from these methods in that REM only relies on the use
of a single conventional calculation to generate a reference
state. Because REM incorporates mitigation through the choice
of a chemically and physically motivated initial guess for the
VQE algorithm it does not require training on a large number
of measured expectation values, as Clifford data regression and
TFLO do. REM also considers the effects of both circuit depth
and composition, which are often overlooked by other
methods.
It is important to make the distinction between the initial

state in the VQE calculation and the reference state, which
need not be the same. The reference state can either be a part
of the VQE optimization or be prepared and measured
separately from the variational procedure. Provided that the
reference state is also used as an initial guess for the VQE
algorithm, it is possible to perform REM without incurring any
additional measurement cost.
The exact energy at any arbitrary coordinate, Eexact(θ⃗), can

be expressed as

(3)

where ΔEp(θ⃗) includes any parameter-dependence of noise
present and ΔEp(θ⃗ref) = 0. The underlying assumption of the
REM method is that such parameter dependence of the noise
is negligible close to the reference geometry, i.e.,

where Δθ⃗ = | θ⃗ − θ⃗ref | . In other words,

the effectiveness of the REM approach can be assumed
dependent on the Euclidean distance of the reference state to
the exact solution |θ⃗exact − θ⃗ref |, given that both are in the same
convex region of the energy surface. When this approximation
fails, noise can shift features in the energy surface, such as the
optimal coordinates identified using the VQE algorithm,
θ⃗min,VQE, away from the true minimum, θ⃗min,exact(Figure 1b),
resulting in a θ⃗-shift. When evaluating our method, we will not
quantify ΔEp(θ⃗) but instead compare energies obtained for the
two minima on the exact and the VQE surface,

(4)

In eq 4, Eexact(θ⃗min,exact) is the exact solution obtained by an
ideal noise-free VQE optimization and EVQE(θ⃗min,VQE) is the
energy of a converged noisy VQE optimization. The error
remaining after applying REM to a converged noisy VQE
optimization is

(5)

■ RESULTS AND DISCUSSION
To assess the reliability of REM, we have implemented it for
the ground state energy computation of small molecules on
two current NISQ devices, the ibmq_quito of IBMQ and the
Sar̈imner device of Chalmers University. Details of hardware,
circuits, measurements and estimates on confidence bounds
are provided in the SI. Table 1 shows an amalgamation of our
measurement results for the ground state energy of the
hydrogen molecule (H2), helium hydride (HeH+), and lithium
hydride (LiH). The ansatze3 used for the H2 and HeH+

molecules are chemistry-inspired and based on unitary coupled
cluster theory,35 whereas a hardware-efficient ansatz is used for
LiH. Table 1 also includes results of simulations of LiH and
beryllium hydride (BeH2). The latter circuits are substantially
larger than what is feasible on current devices as they would
incur insurmountable errors due to noise. Combined, this test
set ranges from a two-qubit circuit with just 1 two-qubit gate
for H2, to a six-qubit circuit with 1096 two-qubit gates for
BeH2 (Table 2). Our simulations of BeH2 contains 26
variational parameters (Table 2).
Table 1 shows how the application of REM reduces the

error by up to 2 orders of magnitude compared to regular VQE
when used together with readout mitigation. Without readout
mitigation, VQE errors are substantially larger (Tables S3 and

Table 1. Total Ground State Energies of Molecules at Experimental Equilibrium Distancesa, without and with the Application
of REMb

Moleculea Eexact(θ⃗min) EVQE(θ⃗min,VQE) EREM ΔEerror,VQE ΔEerror,REM

H2
c −1.1373 −1.1085(60) −1.1355 0.029(6) 0.002(8)

HeH+d −2.8542 −2.825(4) −2.853(6) 0.029(4) 0.003(6)
LiHd −7.8787 −7.599(33) −7.852(62) 0.280(33) 0.029(62)
LiHe −7.8811 −7.360(4) −7.871(7) 0.521(4) 0.011(7)
BeH2

e −15.5895 −13.987(5) −15.563(10) 1.602(5) 0.0263(10)
aCalculations refer to experimental bond distances from the National Institute of Standards and Technology (NIST).36 Details on measurement
and confidence bounds are provided in the SI. bReadout mitigation has been applied for all VQE calculations. All energies are given in hartree.
Associated standard deviations are provided for all errors. cRun on Chalmers Sar̈imner with 5000 samples as a single point measurement without
optimization. The sample size of 5000 is motivated by our previous experience with the device. The computation on the Sar̈imner device was
performed as a complete sweep of the single variational parameter in the circuit, and not as a VQE optimization. Therefore, the energy variance
must be approximated through other means, which we describe in the SI. dRun on ibmq_quito with 8192 samples, the maximum allowed.
eSimulated results using a noise model from ibmq_athens.
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S6). The examples in Table 1 are sorted by increasing circuit
depth (see also Table 2 for details), which indicate both the
robustness and scalability of the approach. The remaining error
after mitigation is consistently on the order of millihartree, and
the magnitude of the REM correction grows with the
complexity of the quantum circuit (cf. H2 vs BeH2 in Table 1).
In principle, unsuitable choices of reference states combined

with significant parameter dependence of noise, ΔEp(θ⃗) ≉ 0,
might result in overcorrection of the measured VQE energy,
taking the energy below the true minimum, as can be seen in
some results for the dissociation curve of HeH+ (Figures 2 and
3). Nevertheless, we note that REM consistently improves the
measured energies, even at relatively high noise levels (Figure
3) and drastically improves the computational accuracy for all
calculations summarized in Table 1.

Testing the Limits of REM. Table 1 demonstrates the
effectiveness of REM when applied to molecules in their
equilibrium geometry. The test set is small, in practice limited
to what is feasible to run on current NISQ hardware. These
geometries also represent situations where the degree of
electron correlation is relatively low.
To investigate how the REM method performs out of

equilibrium, we show in Figure 2 the bond dissociation of H2
and HeH+. For HeH+, which dissociates to He and an isolated
proton�a state well described by a single-reference Hartree−
Fock description�the REM method provides highly accurate
results across the entire binding curve. For H2 on the other
hand, the effectiveness of the current implementation of REM
decreases in regions where the Hartree−Fock state offers a
poor description, such as the stretched H2 bond. Nevertheless,
the method consistently provides a substantial improvement
across the potential energy surface. A more suitable description
of the partially broken bond of H2 should ideally account for
the static correlation arising due to near degeneracy of multiple
states; i.e., it would require a multireference (MR) or open-

shell (OS) reference. We will investigate the use of such MR/
OS states and an adaptive choice of the most suitable single
reference (SR) state within the REM framework in an
upcoming study.
Figure 2 also illustrates the effect of readout mitigation,17

which we use per default in all measurements and that we

Figure 2. Top: Potential energy surfaces for the dissociation of H2 and HeH+. Exact noise-free solutions from state-vector simulations are
represented by black lines. Regular VQE energies obtained using a quantum computer are shown as blue dots. Results following readout mitigation
and REM are shown as orange crosses and green squares, respectively. The combination of both readout mitigation and REM is shown as red stars.
Measurements for H2 and HeH+ were performed on Chalmers Sar̈imner and ibmq_quito, respectively. Bottom: error of the different approaches
relative to the exact solution in the given minimal basis set. The gray region corresponds to an error of 1.6 millihartree (1 kcal/mol) with respect to
the corresponding noise-free calculations.

Figure 3. Absolute errors as a function of increasing depolarizing
errors for ground state calculations of H2 and HeH+. The two-qubit
depolarizing error of the Chalmers Sar̈imner device is indicated by a
vertical line for reference. Bottom inset: Energy errors after
application of REM are largely independent of the noise level, and
the computational accuracy is consistently close to or below 1.6
millihartree (1 kcal/mol) for these molecules.
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recommend together with REM. Other mitigation strategies
may, in principle, also be combined with REM.
The robustness of REM was further evaluated by performing

simulations of H2 and HeH+ while varying the noise level.
Noise was introduced in these simulations by modeling
imperfect gate-fidelities as single (S) and two-qubit (T)
depolarizing errors, connected through a linear relationship, S
= 0.1 T (see the SI). This kind of noise modeling enables
straightforward comparison with error rates on physical
quantum devices (Figure 3). REM is shown to be effective
despite the steady increase in single- and two-qubit
depolarizing error rates.

■ CONCLUSIONS
In this work we demonstrate an error mitigation strategy
applicable to quantum chemical computations on NISQ
devices. The REM method relies on accurately determining
the error in energy due to hardware and environmental noise
for a reference wave function that can be feasibly evaluated on
a classical computer. The underlying assumption of REM is a
negligible dependence of noise on circuit parameters in the
vicinity of this reference wave function. In this work Hartree−
Fock references are used, which describes the physics of the
molecular states well enough for REM to perform effectively.
The REM method is shown to drastically improve the
computational accuracy at which total energies of molecules
can be computed using current quantum hardware. REM is
well suited for calculations with significant amounts of noise
and improve calculated energies in all herein tested cases.
The performance of REM is dependent on the quality of the

supplied reference state. A Hartree−Fock (mean-field)
solution is expected to provide a sufficient reference for
molecules that do not exhibit large multireference character.
We will investigate the use of references based on multi-
reference and open-shell states, better suited for more strongly
correlated problems, in an upcoming study.
In our herein studied problems, the computational accuracy

is improved by up to 2 orders of magnitude after application of
REM. However, in the presence of substantial quantum circuit
parameter dependence of noise it cannot be ruled out that
REM may underestimate the true energy. The nonvariational
nature of error mitigation strategies remains a problem to be
solved. No single mitigation technique will completely resolve
the issue of noise, and REM is no exception. One strength of
REM is its ability to be combined with other error mitigation
techniques without incurring additional cost. REM does not
incur meaningful additional classical or quantum computa-
tional overhead and can be used to reduce errors on near-term
devices by orders of magnitude when running VQE
calculations. Because error rates vary both between NISQ
devices and between circuits, it is not currently productive to
rely on error cancellation, i.e., systematic errors inherent in
quantum chemical levels of theory, when evaluating relative
energies of chemical transformations. By enabling more precise
evaluations of molecular total energies, REM moves us toward
meaningful relative comparisons and toward chemical
accuracy.

■ APPENDIX: CIRCUIT COMPLEXITY DETAILS
Table 2 is presented here.
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Notation 
 
The following notation is used in the SI: 

𝐸!"#$%"�⃗�&!'%  – Energy of the reference state in the absence of noise  

𝐸()*"�⃗�&!'%   – Energy of the reference state from VQE 

𝐸()*∗"𝜃&!'%  – Energy of the reference state from VQE with readout mitigation 

𝐸!"#$%"�⃗�,-.% – Energy of the state of interest in the absence of noise 

𝐸()*"�⃗�,-.,()*%  – Energy of the state of interest from VQE 

𝐸()*∗"𝜃,-.,()*%  – Energy of the state of interest from VQE with readout mitigation 

𝐸0*1 – Energy of the state of interest from VQE with REM 
𝐸0*1∗ – Energy of the state of interest from VQE with readout mitigation and REM 

𝛥𝐸!&&2&,()* – Error of the VQE energy with respect to 𝐸!"#$%"θ(⃗ 345%   

𝛥𝐸!&&2&,()*∗ – Error of the readout mitigated VQE energy with respect to 𝐸46789"θ(⃗ 345%   

𝛥𝐸!&&2&,0*1 – Error of the REM mitigated VQE energy with respect to 𝐸46789"θ(⃗ 345%    

𝛥𝐸!&&2&,0*1∗ – Error of the REM+readout mitigated VQE energy with respect to 𝐸!"#$%"𝜃&!'%    

 
𝑟 – Interatomic distance (Å) 
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Chalmers Device Details  
We executed the quantum algorithm at Chalmers on a superconducting three-qubit quantum processor named 
Särimner, of which we only use two qubits (Q0, Q1). This device is shown in Figure S1 and consists of three 
transmon qubits,1 coupled using a single tunable coupler, C1. Single-qubit gates are implemented using on-chip 
drive lines to individually control each qubit with microwave pulses. Each qubit can be individually measured 
using its readout resonator with readout performed simultaneously using frequency multiplexed pulses on the 
common readout feedline. Two-qubit gates are activated via an AC flux-pulse applied to the coupler to modulate 
its frequency.2 The coupler is itself a frequency-tunable transmon qubit, however, it only serves to mediate the 
interaction between pairs of qubits and itself never enters the computational space during operation. A full list of 
parameters of the device can be found in Table S1. 
The AC flux-pulse which activates the coupling takes the form Φ(𝑡) = Φ: + Ω(𝑡)cos	(𝜔;𝑡), where Φ: is the 
DC flux bias of the drive, Ω(𝑡) is the envelope of the pulse which consists of a 25 ns cosine rise and fall and a 
310 ns flat top, and 𝜔; is the carrier frequency. The carrier frequency is chosen such that it drives a controlled-Z 
(CZ) transition between Q0 and Q1. This is on resonance with the transition |20⟩ ↔ |11⟩ and occurs at 𝜔; =
|𝜔< + 𝜂< −𝜔=|. A full oscillation between these states brings about a conditional phase on the |11⟩ state which 
can be calibrated to implement a CZ gate.  
The parametric gate is useful in this higher connectivity architecture as the interaction between pairs can be 
selectively chosen. Different gates are activated between qubits when the frequencies between transitions for 
pairs of qubits are off-resonant from one another as they are in this device. The third qubit can also be detuned 
such that all transitions are far off-resonant and there is no risk of a frequency collision when operating the 
device with just Q0 and Q1. 

 
Figure S1: Microscope image of the bonded 3-qubit Särimner device from Chalmers. Only Q0 and Q1 are used 
in this work. The coupler, C1, consists of a flux-tunable transmon qubit and serves to mediate interactions 
between pairs. Each qubit has individual readout and drive lines which are used to control the device. The 
readout lines are coupled to a shared feedline which is used for multiplexed readout. 
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Table S1: Experimental parameters for the 3-qubit Chalmers device Särimner. We report our average gate error 
achieved through randomized benchmarking for single qubit gates, as our gate set differs from that of IBM, as 
well as interleaved randomized benchmarking for our 2-qubit CZ gate. 

Qubit T1 [µs] T2 [µs] Qubit Frequency, 
𝜔- [GHz] 

Anharmonicity, 
𝜂- [GHz] 

Single Qubit 
Gate Error 

CZ-Gate Error 

𝑄< 35.98 38.74 3.799 -0.1885 4.9e-4 1.8e-2 
𝑄= 36.24 39.34 4.383 -0.1837 5.2e-4 1.8e-2 

 
 
 
The single- and two-qubit gate fidelities during the execution of the quantum algorithm were 99.95% and 
98.2%. The device design, fabrication methods, measurement setup, gate implementation on hardware, and 
tune-up methods are described in detail elsewhere.3 
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Readout Error Mitigation 
 
Readout error mitigation is performed by constructing a calibration of the confusion matrix 𝐶. The entries of this 
matrix, 𝐶-,>, are the probabilities of preparing the state |𝑖⟩ and then measuring the state |𝑗⟩, i.e., 𝐶-,> = 𝑃(	𝑗	|	𝑖	).  
The matrix 𝐶 can then be used to correct a set of Pauli string measurements  𝑚((⃗ = [𝑃(0), … , 𝑃(𝑗), … , 𝑃(𝑛)]T by 
either multiplying by the inverse confusion matrix, 𝐶?=𝑚((⃗ = 𝑚((⃗ ′, performing a least-squares fit to reconstruct the 
most likely outcome, or by a procedure known as ‘Bayesian Unfolding’.4  
In this work, we mitigate our results by implementing a least-square fit to a quadratic cost function, where 
𝜆(�⃗�) = (𝑚((⃗ − 𝐶�⃗�)@ with the constraint that the sum of the resulting vector must be 1 and each element itself is 
bounded in the interval [0,1]. This avoids some issues resulting from matrix inversion arising from small off-
diagonal elements, which can lead to unphysical results. The Sequential Least Squares Programming5 (SLSQP) 
optimizer was used to find the �⃗� that minimize the cost for each set of measured Pauli strings. The confusion 
matrix of the Chalmers Särimner device is reported in Figure S2. 
Both options for readout mitigation are also available in Qiskit and can be straightforwardly implemented for 
calculations on real devices and simulations.  
 

 
 

 
Figure S2. Confusion matrix for the Chalmers Särimner device. The matrix consists of probabilities of 
measuring a state given a specific preparation. The confusion matrix is measured before each run of the VQE 
algorithm with 1000 shots and repeated 100 times to give an estimate for fluctuations in the readout.  
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General Computational Details 
For all calculations described below, PySCF6 was used to generate the initial Hartree-Fock state, utilizing the 
STO-3G basis set. The circuit ansatz was constructed using a parameterized wavefunction based on unitary 
coupled cluster theory7 as implemented in Qiskit 0.21.8 Additionally, parity mapping7 was used to map the 
fermionic spin-orbital occupation to qubits. Two-particle reduction was used to reduce the problem by two 
qubits in all cases, corresponding to alpha and beta spin parity conservation. For the optimization in the VQE 
algorithm the COBYLA optimizer was used. Unless specifically stated, default Qiskit 0.21 settings and 
parameters were used. 

Hydrogen – H2 
Ansatz, circuit and computation details 
The H2 wavefunction can be represented with four qubits, where each qubit corresponds to one molecular spin 
orbital in minimal STO-3G basis. Since single excitations do not contribute to the final ground state energy of 
H2, only double excitations were included in the ansatz which reduced the complexity further, to a single 
parameter, q. The resulting circuit, compiled to Qiskit’s native U1, U2 and U3 gates, is depicted in Figure S3. 

 
Figure S3: Quantum circuit for H2 implementing double excitation of the unitary coupled-cluster operator with 
respect to the Hartree-Fock reference state. The circuit is compiled to the native gates of the IBMQ-Quito 
device. 
The circuit shown in in Figure S3 was then shortened further by removing a repeated entangling step. A single 
entangling step was found sufficient to explore the Hilbert space of the problem. The resulting circuit was 
transpiled to gates native to the Särimner device (Figure S4) and is similar to the one used by Kandala et. Al.9  
The Särimner gate set consists of the set of single-qubit gates, M𝑅"(±𝜋), 𝑅A(±𝜋), 𝑅" Q±

B
@
R , 𝑅A Q±

B
@
R , 𝑅C(𝜃)S, 

and two-qubit gate set {CZ}. Both circuits return the same energy up to the eighth decimal point of a hartree 
numerically, justifying our circuit design.  Since the circuit contains only one parameter, it was varied in the 
interval [-p, p] to obtain energy as a function of the variational parameter at several geometries. The obtained 
energies were fit using the lmfit package10 into a cosine function, A	cos(𝜃 − 𝛼), where 𝐴 and 𝛼 are fit 
parameters, to give the minima at different geometries (Figure S5). All experimental calculations were run on 
the Chalmers Särimner device with 5000 shots. The specific number of shots were chosen based on previous 
experience with the device. The details of the Hamiltonian operator to be minimized are given in Table S2 for 
different geometries of H2. The exact solutions for the given circuit and Hamiltonians were calculated using 
QuTiP.11 
 

 
 

Figure S4: A compact quantum circuit for H2 implementing double excitation of the coupled-cluster operator 
with respect to the Hartree-Fock reference state. The circuit is compiled to the native gates of Chalmers 
Särimner device. 

II



 S7 

 
Figure S5: Measurement results for a single sweep of 𝜃 between −𝜋 and 𝜋. The same measurement results have 
been used with different electronic Hamiltonians to generate the energies using QuTiP11 for the different 
geometries. A cosine function of the form, A	cos(𝜃 − 𝛼), is used to generate the fits for the data. 
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H2 Hamiltonian 
Table S2: The electronic Hamiltonian for H2 expressed as weighted Pauli string operators after parity mapping 
for various geometry. 

𝑟  II IZ ZI ZZ XX 
0.45 -0.908 0.634 -0.634 -0.013 0.167 
0.55 -0.981 0.536 -0.536 -0.012 0.171 
0.65 -1.028 0.455 -0.455 -0.012 0.176 
0.70 -1.044 0.420 -0.420 -0.012 0.179 

0.7414 -1.054 0.394 -0.394 -0.011 0.181 
0.80 -1.063 0.360 -0.360 -0.011 0.185 
0.85 -1.068 0.334 -0.334 -0.010 0.188 
1.00 -1.069 0.268 -0.268 -0.009 0.197 
1.15 -1.058 0.215 -0.215 -0.007 0.206 
1.35 -1.033 0.161 -0.161 -0.005 0.220 
1.50 -1.010 0.129 -0.129 -0.004 0.230 
1.65 -0.985 0.103 -0.103 -0.003 0.239 
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Data 
The total energy of a system is the sum of its electronic and nuclear repulsion energies at a given geometry for 
H2. The optimal parameters are reported in Table S3. The nuclear energies are reported in Table S4, and the 
electronic energies are reported in Table S5. 
 
Table S3: Optimized parameters, before and after readout mitigation, that minimize the Hamiltonian operator on 
the Chalmer Särimner device for calculations of H2.  

𝑟 𝜃 (Uncorrected) 𝜃 (Readout mit.) 
0.45 -0.1186 -0.1272 
0.55 -0.1437 -0.1540 
0.65 -0.1737 -0.1861 
0.70 -0.1906 -0.2042 

0.7414 -0.2056 -0.2202 
0.80 -0.2284 -0.2445 
0.85 -0.2495 -0.2669 
1.00 -0.3220 -0.3438 
1.15 -0.4106 -0.4372 
1.35 -0.5553 -0.5876 
1.50 -0.6802 -0.7153 
1.65 -0.8121 -0.8477 

 
 
 
 
Table S4: Nuclear repulsion energies (𝑉DD) of H2 at various geometries, 𝑟. All 𝑉DD energies in hartrees.  

𝑟 𝑉DD 
0.45 1.1759 
0.55 0.9621 
0.65 0.8141 
0.70 0.7560 

0.7414 0.7138 
0.80 0.6615 
0.85 0.6226 
1.00 0.5292 
1.15 0.4602 
1.35 0.3920 
1.50 0.3528 
1.65 0.3207 
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Table S5:  Exact, regular VQE and mitigated electronic energies and errors of H2 at various geometries, 𝑟. All energies are in hartrees. 

