
Deep reinforcement learning for proactive spectrum defragmentation in
elastic optical networks [Invited]

Downloaded from: https://research.chalmers.se, 2025-07-03 06:43 UTC

Citation for the original published paper (version of record):
Etezadi, E., Natalino Da Silva, C., Diaz, R. et al (2023). Deep reinforcement learning for proactive
spectrum defragmentation in elastic optical networks
[Invited]. Journal of Optical Communications and Networking, 15(10): E86-E96.
http://dx.doi.org/10.1364/JOCN.489577

N.B. When citing this work, cite the original published paper.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)



This is the authors’ version of the work. It is posted here for your personal use. Not for redistribution. The definitive
version has been published in the Journal of Optical Communications and Networking, DOI: 10.1364/JOCN.489577.

Research Article 1

Deep reinforcement learning for proactive spectrum
defragmentation in elastic optical networks [Invited]
EHSAN ETEZADI1,*, CARLOS NATALINO 1, RENZO DIAZ2, ANDERS LINDGREN2, STEFAN MELIN2, LENA
WOSINSKA1, PAOLO MONTI 1, AND MARIJA FURDEK 1

1Department of Electrical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
2Telia Company, 169 94 Solna, Sweden
*ehsanet@chalmers.se

Compiled March 14, 2024

The immense growth of Internet traffic calls for advanced techniques to enable the dynamic operation
of optical networks, efficient use of spectral resources, and automation. In this paper, we investigate the
proactive spectrum defragmentation (SD) problem in elastic optical networks and propose a novel deep
reinforcement learning-based framework DeepDefrag to increase spectral usage efficiency. Unlike the
conventional, often threshold-based heuristic algorithms that address a subset of the defragmentation-
related tasks and have limited automation capabilities, DeepDefrag jointly addresses the three main aspects
of the SD process: determining when to perform defragmentation, which connections to reconfigure, and
which part of the spectrum to reallocate them to. By considering services attributes, spectrum occupancy
state expressed by several different fragmentation metrics, as well as reconfiguration cost, DeepDefrag
is able to consistently select appropriate reconfiguration actions over the network lifetime and adapt to
changing conditions. Extensive simulation results reveal superior performance of the proposed scheme
over a scenario with exhaustive defragmentation and a well-known benchmark heuristic from the literature,
achieving lower blocking probability at a smaller defragmentation overhead.

https://doi.org/10.1364/JOCN.489577

1. INTRODUCTION

The tremendous growth of bandwidth-intensive applications
that have dynamic behavior and high performance requirements
(e.g., high-definition video on demand, cloud computing, In-
ternet of Things, content delivery networks) puts a significant
strain on the optical backbone networks. Dynamic, automated,
and resource-efficient network operation is essential to fulfill-
ing these requirements. Elastic optical networks (EONs) [1]
enable both fine-grained spectrum slicing and high-capacity
super-channels that match the spectrum requirements of service
requests. However, EONs are prone to spectrum fragmenta-
tion (SF), where the requested service bandwidth exceeds the
number of continuous and contiguous free spectrum slots. In
dynamic traffic scenarios, the establishment and tear-down of
optical connections often exacerbates SF by scattering relatively
small unoccupied spectral gaps across the available fiber band-
width [2, 3]. When these spectral gaps are insufficient to support
incoming service requests, SF has a direct, detrimental impact
on the blocking probability of service demands [4].

To alleviate the impact of fragmentation, spectrum allocation
should be consolidated to leave as few unusable spectral gaps as
possible. This process is called spectrum defragmentation (SD),

and is known to improve spectrum grid utilization and reduce
service blocking ratio (SBR) [5]. The goal of SD is to make the
spectral gaps larger and better aligned across the network links.
This enables for accommodating more services, thus maximizing
the use of the spectrum.

(i) When to reconfigure? Deciding on the best time to perform
SD among arbitrary service arrivals and departures.

(ii) What to reconfigure? Determining the number and the order
of connections to be reallocated.

(iii) Where to reallocate the connections to? Finding new spectral
resources for the reconfigured connections.

The problem of minimizing spectrum fragmentation by recon-
figuring a minimum number of connections has been shown to
be NP-complete in static traffic scenarios [6]. Traffic dynamicity
further increases the problem complexity due to the constantly
changing set of connections in the network. Hence, tractable
optimization approaches are needed to solve the highly complex
problem of dynamic SD.