𝑟 [Å] 𝐸!"#$%#�⃗�&!'& 𝐸()*#�⃗�&!'& 𝐸()*∗#�⃗�&!'& 𝐸!"#$%#�⃗�,-.& 𝐸()*#�⃗�,-.,()*& 𝐸()*∗#�⃗�,-.,()*& 𝐸0*1 𝐸0*1∗ Δ𝐸!&&2&,()* Δ𝐸!&&2&,()*∗ Δ𝐸!&&2&,0*1 Δ𝐸!&&2&,0*1∗ 

0.45 -0.9875 -0.8524 -0.9446 -0.9984 -0.8604 -0.9546 -0.9955 -0.9975 0.1380 0.0438 0.0029 0.0010 
0.55 -1.0791 -0.9649 -1.0426 -1.0926 -0.9749 -1.0550 -1.0890 -1.0914 0.1178 0.0376 0.0036 0.0012 
0.65 -1.1130 -1.0162 -1.0820 -1.1299 -1.0287 -1.0974 -1.1254 -1.1284 0.1013 0.0325 0.0045 0.0015 
0.70 -1.1173 -1.0281 -1.0886 -1.1362 -1.0419 -1.1058 -1.1312 -1.1345 0.0943 0.0304 0.0050 0.0017 

0.7414 -1.1167 -1.0331 -1.0897 -1.1373 -1.0482 -1.1085 -1.1318 -1.1355 0.0891 0.0288 0.0055 0.0018 
0.80 -1.1109 -1.0345 -1.0861 -1.1341 -1.0516 -1.1073 -1.1280 -1.1321 0.0825 0.0268 0.0062 0.0020 
0.85 -1.1025 -1.0317 -1.0794 -1.1284 -1.0507 -1.1030 -1.1215 -1.1261 0.0776 0.0253 0.0068 0.0023 
1.00 -1.0661 -1.0093 -1.0473 -1.1012 -1.0352 -1.0793 -1.0919 -1.0981 0.0660 0.0219 0.0092 0.0030 
1.15 -1.0210 -0.9752 -1.0054 -1.0679 -1.0099 -1.0483 -1.0557 -1.0639 0.0580 0.0196 0.0122 0.0040 
1.35 -0.9572 -0.9227 -0.9449 -1.0251 -0.9733 -1.0072 -1.0078 -1.0195 0.0517 0.0179 0.0172 0.0056 
1.50 -0.9109 -0.8830 -0.9005 -0.9981 -0.9486 -0.9808 -0.9765 -0.9912 0.0495 0.0173 0.0216 0.0070 

1.65 -0.8678 -0.8452 -0.8590 -0.9771 -0.9283 -0.9599 -0.9508 -0.9688 0.0489 0.0172 0.0263 0.0084 
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Helium hydride – HeH+ 
Ansatz, circuit and computation details 
Similar to H2, the HeH+ wavefunction can be represented with two qubits using parity mapping7 in a minimal 
basis. The circuit consists of three parameters – two single excitation parameters, q[0] and q[1], and a double 
excitation parameter, q[2]. These parameters are optimized using the VQE algorithm implemented in Qiskit and 
run on the IBMQ-Quito device with 8192 shots, the maximum number of allowed shots we had access to on 
IBMQ. The details of the Hamiltonian operator to be minimized are given in Table S6 for different geometries 
of HeH+.  
 

 
Figure S6: Quantum circuit for HeH+ implementing the UCCSD operator with respect to the Hartree-Fock 
reference state. The circuit is compiled to the native gates of IBMQ-Quito device. 
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HeH+ Hamiltonian 
The details of the Hamiltonian operator to be minimized are given in Table S6 for different geometries of HeH+. 
 
Table S6: The electronic Hamiltonian expressed as weighted Pauli string operators after parity mapping for 
various geometry of HeH+. 

𝑟 II IZ ZI ZZ ZX XZ IX XI XX 
0.65 -3.229 0.635 -0.635 -0.074 -0.094 0.094 0.094 0.094 0.157 

0.7899 -3.161 0.560 -0.560 -0.097 -0.106 0.106 0.106 0.106 0.144 
0.85 -3.129 0.538 -0.538 -0.108 -0.111 0.111 0.111 0.111 0.137 
0.90 -3.101 0.523 -0.523 -0.118 -0.114 0.114 0.114 0.114 0.131 
0.95 -3.073 0.512 -0.512 -0.128 -0.117 0.117 0.117 0.117 0.124 
1.00 -3.045 0.503 -0.503 -0.139 -0.119 0.119 0.119 0.119 0.117 
1.15 -2.962 0.488 -0.488 -0.173 -0.122 0.122 0.122 0.122 0.095 
1.35 -2.857 0.488 -0.488 -0.217 -0.115 0.115 0.115 0.115 0.066 
1.5 -2.785 0.495 -0.495 -0.247 -0.104 0.104 0.104 0.104 0.047 
1.65 -2.721 0.506 -0.506 -0.273 -0.090 0.090 0.090 0.090 0.032 

 
 
  

II



 S13 

Data 
The total energy of a system is the sum of its electronic and nuclear repulsion energies at a given geometry for 
H2. The optimal parameters are reported in Table S7. The nuclear energies are reported in Table S8, and the 
electronic energies are reported in Table S9. 
 
Table S7: The optimized parameter values that minimize the Hamiltonian operator on the IBMQ-Quito device 
for various geometry of HeH+. The angles are in radians. 

𝑟 𝜃[0] 𝜃[1] 𝜃[2] 
0.65 0.011 0.008 -0.061 

0.7899 0.014 0.016 -0.067 
0.85 0.013 0.010 -0.065 
0.90 0.012 0.013 -0.063 
0.95 0.017 0.015 -0.065 
1.00 0.021 0.021 -0.063 
1.15 0.017 0.017 -0.053 
1.35 0.012 0.012 -0.036 
1.5 0.009 0.003 -0.025 
1.65 0.008 0.005 -0.018 

 
 
 
 
 
 
Table S8: Nuclear repulsion energies (𝑉DD) of HeH+ at various geometries, 𝑟. All 𝑉DD energies in hartrees. 

𝑟 𝑉DD 
0.65 1.6282 

0.7899 1.3399 
0.85 1.2451 
0.90 1.1759 
0.95 1.1141 
1.00 1.0584 
1.15 0.9203 
1.35 0.7840 
1.5 0.7056 
1.65 0.6414 
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Table S9: The exact, uncorrected and mitigated electronic energies and errors of HeH+ at various geometries, 𝑟. All energies are in hartrees. 

𝑟 [Å] 𝐸!"#$%#�⃗�&!'& 𝐸()*#�⃗�&!'& 𝐸()*∗#�⃗�&!'& 𝐸!"#$%#�⃗�,-.& 𝐸()*#�⃗�,-.,()*& 𝐸()*∗#�⃗�,-.,()*& 𝐸0*1 𝐸0*1∗ Δ𝐸!&&2&,()* Δ𝐸!&&2&,()*∗ Δ𝐸!&&2&,0*1 Δ𝐸!&&2&,0*1∗ 

0.65 -2.7964 -2.7580 -2.7604 -2.8062 -2.7673 -2.7703 -2.8057 -2.8063 0.0389 0.0359 0.0005 -0.0001 
0.7899 -2.8447 -2.8110 -2.8150 -2.8542 -2.8203 -2.8247 -2.8540 -2.8544 0.0338 0.0294 0.0002 -0.0002 
0.85 -2.8517 -2.8195 -2.8225 -2.8608 -2.8278 -2.8305 -2.8600 -2.8597 0.0330 0.0302 0.0008 0.0010 
0.90 -2.8540 -2.8244 -2.8261 -2.8626 -2.8326 -2.8359 -2.8622 -2.8638 0.0300 0.0267 0.0004 -0.0012 
0.95 -2.8542 -2.8253 -2.8267 -2.8622 -2.8324 -2.8353 -2.8614 -2.8629 0.0298 0.0269 0.0008 -0.0007 
1.00 -2.8529 -2.8252 -2.8270 -2.8602 -2.8315 -2.8339 -2.8592 -2.8598 0.0287 0.0263 0.0010 0.0004 
1.15 -2.8445 -2.8181 -2.8206 -2.8495 -2.8233 -2.8261 -2.8497 -2.8500 0.0262 0.0235 -0.0002 -0.0004 
1.35 -2.8314 -2.8076 -2.8093 -2.8339 -2.8095 -2.8120 -2.8333 -2.8341 0.0243 0.0219 0.0005 -0.0003 
1.5 -2.8234 -2.8008 -2.8013 -2.8247 -2.8017 -2.8029 -2.8244 -2.8251 0.0230 0.0218 0.0003 -0.0004 
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Lithium hydride – LiH 
Ansatz, circuit and computation details 
A LiH wavefunction can be represented with twelve qubits where each qubit corresponds to one molecular spin 
orbital in a minimal STO-3G basis. Symmetries in parity mapping7 was used to further reduce the problem size 
by two qubits to ten qubits. As shown by Kandala et al9, removing the orbitals that do not participate in bonding 
can bring down the problem size by four qubits. Coupled with the frozen core approximation, the final LiH 
circuit can be represented by just four qubits in and around equilibrium geometry. A hardware efficient ansatz, 
inspired by Qiskit’s two-local circuit class is used to construct a compact circuit representing LiH. It consists of 
alternating rotating layers of entanglement layers and is chosen to utilize the connectivity of IBMQ-Quito’s 
connectivity as shown in Figure S7.  
 

 
Figure S7: Quantum circuit for LiH utilizing a hardware-efficient ansatz.  
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LiH Hamiltonian details at 1.5949 Å  
Table S10: The electronic Hamiltonian of LiH can be expressed as weighted Pauli string operators with the 
following coefficients: 

IIII -0.207 ZXIZ 0.012 XZIZ -0.013 YYXZ 0.008 

IIIZ -0.094 IXZX -0.003 XIZX -0.002 XXXZ -0.008 

IIZX -0.003 ZXZX -0.003 XZZX 0.002 YYXI 0.008 

IIIX 0.003 IXIX 0.003 XIIX 0.002 XXXI -0.008 

IIXX -0.001 ZXIX 0.003 XZIX -0.002 ZZZZ 0.084 

IIYY 0.001 IXXX -0.009 XIXX -0.008 ZZXZ -0.009 

IIZZ -0.212 ZXXX -0.009 XZXX 0.008 ZZXI -0.009 

IIXZ 0.019 IXYY 0.009 XIYY 0.008 XIZZ -0.009 

IIXI 0.019 ZXYY 0.009 XZYY -0.008 XZZZ 0.009 

IIZI 0.359 YYIZ 0.032 ZIIZ 0.114 XIXZ 0.007 

IZII 0.094 XXIZ -0.032 ZIZX -0.011 XZXZ -0.007 

ZXII 0.003 YYZX -0.009 ZIIX 0.011 XIXI 0.007 

IXII 0.003 XXZX 0.009 ZIXX -0.034 XZXI -0.007 
XXII -0.001 YYIX 0.009 ZIYY 0.034 ZIZZ 0.060 
YYII 0.001 XXIX -0.009 IZZZ -0.056 ZIXZ 0.011 
ZZII -0.212 YYXX -0.031 IZXZ -0.013 ZIXI 0.011 
XZII -0.019 XXXX 0.031 IZXI -0.013 IZZI 0.114 
XIII 0.019 YYYY 0.031 IXZZ -0.002 IXZI -0.011 
ZIII -0.359 XXYY -0.031 ZXZZ -0.002 ZXZI -0.011 
IZIZ -0.122 ZZIZ 0.056 IXXZ 0.002 YYZI -0.034 
IZZX 0.012 ZZZX 0.002 ZXXZ 0.002 XXZI 0.034 
IZIX -0.012 ZZIX -0.002 IXXI 0.002 ZZZI -0.060 
IZXX 0.032 ZZXX 0.003 ZXXI 0.002 XIZI -0.011 
IZYY -0.032 ZZYY -0.003 YYZZ -0.003 XZZI 0.011 
IXIZ 0.012 XIIZ 0.013 XXZZ 0.003 ZIZI -0.113 
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Data 
Frozen core energy: -7.7983328 hartrees 
Nuclear repulsion energy: 0.99538004 hartrees 
 
Table S11: The exact, uncorrected, and mitigated electronic energies and errors of LiH at 1.5949 Å. All energies are in hartrees. 

𝐸!"#$%#�⃗�&!'& 𝐸()*#�⃗�&!'& 𝐸()*∗#�⃗�&!'& 𝐸!"#$%#�⃗�,-.& 𝐸()*#�⃗�,-.,()*& 𝐸()*∗#�⃗�,-.,()*& 𝐸0*1 𝐸0*1∗ Δ𝐸!&&2&,()* Δ𝐸!&&2&,()*∗ Δ𝐸!&&2&,0*1 Δ𝐸!&&2&,0*1∗ 

-7.8620 -7.6064 -7.6071 -7.8787 -7.6071 -7.6102 -7.8627 -7.8651 0.2717 0.2686 0.0160 0.0136 
 
Optimal Parameters:  
Table S12: The optimized parameter values that minimize the Hamiltonian operator on the IBMQ-Quito device for LiH at 1.5949 Å. The angles are in radians. 

𝜃[0] 𝜃[1] 𝜃[2] 𝜃[3] 𝜃[4] 𝜃[5] 𝜃[6] 𝜃[7] 𝜃[8] 𝜃[9] 𝜃[10] 𝜃[11] 
3.8987 -6.5469 -1.2442 -5.0653 1.5509 2.0379 3.1205 -4.7523 2.3617 6.2591 -5.9394 3.2559 
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Simulation Details for Lithium Hydride (LiH) and Beryllium Hydride (BeH2) 
As shown in the previous section, LiH wavefunction can be represented with four qubits. Making similar 
approximations as shown by Kandala et al9, the BeH2 wavefunction can be represented by six qubits when using 
the frozen core approximation and orbital reduction. Qiskit’s UCCSD module is used to construct the problem 
ansatz.  The circuits are too large to be represented here but the details of the circuit can be found in Table A1. 
A noise-model from IBMQ-Athens has been added to the simulations to replicate real-world noisy behavior. All 
simulations have been run using 20,000 shots and repeated 5 times to ensure a high number of samples. The 
sampling noise is expressed in terms of the standard deviations of our errors. Readout mitigation has been 
applied for all the simulations. 
 
Table S13: Total ground state energies of molecules(simulated) at experimental equilibrium distances, without 
and with the application of REM. Bond distances have been obtained from the National Institute of Standards 
and Technology (NIST). A noise model from IBMQ-Athens has been added to all the simulations. Readout 
mitigation has been applied for all the VQE calculations. All energies are given in Hartree. The sampling error 
of the simulations is represented as the standard deviation.   

Molecule 𝐸!"#$%#𝜃,-.& 𝐸()* ∗ #𝜃,-.,()*& 𝐸0*1∗ Δ𝐸!&&2&,()* ∗ Δ𝐸!&&2&,0*1∗ 

LiH -7.8811 -7.3599 -7.8705 0.5213 ± 0.003 0.0106 ± 0.002 
BeH2 -15.5895 -13.9873 -15.5632 1.6021 ± 0.005 0.0263 ± 0.007 
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IBM-Quito Device calibration and connectivity details  
Table S14: IBM-Quito’s calibration details, as imported from IBM Quantum Services. The device reports a quantum volume of 32. 

 

  
Figure S8: Connectivity representation of the IBMQ-Quito12 device. 

Qubit T1 (µs) T2 (µs) Frequency 
(GHz) 

Anharmonicity 
(GHz) 

Readout 
assignment 
error  

Prob 
meas0 
prep1  

Prob 
meas1 
prep0  

Readout 
length 
(ns) 

ID error  Single-
qubit 
Pauli-X 
error  

CNOT error  Gate time 
(ns) 

Q0 85.96 95.63 5.300 -0.33148 0.0300 0.0468 0.0132 5351.111 2.93 ⋅10-4 2.93 ⋅10-4 0_1:6.276 ⋅10-3 0_1:234.667 

Q1 125.84 128.97 5.081 -0.31925 0.0134 0.0208 0.0060 5351.111 2.92 ⋅10-4 2.92 ⋅10-4 1_3:1.079 ⋅10-2; 
1_2:7.076 ⋅10-3; 
1_0:6.276 ⋅10-3 

1_3:334.222;  
1_2:298.667;  
1_0:270.222 

Q2 81.75 123.32 5.322 -0.33232 0.0237 0.0358 0.0116 5351.111 2.55 ⋅10-4 2.55 ⋅10-4 2_1:7.076 ⋅10-3 2_1:263.111 

Q3 96.32 10.29 5.164 -0.33508 0.0281 0.0454 0.0108 5351.111 3.13 ⋅10-4 3.13 ⋅10-4 3_4:1.557 ⋅10-3; 
3_1:1.079 ⋅10-2 

3_4:277.333;  
3_1:369.778 

Q4 148.13 162.06 5.052 -0.31926 0.0208 0.0328 0.0088 5351.111 2.74 ⋅10-4 2.74 ⋅10-4 4_3:1.557 ⋅10-2 4_3:312.889 
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Depolarizing Noise Model 
Depolarizing noise channels are a common way to model decoherence and gate errors in quantum devices.13,14  
After observing that our two-qubit (T) gate-error is approximately an order of magnitude larger than our single-
qubit (S) gate error, a noise model was constructed that provides S as a linear function of T,  𝑆	 = 	0.1	𝑇. This 
noise model was used to evaluate the effect of REM, applied to a range of depolarizing errors. The depolarizing 
noise was modelled in Qiskit as a probability 𝑝′ of applying each of the Pauli gates 𝑋, 𝑌, or 𝑍 after running a 
single-qubit gate, and as probability 𝑝′′ of applying any combination of 𝑃-⨂𝑃> where 𝑃- , 𝑃> ∈ {𝐼, 𝑋, 𝑌, 𝑍} after 
running a two-qubit gate. 
 

Uncertainty due to Sampling 
The uncertainty associated with REM is due to the limited number of samples that can be measured for each 
point on the noisy energy surface. The resulting spread in the result is characterized by its variance, Var(𝐸"𝜃%). 
Assuming that the measurements are normally distributed, the variance of the REM results are inherently larger 
than the unmitigated ones, as we need to sample two independent distributions, both for the VQE and the 
reference calculation. Thus, we need to add the variances to get the resulting REM variance 

Var Q𝐸E"�⃗�%R = Var Q𝐸"�⃗�%R + Var Q𝐸"�⃗�&!'%R . (S1) 

This type of trade-off between the accuracy and the variance is common among mitigation strategies, see for 
example Cai et al.15 

To understand the variance that appears in the VQE calculation we can view it as a random process 𝑃(�⃗�) which 
generates a random variable 𝑋* corresponding to the minimum energy found by the algorithm, based on some 
initial set of parameters 𝜃. The distribution formed by 𝑃(�⃗�) is in general not known and is hard to approximate 
with classical means. The most direct way of learning about 𝑃(�⃗�) is through repeated sampling of several VQE 
calculations for the same initial set of parameters. For all calculations presented herein the standard deviations 
presented are calculated from five repeated runs of the VQE algorithm. The exception being the calculation 
performed on Chalmers’ Särimner device. 
The Särimner calculation was not performed as a VQE calculation, but it was instead implemented as an 
exhaustive sweep of the variational parameter. Thus, the errors in the H2 calculation are estimated as the sum of 
weighted Bernoulli samples, where each measurement of a Pauli string, 𝑃-, can be seen as sampling a random 
variable 𝑋- ∈ [−1, 1], giving either the +1 eigenstate with probability 𝑝-, or the -1 eigenstate with probability 
𝑞- = 1 − 𝑝-. The variance of the mean of such sampling is Var(𝑋p-) =

F!G!
.!

 where 𝑛- is the number of samples 
(for all our measurements 𝑛- = 5000). We further assume the measurement of each Pauli string to be 
independent, which allows for the variances of commuting Pauli strings to be summed into an effective variance 
Var(𝑋pH) = ∑ Var(𝑋p&)& , where 𝑟 is the index over commuting Pauli strings and 𝑠 is the index over the resulting 
non-commuting sets of Pauli strings. The resulting non-commuting effective variances are weighted with the 
square of their respective Hamiltonian coefficients and summed into the total variance, Var(𝑋p*) =
∑ ℎH@H Var(𝑋pH). Here the square of the coefficient comes from the definition of variance, Var(𝑋) = E[𝑋@] −
E[𝑋]@. Finally, the standard deviation is obtained by calculating uVar(𝑋p*).  
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The Electron Density: A Fidelity Witness for Quantum 
Computation 
Mårten Skogha,b, Phalgun Lolura, Werner Dobrautza, Christopher Warrenc, Janka Biznárovác, Amr 
Osmanc, Giovanna Tancredic, Jonas Bylanderc, and Martin Rahma,† 

There is currently no combination of quantum hardware and algorithms that can provide an advantage over conventional 
calculations of molecules or materials. However, if or when such a point is reached, new strategies will be needed to verify 
predictions made using quantum devices. We propose that the electron density, obtained through experimental or 
computational means, can serve as a robust benchmark for validating the accuracy of quantum computation of chemistry. 
An initial exploration into topological features of electron densities, facilitated by quantum computation, is presented here 
as a proof of concept. Additionally, we examine the effects of constraining and symmetrizing measured one-particle reduced 
density matrices on noise-driven errors in the electron density distribution. We emphasize the potential benefits and future 
need for high-quality electron densities derived from diffraction experiments for validating classically intractable quantum 
computations of materials. 

Introduction 

In this study, we demonstrate the evaluation of electron 
densities of molecules using quantum computation. We also 
suggest that the electron density can be a potent validation tool 
of future quantum calculations, which may prove intractable to 
solve with conventional quantum chemistry. The study of 
electron densities is central to several fields of chemistry, 
physics, and materials science. The Hohenberg-Kohn theorem 
stipulates that the electron density uniquely defines ground 
state properties of electronic systems.1 Through the Hellman-
Feynman theorem2, electron densities provide information on 
the forces acting within molecules.3,4 As one of the most 
information-rich observables in physical sciences,5–10 the 
density lays the foundation for density functional theory (DFT), 
a formalism for predicting properties of many-electron 
systems.11 As experiments are the arbiter of truth, the buck 
often stops with the electron density. 
 
Electron densities can, importantly, be reconstructed from the 
refinement of X-ray diffraction and scattering data,9 using, e.g., 
multipolar models,5–8,10 X-ray constrained wave functions,12 or 
the maximum entropy method.13 One motivation for our work 
is that experimentally determined electron densities can prove 
useful for testing the accuracy of future quantum computations 
of materials; simulations of which may be unfeasible with 
conventional computers. Today, it is often preferable, cheaper, 
and faster to obtain information on electron distribution 
through conventional quantum mechanical calculations, e.g., by 
solving the Schrödinger equation at some level of 
approximation.14 To obtain highly accurate computational 
results (energies, densities, or other properties), ab initio 

quantum mechanical methods are the most reliable. 
Unfortunately, the electronic structure problem scales 
exponentially with system size.2  
 
In 1980 and 1981, Benioff15, Manin16 and Feynman17 pointed 
out that quantum computers may offer a way forward, enabling 
larger and more reliable simulations of quantum systems.18 In 
recent years, several quantum devices have been developed 
and applied to compute energies of small molecules (see 
e.g.,19–21). No such calculation has, however, yet exceeded the 
accuracy or speed of a conventional quantum chemical 
calculation. So, just how far away are we from useful quantum 
computation of chemistry? To quantifiably answer that 
question, it is necessary to perform benchmarking and validate 
the results of quantum computation in some manner. Thus far, 
such efforts have almost exclusively focused on a comparison 
against total energies obtained using state-of-the-art (and near 
exact) quantum chemistry.22–25 However, whereas accurate 
energies for smaller molecules are available, such comparisons 
will not be possible if future quantum calculations of more 
complex systems are made possible. We emphasize at the onset 
that whether the crossing of such a technological threshold is 
made in the current noisy intermediate-scale quantum (NISQ) 
era or if it will require full fault tolerance quantum devices does 
not affect our main message or conclusions. Here, we suggest 
that the subtle variability of electron densities, accessible either 
computationally or experimentally, can act as a potent 
benchmark26 for the quantum computation of materials. We 
draw the colloquial analogy to fidelity witnesses in the title,27 by 
which we mean experimentally accessible observables whose 
values (here in terms of topological features) help to quantify 
the fidelity of a quantum calculation.  
 
In what follows, we demonstrate calculations of electron 
densities (and their topological features) of molecular hydrogen 
(H2) and lithium hydride (LiH) using quantum computers. These 
molecules are archetypical examples of fundamentally different 
chemical bonds (covalent and ionic). Simulation of quantum 
hardware is also employed to derive the electron density of 
larger molecules, the lithium dimer (Li2) and hydrogen cyanide 
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(HCN). The quantum volume28 and noise level of the devices we 
use are insufficient to demonstrate any advantage over classical 
implementations (details of the hardware are provided in the 
Methods section and Supporting Information).29 However, they 
suffice for our goal – a first proof-of-principle evaluation of 
electron densities using quantum devices. By comparing 
aspects of the electron density topology in these molecules, we 
showcase a different way to benchmark the quality of quantum 
hardware calculations of chemistry. To do so, we make use of 
the quantum theory of atoms in molecules (QTAIM),30–32 a well-
established framework for performing topological analysis of 
electron densities, which can provide clues into atomic 
properties,7 chemical bonding,8,10 lattice energies,33 chemical 
bond strengths, and reactivity. 34–37 

Topological Analysis of Electron Densities 
Within the Born-Oppenheimer formalism, the average one-
electron density for a system of N electrons can be expressed 
as38  

𝜌(𝑟) = 𝑁'Ψ!"∗ (𝑟, 𝑟$, … , 𝑟%; 𝑅)	Ψ!"(𝑟, 𝑟$, … , 𝑟%; 𝑅)𝑑𝑟$, … , 𝑑𝑟% , (1) 

where r, R, and Ψ!" denote the electronic and nuclear 
coordinates and the electronic wave function, respectively. The 
electronic density is a real-valued scalar field, lending itself to 
topological analysis and the extraction of topological features 
𝑓&. One way to analyze such topology is to study critical points 
(CPs), i.e., locations in the density where the gradient vanishes, 
∇𝜌 = 𝟎, or is undefined.39 The critical points form a concise set 
of features that yield insight into the molecular structure. 
 
To characterize and distinguish between critical points, we 
make use of the Hessian and its trace, the Laplacian (or 
curvature) of the density,  

𝐻 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜕

$𝜌
𝜕𝑥$

𝜕$𝜌
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⎥
⎥
⎥
⎥
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, (2) 

∇$𝜌 = ∇ ⋅ ∇𝜌 =
𝜕$𝜌
𝜕$𝑥 +

𝜕$𝜌
𝜕$𝑦 +

𝜕$𝜌
𝜕$𝑧 	.

(3) 

For our analysis and discussion, it suffices to distinguish 
between critical points using so-called signatures, 𝜅, defined as 
the sum of the signs of the three eigenvalues of the Hessian.40 
The critical points in molecules we will analyze are of two forms: 
𝜅  = -3 indicates local maxima, such as positions of nuclei, where 
all curvatures are negative. A non-nuclear attractor (NNA) is a 
rare example of a CP located at off-nuclei positions. We will 
discuss one NNA in Li2. In contrast, 𝜅  = -1 corresponds to saddle 
points in the electron density, i.e., positions where the 
curvature in one direction is positive. The latter topological 
feature is commonly referred to as bond-critical points (BCPs) 

because they are often (but not always) found between 
neighboring atoms that are chemically bound. A BCP is a point 
of lowest electron density along a path of highest electron 
density; the lowest point along a ridge connecting maxima. 
Because the density uniquely defines them, BCPs constitute 
suitable points of comparison between levels of theory and 
experiment. BCPs are furthermore useful for characterizing 
bonds in different ways.41 For example, the sign of the Laplacian 
(Eq. (3)) at a BCP is an indication of local depletion (if positive) 
or concentration (if negative) of the electron density relative to 
its surroundings. A negative sign of ∇$𝜌 indicates a covalent 
bond, while a positive sign hints at an ionic (or closed-shell) type 
of interaction.  
 
Topological analysis of electron densities (viz. QTAIM) also 
offers a way of defining atoms within molecules.40 Within 
QTAIM, atoms are identified with basins (Figures 1b and 1c), 
non-overlapping regions of space within which all gradient 
trajectories of the electron density terminate at the same local 
maximum (i.e., a 𝜅 = −3 critical point). Note, therefore, that 
basins need not strictly be centered around nuclei but can be 
associated with NNAs. Neighboring basins are separated by 
zero-flux surfaces where ∇𝜌(𝒓) ∙ 𝒏 = 0, and where 𝒏 is the 
normal to the surface at 𝒓. We will use such basins to ascribe 
partial charge to atoms inside molecules, and we suggest such 
measures, along with 𝜌 and 	∇$𝜌 at BCPs, as examples of potent 
density-based quantum computational fidelity witnesses. 

Quantum Computation of Electron Densities 
For quantum computation, the electronic structure problem is 
conveniently expressed within second quantization.42 Within 
this formalism, the electron density can be defined as 

𝜌(𝑟) =	# 𝐷𝑝𝑞 # 𝜙𝑝𝜎
∗ (𝑟)𝜙

𝑞𝜎
(𝑟)

𝜎∈{𝛼,𝛽}

𝑛

𝑝,𝑞=1

, (3) 

where 𝜙12∗ (𝑟) and 𝜙32(𝑟) correspond to the 𝑛 spin orbitals and 
𝑝	and	𝜎 denote spatial and spin indices, respectively. 𝐷13  is an 
entry in the one-particle reduced density matrix (1-RDM).43 In 
the following, we use 𝑝 and 𝑞 as spatial variables and 𝜎 and 𝜏 to 
index spin, in turn, denoted as 𝛼 or 𝛽 (i.e., 𝜎, 𝜏 ∈ {𝛼, 𝛽}). The 1-
RDM can be expressed as, 

𝐷13 = X𝑎14
5 𝑎34Z + [𝑎16

5 𝑎36\, (4) 

where,   

⟨𝑎12
5 𝑎37⟩ = X𝛹a𝑎12

5 𝑎37a𝛹Z	. (5) 

In Eq. (4), 𝑎12
5  and 𝑎32  are the fermionic ladder (creation and 

annihilation) operators of electrons in spin orbital 𝜙32(𝑟) while 
|Ψ⟩ represents the wave function, defined as a linear 
combination of Slater determinants, |𝜓8⟩, 

|Ψ⟩ =e𝑐8|𝜓8⟩
8

. (6) 
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In this work, 1-RDMs are constructed following measurements 
of parametrized quantum circuits (ansätze), representing the 
ground state of molecules of interest. Measurement of the 1-
RDM scales as 𝑂(𝑛$), rendering a density-based fidelity witness 
approach computationally efficient. We will return to discuss 
the sensitivity of 𝐷13  to noise on quantum devices and how the 
outcome of calculations can be affected by enforcing physically 
motivated constraints on the 1-RDM.  
 
Several algorithms18,44,45 can be utilized to prepare the ground 
state solution, |Ψ9:⟩, of a molecule by encoding the fermionic 
chemistry problem18,46,47 onto a quantum computer. We rely on 
the variational quantum eigensolver48 (VQE) algorithm in this 
study, as it has been thoroughly used with the current 
generation of quantum devices. The VQE algorithm, outlined 
elsewhere,21,22 leverages both quantum and classical 
computation to iteratively optimize a parameterized quantum 
circuit 𝑈(𝜽). It minimizes the expectation value of the 
Hamiltonian, min

𝜽
	⟨Ψ<a𝑈5(𝜽)𝐻m𝑈(𝜽)aΨ<⟩, where |Ψ<⟩	is the 

initial reference state, usually the Hartree-Fock configuration. 
The ground state problem can be reduced to the electronic 
Hamiltonian, defined in second quantization as 

𝐻m =eℎ13e𝑎12
5 𝑎32

21,3

+	
1
2 e 𝑉13=>	e𝑎12

5 𝑎37
5 𝑎>7𝑎=2	

2713=>

, (7) 

where ℎ13  and 𝑉13=>	are the one- and two-electron integrals. 
We stress that our specific choices of algorithms and encoding 
procedures are not essential for the general case of calculating 
electron densities with a quantum computer. What is necessary 
is a) identification of a state of interest (in our case, the ground 
state) by some quantum algorithm or quantum simulation49, 
and b) reconstruction of the 1-RDM through measurements of 
⟨𝑎1

5𝑎3⟩, following Eq. (4).  

Effects of Noise 
Noise is perhaps the single most defining characteristic of 
current quantum computing and the NISQ era.29 NISQ 
algorithms are often hybrid in nature, dividing the 
computational load between both quantum and conventional 
hardware. In our case, the orbitals 𝜙12(𝑟) and 𝜙37(𝑟) of Eq. (3) 
are precisely known functions represented on a conventional 
computer and assumed errorless. The quantum computer, in 
turn, stores the orbital occupations and phase. It is in the 
quantum computer where noise enters as uncertainty and 
measurement errors. As our interest lies with the 1-RDM, we 
will focus on the specific effects of noise on the elements 𝐷13.  
 
By defining elementwise errors as 𝜀13 = 𝐷13 − 𝐷13%@, where 
𝐷13%@  is a noise- and error-free reference value, we can divide the 
effects of noise on the off-diagonal elements into two 
categories: diagonally symmetric (𝜀8A = 𝜀A8) and asymmetric 
(𝜀8A ≠ 𝜀A8) errors.  
 

To see how different kinds of noise may affect off-diagonal 
elements, we first look at a Jordan-Wigner mapping of our 
fermionic creation and annihilation operators: 

𝑎12
5 = (𝑋B − 𝑖𝑌B) ⊗ 𝑍B→	 (8) 

𝑎12 = (𝑋B + 𝑖𝑌B)⊗ 𝑍B→. (9) 

We here use 𝑘 to index our qubits, where each qubit 𝑘 maps to 
a unique spin orbital, 𝜓12. 𝑋 and 𝑌 represent the corresponding 
Pauli gates, whereas 𝑍B→ is the application of Pauli 𝑍 gates to 
all qubits 𝑘 − 1, 𝑘 − 2,… , 1. Note that Eqs. (8) and (9) are 
identical except for the sign (phase) of the Y-gate. In practice, 
this similarity means that the measurements of ⟨𝑎12

5 𝑎37⟩ and 
⟨𝑎37

5 𝑎32⟩ will both perform the same measurements of Pauli 
strings 𝑋B⊗𝑍B→ and 𝑌B⊗𝑍B→, with the phase introduced as 
a classical coefficient. Any measured diagonal asymmetries in 
the 1-RDM should, therefore, be solely due to insufficient 
sampling of the noisy state. Thus, provided independent 
measurements, and time-independent noise for a given set of 
circuit parameters, 𝜽, we can expect to sample the same noisy 
quantum state Ρ(𝜽) with every measurement. Here, we use 
independent measurements to mean single evaluations of the 
same quantum circuit that are not affected by previous 
evaluations. We phrase the expectation value in density matrix 
representation (not to be confused with a reduced density 
matrix), where Ρ(𝜽) is the parameterized density matrix. In this 
representation, the expectation value of an operator 𝑂m is given 
as X𝑂mZ = Tr[Ρ𝑂m]. In other words, provided that the above 
assumptions hold, any pair of real-valued off-diagonal elements 
must be equal, Tr�Ρ(𝜽)	𝑎8

5𝑎A� = Tr�Ρ(𝜽)	𝑎A
5𝑎8�. 

 
While noise is an unavoidable part of contemporary quantum 
computing, symmetries and properties in the studied system 
can often be used to gauge and combat errors. As such, it is of 
interest to study how the 1-RDM and derived properties thereof 
are affected by noise. And conversely, how enforcing known 
symmetries and properties of the 1-RDM mitigates the effect of 
noise. We have opted to study two important properties of the 
1-RDM: its Hermiticity, 𝐷13 = 𝐷31∗ , and that its trace equals the 
number of electrons of the studied molecular system52, 
Tr(𝑫) = 𝑛!" .50 
 
Because the 1-RDM is Hermitian, we can, assuming real-valued 
entries, enforce the desired transpose (𝐷13 = 𝐷31) symmetry 
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on the measured 1-RDMs by averaging the corresponding off-
diagonal elements as 

𝐷13D = 𝐷31D =
𝐷13 +𝐷31

2 	. (11) 

We also ensure particle conservation by normalizing the sum of 
all diagonal elements, Tr(𝑫), to equal the total number of 
electrons, 𝑛!" ,  

𝐷13E8F = 𝐷13D
𝑛!"
Tr(𝑫)	.

(12) 

Diagonal and off-diagonal elements are expected to be affected 
by similar degrees of noise and are subject to the same 
rescaling. We refer to the combined result of Eqs. (12) and (13) 
as a noise-mitigated 1-RDM. Our mitigation approach is not 
unique in relying on 1- or 2-RDMs to reduce errors, and similar 
techniques have been implemented by others.51–53  Thus, we 
emphasize that our aim is not to propose a novel mitigation 
strategy but rather to study its effect on a noisy 1-RDM and the 
resulting topology of the electron density. As our focus lies in 
evaluating topological qualities of the electron densities in the 
presence of noise and errors, we have opted for a conceptually 
straightforward mitigation strategy. As will be noted in the 
results and discussion section, some noise effects on the 
measured number of electrons can already be avoided by using 

certain fermion-to-qubit encodings and qubit tapering. In 
particular, the use parity encoding46 allows us to preserve the 
parity of the number of particles of each spin species (𝛼 and 𝛽). 
For the case of lone 𝛼 and 𝛽 electrons, such as the singlet H2, 
the parity conservation coincides with particle conservation. 
Consequently, performing the parity transformation in such 
cases will effectively protect against any error in the particle or 
projected spin numbers. 

Results and Discussion 
To evaluate the viability of the electron density’s topological 
properties as a form of fidelity witness, we perform quantum 
chemistry calculations on both quantum and conventional 
computers. The quantum calculations rely on hardware-
efficient ansätze54 and minimal or small basis sets to expand the 
molecular wavefunction (see the Methods section). We use 
high-quality electron densities from conventional coupled 
cluster calculations at the CCSD/aug-cc-pVTZ level of theory as 
reference data. We note that reference densities can, in 
principle (up to a feasible limit), be obtained in many ways, 
including other costly ab initio methods, more affordable DFT 
functionals, diffraction data, or even wavefunction-fitting 
experiments.55 
 

Figure 1 a) Five-step procedure for electron density-based witness estimation. A wavefunction is initially converged using a quantum algorithm. The corresponding one-particle 
reduced density matrix (1-RDM, D) is subsequently measured from the converged wavefunction. The electron density, ρ, is constructed from the measured 1-RDM. Topological 
analysis of the constructed electron density generates topological features 𝑓!, such as critical points. Finally, the quality of the quantum calculation can be evaluated by comparing 
topological features to a known (possibly experimentally determined) witness. b) Gradient field lines of the electron density and atomic basins in LiH derived from quantum 
computation (QC). c) Gradient field lines and atomic basins for the near-exact witness, derived from conventional quantum chemistry calculations at the CCSD/aug-cc-pVTZ level of 
theory. Green and blue circles indicate BCPs in data from the quantum calculation and witness, respectively.
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Central to our work are analyses of the significant contribution 
of noise on the quality of electron densities obtained with 
current quantum calculations. To that end, we not only 
compare with noiseless quantum simulations and near-exact 
conventional calculations, but we also implement and evaluate 
the efficacy of the above-described mitigation strategy for 
topological properties. To make our test set feasible on 
available quantum hardware, we rely on small basis sets (STO-
3G for H2, LiH and Li2, and 6-31G for HCN). A frozen (1s) core 
approximation is used for atoms heavier than H, together with 
relatively small active spaces: H2 (2,2), LiH (2,3), Li2 (2,4), and 
HCN (4,4). The canonical molecular orbitals used to define these 
active spaces are provided in the SI (Figures S5-8). Two kinds of 
encodings are used to map the fermionic spin orbitals to qubits: 
parity encoding with two-qubit reduction for H2 and LiH, and 
Jordan-Wigner encoding for Li2 and HCN. While quantum results 
from H2 and LiH are obtained from real quantum hardware, 
results for Li2 and HCN are from simulations of quantum 
hardware that include a noise model. Further computational 
details are available in the Methods section and the SI.  
 
Figure 2 demonstrates that significant errors can be present in 
both the diagonal and off-diagonal elements of the 1-RDMs. 
Similar conclusions have been drawn by Arute et al.52 and Smart 
et al.56 Note that an error along the diagonal is especially 
detrimental, as this – unless there is fortuitous error 
cancellation – can result in an incorrect (and unphysical) total 
number of electrons (Table 1). Even when the number of 
electrons is conserved by means of the encoding method, as in 
the case of H2, errors are still apparent along the diagonal of the 
1-RDM. Table 1 summarizes how over- and underestimation of 
the true number of electrons is a) present for larger molecules 
and b) can be effectively corrected by rescaling the 1-RDM. 
We want to reiterate that errors in the off-diagonal elements 
come in two flavors: symmetric and asymmetric with respect to 
the diagonal. Note that the latter type of error only arises in the 
data from real quantum devices. The found asymmetry agrees 

well with the reduced number of measurement samples used in 
these calculations relative to the 106 samples applied in our 
quantum simulations. Physical hardware can also experience 
noise levels fluctuating over time, breaking our previous 
assumption of time-invariant noise.  
 

Table 1: Number of electrons obtained from the trace of the 1-RDMs. For H2, the noisy 
calculation retains all electrons due to parity encoding and qubit tapering. Our 
calculations of larger molecules deviate noticeably from the correct number of electrons 
due to noise, effects that can be corrected by error mitigation. Estimated error bounds 
are given as a standard deviation based on the number of samples used in the 
measurements. The electron number for H2 is not affected by the number of samples. 

 Number of electrons 

Molecule Noise-free Noisy Mitigated 

H2 2.00  2.00(a) 2.00 

LiH 4.00  3.88(b) ± 0.011 4.00 

Li2 6.00  6.28(c) ± 0.003 6.00 

HCN 14.00 14.01(c) ± 0.003 14.00 

(a) Chalmers Särimner device. (b) ibmq_quito device. (c) Simulation using a 
depolarizing noise model.  

Moving to topological analysis of our electron densities, we look 
first at atomic partial charges (Table 2). The partial charges 
attributed to each topological atom are evaluated by 
partitioning space into atomic QTAIM basins (Figures 1b and 
1c). Table 2 shows atomic partial charges derived from such 
topological atoms and how noise can affect the quantification 
of this important chemical concept. Also shown in Table 2 are 
the results following the application of our error mitigation 
strategy of rescaling and symmetrizing the 1-RDM. Whereas the 
latter approach generally improves results, its occasional 
failures can impart valuable lessons on how to improve 
chemically informed error mitigation.  
 

Figure 2 Errors in 1-RDMs, comparing quantum devices (hardware and simulated) to exact (statevector) calculations. Color and intensity indicate the sign and magnitude of the 
errors, respectively. Hardware data (for H2 and LiH) demonstrate higher asymmetry than simulations (of Li2, HCN) with depolarizing noise models. Only 1-RDM elements that 
correspond to the active space are shown. All bonds are aligned with the 𝑥-axis.
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Table 2: Atomic partial charges derived from a topological QTAIM analysis of the electron 
density. Rescaling and symmetrization of 1-RDM results generally improve computed 
partial charges, with the clear exceptions of the NNA of Li2. 

  Partial atomic charge 

Molecule Atom Noise-free Noisy Mitigated 

H2 
H 0.00 0.00(a) 0.00 

H 0.00 0.00(a) 0.00 

LiH 
Li 0.84 0.85(b) 0.85 

H -0.84 -0.73(b) -0.85 

Li2 

Li 0.32 0.07(c) 0.16 

NNA -0.65 -0.42(c) -0.32 

Li 0.32 0.07(c) 0.16 

HCN 

C 0.89 0.74(c) 0.75 

N -1.07 -0.94(c) -0.93 

H 0.18 0.18(c) 0.18 

 (a) Chalmers Särimner device. (b) ibmq_quito device. (c) Simulation using a 
depolarizing noise model.  

One case of failure of our mitigation strategy lies with the NNA 
of Li2, a rare (but well-known) feature in the electron density 
where a local maximum is present between the two nuclei 
(Figure 3). One explanation for the reduced accuracy of the 
NNA’s partial charge is a substantial over-occupation due to 
noise of the valence 𝜋 orbitals and the 2𝜎∗ orbital (Figure S4), 
all of which have but a small overlap with the NNA basin. In 
contrast, the valence 2𝜎 orbital exhibits a significant reduction 
in population due to noise and overlaps prominently with the 
NNA basin. In other words, it is the incorrect relative filling due 
to noise of the 1𝜋 and 2𝜎∗ orbitals over the 2𝜎 that effectively 
removes electrons from the inter-nuclear NNA basin in favor of 

the nuclear basins. Because the rescaling aspect of our error 
mitigation strategy (viz. Eq. (12)) acts on all orbitals 
proportionally to their occupation, the 2𝜎 is scaled down to a 
larger extent, further exaggerating the error in this case.  
 
One example where our approach to error mitigation does little 
to correct topological features is HCN. The main reason for this 
is that the used active space is small and only includes the two 
bonding 𝜋 and two anti-bonding 𝜋∗ orbitals. In contrast to our 
example of Li2, the 𝜋 orbitals in HCN are polarized due to the 
difference in electronegativity of N and C. The 𝜋∗ orbitals are 
more pronounced on C and, consequently, have a larger overlap 
with the identified C basin. In contrast, the 𝜋 orbitals have a 
larger N contribution and overlap slightly more with the N basin. 
Because the net effect of noise is an overpopulation of the 
antibonding 𝜋∗ orbitals (Figure S4), the charge distribution is 
slightly skewed in favor of C (Table 2). A second reason for the 
negligible effect of our mitigation scheme in the case of HCN is 
that our calculations are based on sufficiently many, 106, 
simulated measurements, which effectively removes 
asymmetric errors in the 1-RDM. The main advantage of our 
error mitigation approach in this example is ensuring the 
correct number of electrons (Table 1). 
 
Figure 3 illustrates the effect of noise as electron density 
difference maps in planes across the different molecules, while 
Table 3 quantifies noise (and mitigation) at selected critical 
points in the density. Because our calculations rely on a hybrid-
quantum-classical algorithm, where orbitals are handled on a 
classical computer, electron densities are always constrained by 
the symmetries inherent to those orbitals. Such symmetries can 
also protect against noise along certain mirror planes. For 
example, Table 3 shows how the electron density at BCPs 
reported for HCN are all invariant to noise. This robustness is 

Figure 3 Electron density difference between noisy and noise-free (top), mitigated and noise-free (middle), and between mitigated and witness (bottom) results. The 
increased occupation of anti-bonding orbitals due to noise can be seen in all studied systems, resulting in a decreased electron density between nuclei. 
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not general but a consequence of the small (4e, 4o) active space 
used. Because the 𝜋 and 𝜋∗orbitals have nodal planes along the 
bond axis, it is only in the Laplacian of 𝜌(𝑟)		that one can 
distinguish between noisy, mitigated, and noise-free results for 
these points within HCN. For Li2, the situation is reversed, and 
the actual worsening of results following adaptation of our error 
mitigation is attributed to the rescaling of the 2𝜎 occupation, 
which substantially affects CPs on the boundary of the NNA 
basin.  
 
Our examples serve to illustrate the need to account for noise 
imbalance in future NISQ-computation of chemistry that targets 
high fidelity and accuracy. What we mean by noise imbalance is 
that some observables are more protected against errors than 
others. For example, in the context of electron densities, 
symmetries of orbitals in the chosen active space, the encoding, 
the ansatz, etc., can all affect relative noise when comparing 
local properties at different points in space. We note that 
multiple approaches exist that could potentially mitigate noise 
imbalance (see, for instance, Refs. 57–60 and references 
therein).  