SD approaches can be classified into two main schemes: re-
active and proactive [2]. Reactive approaches are triggered by
service blocking. Proactive approaches are executed without

https://doi.org/10.1364/JOCN.489577
https://orcid.org/https://orcid.org/0000-0001-7501-5547
https://orcid.org/https://orcid.org/0000-0002-5636-9910
https://orcid.org/https://orcid.org/0000-0001-5600-3700
https://doi.org/10.1364/JOCN.489577


Research Article 2

waiting for the blocking to occur. They typically monitor net-
work performance metrics to find the best time for SD or per-
form it periodically. These schemes are further classified into
two types, namely with or without rerouting of connections
[5]. The latter approaches only reallocate the spectrum of the
connections, while the former may modify their routes as well.
SD approaches that interrupt running services are referred to
as non-hitless, while those that do not cause any traffic disrup-
tion are known as hitless [7]. Push-pull retuning is a hitless
approach where the spectrum occupied by a connection is first
expanded until it includes both the original and the targeted
spectrum slots and then shrunk to include only the targeted slots
[8]. Another hitless SD approach is make-before-break, where
an additional connection is established over the target route and
spectrum before tearing down the original one, allowing for a
spectrum jump [5]. It should be noted that make-before-break
is considered non-disruptive specifically for the optical layer,
while interruptions may occur at the higher layers depending
on the employed protocol and/or rerouting strategy.

While SD has been shown to decrease the SBR, it also imposes
a reconfiguration overhead that is not desirable by network oper-
ators. Depending on the SD approach, the overhead may entail
terminating, reallocating, and reestablishing selected connec-
tions. Consequently, performing SD too frequently or on an
excessive number of connections may drastically increase the
complexity of network control and management. In fact, the
frequency of SD cycles and the number of connection realloca-
tions within each cycle are used to measure the SD overhead [9].
This indicates that the potential SBR improvement and the corre-
sponding overhead should be considered jointly and flexibly in
the design and evaluation of SD approaches. Existing SD strate-
gies (e.g., [10, 11]) handle only a subset of the aforementioned SD
tasks and they do so by utilizing deterministic thresholds and
policies, which makes them inapplicable to dynamic settings
with changing network conditions.

Different from the deterministic, threshold-based policies,
in reinforcement learning (RL), the algorithm makes decisions
by learning from the environment, aiming at maximizing the
long-term reward without being explicitly programmed. RL
has recently been demonstrated as a promising technique for
solving large-scale online control tasks, e.g., routing and resource
assignment in EON [12, 13] and 5G network slicing [14]. The
deep reinforcement learning (DRL) method combines RL with
deep neural networks (DNNs), allowing complex systems to
be analyzed for high-dimensional input data, including traffic
matrices and images. One of the valuable capabilities of some
DRL agents is to learn online and adapt to changing network
conditions. Through the online learning process, the DRL agent
continuously interacts with the environment, receives feedback,
and updates its policy accordingly.

To utilize the merit of DRL in automating SD, we proposed
DeepDefrag, a novel DRL-based framework that jointly ad-
dresses all of the tasks involved in the SD process: determining
when to perform defragmentation, which connections to recon-
figure, and which part of the spectrum to reallocate them to
[15]. DeepDefrag considers the network state to select the most
appropriate course of action and can take into account the prior-
ities of a network operator, such as minimizing the number of
SD cycles and connection reallocations. Our preliminary study
in [15], considered only a subset of connections as eligible for
reconfiguration and did not examine the spectrum occupancy
state in the decision-making process. This paper extends and
improves DeepDefrag by (i) considering all connections in the

network as candidates for reconfiguration, (ii) considering full
information about the spectrum occupancy, including different
fragmentation metrics, and (iii) revising the reward function
to allow for a more comprehensive evaluation of the impact
of actions. An evaluation of the impact of different penalties
modeling the SD overhead, and of changes in the traffic load
is also included. The performance of the proposed DeepDe-
frag framework is evaluated through comparison with several
heuristic algorithms from the literature. The simulation results
reveal that DeepDefrag outperforms the well-known existing
older-first first-fit (OF-FF) algorithm in different aspects. More-
over, it yields SBR values close to an approximated (heuristic)
lower bound obtained through exhaustive spectrum defragmen-
tation. We demonstrate that, unlike preconfigured algorithms
like OF-FF, DeepDefrag can effectively handle changes in the
traffic load by considering the new situation and learning the
optimal policy for the updated circumstances. This adaptabil-
ity allows DeepDefrag to continuously optimize its actions and
make informed decisions that align with the current network
conditions, resulting in improved performance and spectrum
resource utilization.