 

Methods 
Calculations on H2 were performed with a hardware-efficient 
circuit on the Särimner device of Chalmers, employing 50,000 
samples. Calculations for LiH were performed on ibmq_quito 
utilizing a hardware-efficient two-local ansatz using 8192 
samples.61 To reduce the effects of noise, readout mitigation 
was applied to all hardware calculations. Calculations of H2 and 
LiH made use of parity encoding to reduce the required number 
of qubits and circuit depths. 
 
Calculations of Li2 and HCN were performed on simulated 
devices using two consecutive layers of the ExcitationPreserving 
hardware-efficient ansatz available in Qiskit version 0.42.1.61 
Simulations utilized a depolarizing noise model and were 
performed over 106 samples. All calculations were additionally 
simulated without noise for comparison.  
 
Our near-exact witness data was obtained with conventional 
quantum chemistry methods, using PySCF62 at the CCSD/aug-cc-
pVTZ level of theory. Topological analyses of electron densities 
were performed with Critic2.63 Additional computational and 
hardware details are provided in the SI. 

Table 3: Values of the electron density 𝜌(𝒓) and its Laplacian 𝛻"𝜌(𝒓)	at critical points in the density of a selection of molecules, comparing noise-free, noisy, and error mitigated 
data against a near-exact witness.   

a CCSD/aug-cc-pVTZ level of theory

	 	 𝜌(𝒓)	 𝛻$𝜌(𝒓)	

Mol	 CP Noise-free Noisy Miogated Witnessa Noise-free Noisy Miogated Witnessa 

H2	 bond 0.2524 0.2506 0.2506 0.2684 -0.7818 -0.7542 -0.7542 -1.2445 

LiH	 bond 0.0431 0.0399 0.0419 0.0394 0.1437 0.1177 0.1513 0.1553 

Li2		 NNA 0.0158 0.0134 0.0118 0.0129 -0.0139 -0.0102 -0.0085 -0.0143 

Li2	 bond 0.0154 0.0132 0.0116 0.0121 0.0017 -0.0025 -0.0005 0.0101 

Li2	 bond 0.0154 0.0132 0.0116 0.0121 0.0022 -0.0019 -0.0001 0.0101 

H-CN	 bond 0.3934 0.3934 0.3934 0.4831 1.3149 1.2480 1.2385 -0.3586 

HC-N bond 0.2635 0.2635 0.2635 0.2990 -0.7468 -0.7346 -0.7321 -1.3241 
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Conclusions 
Whereas tests of quantum computational accuracy are 
straightforward for small computational problems, for which 
conventional computation can be referenced, this will not 
always be so. Due to the rapid advances in quantum 
computational hardware, we may eventually face situations 
when it is not easy to validate whether a given problem has 
been solved to our satisfaction. The motivation behind this work 
is a proof-of-concept for utilizing electron densities as fidelity 
witnesses, future-proof benchmarks, for the quality of the 
quantum computation of materials and molecules. To that end, 
we have demonstrated the first topological analyses of electron 
densities inside molecules carried out with the assistance of 
quantum computers. Our work focuses on measuring one-
particle reduced density matrices on real and simulated 
quantum hardware, how error mitigation can be applied to 
these entities, and how the resulting electron densities differ 
from near-exact reference calculations. The molecular systems 
studied herein are small enough to be treatable by current 
quantum hardware and small enough for comparisons with 
high-quality electron densities derived from conventional 
computations. Our examples are chosen to demonstrate the 
sometimes-detrimental effects of noise being imbalanced both 
spatially and with respect to 1-RDM entries. Therefore, we 
suggest that noise imbalance should be considered when 
designing or selecting error mitigation techniques, ansätze, 
encoding, and active spaces. Our work emphasizes the growing 
potential and need for high-quality (quantum) crystallography 
experiments,64,65 i.e., experimental determination of electron 
densities near the diffraction limit.     
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Data Availability 
Data and code will be made available through an online repository following (and during) peer-review of the 
manuscript.  
 

Calculation Details 
Hardware	Calculations	
Qiskit1 was used throughout this work to generate all problem Hamiltonians, as well as to map the fermionic states 
onto qubits. For H2 and LiH, parity encoding was used, which allowed two-qubit tapering to reduce the total 
number of qubits in the calculations. Using a minimal STO-3G basis, the resulting states comprise 2 and 4 qubits, 
respectively. The LiH active space was reduced by freezing the Li 1s core orbital and removing the 2py and 2pz 
orbitals (the p orbitals perpendicular to the bond axis). This removal of orbitals is motivated by the work of 
Kandala et al.2 To increase the accuracy of our hardware calculations, we implemented hardware-efficient circuits. 
Figures S1 and S2 show the full circuits used for H2 and LiH, respectively. Additionally, the two calculations 
were implemented on two different quantum computers. The H2 problem on Chalmers’ three-qubit Särimner 
device, and the LiH problem on IBM’s five-qubit ibmq_quito chip. 
 

 
Figure S1: Hardware-efficient circuit used in the H2 calculation. 
 

 
Figure S2: Hardware-efficient circuit used in the LiH calculation. 
 
Simulated	Quantum	Calculations	
Both our noisy simulations, for Li2 and HCN, were implemented in Qiskit using a double-layer excitation 
preserving ansatz. A depolarizing noise model, including one- and two-qubit errors, was used to introduce noise 
effects, details of which are provided below. Due to technical issues with Qiskit, we could not utilize parity 
encoding for Li2 and HCN and instead opted for a Jordan-Wigner encoding in these simulations. Noise-free 
statevector simulations were performed for all systems, including H2 and LiH, to provide reference values and 
estimate the effects of noise. Both noise-free and noisy simulations used the COBYLA3 optimizer during the VQE 
convergence.  
 
Conventional	Quantum	Chemistry	Calculations	
In addition to our quantum computer calculations, we calculate our witness densities using PySCF, a Python 
package for conventional quantum chemistry4. These calculations are performed at the CCSD/aug-cc-pVTZ level 
of theory.  
 
Topological	Analysis	
From the 1-RDMs calculated by either quantum computation, simulation, or conventional calculation, a cube file  
(Gaussian cube file format) was generated using PySCF. The cube files were subsequently used for the topological 
analysis with the software Critic2.5  
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Hardware Details 
 
The Särimner device used for H2 calculations is a three-qubit chip. Only two of the three qubits were used in 
encoding the H2 state. The qubits are superconducting transmon qubits, and all three qubits are coupled through a 
single tunable coupler. Measured hardware characteristics are given in Table S1. 
 

 
 
Figure S4: Coupling map for qubits Q0, Q1, and Q2 on Chalmers’ Särimner quantum processor. The qubits within 
the dashed area were used for the calculation of H2. 
 
 
The ibmq_quito device is also a superconducting transmon qubit based processor that hosts five qubits, of which 
four were used in our calculations of LiH (Q0, Q1, Q2, Q3). The chip has a T-shaped coupling map, illustrated in 
Figure S3. 
 

 
 
Figure S3: Coupling map for qubits Q0 through Q4 on the ibmq_quito. The qubits within the dashed area were 
used for the calculation of LiH. 
 
Further details for both quantum processors can be found in the supporting information of Ref.6 

Simulated Noise Model 
To incorporate noise in our quantum hardware simulations, we implement a depolarizing noise model. The model 
applies random one- and two-qubit gate errors with probabilities 0.001 and 0.002, respectively. One can view the 
depolarizing channel as random, unintentional applications of additional gates after each intended gate in a circuit. 
The one-qubit depolarizing channel applies a random single-qubit gate, commonly one of the Pauli gates {X, Y, Z}, 
with probability 𝑝! after each gate in the circuit. Similarly, for two-qubit errors, a two-qubit gate is chosen 
randomly from a set of Pauli products {IX, IY, … , ZY, ZZ}	with probability 𝑝". While the depolarizing model is 
computationally efficient, it should be noted that it gives a simplified description pf the noise processes in a 
physical quantum computer. More elaborate models exist, they however require more classical resources to 
simulate. 

Estimating Sampling Uncertainty 
For our hardware calculations, we have estimated the sampling uncertainty by providing upper and lower bounds 
equal to the standard deviation of the measured mean values. For the simulated calculations, this standard 
deviation is provided by Qiskit as part of the measurement procedure. For our calculations on physical hardware, 

we have estimated the standard deviation of the mean, 𝑠, as that of a Bernoulli distributed variable, 𝑠#(𝑋.#) = 1
$!%!
&!

. 

Here, we define 𝑝# as the probability of measuring the +1 eigenvalue and complementary 𝑞# = 1 − 𝑝# as the 

Q0 

Q2 

Q1 

Q0 Q1 Q2 

Q3 

Q4 
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probability of measuring the -1 eigenvalue. We also use 𝑛# to denote the number of samples used for measurement. 
For an operator 𝑂7  written as a sum of Pauli operators 𝑃7', the effective standard deviation can be calculated as 
𝑠9:𝑂7;<" = ∑ 𝑠9:𝑃7';<'

"
. 

Additional Data 
In this section, we present additional data and results from our calculations for the interested reader. 
 
One-Particle	Reduced	Density	Matrices	(1-RDM)	

 
Figure S4: 1-RDMs of all non-witness calculations. 
 
	
Natural Orbital Occupations 
 
We calculate the natural orbital occupation by diagonalizing the 1-RDMs of the active spaces presented in Figure 
S4. The orbitals outside these active spaces correspond to Hartree-Fock orbitals, which are either fully occupied 
(2.0) or empty (0.0). The orbitals are then sorted, and the occupations are listed in Tables S1, S2, S3, and S4 for 
H2, LiH, Li2, and HCN, respectively, and the active space orbitals are indicated in orange. 
 
Table S1: Natural orbital occupation after diagonalizing the H2 1-RDMs in Figure S4. Active space orbitals are 
indicated in orange. 
 

 Occupation 
Orbital # Noise-free Noisy Mitigated 

1 1.975 1.960 1.961 
2 0.025 0.040 0.039 

 
Table S2: Natural orbital occupation after diagonalizing the LiH 1-RDMs in Figure S4. Note the negative 
occupation of orbital 4 due to noise. Active space orbitals are indicated in orange. 
 

 Occupation 
Orbital # Noise-free Noisy Mitigated 

1 2.000 2.000 2.000 
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2 1.956 1.814 1.933 
3 0.044 0.092 0.104 
4 0.000 -0.028 -0.038 
5 0.000 0.000 0.000 
6 0.000 0.000 0.000 
    

Table S3: Natural orbital occupation after diagonalizing the Li2 1-RDMs in Figure S4. Active space orbitals are 
indicated in orange. 
 

 Occupation 
Orbital # Noise-free Noisy Mitigated 

1 2.000 2.000 2.000 
2 2.000 2.000 2.000 
3 1.832 1.553 1.364 
4 0.064 0.255 0.224 
5 0.061 0.247 0.217 
6 0.043 0.222 0.195 
7 0.000 0.000 0.000 
8 0.000 0.000 0.000 
9 0.000 0.000 0.000 
10 0.000 0.000 0.000 

 
Table S4: Natural orbital occupation after diagonalizing the HCN 1-RDMs in Figure S4. Active space orbitals are 
indicated in orange. 

 Occupation 
Orbital # Noise-free Noisy Mitigated 

1 2.000 2.000 2.000 
2 2.000 2.000 2.000 
3 2.000 2.000 2.000 
4 2.000 2.000 2.000 
5 2.000 2.000 2.000 
6 1.933 1.772 1.766 
7 1.931 1.727 1.723 
8 0.068 0.275 0.274 
9 0.067 0.238 0.237 
10 0.000 0.000 0.000 
11 0.000 0.000 0.000 

 
 
 
Molecular	Orbitals	
The orbitals used in the active spaces for H2, LiH, Li2, and HCN are presented in Figures S5, S6, S7, and S8, 
respectively. All bonds are aligned along the 𝑥-axis. 

 
 
Figure S5: Canonical molecular orbitals in the active space for H2. Iso surfaces are shown for the values ±0.05. 
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Figure S6: Canonical molecular orbitals in the active space for LiH. Iso surfaces are shown for the values ±0.05. 
 

 
Figure S7: Canonical molecular orbitals in the active space for Li2. Iso surfaces are shown for the values ±0.05. 
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Figure S8: Canonical molecular orbitals in the active space for HCN. Iso surfaces are shown for the values ±0.05. 
 

 
Additional	Li2	and	HCN	Density	Difference	Plots	

 
 

Figure S9: Topological analysis of Li2. Contour plot compared to noise-free calculations for noisy (a) and 
mitigated (b) simulations. The contours are overlain streamlines showing the atomic basins for the Li2 nuclei and 
NNA. Solid lines indicate a higher electron density when compared to the noise-free results; dashed lines indicate 
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a lower electron density. The contour lines are separated on a logarithmic scale. Lithium basins are shown in blue 
and orange, the NNA basin is indicated by green. 
 
 
 

 
Figure S10: Topological analysis of HCN. Contour plot compared to noise-free calculations for noisy (a) and 
mitigated (b) simulations. The contours are overlain streamlines showing the atomic basins for the HCN nuclei. 
Solid lines indicate a higher electron density when compared to the noise-free results; dashed lines indicate a 
lower electron density. The contour lines are separated on a logarithmic scale. The basins of N, C, and H are 
indicated by orange, blue, and green, respectively. 
 
Grid-Based	Electron	Integration	
To validate our cube files, the integrated number of electrons was calculated for a large volume. The integrated 
value is in good agreement with the value derived from the trace of the 1-RDM (Table S1). 
 
Table S5: Total electron numbers for the tested systems calculated using summation density integration and the 
trace of the 1-RDM. 
 

Molecule Integrated density(d) Trace of 1-RDM 
H2(a) 2.00 2.00 2.00 2.00 2.00 2.00 

LiH(b) 4.00 3.88 4.00 4.00 3.88 4.00 

Li2(c) 6.00 6.28 6.00 6.00 6.28 6.00 

HCN(c) 14.00 14.01 14.00 14.00 14.01 14.00 
(a) Chalmers Särimner device. (b) ibmq_quito device. (c) Simulation using a depolarizing noise model. (d) A margin 
of 10 a.u. from the nearest nuclei was used when constructing the cube file. 
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ABSTRACT
Nuclear quantum phenomena beyond the Born–Oppenheimer approximation are known to play an important role in a growing num-
ber of chemical and biological processes. While there exists no unique consensus on a rigorous and efficient implementation of coupled
electron–nuclear quantum dynamics, it is recognized that these problems scale exponentially with system size on classical processors and,
therefore, may benefit from quantum computing implementations. Here, we introduce a methodology for the efficient quantum treatment of
the electron–nuclear problem on near-term quantum computers, based upon the Nuclear–Electronic Orbital (NEO) approach. We general-
ize the electronic two-qubit tapering scheme to include nuclei by exploiting symmetries inherent in the NEO framework, thereby reducing
the Hamiltonian dimension, number of qubits, gates, and measurements needed for calculations. We also develop parameter transfer and
initialization techniques, which improve convergence behavior relative to conventional initialization. These techniques are applied to H2 and
malonaldehyde for which results agree with NEO full configuration interaction and NEO complete active space configuration interaction
benchmarks for ground state energy to within 10−6 hartree and entanglement entropy to within 10−4. These implementations therefore sig-
nificantly reduce resource requirements for full quantum simulations of molecules on near-term quantum devices while maintaining high
accuracy.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0150291

I. INTRODUCTION

Chemical simulations at the atomic scale have advanced to
the point where they are now capable of describing a wide range
of phenomena, including those occurring in complex systems and
biological contexts. Much of this progress is due to advances in
the power and efficiency of methods that can capture the quantum

mechanical nature of electrons. Common to most practical imple-
mentations of these molecular dynamics schemes are two main
assumptions: (a) that the atomic nuclei behave as classical parti-
cles and (b) that the Born–Oppenheimer (BO) approximation holds
wherein the electrons are assumed to move sufficiently fast that
they respond adiabatically to the nuclear motion.1 Concerning the
first point, several approximated solutions that can capture, at least

J. Chem. Phys. 158, 214119 (2023); doi: 10.1063/5.0150291 158, 214119-1
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partially, nuclear quantum effects have been proposed, including
semi-classical approximations,2 Ehrenfest dynamics,3,4 correlated-
trajectory based solutions,5 quantum dynamics on pre-computed
surfaces [such as multiple spawning6 and (Multi-Configuration
Time-Dependent Hartree) MCTDH7], and a posteriori quantum
corrections for molecular vibrations and zero point energies mod-
eled on the harmonic oscillator.8

It is, however, now widely acknowledged that in systems con-
taining light atoms, nuclear quantum effects are not negligible and
can make appreciable contributions to processes including proton
delocalization and tunneling, occurring, e.g., in biological systems,9
including enzymatic catalysis,10 in tautomeric transitions, and in
determining the relative stability of crystal polymorphs.11 The obser-
vation of an isotope-dependence in reaction rate12 is a further
particularly striking signature of nuclear quantum effects. Even in
a familiar substance, such as liquid and solid water, the presence of
light atoms involved in hydrogen bonding13 suggests that nuclear
quantum effects can give important contributions to its static and
dynamical properties.14,15 Finally, phenomena such as charge trans-
fer reactions occurring, for instance, in photo-chemistry (e.g., in
the light harvesting complexes) may involve situations where the
electronic potential energy surfaces (PESs) become fully degener-
ate. At these so-called conical intersections, nuclear motion couples
to more than a single PES and the adiabatic approximation breaks
down, opening new radiationless decay pathways. These examples
provide a strong motivation for the extension of the current theoret-
ical frameworks beyond the BO and classical nuclei approximations.
It is worth mentioning that the combined electron–nuclear quan-
tum dynamics is not the only approach for the investigation of these
processes. Perturbation theory in the small parameter κ = (m/M)
(where m and M are the masses of the electrons and nuclei, respec-
tively) can be used to construct effective vibrational Hamiltonians
that can account for static and dynamical, nonadiabatic effects.
An efficient implementation of vibronic states calculations in the
quantum computing framework was investigated in Ref. 16.

Currently, several methodologies have been developed that give
a full quantum description of chemical systems. They are often
referred to as the Nuclear–Electronic Orbital (NEO) approach,17

pre-Born–Oppenheimer (pBO) quantum theory,18,19 or Nuclear
Orbital plus Molecular Orbital (NO+MO) theory.20 In these
formulations, nuclear tunneling and isotope effects arise natu-
rally. Additionally, phenomena involving the breakdown of the BO
approximation are also captured. However, the computational cost
of exact nuclear–electronic structure methods implemented on clas-
sical computers increases exponentially with the system size. In
contrast, quantum processors have the potential to reduce this cost
scaling to polynomial-time—underpinning the concept of quantum
advantage.21–23

Quantum computing is emerging as a new computational
paradigm for the efficient solution of quantum mechanical prob-
lems, which can have a tremendous impact in different domains,
such as many-body physics,24–34 high energy physics,35–45 quantum
chemistry,46–57 material design,58 and biology and medicine.59–62

The first quantum algorithm for treatment of both nuclei and elec-
trons in a fully quantum simulation setting was proposed by Kassal
et al.63 and applied to the calculation of the quantum dynamics for
the hydrogen molecule. Later, Veis et al.64 adopted the NO + MO
approach for constructing molecular Hamiltonians and proposed

a Quantum Phase Estimation (QPE) algorithm for computing the
corresponding ground state wave function. Finally, Ollitrault et al.65

presented a quantum algorithm for the simulation of nonadiabatic
electron–nuclear dynamics, including excited states.

The NEO approach is particularly versatile and stands as a
compromise between the BO approximation and methodologies
such as pBO. In the NEO approach, light mass nuclei are treated
using orbital techniques in the same way as are the electrons. Fur-
thermore, the BO separation between electronic and nuclear wave
functions is—in general—not necessary in this case. On the contrary,
the heavy nuclei (usually everything heavier than hydrogen) are
described by classical point charges, determining the geometry of the
molecular scaffold. Pavošević and Hammes-Schiffer66 recently pro-
posed a quantum computing implementation of the NEO approach,
employing the Variational Quantum Eigensolver (VQE) algorithm
for the optimization of the hydrogen molecule and positronium
hydride ground state wave functions, where only one proton was
treated at the quantum level.

In this study, we investigate the potential of the NEO approach
for chemical systems and focus on the construction of the cor-
responding qubit Hamiltonian and wave function Ansätze with
the aim of accessing larger system sizes than have been previ-
ously investigated. Specifically, we explore and implement improved
wave function parameterizations, operational mappings of second
quantized molecular Hamiltonians to the qubit space, and effi-
cient parameter initialization schemes for several electron–nuclear
wave function Ansätze. It is particularly important to devise qubit
tapering schemes, such as two-qubit reduction, the exploitation of
molecular point group (PG) symmetries, and the application of pro-
jectors to efficiently sample the relevant sectors of the molecular
Fock space.

After a detailed description of the NEO Hamiltonian and of the
corresponding wave function in the quantum computing setting, we
tested our algorithm on the evaluation of the ground state energies
of the hydrogen and malonaldehyde molecules using exact—noise-
free—state vector VQE simulators. In the case of malonaldehyde,
our approach was able to predict—despite the quite small size of
the nuclear basis set and the imposed rigidity of the molecular
scaffold—proton transfer barriers in reasonable good agreement
with the available references. Exploiting the full quantum nature
of the molecular wave function, we also proposed methods for the
evaluation of additional interesting quantum features, such as the
entanglement entropy of the subsystems (electronic and nuclear)
from the full NEO wave function.

II. THEORY
A. Nuclear–electronic orbital approach

Relative to the standard BO approximation, with point charges
representing nuclei, the Hamiltonian in the NEO approach includes
additional kinetic and potential energy operators for selected light
nuclei. This approach incorporates the quantum effects of light
nuclei and additionally introduces a separation between heavy and
light nuclear motion. We denote the collective spatial coordinates
of all quantum objects as r and additionally introduce superscripts
where required to distinguish between nuclei, rn, and electrons, re.
We refer to both quantum nuclear and electronic coordinates com-
bined as r = {re, rn

}. The coordinates for classical nuclei will be
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denoted as R. Quantities associated with electrons will carry lower
case indices i, j, while upper case indices, I, J, are used for nuclear
quantities, regardless of whether they are classical or not. The total
wave function, Ψ(r; R), will still retain a parametric dependence
on classical nuclear coordinates, R. Thus, the Schrödinger equation
reads as follows (in atomic units):

⎡
⎢
⎢
⎢
⎢
⎣

−
Ne

∑
i

1
2
∇

2
i −

Nn

∑
I

1
2MI
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2
I +
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∑
i< j

1
∣ri − r j ∣

+
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∣rI − rJ ∣

−
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Nn ,Nc

∑
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−

Ne ,Nc

∑
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ZA
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+
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⎤
⎥
⎥
⎥
⎥
⎦

Ψ(r; R) = EΨ(r; R), (1)

where ZI are nuclear charges, MI are nuclear masses, and Ne, Nn,
and Nc are the total number of electrons, quantum nuclei, and
classical nuclei, respectively.

The NEO approach solves Eq. (1) using both electronic,

ϕi(xi) ≡ ϕi(ri, si), (2)

and nuclear,

ϕI(xI) ≡ ϕI(rI , sI), (3)

spin orbitals constructed separately from nuclear and electronic
basis sets, originally in Gaussian basis sets.17 Note that the spin coor-
dinates si in Eqs. (2) and (3) are combined together with ri into a new

variable xi for brevity. Based on these spin orbitals, one can form
antisymmetric products, Slater determinants, for electrons,

Φμ(xe
) = Ŝ−∏

i
ϕi(xe

i ), (4)

and symmetric or antisymmetric spin orbital products for bosonic
or fermionic nuclei, correspondingly,

Φν(xn
) = Ŝ±∏

I
ϕI(xn

I ), (5)

where Ŝ+/− are symmetrizer/antisymmetrizer operators. These
constitute the multi-particle basis set for the Nuclear–Electronic
Orbital Full Configuration Interaction (NEOFCI) approach,17 which
expresses the nuclear–electronic wave function as follows:

Ψ(x; R) =
Ce ,Cn

∑
μν

CμνΦμ(xe
)Φν(xn

), (6)

where Ce and Cn are the total number of electronic and nuclear
states [Eqs. (4) and (5)]. We emphasize that in Eq. (6), only one
type of nuclei is considered. In the most general case, each type
of nuclei will have its own set of spin orbitals and the correspond-
ing symmetric or antisymmetric product, which, in turn, enters the
sum in Eq. (6). As in this work, we will only consider protons and
electrons as quantum particles, only masses MI =M = 1874me and
charges ZI = 1e will be considered in the quantum part of the Hamil-
tonian. Within such a framework, one gets the following second
quantization representation for the Hamiltonian:17
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IJ
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i â†
k âlâ j

+
1
2∑IJKL

[∫ ψ∗I (x1)ψ∗K(x2)
1

∣r1 − r2∣
ψL(x2)ψJ(x1)dx1dx2]â†

I â†
K âLâJ

−∑
ijKL
[∫ ϕ∗i (x1)ψ∗K(x2)

1
∣r1 − r2∣

ψL(x2)ϕ j(x1)dx1dx2]â†
i â†

K âLâ j

+∑
IJ,A
[∫ ϕ∗I (x)

ZA

∣r − RA∣
ϕJ(x)dx]â†

I âJ −∑
i j,A
[∫ ϕ∗i (x)

ZA

∣r − RA∣
ϕ j(x)dx]â†

i â j +
1
2∑AB

ZAZB

∣RA − RB∣
. (7)

Note that in addition to anti-commutation relations between
indistinguishable fermions,

[â †
i , â j]

+

= δi j , (8)

[â †
i , â †

j]
+

= [â i, â j]
+
= 0, (9)

[â †
I , â J]

+

= δIJ , (10)

[â †
I , â †

J ]
+

= [â I , â J]
+
= 0, (11)

distinguishable fermions do commute (between protons and elec-
trons), implying

[â†
I , â j] = 0, (12)

[â†
I , â†

j] = [âI , â j] = 0. (13)
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B. Quantum computing Ansatz
The VQE is a quantum variational algorithm that uses a classi-

cal optimization routine to find the parameters of a quantum state
that minimizes the expectation value of a given molecular Hamilto-
nian.67 Some of the key advantages of the VQE algorithm include
its ability to be implemented on near-term quantum computers,
which have a limited number of qubits and are prone to errors, and
its potential to scale to larger systems, hence becoming a tool for
practical applications in the near future.68–71

Mathematically, the VQE optimization algorithm can be
expressed as follows: Let Ĥ be the Hamiltonian of the system and
let ∣Ψ(θ)⟩ be the trial state, which is a function of parameters θ. The
goal is to find the values of θ that minimize the expectation value of
the Hamiltonian, given by

E(θ) = ⟨Ψ(θ)∣Ĥ∣Ψ(θ)⟩. (14)

To find the optimal values of θ, we can use a classical opti-
mization algorithm to iteratively update the values of θ. Then, the
quantum part of the algorithm is used to apply the quantum circuit
to the quantum state of the system and measure the energy of the
resulting state until the minimum value of E(θ) is found.

For the VQE optimization of the system wave function within
a quantum computing setting, it is desirable to design a flexi-
ble, expressive, and well-behaved Ansatz, which can deliver good
accuracy with the fewest number of parameters. While there are
a vast number of different Ansätze available, in this work, we
focus on the Unitary Coupled Cluster (UCC) and hardware-efficient
parameterizations. The main advantage of the latter arises from the
shallow circuit depth required for its implementation—an impor-
tant prerequisite for near-term (non-fault tolerant) hardware.72

Unfortunately, for chemical systems, there is no systematic, prac-
tical approach for the initialization and optimization of the varia-
tional parameters when using hardware-efficient Ansätze. Moreover,
these often show limited expressivity, while the optimization pro-
cess suffers from the presence of barren plateaus.73 Here, we will
explore several variants of the TwoLocal hardware-efficient Ansatz74

for the NEO wave function, details of which will be discussed
in Sec. IV B.

In contrast to hardware-efficient Ansätze, the Unitary Coupled
Cluster (UCC) Ansatz has a very well-tailored parameter space and
naturally approximates wave functions for chemical systems. This
well-established quantum chemistry Ansatz was first introduced for
VQE by Peruzzo et al.67 Although the resulting quantum circuits
are, in general, deeper than the hardware-efficient ones, the opti-
mization of the UCC circuit is less prone to barren plateaus and
lack of particle, total spin, and spin projection conservation. This
becomes especially important when one uses multiple centers for
protons and electrons, leading hardware-efficient Ansatz optimiza-
tions to the wrong results with an incorrect number of electrons and
nuclei.

While a hardware-efficient Ansatz does not require any special
adaptation for the NEO wave function, we must introduce tailored
modifications to the UCC Ansatz to extend it from the purely elec-
tronic to the NEO case. Here, we refer to the modified forms as
NEOUCC. The parameterized unitary operators ÛCC(t),

ÛCC(t) = eT̂ (t)−T̂ †
(t), (15)

are at the core of the UCC Ansatz. Acting upon some initial state
∣ψinit⟩ (typically the Hartree–Fock solution), it produces a trial wave
function of the form

∣ψ(t)⟩ = ÛCC(t)∣ψinit⟩. (16)

In general, the operator T̂ is given as a sum of cluster operators of
increasing order, i.e., the number of particles being acted on, o,

T̂ =∑
o

T̂ (o) = T̂ (1) + T̂ (2) + ⋅ ⋅ ⋅ . (17)

In other words, o = 1 corresponds to one-particle excitations, o = 2
corresponds to two-particle excitations, and so on. In second
quantization, these are expressed as

T̂ (1) =∑
pq

tp
q â†

p âq, (18)

T̂ (2) =∑
pqrs

tpq
rs â†

p â†
q ârâs. (19)

Here, p, q, r, s index all spin orbitals, both protonic and electronic,
and t represents coefficients to be optimized. Labeling the ini-
tially occupied spin orbitals with i, j, k, l and the initially unoccupied
spin orbitals with a, b, c, d (analogous for protons using upper case:
I, J, K, L and A, B, C, D), we can limit the cluster operators to a subset
that conforms to chosen occupations of the initial state,

tab...AB...
i j...IJ... ∏

γ,λ
â†
γ âλ∏

Γ,Λ
â†
ΓâΛ, (20)

where γ ⊆ {a, b, . . .}, λ ⊆ {i, j, . . .}, Γ ⊆ {A, B, . . .}, and
Λ ⊆ {I, J, . . .}. That is, annihilation (creation) operators will only
act on occupied (unoccupied) spin orbitals, indexed as a, b, c, d, . . .
(i, j, k, l, . . .) for electronic spin orbitals and as A, B, C, D, . . .
(I, J, K, L, . . .) for protonic spin orbitals. Since we now obtain a mix
of electron and proton operators, we introduce a dual superscript
T̂ (e,p), where the first index, e, is the order of electronic excitation in
each operator and p is similarly the order of the protonic excitations,
that is,

T̂ =∑
e,p

T̂ (e,p), (21)

where T̂ (e,p) is, e.g.,

T̂ (1,0)
=∑

ia
ta
i â†

a âi, (22)

T̂ (0,1)
=∑

IA
tA
I â†

AâI , (23)

T̂ (2,0)
=∑

abij
tab
i j â†

a â†
b âiâ j , (24)

T̂ (0,2)
=∑

ABIJ
tAB
IJ â†

Aâ†
BâI âJ , (25)

T̂ (1,1)
=∑

aBiJ
taB
iJ â†

a âiâ†
BâJ. (26)
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The sum in Eq. (21) is normally truncated to some fixed order
of e and p. Electronic structure VQE calculations are often limited
to one- and two-particle cluster operators, while higher orders are
ignored. This approximation is commonly referred to as Unitary
Coupled Cluster Singles and Doubles (UCCSD). We will extend this
notation to indicate when different orders are used for electrons,
protons, and mixed terms, respectively. For example, an Ansatz
using singles and doubles for electrons and nuclei, while using a
mixed double consisting of single electronic and single nuclear exci-
tations, a mixed triple consisting of double electronic and single
nuclei operators, will be indicated as

UCCSDT(2,1)
⇒

S
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

T̂ (1,0)
+ T̂ (0,1)

+ T̂ (2,0)
+ T̂ (1,1)

+ T̂ (0,2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D

+ T̂ (2,1).

(27)

Note that the lack of superscript implies the use of all o-
particle operators, i.e., S⇒ T̂ (1,0)

+ T̂ (0,1), D⇒ T̂ (2,0)
+ T̂ (1,1)

+ T̂ (0,2), and T⇒ T̂ (3,0)
+ T̂ (2,1)

+ T̂ (1,2)
+ T̂ (0,3). For systems

with fewer electrons or protons than the excitation order, ne < e + p
or nn < e + p, only mixed operators are considered. For example, in
the case of the hydrogen molecule, the possible triple and quadru-
ple excitation operators are T⇒ T̂ (2,1)

+ T̂ (1,2) and Q⇒ T̂ (2,2),
respectively.

C. Ansatz initialization
The initial guess for parameters in any variational quantum

algorithm is in many cases important to the performance of the cal-
culation and can be crucial. Having a proper initial guess can reduce
the number of evaluations needed to reach convergence, while also
allowing convergence to the correct minimum (or maximum). As
such, it proves wise to choose initial values for the Ansatz para-
meters with care. For hardware-efficient Ansätze, this is especially
vital, where otherwise initial parameters often are chosen randomly,
making convergence to a global minimum difficult.

The convergence problem arises due to several factors, e.g.,
the presence of local minima in the optimization landscape and the
presence of barren plateaus.73,75 As these problems compound with
the number of variational parameters, it can be useful to solve an
approximate problem in order to find a set of starting parameters
closer to those of the true ground state. In the case of NEO cal-
culations, one such approximate solution can be taken from the
conventional electronic structure calculations under the BO approx-
imation and with nuclei represented as classical point charges. Thus,
we suggest initializing the parameters for the electronic part of the
NEO calculation with those from the converged electronic struc-
ture calculation, inspired by our previous work.76 For the case of
the NEOUCC Ansatz, the circuit operators corresponding to elec-
tronic, nuclear, and mixed excitations can be separated according
to Fig. 1. As UT(e,0)(θe

) operators are the same for NEO and elec-
tronic cases, one can initialize their parameters, θe, with those
from the electronic calculation and set all other parameters to zero,
θ0,n
= θe,n

= 0.
For a hardware-efficient Ansatz, the parameter transfer

becomes slightly more complicated as it is difficult to assign given
parameters to specific nuclear or electronic parts. Therefore, special

FIG. 1. Schematic circuit used for the initialization of the electronic parameters of
the NEOUCC Ansatz. The conventional electronic operators can be considered as
a subset of the NEO operators. ne and np are the numbers of qubits representing
electron and proton spin orbitals, respectively.

care should be taken such that the parameter transfer only affects
qubits associated with electronic orbitals. A generalized construction
of the TwoLocal Ansatz can be created from sets of parameterized
single qubit rotational gates separated by entangling gates applied
between qubits. Both the electronic and NEO problems can be rep-
resented in this manner (see Fig. 2). In general, the number of layers
needed to accurately describe the electronic problem, dEl., is smaller
or equal to dNEO, the number of layers needed to describe the NEO
problem. With this in mind and a proper selection of entangling
scheme, one can find a transfer protocol between electronic and
NEO parameters. In Sec. IV B, we present in detail the two vari-
ants of parameter initialization employing CZ entangling layers. CZ
entangling layers are beneficial in that they allow for the limited
influence of electronic parameters on nuclear qubits if the nuclear
parameters are unset (equal to zero).

The suggested initialization schemes assume that the elec-
tronic parameters could also be relaxed during the wave function
optimization. It would be especially important for cases where
multiple BO potential energy surfaces intersect. In addition, one
should assure that the presence of additional nuclear orbitals in
the NEO representation preserves the point group symmetry of
the system. Nonetheless, even if the point group symmetry is the
same, the corresponding Z2-symmetry reduction might introduce
a difference in the sign pattern between the off-diagonal elements
of the NEO and electronic qubit Hamiltonians. This stems from
the difference in sign between eigenvalues of Z2-symmetry for the

FIG. 2. Schematic circuit used for the initialization of the electronic parameters
in the NEO hardware-efficient Ansatz. The electronic and NEO hardware-efficient
circuits have dEl. and dNEO layers, respectively. ne and np are the numbers of qubits
representing electron and proton spin orbitals, respectively.
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NEO and electronic states and must be taken into account dur-
ing the parameter transfer. We describe the procedure in detail
in Sec. IV B.

D. Entanglement entropy measurement
The measurement of the entanglement entropy (or von Neu-

mann entropy) can provide additional insights into the correlation
between the two particle subsystems, namely, electrons and nuclei.
This is particularly interesting when studying systems composed
of distinguishable particles and will provide a direct measurement
of the entanglement between the two subsystems. Here, we will
introduce the subsystem entropy in the NEO framework as

si = −Tr (ρ̂ i ln ρ̂ i
), (28)

where i ∈ {e, n}, ρ̂ e
= Trnρ̂ e,n, and ρ̂n

= Treρ̂ e,n are the correspond-
ing reduced density matrices and ρ̂ e,n is the full density matrix.
Alternatively, one can also monitor single-orbital entropy, as shown
in Appendix A.

III. COMPUTATIONAL DETAILS
The NEO framework was implemented in a locally mod-

ified version of Qiskit.74 All quantum computing calculations
were performed as state vector simulations using variations of
the TwoLocal Ansatz as well as NEOUCC Ansätze. The former
employed parameterized Ry and Rz single rotation gates together
with CZ entangling gates. The various entanglement patterns
used in this work are summarized in Secs. IV B and IV C. All
the classical algorithm calculations were carried out using the
GAMESS-US software package.77 In order to prepare the test
systems and reference results, the Nuclear Electronic Orbitals
Hartree–Fock (NEOHF), NEOFCI, and Nuclear–Electronic
Orbital Complete Active Space Configuration Interaction
(NEOCASCI)17 calculations were performed. The system Hamil-
tonians were expanded in the orbitals obtained from the NEOHF
calculations, and the corresponding NEO wave functions were
optimized with the VQE algorithm in Qiskit. The SciPy78 implemen-
tations of the Constrained Optimization By Linear Approximation
(COBYLA),79 Conjugate Gradient (CG),80,81 and Sequential Least
SQuares Programming (SLSQP)82 methods were used for the
optimization of the circuit parameters. The fermion-to-qubit trans-
formation used to map the electronic and nuclear operators together
with the employed qubit reduction techniques is described in
Sec. III A. The additional qubit space reduction obtained by exploit-
ing the NEO Hamiltonian’s point group symmetries is discussed
in Sec. III B.

A. Fermionic mapping and four-qubit reduction
The fermionic parity mapping70 scheme is used in this work

for both electronic and nuclear second-quantized operators. Note
that we are only treating nuclei consisting of single protons quan-
tum mechanically, and as such, only fermionic representations are
necessary. We assume that the fermionic occupation number basis
vectors are written in what we will refer to as particle-spin block
representation,

∣ f ⟩ = ∣ f p
np
β+np

α
, . . . , f p

1+np
α

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
β−spin prot.

,

α− spin prot.
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f p
np
α
, . . . , f p

1 , f e
ne
β+ne

α
, . . . , f e

1+ne
α

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
β−spin elec.

,

α− spin elec.
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

f e
ne
α
, . . . , f e

1 ⟩,

f e/p
i ∈ {0, 1},

(29)
where f e

i and f p
i are the spin orbital occupation numbers for elec-

trons and protons, respectively, and ne
α, ne

β, np
α, np

β are the number of
α and β spin orbitals for the two types of particle. With parity encod-
ing, instead of storing the occupation of individual spin orbitals, the
qubits store information about the parity of the fermionic state as
follows:

pe/p
i =

i
⊕
j=1

f e/p
i , (30)

where ⊕ represents addition modulo 2. A change to the parity
encoding thus yields the parity state

∣p⟩ = pp
np
β+np

α
, . . . , pp

1+np
α

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
β−spin prot.

,

α− spin prot.
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

pp
np
α
, . . . , pp

1, pe
ne
β+ne

α
, . . . , pe

1+ne
α

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
β−spin elec.

,

α− spin elec.
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

pe
ne
α
, . . . , pe

1⟩,

pe/p
i ∈ {0, 1},

(31)
thus mapping the local state of each spin orbital to the state of sev-
eral qubits. Note that the qubit mapping for each type of particle is
performed within the corresponding subspace such that the parity
of electronic qubits is not affected by the state of nuclear qubits, and
vice versa.

The fermionic creation and annihilation operators in the parity
basis have the following representations:

a†
i ≡

1
2
[X←i+1 ⊗ (Xi ⊗ Zi−1 − iYi)], (32)

ai ≡
1
2
[X←i+1 ⊗ (Xi ⊗ Zi−1 + iYi)]. (33)

Here, we introduce X←i+1 as an operator that acts on all qubits
of index i + 1 and higher within the electronic or nuclear sub-
spaces, accounting for fermionic antisymmetry under the exchange
of identical particles. For the edge case of i = 1, the expression sim-
plifies to 1

2 [X
←
i+1 ⊗ (Xi + iYi)], and similarly for i = ne/p

α + ne/p
β , we

get 1
2(Xi ⊗ Zi−1 + iYi).
The utilization of the parity encoding simplifies the identifi-

cation of the discrete Z2-symmetries associated with the particle
number operators within the α and β subspaces83 for both electrons
and nuclei. As we are dealing with a Hamiltonian based on the non-
relativistic Schrödinger equation, Eq. (1), the number of particles
within the α and β subspaces are conserved, and therefore, the total
parity numbers, such as pp

np
β+np

α
, pp

np
α
, pe

ne
β+ne

α
, and pe

ne
α
, are constant. The

corresponding four qubits can thus be treated classically, and their
contribution to the expectation value of the Hamiltonian can be cal-
culated beforehand, employing the “tapering” procedure described
in Ref. 83.
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B. Qubit reduction from Hamiltonian symmetries
If a molecular system obeys some point group symmetry, the

number of qubits can be further reduced using methods introduced
by Bravyi et al.83 This approach allows for additional qubit tapering
by identifying a Z2-symmetry of the Hamiltonian corresponding to
the specific molecular point group symmetry.

In addition, when the system wave function can be restricted to
specific subspaces of the total Hilbert space, one can further impose
an additional Z2-symmetry, which confines the solutions in the
region of interest. This may, for example, happen in the case of the
hydrogen molecule if one is interested in the orthohydrogen nuclear
isomer, the dominant nuclear spin isomer (75%) at room temper-
ature. Thus, one can just consider the maximally spin-polarized
triplet state for the protons. This allows for either alpha or beta spin
orbitals to be ignored. To reduce our active space to the selected set
of nuclear alpha or beta orbitals, we introduce (here for the case of
orthohydrogen) a projector to states for which beta spin orbitals are
unoccupied,

P̂ =
β nuc.
⊗
J

1
2
(I + Z)

α nuc.
⊗
I

I
elec.
⊗
i

I, (34)

and produce the projected Hamiltonian

ĤP = P̂ĤP̂. (35)

In this case, one can find as many Z2-symmetries as the number
of beta spin orbitals, and the qubits corresponding to these spin
orbitals can be therefore tapered off. This operation can also be
performed in the Hamiltonian construction procedure by simply
removing terms containing creation/annihilation operators acting
on these spin orbitals.

IV. RESULTS
Our simulations focused on the evaluation of the NEO ground

state energies and entanglement entropies for H2 and malonalde-
hyde. We first introduce a detailed description of the two systems
and describe the conditions under which the conventional quan-
tum chemistry calculations were performed. We then describe (in
Sec. IV B) the procedures for the initialization of the quantum com-
puting calculations, as well as the transformations employed in the
mapping of the fermionic electronic structure problem in the qubit
space (see Secs. III A and III B). In Sec. IV C, we will report the
results for the hydrogen molecule, discussing the performance of the
different wavefunction Ansätze, including the one inspired by UCC
and the more quantum native, hardware efficient, TwoLocal Ansatz.
Finally, in Sec. IV D, we will present and discuss the results for the
second and more challenging system, malonaldehyde, which is a
prototypical system used to investigate quantum effects in molecular
proton transfer reactions. In this case, the delocalization of the pro-
ton wave function between the donor and acceptor moieties makes
the choice of the proton basis set and wave function Ansatz more
challenging than in the case of H2 molecule.

In both cases, we will also discuss the level of entanglement
between the two quantum subsystems, the electronic and nuclear
components, providing additional insights into the nature of the
proton transfer process.

A. Test systems and classical reference calculations
We chose H2 for testing the developed methodology, as

the exact reference results are readily accessible and all possible
types of interaction between particles, such as electron–electron,
proton–proton, and electron–proton, are present. The NEO orbitals
and corresponding integrals were prepared with the NEOHF
method. For ease of calculation, the rather small split-valence
double-ζ Gaussian basis set in 6-31 contraction scheme (6-31G)84

basis set was used for the electronic orbitals, and the nuclear
orbitals were constructed using the smallest basis set available in
GAMESS-US,77 split-valence double-ζ nuclear basis set composed
of two uncontracted Cartesian S functions (DZSNB).17 For the
showcase in Sec. IV B, the electronic orbitals were constructed in
single-ζ (minimal) basis set contracted from six Gaussian primi-
tives (STO-6G). The basis set functions for electrons and nuclei
were centered at the positions corresponding to the experimen-
tal ground state structure85 with an inter-nuclear distance equal
to 0.7414 Å. We must stress that, in general, one must use the
floating orbital approach,86–88 where the centers of the basis set func-
tions are optimized to best fit the final wave function according
to the variational principle. However, as it entails a more elabo-
rate implementation, we prefer to postpone this step and perform
all tests with fixed orbital centers, similar to the studies performed
in Refs. 89–92. Note that our H2 Hamiltonian, similar to the work in
Ref. 93, contains contributions from global translational and rota-
tional motion. As these contributions increase the total energy, they
preferably must be eliminated.90,94,95 We emphasize that our aim
is not in delivering ultimate accuracy results but rather to estab-
lish the resource-efficient methodology for the quantum treatment
of the electron–nuclear problem on near-term quantum computers.
Based on the NEOHF orbitals, the reference total energy has been
evaluated with the NEOFCI17 method (see Table II). The same struc-
ture was used for the electronic Hartree–Fock (HF) calculation with
a 6-31G basis set giving four orbitals for electrons. Consequently,
these orbitals were used in Full Configuration Interaction (FCI)
calculation for obtaining the reference energy. The reference ener-
gies for electronic and NEO cases are presented in Tables I and II,
respectively.