2. RELATED WORK AND BACKGROUND

A. Spectrum fragmentation metrics
In general, spectrum fragmentation metrics in EONs measure
the efficiency of spectral utilization. A better fragmentation met-
ric value indicates that the occupied frequency slots are used
more efficiently, with fewer unusable gaps between occupied
slots. These metrics help network operators monitor and op-
timize the utilization of optical spectrum resources, ensuring
high performance and efficient use of available resources. The
SF issue in EONs has been widely analyzed in the literature and
several fragmentation metrics have been introduced. Wang et
al. [16] present the concept of utilization entropy to measure the
level of optical spectrum fragmentation. Authors in [17] define
an external fragmentation metric as a ratio of the largest free
contiguous fragment of the spectrum and the sum of the size of
all free spectral fragments. The spectrum compactness metric
from [18] indicates the occupation of spectrum on a link or in
the network by calculating the difference between the maximum
and the minimum indices of occupied slots. Takita et al. [19]
define the high slot mask metric as an indicator of the maximum
number of occupied spectrum slots in the network.

In this paper, we incorporate the spectrum occupancy state
into the DRL agent to enhance its understanding of the network
state. However, considering a large number of SF metrics is im-
practical due to the increased complexity of computing the met-
rics at every step, and the potential increase in the training time
of the DRL agent. As highlighted in [20], different metrics cap-
ture various aspects of SF, and the selection of metrics depends
on the specific requirements and context. Therefore, we care-
fully chose three metrics to measure the fragmentation state of
the network: the number of cuts [21], the Shannon entropy (SE)
[17], and the root of sum of squares (RSS) [20]. In support of
our choices, previous studies such as [12] have demonstrated
the suitability of incorporating RSS into the reward function
of DRL agents for routing and spectrum assignment in EONs.
Furthermore, the effectiveness of the number of cuts and SE in
enhancing network utilization has been highlighted in [21] and
[22], respectively.

In Fig. 1, we exemplify the parameters and calculation of
these metrics with a snapshot of a simple network example with



Research Article 3

Li
nk

4 − 5

2 − 3

1 − 2

1 2 3 75 64

Slot number

Free slot

Connections

8 9 10

1 5

4

2

𝐷! and 𝐷"

𝐷#

𝐷$

𝐷!

𝐷$

𝐷% 𝐷&

𝐷#
𝐷"

Guard band

(a) (b)

3 − 5

3

1 − 4

𝐷%
𝐷&

Link 3 − 5

𝑏$
'=3 𝑏%

'=2
Slot 5

𝑏$
'=2

𝑓!"" 3 − 5 =
3# + 2#

3 + 2
= 0.72 𝑓()) 𝑠 = 5 =

2% + 1%

2 + 1
= 0.74

𝑏%
'=1

𝑓"$ 3 − 5 = −
3
12

ln
3
12

+
2
12

ln
2
12

= 0.64

(c)

11 12

Figure1-second 
version

Fig. 1. A simple network example serving six connections (a). The spectrum occupancy state (b). Shannon entropy and root of sum
of squares metrics (c).

five nodes and four links, each with 12 spectrum slots. The
considered network state comprises six connections established
in the network, denoted by D1 to D6. The connection routes are
depicted in Fig. 1(a), while the spectrum assignment state for
each link is shown in Fig. 1(b). We assume one spectrum slot is
used as guardband between adjacent connections on a link. The
notation includes the following parameters: e is the index of a
link, E is the total number of links, s is the index identifying a
spectrum slot on a link, S is the total number of slots of a link, b f

i
is the size of free spectrum block i, and N is the number of free
spectrum blocks.