TABLE I. H2 ground state energies calculated with quantum computing Ansätze
(UCCSD and NEOUCCS(1,0)D(2,0)) and classical algorithms (FCI and “exact
diagonalization”). Two Hamiltonians are used: the electronic Hamiltonian (ĤEl.)
and the projected NEO Hamiltonian (PeĤNEOPe). The UCCSD electronic para-
meters reproducing the FCI wave function provide a good initial guess for the
NEOUCCS(1,0)D(2,0) Ansatz (applied on PeĤNEOPe) with an error of 8.35 × 10−5

hartree. Further optimization of parameters (“relaxed”) recovers the ground state
energy of PeĤNEOPe (“exact diagonalization”).

Hamiltonian Method Parameters Energy (hartree)

ĤEl. FCI −1.151 683
UCCSD Electronic −1.151 683

PeĤNEOPe Exact diagonalization −1.065 040

NEOUCCS(1,0)D(2,0) Electronic −1.064 956
Relaxed −1.065 040
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TABLE II. Ground state energies for the H2 NEO Hamiltonian obtained with dif-
ferent variants of the NEOUCC quantum computing Ansatz and the COBYLA
optimizer. In general, a good agreement with NEOFCI is reached for all variants;
however, one should emphasize the importance of the T(2,1) excitations in deliver-
ing excellent agreement with the reference. The calculations employ both “ordinary”
and “advanced” initialization procedures, as described in Sec. IV B. Although the
“advanced” initialization scheme improves slightly the accuracy, we expect more
significant improvements in the case of a larger number of parameters.

Method

Order Initialization Energy (hartree) Iterations

NEOUCC

SD Advanced −1.066 039 856
Ordinary −1.066 039 1341

SDT(1,2) Advanced −1.066 039 1093
Ordinary −1.066 039 1674

SDT(2,1) Advanced −1.066 120 1377
Ordinary −1.066 121 2179

SDT Advanced −1.066 121 1074
Ordinary −1.066 120 3945

NEOFCI −1.066 121

For the second test system, we chose malonaldehyde. This
molecule is an extensively studied benchmark system for quantum
effects involving intramolecular hydrogen bonds. The key struc-
tural feature is the hydrogen bond O–H–O for which there are
two possible asymmetric configurations. This leads to a double-well
potential with the states connected by a proton barrier. The exper-
imental ground state structure98 has Cs point group symmetry, and
the proton transfer occurs at a symmetric transition state structure
in C2v symmetry.17,99 To obtain a reasonable starting structure for
the description of the proton transfer process, we first optimized
the malonaldehyde structure with the second-order Møller–Plesset
(MP2)100 in C2v symmetry and the 6-31G basis set. The final struc-
ture corresponds to the transition state (TS) geometry.17,99 After
fixing all the coordinates but one, the search for minima was per-
formed in Cs symmetry. This revealed two possible equilibrium
locations for the proton separated from each other by 0.42 Å as well
as the location of the barrier’s maximum. In the inset of Fig. 3, we
marked the equilibrium positions with yellow dots; they are symmet-
rically arranged with respect to the position of the barrier maximum
marked with a black dot. These coordinates were used as the centers
for the nuclear basis functions in three different NEOHF calcula-
tions performed with DZSNB and 6-31G basis sets for the nuclei and
the electrons, respectively. Two of these NEOHF calculations were
performed in the C2v symmetry corresponding to the TS geometry;
in the first case, two basis functions were placed in correspondence
of the equilibrium positions (yellow points), while in the second
case, two more basis functions were added at the barrier’s maxi-
mum (black point). The former will be referred to as the “2-center
C2v” calculation (consisting of four nuclear orbitals), while the latter,
the “3-center C2v” calculation, makes use of six nuclear orbitals. By
enabling a full relaxation of the three-center structure, we can obtain
a good estimation of the barrier height (as the minimum energy

FIG. 3. Potential energy surface for the proton translocation process in malon-
aldehyde. The curve in orange corresponds to a MP2 calculation, in which the
moving proton (as all other atoms) is described as a classical point charge and
it is driven from one minimum to the other using a fixed Hamiltonian of C2V sym-
metry, i.e., with all atoms (but the moving proton) fixed in their original position.
This curve is mainly given as guidance to the eyes and does not correspond to
the exact potential energy profile. The malonaldehyde structure together with the
first protonic NEOHF orbital (isosurface value 10−4) is given in the upper inset.
The distance between the equilibrium positions is found to be 0.42 Å. Both NEO-
CASCI (classical algorithm, green dot) and NEOUCC (quantum algorithm, yellow
star) methods incorporate quantum proton effects and provide reasonable barrier
values, while the classical description of the proton with CASCI (blue dot) leads to
a considerable overestimation of the barrier. All calculations are performed using
the MP2 geometries. Proton positions computed with the NEO approaches cor-
respond to the expectation values of their position operators. The values labeled
with “Reference 1” (red dot) and “Reference 2” (purple dot) are taken from Refs.
96 and 97, respectively.

in the C2v symmetry). The third NEOHF calculation corresponds
to the relaxed “1-center Cs” configuration and is described by two
nuclear orbitals placed at one of the equilibrium locations (yellow
points). The localization of the proton in one of the two equivalent
minima (bonded geometries) is a consequence of the relaxation of
the molecular scaffold from the C2v to the asymmetric Cs geome-
try. In all cases, only one proton was treated quantum mechanically,
while all other nuclei were considered as classical point charges.
We also kept the same number of electronic orbitals associated
with the “quantum” proton, placing them in correspondence of all
three centers(yellow and black), with the aim of achieving an equal
description of the electronic wave function in the “1-center Cs” and
“3-center C2v” setups. Due to the presence of the classical nuclei,
the NEO Hamiltonian does not reflect the global rotational and
translational degrees of freedom.101 For each of the three sets of
NEOHF orbitals (“1-center Cs,” “2-center C2v ,” and “3-center C2v”),
we performed NEOCASCI calculations to obtain the corresponding
reference energies (see Table VII). To keep the electronic active
space compact, in all calculations, the 17 low-lying core orbitals for
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FIG. 4. Electronic (red/blue) and nuclear
(purple/orange) orbitals (isosurface
value is 0.05) included in the active
space of NEOCASCI calculation for
malonaldehyde in the “3-center C2v ”
setup. The orbitals have been prepared
with a NEOHF calculation using a
DZSNB and a 6-31G basis sets for the
nuclei and the electrons, respectively.

electrons were considered fully occupied and only four orbitals host-
ing four electrons were considered active. Concerning the nuclear
active space, we used all two orbitals, four orbitals, and six orbitals
for “1-center Cs,” “2-center C2v ,” and “3-center C2v” setups, respec-
tively. The results for the reference NEOCASCI calculations are
reported in Table VII, while the electronic and nuclear NEOHF
orbitals used in the active space for the “3-center C2v” setting are
shown in Fig. 4.

B. Initialization of the electronic parameters
in NEO Ansatz

As discussed in Sec. II C, the choice of initial parameters
in any VQE Ansatz can have a significant influence on the con-
vergence rate as well as the accuracy of a calculation. Here, we
show that the optimized wave function of the electronic subsys-
tem offers a good starting point to the NEO algorithm. As already
mentioned earlier, the transfer of parameters between the electronic
and NEO Ansätze might need additional modifications if a point
group symmetry is manifest. To this end, one needs to consider the
different sign patterns occurring in the NEO and electronic Hamil-
tonians after applying the Z2-symmetry reduction corresponding
to a certain point group symmetry. We illustrate this procedure
on the example of the hydrogen molecule using NEOHF orbitals
constructed with minimal size STO-6G and DZSNB basis sets for
electrons and nuclei, respectively, as explained in Sec. IV A. In this
way, we can deal with only four orbitals for the nuclei and two
orbitals for the electrons. This setup results in a NEO qubit Hamil-
tonian spanning 12 spin orbitals (eight nuclear spin orbitals and
four electronic spin orbitals), while the electronic Hamiltonian spans
just four spin orbitals. The Z2-symmetry arising from the D2h point
group of the electronic qubit Hamiltonian in parity mapping is given
by the following operator:

ZEl.
2 = IZIZ. (36)

Applying tapering to the electronic Hamiltonian leads to a projec-
tion into the symmetry subspace corresponding to the HF state with
ZEl.

2 eigenvalue equal to −1. Thus, after two-qubit reduction83 and
symmetry tapering, the resulting electronic Hamiltonian will take
the following form:

ĤEl. = −0.322 833 × I − 0.803 007 × Z − 0.180 939 × X. (37)

For the NEO qubit Hamiltonian in parity encoding, the correspond-
ing Z2-symmetry is

ZNEO
2 = IZZZIZZZIZIZ. (38)

However, in this case, the symmetry operator eigenvalue is +1. Thus,
the eigenvalue with a different sign will be incorporated into the
Hamiltonian during the symmetry tapering. To reveal this effect,
we further perform four-qubit reduction according to Sec. III A
and project the NEO Hamiltonian onto the electronic subspace.
The corresponding projector, Pe, is similar to the one introduced in
Sec. III B except that it additionally projects the NEO qubit Hamil-
tonian onto states where the nuclear alpha spin orbitals occupied
according to the lowest NEOHF occupation. Thus, the resulting
NEO qubit Hamiltonian,

P̂eĤNEOP̂e = −0.217 313 × I − 0.816 590 × Z + 0.181 576 × X, (39)

is limited to the states where only the energetically lowest triplet
NEOHF occupation for protons is allowed. One can clearly rec-
ognize in Eq. (39) that the off-diagonal term acquires a change of
sign when compared to the electronic case, Eq. (37). This differ-
ence in the sign signature is also present for the parameters in the
electronic and NEO Ansätze. One way to solve this issue would
be to perform a signature similarity transformation of the elec-
tronic Hamiltonian. For the specific case discussed here, this will
correspond to

ZĤEl.Z = −0.322 833 × I − 0.803 007 × Z + 0.180 939 × X. (40)

Since such a transformation is isospectral,102 one can use the
transformed electronic Hamiltonian to find the parameters of the
electronic Ansatz and then apply these parameters as an initial
guess for the NEO Ansatz. In this work, this “signature simi-
larity transformation” is performed by comparing and fixing the
signs of the Pauli words of the projected NEO Hamiltonian and
of the electronic Hamiltonian according to the expressions in
Eqs. (37) and (39).

The similar weights (coefficients) obtained for the projected
NEO and in the electronic Hamiltonians, Eqs. (39) and (40), attests
to the efficacy of the proposed parameter initialization method-
ology. However, before transferring electronic parameters to the
NEO Ansatz, it could be beneficial to additionally optimize them
using the projected NEO Hamiltonian P̂eĤNEOP̂e [Eq. (39)]. More
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FIG. 5. The “expanded” variant for the initialization of the electronic parameters in
hardware-efficient Ansatz. The circuit is designed for the case of four-qubit NEO
Hamiltonian, corresponding to H2 using minimal basis sets, STO-6G for electrons
and DZSNB for nuclei. We use an “all-to-all” entangling scheme with CZ gates
applied between all qubits. The electronic subsystem is delimited by a dashed
box. Parameters in blue are initialized according to the results of the electronic
subsystem optimization. All parameters in red: θ̃i (i = 1, 6) and θ̃d,i (i = 1, 6) are
initialized to 0, with the exception of θ̃dmax ,1, which is set to π (dmax is the maximum
number of repetitions). While for this specific case, one entangling layer, d = 1,
would be sufficient, for larger systems, more layers will be required.

details will be given in Sec. IV C. In the following, we limit our-
selves to the case of the initialization of the electronic parameters
for the hardware-efficient Ansatz for H2 in the minimal basis set.
After performing symmetry tapering and four-qubit reduction and
restricting to nuclear triplet states according to Secs. III A and III B,
one finally obtains a four-qubit NEO Hamiltonian [See Appendix D,
Eq. (D1)]. The first qubit (of the four-qubit register) corresponds
to the electronic state, while the other three qubits describe the
nuclear state (see Fig. 5). One can initialize electronic parameters

FIG. 6. The “stacked” variant for the initialization of the electronic parameters in
hardware-efficient Ansatz. The circuit is designed for the case of the four-qubit
NEO Hamiltonian, corresponding to H2 using minimal basis sets, STO-6G for elec-
trons and DZSNB for nuclei. The electronic and nuclear parameters are shown
in blue and red, respectively. In this case, entangling CZ gates are only applied
between electronic and nuclear subsystem qubits. The electronic subsystem is
delimited by a dashed box. Parameters in blue are initialized according to the
results of the electronic subsystem optimization. All parameters in red: θ̃i (i = 1, 6)
and θ̃d,i (i = 1, 8) are initialized to 0, with the exception of θ̃1, which is set to π.
The choice of an even number of stacked entangling layers, d, is preferable as it
avoids phase flip induced by the CZ gates.

simply by transferring the wave function of the electronic subsys-
tem into the NEO Ansatz, as shown in Fig. 5. All nuclear parameters
must then be initialized to zero except for the second Ry gate on
qubit q1. In this specific case, it is set to π resulting in the low-
est energy triplet nuclear occupation. This procedure, denoted as
“expanded,” can be easily generalized to larger system sizes. A sec-
ond more economic variant only requires the additions of entangling
gates between the electronic and the nuclear qubit subregisters, as
shown in Fig. 6. This variant, referred to as “stacked,” can be also
generalized to larger systems and is advantageous in cases with weak
entanglement between the protons. It is worth mentioning that for
the electronic parameters (in blue color in Fig. 6) to remain as close
as possible to their initial values (i.e., for avoiding the phase flip
induced by the CZ gate), the number of entangling layers is required
to be even.

C. Quantum simulation: The hydrogen molecule
Initially, we have performed VQE optimization of the elec-

tronic UCCSD Ansatz for the ground state of the H2 molecule
employing an electronic Hamiltonian with classical nuclei, ĤEl.. The
final energy agrees well with the reference value obtained from
FCI calculations (see Table I). To verify the validity of the elec-
tronic UCCSD parameters for the NEOUCCSD Ansatz, we employ
the projected NEO Hamiltonian, PeĤNEOPe, in a manner similar
to Eq. (39) in Sec. IV B. After projection and tapering, the five-
qubit NEO Hamiltonian considers only states where the nuclear
part corresponds to the lowest energy triplet nuclear NEOHF occu-
pation and has the same size as the electronic qubit Hamiltonian.
The corresponding ground state energy of 1.065 040 hartree has
been calculated by exact diagonalization of PeĤNEOPe. Initializing
the electronic parameters in NEOUCCS(1,0)D(2,0) (see notation in
Sec. II B) to the values from the electronic UCCSD Ansatz, we have
evaluated the corresponding expectation value, ⟨PeĤNEOPe⟩. One
can see from Table I that the resulting expectation value approx-
imates the ground state reference energy for PeĤNEOPe within an
error of less than 10−4 hartree. By letting the electronic parameters
further relax in optimization employing the NEOUCCS(1,0)D(2,0)

Ansatz and PeĤNEOPe, one removes this error, recovering the exact
reference energy (see Table I). Having resolved the reduced prob-
lem based on the PeĤNEOPe Hamiltonian, we proceed to the full
eight-qubit NEO Hamiltonian. After symmetry tapering, four-qubit
reduction, and projection to the nuclear triplet state according to
Secs. III B and III A, the electronic state is spanned by five qubits,
and three qubits are used for the nuclear state. The results for the
VQE energy optimizations employing various types of NEOUCC
parameterizations with advanced and ordinary parameter initial-
ization are presented in Table II. For the advanced initialization
procedure, we employ relaxed electronic parameters obtained with
NEOUCCS(1,0)D(2,0) and PeĤNEOPe as discussed above. All vari-
ants of the NEOUCC parameterization in Table II contain dou-
ble and single excitations for nuclei and electrons, which will be
indicated as

SD ≡ S(1,0)S(0,1)D(0,2)D(1,1)D(2,0). (41)

If mixed electronic-nuclear double excitations are added, then the
resulting NEOUCCDD(1,1) Ansatz deliver the results with an error

J. Chem. Phys. 158, 214119 (2023); doi: 10.1063/5.0150291 158, 214119-10

Published under an exclusive license by AIP Publishing

 26 Septem
ber 2023 09:08:35

IV



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

below 10−4 hartree. The addition of the mixed triple, T(1,2), exci-
tations in the NEOUCCSDD(1,1)T(1,2) Ansatz does not decrease
the error further. If instead one adds the mixed triple excitation
with double electronic excitation, T(2,1), the error decreases below
5 × 10−6 hartree. Including both variants of mixed triple excita-
tion brings the error below 10−6 hartree. The insignificance of
proton–proton correlation as compared to electron–electron corre-
lation is well in line with previous research.92 It is clear that the D(1,1)

and the T(2,1) operators are the primary contributors to the lowering
of the energy, while the T(1,2) operator has minimal effect. The differ-
ence in final NEOUCC energy between optimizations with advanced
initialization (set to relaxed electronic parameters) and ordinary ini-
tialization (set to the NEOHF state) fall close to the convergence
tolerance, ϵ ≤ 10−6 hartree. For NEOUCC Ansätze, the advanced
initialization scheme improves accuracy for the cases with a large
number of variational parameters, such as NEOUCCSDT. However,
the main benefit lies in a faster convergence rate, in certain cases
reaching a fourfold speedup (see Table II). Additional analysis for
convergence of the NEOUCC Ansatz using different initialization
schemes can be found in Appendix B.

Table III presents the assessment for the contribution of each
type of excitation operator to the correlation energy in the NEO
wave function. The correlation energy within the chosen basis
set amounts to 0.024 634 hartree. If one uses double and sin-
gle excitation operators for the protons only, then energy cannot
decrease lower than NEOHF. Adding the single and double oper-
ators, NEOUCCSD, for electrons brings the energy nearly to the
same value as for the case when only electronic operators are
included (see Table III). This can be attributed to the low correlation
between protons. However, the mixed electron–nuclear operators
make a substantial contribution to the correlation energy. Specifi-
cally, addition of mixed double excitation, D(1,1), brings error below
10−4 hartree. If one also includes mixed triple operators, T(2,1), the
error falls further below 5 × 10−6 hartree. The ultimate accuracy of
5 × 10−7 hartree is reached if all excitation operators up to triple-
order are included.

We supplement our study of the correlation nature in the H2
molecule with the measure of entanglement entropy. Specifically,
we evaluate the entanglement between electronic and nuclear sub-
systems, according to Sec. II D. We find that the entanglement
for the H2 molecule at equilibrium based on the NEOFCI wave
function amounts to 0.0069. The same value can be accurately repro-
duced with the NEOUCC Ansatz (see Table IV) when quadruple
excitation operators are included. To monitor the change in entan-
glement upon dissociation, we also evaluated NEOFCI entropies
for distances of 1.9582 and 3.1751 Å. Note that these quanti-
ties correspond to the separation between the centers hosting the
nuclear and electronic orbitals and are taken as an approximated
measure of the inter-atomic distance. Table IV shows how the
entanglement between electron and proton subsystems (according
to NEOFCI) strengthens to 0.0103 during the “bond extension”
and then slightly declines to 0.0097 after “dissociation.” The cor-
responding NEOUCC results are in good agreement with the ref-
erence calculations, demonstrating the reliability of the NEOUCC
approach.

Although a UCC type Ansatz can be very accurate, in gen-
eral, they cannot yet be efficiently implemented on current quantum

TABLE III. The ground state energies for the H2 NEO Hamiltonian obtained with
different variants of the NEOUCC quantum computing Ansatz and classical com-
putational methods (NEOHF and NEOFCI). Increasing the excitation order in the
NEOUCC Ansatz lowers the error in the calculation. The mixed D(1,1) nuclear–electron
operators have a larger contribution to the correlation than T operators, while the
mixed triple operators with higher electronic excitation order, T(2,1), play a more
important role than T(1,2). The significance of pure nuclear operators is minimal.

Method Energy (hartree) Error (hartree)

NEOFCI −1.066 121
NEOHF −1.041 487 0.024 634

NEOUCC

S(0,1)D(0,2)
−1.041 487 0.024 634

S(1,0)D(2,0)
−1.065 040 0.001 082

S(1,0)D(2,0)D(1,1)
−1.066 037 0.000 084

S(1,0)D(2,0)T(2,1)
−1.065 063 0.001 059

S(1,0)D(2,0)D(1,1)T(2,1)
−1.066 117 0.000 004

SD(2,0)D(0,2)
−1.065 049 0.001 073

SDT(2,1)
−1.066 121 0.000 001

SDT −1.066 121 0.000 001

TABLE IV. Von Neumann entropy between the electronic and nuclear subspaces
(Sec. II D) at three points along the H2 dissociation curve. The entropy increases with
the extension of the bond length, converging to 0.0097 upon dissociation. Although
the NEOUCCSD quantum computing Ansatz fails to predict this trend, increasing the
order of excitations, one can accurately reproduce the reference value obtained with
the classical NEOFCI approach.

Separation

Method 0.7414Å 1.9582Å 3.1751Å

NEOFCI 0.0069 0.0103 0.0097

NEOUCC
SD 0.0062 0.0050 0.0037

SDT 0.0068 0.0104 0.0098
SDTQ 0.0068 0.0104 0.0098

hardware. Thus, in the following, we introduce an optimal strategy
for the application of the TwoLocal Ansatz with the NEO Hamil-
tonian, employing the parameter initialization procedures discussed
in Sec. IV B. A comparison of resource requirements between dif-
ferent implementations can be found in Table X of Appendix C.
Similar to the NEOUCC case, we first optimize the TwoLocal Ansatz
for the electronic Hamiltonian and then relax electronic parameters
further, employing the PeĤNEOPe Hamiltonian. For both Hamilto-
nians, we used the TwoLocal Ansatz with eight entangling layers
(see Figs. 2 and 5). As can be seen from Table V, the TwoLo-
cal Ansatz performs similarly to the NEOUCC Ansatz in terms of
accuracy, confirming the validity of the advanced parameter initial-
ization. However, the eight-qubit NEO Hamiltonian represents a
difficult optimization case for the TwoLocal Ansatz with eight entan-
gling layers when the ordinary parameter initialization is used. In
fact, the initialization of the circuit parameters is mostly set ran-
domly, failing often to deliver energies below the NEOHF energy.
One can see from Table VI that for the best optimization case,
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TABLE V. H2 ground state energies calculated with the TwoLocal and two classi-
cal approaches: FCI and “exact diagonalization.” Two Hamiltonians are used: the
electronic Hamiltonian (ĤEl.) and the projected NEO Hamiltonian (PeĤNEOPe). The
TwoLocal electronic parameters reproducing the FCI wave function provide a good ini-
tial guess for the NEO calculation with the Hamiltonian PeĤNEOPe, leading to an error
of 8.35 × 10−5 hartree. Further optimization of parameters (“relaxed”) reduces the
error to 3.83 × 10−7 hartree compared to the ground state energy of the PeĤNEOPe
(“exact diagonalization”).

Hamiltonian Method Parameters Energy (hartree)

ĤEl. FCI −1.151 683
TwoLocal Electronic −1.151 683

PeĤNEOPe Exact diagonalization −1.065 040
TwoLocal Electronic −1.064 956
TwoLocal Relaxed −1.065 039

TABLE VI. Ground state energies for the H2 NEO Hamiltonian obtained with various
implementations of the TwoLocal quantum Ansatz and with the classical NEOFCI
approach. The “advanced” initialization scheme for electronic parameters performs
significantly better than the “ordinary” one for both CG and SLSQP optimizers. The
“stacked” initialization with 14 entangling layers delivers the most accurate result with
an error of 2 × 10−4 hartree using the CG optimizer.

Energy (hartree)

Method Layers SLSQP CG

TwoLocal

Ordinary −1.013 923 −1.014 310

Expanded −1.065 054 −1.065 172

Stacked d = 3 −1.065 175 −1.065 633
d = 4 −1.065 056 −1.065 381

d = 10 −1.065 055 −1.065 663
d = 11 −1.064 975 −1.065 814
d = 12 −1.065 055 −1.065 720
d = 13 −1.064 939 −1.065 691
d = 14 −1.065 054 −1.065 889
d = 20 −1.065 056 −1.065 666

NEOFCI −1.066 121

the error is still larger than for five-qubit TwoLocal Ansatz applied
to PeĤNEOPe.

When setting the initial parameters of the TwoLocal Ansatz to
the values of the relaxed electronic structure calculation according
to the “expanded” variant with eight entangling layers (see Figs. 2
and 5 and Table VI), the energy decreases below the value from the
ordinary initialization, giving an error of 10−3 hartree. The “stacked”
variant of the electronic parameter initialization (Fig. 6) performs
better (see Table VI), giving an error of about 2 × 10−4 hartree when
14 stacked layers are used. It should also be noted that CG optimizer
performed best in the case of TwoLocal Ansatz, while SLSQP and
COBYLA deliver similar results.

D. Quantum simulation: Malonaldehyde
We start our malonaldehyde investigation with the “2-center

C2v” setup, which corresponds to the situation in which the proton is
equally shared between the two oxygen atoms (see Fig. 3). A similar
setup was already proposed in Refs. 17 and 103 for the evaluation
of double well splitting. However, our aim is different and consists
mainly in providing benchmark results (more specifically, ground
state energies) for the validation of the quantum NEO algorithm.
Using the same transformations as in Sec. IV C, we converted the
second quantized Hamiltonian based on 16 spin orbitals to an eight-
qubit Hamiltonian, five qubits spanning the electronic subspace, and
three qubits spanning the nuclear one. Increasing excitation order
from double to quadruple in the NEOUCC Ansatz, we could recover
the NEOCASCI reference results and reach 10−6 hartree accuracy,
as shown in Table VII. The results for the entanglement entropy are
presented in Table VII and are also in very good agreement with the
reference values.

For evaluation of the proton transfer barrier, we used the “3-
center C2v” (top of the barrier) and “1-center Cs” (bottom of the
potential, see Fig. 3) setups, as described in Sec. IV A. Based on
the NEOCASCI calculations at these two setups, the barrier is esti-
mated to be 0.005 011 hartree. This is rather close to the values
obtained in Ref. 96 [full dimensional calculations with near basis-
set-limit frozen-core CCSD(T)] and Ref. 97 (in silico transient x-ray
absorption spectroscopy) of 0.0065 and 0.0061 hartree, respectively.
The results concerning the TS barriers (summarized in Fig. 3) are
reported for completeness. Since they are performed with different
levels of approximation (classical vs quantum proton), they can-
not be directly compared and any potential correspondence may
be considered fortuitous. On the other hand, using a fully classical
approach, such as Complete Active Space Configuration Interac-
tion (CASCI) for the evaluation of the barrier, we observed a severe
overestimation of the barrier, which reaches a value of 0.011 96
hartree (see Fig. 3 and Table VII). Note that in Fig. 3 we also
report the full potential energy surface computed with MP2 and
a classical proton. However, at this small basis set size for the
expansion of the electronic wave function, we can only expect a
qualitative description of the process, which we only report as a
guide to the eye. Within the quantum computing context, the qubit
Hamiltonian for the “3-center C2V ” setup is spanned by ten qubits,
five qubits for electronic subspace and five qubits for nuclear sub-
space. The “1-center CS” qubit Hamiltonian is instead spanned by
seven qubits, six qubits for electronic subspace and one qubit for
nuclear subspace. The energies for both systems estimated with var-
ious NEOUCC schemes are presented in Table VII. Already with
a rather modest NEOUCCSD Ansatz, we observe very good agree-
ment with the NEOCASCI reference, with a deviation smaller than
10−4 hartree. The error decreases upon inclusion of higher order
excitation operators in NEOUCC and gets below 2 × 10−6 hartree
for NEOUCCSDTQ. These calculations confirm the quality and
the potential of the NEOUCC Ansatz for the calculation of quan-
tum nuclei effects and prove its fast convergence toward the exact
solution.

In Table VII, we summarize the values for the barrier energies
together with the ones for the von Neumann entropy, sn [Eq. (28)],
associated with the entanglement between the nuclear and electronic
subsystems. In addition, in this case, the NEOUCC results are in
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TABLE VII. Energies and von Neumann entropies, sn [Eq. (28)], of malonaldehyde obtained with different NEOUCC parameterizations and NEO Hamiltonians based on “3-
center C2v ,” “2-center C2v ,” and “1-center Cs” setups. The barrier height, ΔE, is evaluated based on the difference between energies corresponding to “3-center C2v ” and
“1-center Cs” setups. We observe good agreement with barrier height obtained in Refs. 96 and 97 for all variants of NEOUCC, while the electronic CASCI method severely
overestimates it. However, since these results were obtained with different levels of approximation (classical vs quantum proton), they cannot be directly compared, and any
potential correspondence may be considered fortuitous.

“1-center Cs” “2-center C2v” “3-center C2v”

Method Energy (hartree) Entropy Energy (hartree) Entropy Energy (hartree) Entropy ΔE (hartree)

Reference 96 0.006 534
Reference 97 0.006 056

CASCI −265.528 820 −265.516 859 0.011 962
NEOCASCI −265.490 948 0.0000 −265.452 062 0.0866 −265.485 937 0.0044 0.005 011

NEOUCC
SD −265.490 685 0.0000 −265.451 123 0.0616 −265.485 761 0.0031 0.004 924

SDT −265.490 943 0.0000 −265.452 051 0.0862 −265.485 936 0.0044 0.005 007
SDTQ −265.490 947 0.0000 −265.452 062 0.0866 −265.485 939 0.0045 0.005 009

very good agreement with the NEOCASCI references for all set-
tings: “1-center Cs,” “2-center C2v ,” and “3-center C2v .” Assuming
that the estimate for the Cs system is not very sensitive to the basis
set size, our calculations support the picture in which the level of
electron–nuclear entanglement increases as the proton is transferred
to the top of the barrier (however, this observation cannot be con-
clusive in view of the small basis set used for the electronic and
nuclear problem, as well as of the rigidity imposed to the molecu-
lar scaffold). Further investigations are needed to shed light on the
convergence of the entanglement entropy between electronic and
nuclear subsystems as a function of the nuclear basis set size.

V. DISCUSSION AND CONCLUSIONS
In this work, we developed and demonstrated a quantum algo-

rithm for the treatment of quantum nuclear degrees of freedom on
near-term quantum computers, based on the NEO approach.17 This
approach allows the description of both components of molecular
systems, i.e., electrons and nuclei, at the same footing, namely, at
a quantum level, enabling the correct characterization of important
nuclear quantum effects, such as proton transfer and non-adiabatic
effects. From the quantum computing perspective, a quantum treat-
ment of the full molecular wave function gives us the opportunity
to extend the potential exponential quantum advantage already
investigated for the electronic subsystem to the multi-component
electron–nuclear wave function. In addition, this method will enable
a rigorous estimation of the level of entanglement between the elec-
tronic and nuclear subsystems, providing a new and interesting tool
for the understanding of post-BO effects. In order to make our
approach more suited to near-term quantum computing, we imple-
mented an embedding scheme, which allows the restriction of the
nuclear quantum wave function to a selected number of atoms, while
keeping the rest of the nuclei described at a classical level (i.e., as
point charges).

The ability of NEOUCC Ansätze to deliver the ground state
energy in noiseless VQE calculations was proven in two main appli-
cations: the hydrogen molecule and malonaldehyde. In the latter
case, only the shared proton between the two carbonyl groups

was “quantized,” while all other nuclei in the molecules were
treated classically. Our results agree with conventional NEOFCI and
NEOCASCI calculations to within an error of about 10−6 hartree.

Our NEOUCC calculations revealed that apart from the high
contribution to the correlation energy from interactions between
electrons, a substantial part of correlation energy is attributed to the
electron–nuclear interaction. Specifically, double electron–nuclear
excitations are required for reducing the error below 10−4 hartree,
and only after the addition of triplet T(2,1) excitations, one can
reach an accuracy of about 10−6 hartree. The importance of
nuclear–electron quantum correlations is also demonstrated by
the significant amount of nuclear–electron von Neumann entropy,
which increases at bond breaking.

Moreover, we investigated the possibility of utilizing hardware-
efficient Ansätze as more compact representations of the NEO wave
functions. We showed that the parameter initialization scheme plays
an important role in the optimization process. In particular, to reach
an accuracy below 5 × 10−4 hartree, we introduced several ways
of initialization of the NEO electronic wave function parameters
from the converged electronic calculation. Such an efficient initial-
ization procedure is not restricted to the use of hardware-efficient
Ansätze and can also significantly increase convergence in the case
of NEOUCC wave functions. In addition, the same scheme can also
be employed beyond the typical cases for which the BO separation is
employed, for instance, in the case of weakly interacting molecular
fragments.

Furthermore, we introduced a scheme for reducing the dimen-
sionality of the effective Hamiltonian through the exploitation of
those symmetries inherent in the NEO approach. Specifically, we
have generalized the two-qubit reduction, already employed for the
electronic wave function, extending it to the nuclear subsystem.
The dimensionality of the nuclear Hilbert space is further reduced
by leveraging the point group symmetry inherent in the molecu-
lar system. As this last step might have undesired consequences
on the initialization of the electronic parameter, we have intro-
duced and discussed a procedure for resolving the issue. In the
last step, when dealing with nuclei of the same spin polarization,
we can additionally project out unpopulated spin orbitals from the
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Hamiltonian and remove corresponding qubits. This was demon-
strated in this work for both the orthohydrogen spin isomer and
malonaldehyde with a single proton described as a quantum particle.
Thus, for the qubit Hamiltonian in the case of orthohydrogen, we
succeeded in reducing the number of qubits from 16 to 8. Similarly,
for the malonaldehyde instead of using a 20-qubit Hamiltonian, we
demonstrated the possibility to safely reduce the system to an effec-
tive ten-qubit Hamiltonian. Reduction in the number of qubits leads
to a significant decrease in the number of two-qubit entangling gates
in the Ansatz as well as the total number of terms in the Hamilto-
nian required for measurement in VQE, making the entire algorithm
more suited for near-term hardware calculations.

In conclusion, we have proposed and implemented a resource-
efficient quantum algorithm for the simulation of molecular sys-
tems, where both electrons and nuclei are treated quantum mechan-
ically within the NEO approach. Although the execution of the pro-
posed NEO/VQE algorithm on state-of-the-art quantum hardware
for systems of the size of malonaldehyde (with one quantum hydro-
gen atom) and orthohydrogen (with two quantum hydrogen atoms)
is still premature, the developed machinery allowed us to bench-
mark our approach using VQE state vector simulations. By means of
our applications, we could show the reliability and versatility of the
NEOUCC Ansatz, which is capable of capturing nuclear–electron
wave function energies and subsystem entropies with controlled
accuracy. In particular, we demonstrated the possibility of evalu-
ating the proton transfer barrier in malonaldehyde with increasing
accuracy by incorporating quantum nuclear effects with the pro-
posed NEOUCC approach. Building on these very promising initial
results, we aim in the future to further generalize this framework
by including sampling techniques and the possibility of investigat-
ing quantum electron–proton dynamics, opening up—thanks to the
favorable scaling of the proposed quantum algorithm [O(Ne

b +Nn
b )

4,
where Ne

b and Nn
b are the numbers of basis set functions for elec-

trons and nuclei, respectively]—new avenues in the study of nuclear
quantum effects in catalysis.
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FIG. 7. Energy convergence plots for the H2 molecule with different NEOUCC Ansätze and two initialization schemes. The classical optimization of the circuit parameters
is done employing the COBYLA optimizer. The “advanced” initialization scheme introduced in Sec. II C (red lines) clearly outperforms the “ordinary” initialization procedure
(black lines) for what concerns the speed of convergence, especially for a large number of parameters (with SDT excitations).
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APPENDIX A: SINGLE ORBITAL ENTROPY
AND QUANTUM INFORMATION

Single orbital entropies104–106 are calculated as

soi = −
4

∑
α=1

ωi,α ln (ωi,α), (A1)

where ωi,α are the eigenvalues of the one-orbital reduced density
matrix,105,107 the index i runs over molecular orbitals, and α runs
over the four possible occupations: −−,−↑, ↓−, ↓↑. The sum over
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all single orbital entropies, the total quantum information,105 is
given by

QI =∑
i

soi. (A2)

The results for H2 (studied in Sec. IV C) and malonaldehyde in “2-
center C2v” setting (studied in Sec. IV D) are shown in Tables VIII
and IX.

APPENDIX B: PARAMETER INITIALIZATION
AND CONVERGENCE

Figure 7 shows the different convergence profiles for the opti-
mizations using “advanced” and “ordinary” initialization schemes
with the NEOUCC Ansätze and the COBYLA optimizer. As
expected, we notice a faster convergence when the parameters
precomputed for the electronic subsystem are transferred to the
NEOUCC Ansatz (Fig. 7). In addition, the initial energy values
for the “advanced” initialization are lower than the ones using the
“ordinary” initialization. In addition, our calculations show that as
the complexity (and therefore the accuracy) of the Ansatz increases,
the effect of “advanced” initialization of the parameters becomes
more important. Specifically, the convergence rate decreases upon
the addition of triple excitations in going from NEOUCCSD
[Fig. 7(a)] to NEOUCCSDT(2,1) and NEOUCCSDT(1,2) [Figs. 7(c)
and 7(b), respectively]. Even though the number of electronic para-
meters is the same in both initialization procedures, the benefit
of the “advanced” procedure is indisputable, especially for the
NEOUCCSDT Ansatz where the convergence rate is increased more
than threefold.

APPENDIX C: RESOURCE ESTIMATION

Both the number of qubits and the depth of the quantum circuit
play a crucial role in determining the performance of quantum algo-
rithms in near-term quantum computers. It is therefore important to
analyze the hardware requirements needed to implement our quan-
tum algorithm. As for the quantum gates, the number of entangling
gates can strongly impact the circuit noise. In Table X, we summarize
the number of qubits, two-qubit entangling gates, and terms in the
qubit Hamiltonian needed for the implementation of a VQE calcula-
tion for H2, as reported in Sec. IV C. Specifically, these numbers refer

TABLE X. Estimated resource requirements for the H2 molecule (see Sec. IV C)
using various reduction schemes. Shown are the number of qubits, two-qubit gates
in TwoLocal as well as in NEOUCCSD Ansätze, and the number of Pauli terms
(∣{H}∣) in the encoded Hamiltonian. All values are calculated using parity encod-
ing. For the TwoLocal Ansatz, eight electron-to-electron entangling layers are applied
to the electronic subsystem together with 14 electron-to-proton entangling layers.

No. of two-qubit gates

Reduction No. of qubits TwoLocal NEOUCCSD ∣{H}∣

None 16 968 2546 861
+Four-qubit 12 558 2204 828
+PG symmetry 11 465 1472 825
+Spin projection 8 255 1202 428

to the final counts obtained after applying three different reduction
schemes sequentially: (i) four-qubit tapering, (ii) point group (PG)
symmetry, and (iii) projection onto a selected spin state. As wave
function Ansätze, we employ TwoLocal (8 layers for the electronic
part and 14 nuclear–electronic entangling layers) and NEOUCCSD,
since they showed similar accuracy (see Sec. IV C). With the pro-
posed schemes, we achieved a significant reduction—compared to
the standard procedure—in the number of qubits and Hamiltonian
terms, as well as in the number of entangling gates, for both Ansätze.

APPENDIX D: NEO QUBIT HAMILTONIAN
FOR H2 IN MINIMAL BASIS SET

ĤNEO = 1.697 878 × IIII − 0.373 036 × ZIII + 0.356 877 × IZII
− 0.373 036 × ZZII − 0.337 003 × IIZI + 1.105 641 × ZIZI
− 0.337 002 × IZZI + 1.094 360 × ZZZI − 0.416 401 × IIIZ
+ 0.004 053 × ZIIZ + 0.004 053 × ZZIZ − 0.004 053 × IIZZ
− 0.004 053 × IZZZ + 0.416 401 × ZZZZ + 0.174 434 × XIII
− 0.174 434 × XZII − 0.006 416 × IXII + 0.006 416 × ZXZI
− 0.004 740 × YYII − 0.004 740 × XXZI + 0.004 740 × YYIZ
+ 0.004 740 × XXZZ − 0.186 061 × IIXI + 0.186 061 × IZXI
− 0.748 764 × XIXI + 0.748 764 × XZXI + 0.004 740 × ZXXI
+ 0.004 740 × IYYI − 0.004 740 × ZXXZ − 0.004 740 × IYYZ
− 0.006 416 × XXXI − 0.006 416 × YXYI + 0.181 576 × IIIX
+ 0.174 434 × XIIX − 0.174 434 × XZIX − 0.006 416 × IXIX
+ 0.006 416 × ZXZX − 0.186 061 × IIXX + 0.186 061 × IZXX
− 0.006 416 × XXXX − 0.006 416 × YXYX. (D1)
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ABSTRACT: Coupled quantum electron−nuclear dynamics is often associated with the
Born−Huang expansion of the molecular wave function and the appearance of nonadiabatic
effects as a perturbation. On the other hand, native multicomponent representations of
electrons and nuclei also exist, which do not rely on any a priori approximation. However,
their implementation is hampered by prohibitive scaling. Consequently, quantum computers
offer a unique opportunity for extending their use to larger systems. Here, we propose a
quantum algorithm for simulating the time-evolution of molecular systems and apply it to
proton transfer dynamics in malonaldehyde, described as a rigid scaffold. The proposed
quantum algorithm can be easily generalized to include the explicit dynamics of the classically
described molecular scaffold. We show how entanglement between electronic and nuclear
degrees of freedom can persist over long times if electrons do not follow the nuclear
displacement adiabatically. The proposed quantum algorithm may become a valid candidate
for the study of such phenomena when sufficiently powerful quantum computers become
available.

Most strategies for practical simulation of materials at the
molecular scale make two fundamental assumptions:

first, that atomic nuclei behave classically and, second, that
electronic and nuclear dynamics are adiabatically separable
(the Born−Oppenheimer (BO) approximation) such that the
system can be described by a product of stationary eigenstates.
Both can fail under certain important circumstances. In
particular, the BO approximation requires that time-dependent
perturbations preserve the instantaneous electronic ground
state, a condition satisfied only if the perturbation is sufficiently
slow and the energy separation between the ground state and
other low-lying levels is sufficiently large. If, however, the time
scales of electronic and nuclear degrees of freedom become
closer or the energy gap separating potential energy surfaces
becomes small (as it does near avoided crossings or conical
intersections) nonadiabatic effects arise. Such situations occur
when, for example, electron dynamics is driven by ultrafast
laser pulses or excited state reaction pathways traverse quasi-
degenerate electronic levels. Also, despite the small de Broglie
wavelengths of nuclei relative to electrons, nuclear delocaliza-
tion still occurs over length scales that are important in
chemical processes. In these regimes, the classical nuclei
approximation also fails.
Consequently, reactions involving light elements can be

influenced significantly by quantum effects, e.g., tunneling,
whereby the reaction takes a route through a classically
forbidden region in configuration space (“through” the energy
barrier) in contrast to conventional transition state theory.1,2

In some cases, nonclassical processes can even supersede

traditional kinetics, driving reactions exclusively toward a
product for which the classical path would have a higher
barrier.3 In biological systems, quantum phenomena involving
light nuclei are known to influence catalysis and enzymatic
activity4,5 with implications, e.g., in the design of novel
inhibitors.6 In particular, the observed rates of certain enzyme-
catalyzed reactions cannot be accounted for without
introducing corrections for proton tunnelling.7,8 Also, in
DNA chemistry, there is evidence pointing toward proton
tunnelling playing a role in the generation of abnormal base
pairs (tautomers), which may be implicated in a particular class
of mutations.9

Significant and fundamental practical challenges limit the
extent to which nonclassical features of both electrons and
nuclei can be incorporated together into high-fidelity
molecular simulations. It is well-known that methods to
solve the full Schrödinger equation exactly on a classical
computer exhibit prohibitive scaling. In fact, the dimension of
the Hilbert space increases exponentially with the system size
while the complexity of determining solutions scales factorially
with the number of basis functions.10 This is further
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exacerbated when the descriptions are extended to the
treatment of coupled electron−nuclear dynamics.
However, quantum computation has opened new prospects

for improving the scaling behavior in this important class of
problems.11−16 In a recent publication17 we introduced a new
quantum computing algorithm, based upon the nuclear-
electronic orbital (NEO) framework,18 for the efficient
treatment of quantum electron−nuclear effects on near-term
quantum computers. In particular, we demonstrated how the
NEO approach can be applied to the study of multicomponent
quantum mechanical systems composed of electrons and a
selected set of light nuclei (protons) in order to go beyond the
Born−Oppenheimer approximation.19,20 This first approach
was, however, fully static, providing only a minimal energy
proton transfer path along a predefined reaction coordinate.
In this work, we extend the framework to study the reaction

dynamics of chemical systems with important electron−
nuclear quantum effects. To this end, we consider
malonaldehyde as a model system for proton transfer involving
intramolecular hydrogen bonds.21 The key structural feature is
the “O−H···O” hydrogen bond (see Figure 1) for which there

are two possible asymmetric configurations leading to a
double-well potential with a proton barrier separating the
isomers. This system has previously been investigated using the
NEO framework coupled with density functional theory on
classical processors.22 Here, the aim is to demonstrate real-time
evolution of the proton transfer process using a quantum
computing implementation designed to exploit quantum
speed-up. As a first proof-of-principle concept, we consider a
rigid molecular scaffold with the electronic configuration
optimized for the three protonation states (protons on the
right, middle, and left positions). However, the dynamics of
the molecular scaffold can easily be introduced by means of ab
initio or classical (force field based) forces.