The number of cuts denotes the number of links with free
adjacent spectrum slots on the path selected for a connection.
The SE values for a link and the entire network are formulated
by (1) and (2), respectively. Equation (3) defines the RSS metric
for a link e, while it can be calculated for a slot s analogously. The
two metrics are referred to as spectral and spatial fragmentation,
respectively [12]. Finally, the RSS metric for the network is
calculated as the average of spectral and spatial RSS metrics
over all the links and slots in (4). A higher SE value implies
higher fragmentation, while a higher RSS value implies lower
fragmentation.

fSE(e) = −
N

∑
i=1

b f
i

S
ln

b f
i

S
(1)

FSE =
∑E

e fSE(e)
E

(2)

fRSS(e) =

√
∑N

i (b f
i )

2

∑N
i b f

i

(3)

FRSS =
∑S

s fRSS(s)
S

+
∑E

e fRSS(e)
E

(4)

Figure 1(c) shows how the values of the SE and RSS metrics
for link (3 − 5) and slot number (5) (highlighted with frames)
are calculated. In the example, connection D1 occupies slot 11,
so slot 10 is checked to calculate the number of cuts. Slot 10 is
free on all three links included in the path of D1, so the number
of cuts is equal to 3 for this connection. The number of cuts for
D3 is equal to 1 since slot 6 is occupied on link (3 − 5) and free
on link (2 − 3).

B. Spectrum defragmentation techniques
In recent years, extensive research has examined spectrum frag-
mentation and its mitigation, relying on integer linear program-

ming (ILP) formulations, (meta)heuristics and machine learn-
ing techniques. The work in [10] models the proactive parallel
connection reconfiguration in EONs mathematically as an ILP
formulation and studies the complexity of the problem. ILP mod-
els for three defragmentation techniques denoted as Push-Pull,
Hop-Tuning, and Replanning are proposed in [11]. The authors
in [23] delve deeper into the trade-off between SD gain in terms
of fragmentation ratio and the extent of connection disruptions
in terms of reconfiguration delays. They create a mathematical
model to optimize high-slot marks as the fragmentation metric
across all links.

Heuristic and metaheuristic algorithms are also widely used
to tackle the fragmentation problem and decrease the SBR. The
authors in [24] investigate heuristic algorithms for hitless band-
width defragmentation, including spectrum sweeping and hop
tuning. In [9], SD is performed periodically, and connections
are selected for reallocation based on service attributes. Older-
first (OF) selects the longest-lasting connections, longer-lasting-
first (LLF) selects those with the longest remaining holding time,
bigger-first (BF) selects the connections with the biggest size,
and longer-path-first (LPF) selects those with the longest path
for reconfiguration. A first-fit (FF) spectrum assignment pol-
icy is employed to reallocate spectrum slots. Simulation results
indicate that the algorithms exhibit similar performance, with
the OF algorithm demonstrating the best performance within a
marginal difference of one percent.

In [25], different SD heuristic algorithms, including lowest-
slot-index-first, holding-time-aware, and proactive-reactive de-
fragmentation, are compared based on their blocking probabil-
ity, entropy, and bandwidth fragmentation ratio. The authors
in [26] propose a reactive disruptive scheme and a proactive
non-disruptive scheme. Both schemes utilize the holding time
information of existing connections to minimize the SBR. The
authors in [27] use a meta-heuristic nature-inspired optimiza-
tion technique called jellyfish search optimization to solve spec-
trum defragmentation and show performance improvement
compared to the state-of-the-art heuristic algorithms.

SD has recently benefited from adopting machine learning
techniques. An application from [28] uses unsupervised ma-
chine learning to rearrange the fragmented spectrum based on
connection clustering. In [29], Elman neural networks (NNs) are
employed to predict traffic demands, and a two-dimensional
rectangular packing model is used to allocate spectrum in a
way that minimizes fragmentation. A machine learning-assisted
signal-quality-aware proactive defragmentation scheme for the
C + L band system is proposed in [30]. The scheme prioritizes



Research Article 4

minimizing the fragmentation index and quality of transmis-
sion (QoT) maintenance for the defragmentation algorithms.