In the NEO approach18 we make use of Slater determinants
comprised of both electronic and protonic spin orbitals. These
are expanded with separate nuclear and electronic Gaussian
basis sets18 and optimized using the nuclear electronic orbitals
Hartree−Fock (NEOHF) method. Note that by analogy to the
α and β electrons in the unrestricted Hartree−Fock (UHF)
approach, electrons and protons in NEOHF only interact
through the Coulomb potential. We can then construct the
corresponding multiparticle basis set for the nuclear-electronic
orbital full configuration interaction (NEOFCI) approach,18

leading to the following second quantization representation of
the electron−nuclear Hamiltonian:18

R R

H h h h

h h

h h
Z Z

a a a a
1
2

a a a a

1
2

a a a a a a a a

a a a a
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,
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,
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| |

† † † †

† † † †

† †

(1)

Here hpq and hpq,A are one-particle integrals involving kinetic
energy and interactions with classical nuclei, respectively; hpqrs
are two-particle integrals responsible for interactions between
quantum particles; a†̂ and a ̂ are the Fermionic creation and
annihilation operators; Z is nuclear charge; and last, R is the
nuclear coordinate for classical, point-like nuclei (for details
see ref 17). In eq 1 upper case indices label protonic spin
orbitals, while lower case indices are used for electronic spin
orbitals. Indices A and B denote classical nuclei, while I, J, K,
and L are reserved for nuclei treated quantum mechanically.
Note that creation and annihilation operators must obey
anticommutation relations for indistinguishable Fermions
(proton−proton or electron−electron) and commutation
relations between distinguishable Fermions (proton−elec-
tron).
As we aim to study chemical reaction dynamics, the NEO

wave function acquires time dependence through the time-
dependent configuration interaction (CI) coefficients, Cμν(t).
Accordingly, the time-dependent nuclear-electronic wave
function is given by

t C t( ) ( ) e n| = | |
(2)

where |Φμ
e⟩ and |Φν

n⟩ are electronic and nuclear configurations,
respectively. It is important to stress that neither the Slater
determinants nor the molecular orbitals are allowed to change
during the dynamics, but only the CI coefficients Cμν(t) evolve
in time according to the time-dependent Schrödinger equation
for the molecular Hamiltonian in eq 1. Thus, the evolution of
the wave function can be expressed by the equation of motion
for CI coefficients

HC Ci
t

=
(3)

where matrix elements of H are defined through

H He n e n
, = | | | | (4)

On a quantum computer, the initial NEO wave function,
|Ψ(t0)⟩, will be efficiently approximated using the nuclear-

Figure 1. A schematic image of the potentials (VR, VM, VL) associated
with the three reference Hamiltonians ĤR, ĤM, ĤL defined in the main
text and used throughout this work. The inset malonaldehyde shows
the transition state structure with “Left”, “Middle”, and “Right”
settings for a proton. Apart from the discrete points shown, the
potential energy curves are not exact and merely serve to provide the
reader with a general guide. The curves were generated by fitting a
third-order polynomial to the three points corresponding to each
Hamiltonian. The gray shaded area is the scaled-up electronic
potential energy calculated with MP2 and aims to illustrate the total
potential, and in particular the reaction barrier.
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electronic orbitals unitary coupled cluster singles, doubles, and
triples (NEOUCCSDT) ansatz.17

As a model for the demonstration of our quantum algorithm
for electron−proton quantum dynamics, we consider the
proton transfer process in malonaldehyde using the setup
discussed in our previous publication.17 As shown in Figure 1,
the proton can be localized at two possible asymmetric
equilibrium positions separated from each other by 0.42 Å
(marked with blue and green spheres) as well as at the peak of
the barrier in the middle (orange sphere). The two asymmetric
structures are characterized by a different relaxation of the
electronic orbitals and are associated with the formation of two
different OH bonds: one with the oxygen on the right (green
sphere) and the other with the oxygen on the left (blue sphere)
in the inset of Figure 1. Finally, the symmetric setting has the
proton shared equally between the two oxygen atoms. These
setups define three different Hamiltonians: ĤR

0 (R for
“Right”), ĤL

0 (L for “Left”), and ĤM
0 (M for “Middle”),

respectively. The nuclear and electronic orbitals were
optimized with NEOHF calculations using the transition
state molecular scaffold of malonaldehyde17 and imposing Cs
symmetry. For protons, a split-valence double-ζ nuclear basis
set composed of 2 uncontracted Cartesian S functions
(DZSNB) was used. Electronic orbitals were represented
using a split-valence double-ζ Gaussian basis set in the 6-31
contraction scheme (6-31G). In the asymmetric cases
described by ĤR

0 and ĤL
0, the NEOHF calculations were

performed with two nuclear basis functions at the equilibrium
position (green and blue spheres respectively). Whereas, in the
symmetric case, the two nuclear basis functions were located at
the barrier’s maximum (orange sphere). In all cases, only the
transferred proton was treated quantum mechanically
(described by two nuclear orbitals placed at one of the
locations), while all other nuclei were considered as classical
point charges at fixed positions. We also kept the same set of
electronic basis functions in all three cases, putting electronic
basis functions at all proton locations (R, L, and M).
For each of the three sets of electronic NEOHF orbitals

(associated with ĤR
0, ĤM

0, and ĤL
0) we performed nuclear-

electronic orbital complete active space configuration inter-
action (NEOCASCI) calculations to obtain the corresponding
reference energies (see Table 1). To keep the electronic active
space compact, in all calculations the 17 low-lying core orbitals
for electrons were considered fully occupied and only 4 orbitals
hosting 4 electrons were considered active. The nuclear active
space consisted of the lowest-energy nuclear NEOHF orbitals
from the ĤR

0, ĤM
0, and ĤL

0 setups. Thus, the nuclear active
space for all three NEOCASCI calculations remains the same
and consists of 3 orbitals. The corresponding Hamiltonians will
be denoted as ĤR, ĤM, and ĤL. Electronic and nuclear NEOHF
orbitals used in the active space for all three settings are shown

in Figure 2. Based on the NEOCASCI calculations at these
three setups, the barrier is estimated to be 0.0051 hartree. This
is rather close to the value obtained in ref 17, 0.0050 hartree.

To enable calculations on a quantum computer, we mapped
the second-quantized Hamiltonians (ĤR, ĤM, and ĤL)
spanning 14 spin orbitals to corresponding 8-qubit Hamil-
tonians, with 6 qubits spanning the electronic subspace and 2
qubits spanning the nuclear one. The parity Fermion-to-qubit
transformation for electronic and nuclear operators was used
together with the qubit reduction techniques as described in
ref 17. The energy values for all systems estimated with the
Variational Quantum Eigensolver (VQE) and the NEO-
UCCSDT analogue are presented in Table 1. The NEO-
UCCSDT results are in agreement with the NEOCASCI
references for all settings, and the value for the energy barrier
agrees with the reference value to within 1 × 10−6 Hartree,
which confirms the excellent quality of the present setup for
studying proton dynamics. We also report the von Neumann
entropy, s, which captures the entanglement between the
nuclear and electronic subsystems. This is obtained according
to

s Tr( ln ) Tr( ln )e e n n= = (5)

Table 1. Energies and von Neumann Entanglement Entropies, eq 5, for Malonaldehyde Obtained with NEOCASCI and
NEOUCCSDT Using ĤL, ĤM, and ĤR

a

ĤL/ĤR ĤM

Method Energy (Ha) Entropy Energy (Ha) Entropy ΔE (Ha)

NEOCASCI17 −265.490948 0.0000 −265.485937 0.0044 0.005011
NEOCASCI −265.491028 0.0020 −265.485912 0.0038 0.005116
NEOUCCSDT17 −265.490943 0.0000 −265.485936 0.0044 0.005007
NEOUCCSDT −265.491023 0.0019 −265.485909 0.0038 0.005115

aThe barrier height, ΔE, is evaluated as the difference in energy between the L and M setups. We observe good agreement with the barrier height
reported in ref 17 for NEOUCCSDT.

Figure 2. Electronic (red/blue) and nuclear (orange/purple) orbitals
(isosurface value is 0.05) included in the active space of NEOCASCI
calculation for malonaldehyde in the “Left” (ĤL), “Middle” (ĤM), and
“Right” (ĤR) setups. The orbitals were prepared with a NEOHF
calculation using the DZSNB and 6-31G basis sets for the nuclei and
the electrons, respectively.
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where ρ̂e = Trn[ρ̂e,n] and ρ̂n = Tre[ρ̂e,n] are the reduced density
matrices corresponding to electrons and nuclei respectively,
and ρ̂e,n is the full density matrix. In contrast to our previous
study,17 the proton−electron entanglement in the ĤL and ĤR
ground states is no longer zero but amounts to 0.0020 and
0.0019 for NEOUCCSDT and NEOCASCI, respectively. This
is mainly due to the extension of nuclear active space for ĤL
and ĤR (compared to ref 17), which includes orbitals at the
top of, as well as on both sides of the barrier separating the two
minima. Our calculations still show increasing electron−
nuclear entanglement as the proton approaches the top of
the barrier.
After preparing the ground state wave function for a given

nuclear configuration, we can propagate it from the initial time
t0 to the final time tf by means of the time-evolution operator

t t( , )f 0

t t t t( ) ( , ) ( )f f 0 0| = | (6)

The form of (tf, t0) depends on the Hamiltonian
describing the system. For a general closed system, described
by a time-dependent Hamiltonian, the exact time evolution is
given by the Dyson series

t t i H t t( , ) exp ( )df
t

t

0
f

0

=
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where is the time-ordering operator. Expressing the time-
dependent Hamiltonian, Ĥ(t), as a sum of weighted Pauli
strings, Pk, with time-dependent weights hk(t)

H t h t P( ) ( )
k

K

k k
1

=
= (8)

we can approximate time-ordered Dyson series with the first-
order decomposition formula given by Suzuki.23 Specifically,

breaking the evolution into a series of N discrete steps of size
Δt = tf/N, eq 7 can be approximated as follows:

t t U t t t( , ) ( , ) ef
t t
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(9)

The corresponding quantum circuit is shown schematically in
Figure S1.
It should be noted that, with such an approach, the number

of time steps required to achieve a desired time evolution
typically results in circuits that are too deep to be implemented
on noisy, near-term hardware.24 On the other hand, other
noise-resilient time-propagation algorithms such as Variational
Real-Time Evolution (VRTE)25,26 are also available.
In this work, we consider time evolution to be driven by a

linear combination of the three Hamiltonians described above:
ĤL, ĤM, and ĤR. These Hamiltonians share the same pure
nuclear contributions, specifically, the second, sixth, and eighth
terms in eq 1 (the fourth term is absent in our setup as only
one proton is considered). The pure electronic and mixed
electron−nuclear terms vary due to the different electronic
active spaces employed (see Figure 2). Due to the large
potential energy barrier separating the minima of ĤL and ĤR,
we cannot expect a spontaneous transition of the shared
proton from one minimum to the other. To capture such
dynamics, we opted for a parametrized time-dependent
Hamiltonian, made of a normalized linear combination of
the three original Hamiltonians (ĤL, ĤM, and ĤR)

H t t H t H t H( ) ( ) ( ) ( )L M R= + + (10)

where normalization requires that α(t) + β(t) + γ(t) = 1. In the
applications, we will use the following parametrization

Figure 3. (left panel) Adiabatic evolution performed for time tf = 4000 au with time step Δt = 1.0 au. (right panel) Dynamics performed in
nonadiabatic regime for time tf = 2000 au with Δt = 0.5 au. The black dotted lines show the reference results, generated by RK4. Comparing our
results to the reference, it is evident there is only a minor loss of accuracy.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.3c01589
J. Phys. Chem. Lett. 2023, 14, 7065−7072

7068

V



H t

t
t

H t
t

H t
t

t t

t
H

t t

t
H t

t
( )

1
2 2

for
2

1
2 2

for
2

f
L

f
M

f

f

f
M

f

f
R

f

=

+ <

+

l

m

oooooooooo

n

oooooooooo

i
k
jjjjjj

y
{
zzzzzz

i
k
jjjjjj

y
{
zzzzzz

(11)

After preparing the ground state of the Hamiltonian ĤL
(α(t0) = 1, β(t0) = γ(t0) = 0), |ΨL⟩, we will “adiabatically” drive
the system toward the ground state of ĤR (namely, |ΨR⟩) by
updating the Hamiltonian’s parameters in eq 10 following eq
11 (profiles in Figure S2) and evolving the state of the system
using eq 9. Given a final time, in this case tf = 4000 au, this
protocol guarantees a smooth transition in the Hamiltonian
space from ĤL at t = 0 to ĤR at t = tf passing through ĤM. Note
that the time-dependent Hamiltonian only accounts for the
dynamics of the degrees of freedom not explicitly included in
the quantum description of the electronic and protonic wave
functions implemented in the quantum circuit. Despite this
approximation, the setup can account for the main quantum
correlation effects between the two subsystems.
The progress of the system dynamics in the time interval [t0

= 0, tf = 4000] is monitored by measuring the expectation
values of the energy and of the proton and electron occupation
numbers. The energies associated with the three Hamiltonians

E t H t X L M R( ) ( ) , , ,X X= | | { } (12)

are used to examine the time-dependent expectation value E(t)
associated with the Hamiltonian in eq 10, which is shown in
Figure 3 (lower panel). In addition, we also monitor the
progress of the electron transfer dynamics by measuring the
expectation values of the electron and the proton occupation
numbers in their corresponding spin−orbitals using the
operators N̂i = aî†aî and N̂I = aÎ† aÎ, respectively. The occupation
numbers are given by

n t N t( ) ( )I i I i/ /= | | (13)

where the index i labels the electronic spin−orbitals shown in
Figure 2 (red/blue), while I labels the nuclear spin-orbitals
(orange/purple). Of particular interest are the occupations of
the three different nuclear spin-orbitals nL, nM, nR (i.e., eq 13
with I = L, M, R), which reach their highest values for the
ground state of the corresponding Hamiltonians, ĤL, ĤM, ĤR.
Their time evolution is shown in the second panel from the
bottom of Figure 3. Similarly, we also monitored the
occupations of the first two α and β electronic spin orbitals
(see the second panel from the top of Figure 3).
Of particular interest is also the measure of the state fidelity,
, which is computed as the squared absolute overlap between

the time-dependent state and the ground states of the
reference Hamiltonians ΨL, ΨM, and ΨR

t t X L M R( ( ) , ) ( ) , , ,X X X
2| | = | | | { }

(14)

X takes a value in the range [0, 1], where 1 corresponds to a
maximum absolute overlap and therefore to identical (up to a
global phase) states. In particular, we will use the fidelities M
and R to assess the adiabaticity of our time-evolution
protocol.
In the following, we present two time evolution settings that

we named for convenience “slow” (or adiabatic) and “fast” (or

nonadiabatic). In the first case, the entire Hamiltonian
evolution (eq 10) is completed in 4000 time steps with step
size Δt = 1.0 au, which (as we will see below) is sufficient to
closely approximate adiabtic evolution of the proton−electron
state (see Figure 3). In the second case, we double the speed at
which we perform the dynamics, acting in a nonadiabatic,
“fast”, regime (see right panels of Figure 3). This is realized by
halving the step size, Δt = 0.5 au, and keeping the same total
number of steps, 4000. For all different time-evolution settings,
we also performed classical reference calculations using the
fourth-order Runge−Kutta (RK4)27 integrator (see Figure 3).
In the “slow”, adiabatic case, the change over time of
parameters α, β, and γ results in a one-way transfer of the
proton from the oxygen in the left position (L) to the one on
the right (R) (see Figure 1). The transfer is clearly evidenced
by the evolution of the nuclear occupation numbers in Figure 3
(second panel from the bottom) and the fidelity plot in Figure
3 (top panel). The occupation numbers of the nuclear spin-
orbitals evolve from a set of values (nL = 1, nM = 0, nR = 0) at t
= 0 au, transitioning to an intermediate regime dominated by
nM ∼ 1 around time 2000 au, and finally converging toward the
values (nL = 0, nM = 0, nR = 1) at the end of the simulation.
The time evolution of the system energy (see the bottom left
panel in Figure 3) inversely mirrors the changes just described
for the occupation numbers. At the beginning of the
simulation, the expectation values for ĤM (EM) and ĤR (ER)
greatly exceed the corresponding ground state energies as the
starting NEOUCCSDT state is optimized for the ĤL ground
state (see Figure 3). Then, as the simulation progresses toward
the middle position (dominated by ĤM), EL slowly grows while
EM and ER decrease. At the halfway mark (t ∼ 2000 au), the EL
and ER values are nearly equal, while EM closely approaches the
ground state energy value of ĤM. This means that our protocol
is capable of driving the system adiabatically from the initial
state (with the proton localized to the left) to the middle
configuration with the equally shared proton. This is also
supported by the values of occupations in the middle panel of
Figure 3. A similar description, in reverse order, applies to the
second half of the dynamics leading to a final state with a large
overlap with the ground state of the Hamiltonian ĤR.
Concerning the electronic structure, we also observe changes
in the occupation of the spin orbitals involved in the
calculations (the second panel from the top of Figure 3).
Specifically, the occupation numbers of the first two lower-
lying spin orbitals increase slightly during the proton transfer
process, reaching a maximum at the transition barrier of the L-
M and M-R half-reactions. Note that the occupations refer to
both α and β spin orbitals because we are in the restricted
picture. It is worth stressing that for both protons and
electrons, the total number of particles (integrated over all
basis functions) remains conserved throughout the full reaction
path and amounts to 1 and 4, respectively. Constant particle
numbers confirm the absence of particle leakage, which is a
signature of faithful implementation of the unitary time-
evolution protocol. The high-frequency oscillations observed
in the nuclear occupancy numbers correspond to the
nonadiabatic part of the coherent time evolution, i.e., slight
deviations from the instantaneous ground state of Ĥ(t). These
can be suppressed if we further decrease the rate of change of
the Hamiltonian coefficients α, β, and γ, thus approaching the
adiabatic limit. This can be seen in Figure S3, where the
adiabatic speed (change in α, β, and γ per Δt = 1.0 au) was five
times slower (tf = 20000 au).
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Of particular interest is the analysis of the entanglement
entropy evaluated for the two subsystems, eq 5, along the
reaction path. For details, see ref 28. In the adiabatic regime,
the exact entropy profile shows a bimodal, roughly symmetric,
shape with the two peaks at the L-M and M-R transition
points. As before, the oscillations are caused by nonadiabatic
effects and disappear if we further slow down the dynamics
(see Figure S4). Note that while the exact profile (dotted line
in top left panel of Figure 4) fully recovers the initial value, in
the first-order Suzuki23 approach a residual entanglement
entropy remains after full transfer of the proton (red curve,
Figure 4). This deviation is attributed to the first-order Suzuki
approximation error and can be reduced by decreasing the step
size to Δt = 0.5 au, as shown in Figure 4 (top right panel). The
fidelities with respect to the ground state wave functions
corresponding to the different components of the Hamiltonian
(eq 10) are reported in Figure 3 (top panel) and confirm the
quality of the simulations (see also the fully adiabatic profiles
in Figure S3). The loss of accuracy in short (tf = 4000, see left
panels of Figures 3 and 4) and long (tf = 20000, see Figures S3
and S4) adiabatic regimes are comparable, proving that the
evolution operator is stable over a long-time simulation and
does not accumulate significant errors. Finally, it is worth
noting that entropy sharply rises at the moments when the
evolving state has equal fidelity first for L and M and then
later for M and R . At these points in the evolution, there is
thus a maximum amount of entanglement between the
protonic and electronic degrees of freedom along the adiabatic
trajectory.
In the “fast” regime, the physics is quite different. During the

entire proton transfer process, the entropy of the system keeps
growing (with large fluctuations) and reaches its maximum
value at the end of the simulation. In contrast to the slow
regime, we observe an accumulation of entanglement due to
excitations to higher energy levels along the nonadiabatic
trajectory. Both the exact (dashed line in Figure 4) and the
first-order Suzuki23 dynamics confirm this behavior. It is worth
mentioning that a classical treatment of the transferred proton
will miss important quantum effects, including delocalization
and tunneling, as well as the possibility to describe the
entanglement with the electronic state, which is the main
subject of this study. The entanglement will persist unless a
decoherence channel is introduced. To monitor this process,

one would need to include bath degrees of freedom (i.e., the
dynamics of the molecular scaffold and of the solvent) and
simulate the dynamics as an open quantum system. The
dynamic motion of the molecular scaffold can be added to the
driving Hamiltonian via one-particle terms responsible for
interaction with classical nuclei in eq 1 (the sixth and seventh
terms). The extra degrees of freedom can then be propagated
classically using ab initio forces or a classical force field.
In this Letter, we presented a quantum computing algorithm

for modeling electron−nuclear coupled dynamics in molecular
systems formulated in the second quantization framework. In
classical computation setups, nuclear and electronic degrees of
freedom exponentially increase with the system size, leading to
unfavorable scaling in both memory and execution time. On
the other hand, quantum computers have the potential to solve
these same problems in polynomial time and using polynomial
memory. The quantum algorithm was tested with classical
simulations, leading to very accurate results and interesting
insights about the proton transfer process in a realistic model
of malonaldehyde. In particular, we showed that when the
dynamics is sufficiently fast, such that the electrons cannot
follow adiabatically, entanglement between electronic and
nuclear degrees of freedom is generated and persists over time.
The classical emulation of the quantum algorithm will quickly
become unfeasible, as the number of electronic and nuclear
basis functions (and therefore qubits) exceeds about 20−30
qubits. From this point on, only quantum computers will be
able to perform the coupled electron−nuclear quantum
dynamics on such large scales. However, the noise in state-
of-the-art quantum computers currently hampers demonstra-
tions of long-time adiabatic quantum simulations of complex
systems with more than 10−20 qubits due to the required
circuit depth. Further developments are therefore needed for a
more efficient implementation of the proposed electron−
nuclear quantum dynamics scheme before reaching the fault-
tolerant regime. In particular, we are planning to investigate
more efficient encoding schemes for the time-evolution
operator in conjunction with error mitigation schemes,29 as
well as the possibility of applying variational time-evolution
algorithms.

Figure 4. Nuclear−electron entanglement entropy (top) and the fidelities with respect to reference ground states in the “Left”, “Middle”, and
“Right” setups (bottom) as a function of time for the evolution in the (left panel) adiabatic regime for tf = 4000 au with Δt = 1.0 au; (right panel)
nonadiabatic regime for time tf = 2000 au with Δt = 0.5 au. The reference values, generated using RK4, are shown as black dotted lines. While the
fidelities are in good agreement with reference values, the entanglement entropy (it is orders of magnitude smaller than the fidelity) acquires a
significant error for the dynamics with Δt = 1.0 au. This error decreases as the resolution of the simulation improves to Δt = 0.5 au.
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Discussion on the algorithm’s computational scaling

The number of qubits will scale linearly with the size of the basis set used to describe the

electronic and the nuclear degrees of freedom. Concerning the number of parameters and

the circuit depth required for the implementation of the time propagation algorithm, these

depend crucially on the wavefunction Ansatz implemented. In general, it can be shown that

a polynomial number of variational parameters suffice to achieve the desired accuracy. In the

case of a variational time-propagation algorithm such as varQTE1 the circuit depth remains

constant for the entire propagation time. On the contrary, in a Trotter-like implementation

of the time evolution operator the circuit depth will increase linearly with the simulation

time1.

Illustration of the quantum circuit for dynamics
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Figure S1: Schematic drawing of the time evolution operator, Eq. (9) implemented as a
quantum circuit with a series of N time steps of size ∆t on 8 qubits.
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Diagram of the time-evolution of the Hamiltonian components
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Figure S2: Adiabatic mixing of the Hamiltonians. The different Hamiltonians are mixed in
pairs. Initial mixing is performed between ĤL and ĤM through α(t)ĤL + β(t)ĤM , with the

subsequent mixing of ĤM and ĤR as β(t)ĤM + γ(t)ĤR.
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Figure of the adiabatic time evolution of the coupled electron-nuclear dynamics

Figure S3: Adiabatic evolution performed for time tf = 20000 a.u. with ∆t = 1.0 a.u.. There
are slight deviations from the reference results which are shown as black dotted lines. The

reference evolution uses the RK4 method.
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Figure of the entropy and state fidelity computed for the adiabatic coupled

electron-nuclear dynamics

Figure S4: Nuclear-electron entanglement entropy (top) and the fidelities with respect to
reference ground states in the ‘Left’, ‘Middle’, ‘Right’ setups (bottom) as a function of
time in the adiabatic evolution for tf = 20000 a.u. with ∆t = 1 a.u.. The reference
values, generated using RK4, are shown as black dotted lines. The values for fidelities
and entanglement entropy show similar results to the shorter evolution with tf = 4000
a.u. proving that the evolution operator is stable over a long-time simulation and does not

accumulate errors.
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