C. Reinforcement learning in optical networks
Multiple studies have explored the efficacy of RL for solving
resource allocation problems in EONs, such as the DRL-based
routing, modulation, and spectrum assignment (RMSA) algo-
rithm in [31], which performs joint routing and spectrum as-
signment by masking infeasible options to improve the blocking
probability performance. In [31], the connection admission con-
trol and routing and spectrum assignment (RSA) problems are
modeled as a Markov decision process (MDP), and the concept
of deterministic policy for the RSA problem in the policy itera-
tion algorithm is introduced. The work in [32] demonstrates that
DRL is an effective alternative to established and well-known
solutions for optical network optimization problems, including
routing and wavelength assignment (RWA). A DRL approach
for resource provisioning in a dynamic multi-band EON is stud-
ied in [33] and compared to a heuristic algorithm. The authors
in [34] investigate the problem of global optimization of net-
work performance in a survivable EON use case and propose a
DRL-based algorithm with the objective of improving the over-
all network performance in terms of cost value and survivability,
where two RL agents are utilized to provide working and protec-
tion paths. In [35], DRL is used to tackle the on-demand, reactive
hitless SD problem. Upon a failure of an incoming service re-
quest, the DRL agent selects one of the pre-defined schemes that
increase the size of the fragmented spectrum to accommodate
blocked services. To the best of our knowledge, the merit of DRL
in solving proactive SD has not been evaluated yet in spite of its
strong potential to solve complex problems. Therefore, in the
next sections, we propose a DRL-based framework for proactive
SD and evaluate its performance against heuristic algorithms.

3. PROBLEM FORMULATION

We consider a network topology represented by a graph G(V , E),
where V and E represent the set of nodes and fiber links, respec-
tively. We model a service request from node s to d (s, d ∈ V)
as Di(si, di, bi, ai), with bi and ai denoting the requested bit rate,
arrival time, respectively. To provision service requests, the net-
work must solve the RMSA problem of finding an end-to-end
physical route, determining the modulation format, and allocat-
ing the required spectral resources. We adopt the model from
[13] to decide on the modulation format limited by the length
of the selected path. The number of required spectrum slots,
denoted by ni, is determined by ⌈bi/(12.5 × m)⌉, where 12.5
Gbit/s is the data rate that a spectrum slot of BPSK signal can
support, and m is spectral efficiency of the selected modulation
format. A connection is established if a path with ni + 1 contin-
uous and contiguous spectrum slots is found, where the extra
slot accounts for the guardband. If these spectrum resources are
not found, the service request is blocked.

We consider a dynamic EON scenario in which service re-
quests arrive and depart throughout the network operation. At
any given time, the spectrum grid state information about the
existing connections is known. In the considered proactive SD
scenario, only spectrum reallocation is performed, without con-
nection rerouting. The goal is to reallocate the spectrum of a
subset of connections to consolidate the free available spectrum
for future use. We consider a hitless, make-before-break scenario.
The first challenge of proactive SD is to find the best time to per-
form a defragmentation operation. The second challenge is to

determine the set of connections and the order in which they
should be reconfigured. Finally, the new spectrum slots must be
identified for the services.

4. THE DEEPDEFRAG SCHEME

A. System model

Figure 2 illustrates the DeepDefrag scheme under dynamic traf-
fic, where SD cycles are triggered in response to connection
departures. When a connection departs, DeepDefrag assesses
whether to initiate a defragmentation cycle or not. If the decision
is to start a new SD cycle, DeepDefrag selects a connection to
reconfigure and identifies the target spectrum. This process is
repeated until DeepDefrag decides to conclude the cycle. The
left-hand inset at the top of the figure provides an example of
an SD cycle that includes three connection reallocations. The
DeepDefrag scheme uses two variables to model the SD process.
θ ∈ {0, 1} is a network control flag with a value of 1 when an
SD cycle is in progress, and 0 otherwise. The selected action is
denoted as α, with value equal to the index of the connection
selected for reconfiguration, or α=∅ to represent the stop action.

As shown in Fig. 2, θ=0 and α ̸= ∅ when DeepDefrag
starts an SD cycle and reallocates the first connection. At this
point, DeepDefrag has the option to either continue the ongoing
SD cycle by reallocating another connection or to terminate it
by returning α = ∅. In this particular example, DeepDefrag
decides to reallocate two other connections (θ=1, α ̸= ∅), and
then stops the SD cycle (θ=1, α=∅). Note that only sequential
reconfiguration of individual connections is considered (i.e., two
or more connections are not reconfigured jointly). The time
between two sequential SD cycles is referred to as the SD period.
DeepDefrag can also decide not to trigger an SD cycle upon
a connection departure. Fig. 2 illustrates this scenario after
the departure of the third connection, where the actions and
variables involved in the decision-making process are presented
in the inset on the right hand side. Here, the SD cycle is not
currently in progress (θ=0), and the scheme chooses to take no
action (α=∅).

DeepDefrag considers all connections as candidates for real-
location and examines several options to reassign the spectrum.
All available spectrum blocks that can accommodate the connec-
tion are enumerated, and each option represents reallocating a
connection to the beginning of every available free block along
its path. Let us consider the same example as in Fig. 1 and ana-
lyze the reallocation options for connections D1 and D4, shown
in Fig. 3. For connection D1, which is currently using slot 11,
two free blocks along links 1–2, 2–3, and 3–5 can be considered
as alternatives: slots 1–3 and 9–12. Therefore, connection D1 has
two alternative spectrum options, which are at the beginning of
the two candidate blocks, denoted as o1

1 and o2
1. The alternative

for connection D4 is at the beginning of the only free block on
links 1–4 and 4–5, i.e., slots 8–12, denoted as o1

4 in the figure. It
should be noted that one option is available for connection D2
and one for connection D3, which are not shown in the figure.
By combining the event model from Fig. 2 and the intuition
developed in Fig. 3, a DRL agent can be designed to solve the
SD problem.

B. Markov decision process modeling

The DeepDefrag scheme uses DRL to solve the proactive SD
problem discussed in the previous section. DRL is a machine
learning technique focused on solving control problems, where



Research Article 5

SD actions
Option selection Option selection Option selection

Stop

SD cycle with 3 connection reallocations

Network lifetime

Ini
tia

te 
SD?

C
on

ne
ct

io
n 

de
pa

rtu
re

C
on

ne
ct

io
n 

de
pa

rtu
re

C
on

ne
ct

io
n 

ar
riv

al

C
on

ne
ct

io
n 

ar
riv

al

C
on

ne
ct

io
n 

de
pa

rtu
re

No SD cycle . . .

SD Period

Ini
tia

te 
SD?

Ini
tia

te 
SD?

𝛼 ≠ ∅, 𝜃 = 0 𝛼 ≠ ∅, 𝜃 = 1 𝛼 ≠ ∅, 𝜃 = 1

Option selection
SD actions

Stop
𝛼 = ∅, 𝜃 = 0

Start SD cycle

Figure2

Start SD cycle

Option selection

𝛼 = ∅, 𝜃 = 1

Fig. 2. The DeepDefrag scheme decisions taken and implemented during network operation.

Li
nk

4--5

2--3

1--2

1 2 3 75 64

Free slot

8 9 10

𝐷! 𝐷"

𝐷#
𝐷$

Guard band

3--5

1--4

11 12

𝑜%%

𝑜&%

𝑜%!

Options for 
moving 𝐷%

Options for 
moving 𝐷&

𝑆!" = (𝑠! = 1, 𝑑! = 5, 𝑎!,
𝑛!, = 2 , 𝑙! = 2, 𝑓! = 9,
𝑡! = 2 𝑐! = 2, 𝐹#$$ = 1.7,
𝐹$% = 0.48, 𝑓!"= 8,
𝑡!" = 5, 𝑐!" = 1 ,

𝐹#$$!" = 1.82, 𝐹$%!" = 0.4)

Slot number

Figure3

Fig. 3. Different options for spectrum reallocation of the con-
nections, and the state representation

a DRL agent interacts with the environment and has the objec-
tive of maximizing a notion of cumulative reward. Such control
problems are commonly modeled as MDPs. The following sec-
tion outlines the MDP model of DeepDefrag, which covers the
definitions of the observation space, action spaces, and reward
function.

B.1. Observation space

The observation space should provide the DRL agent with
enough information to characterize the current state of the envi-
ronment (i.e., the optical network in our case). The observation
space of DeepDefrag consists of several components. The state
representation for reallocation option j of connection Di is de-
noted as Sij, and defined as follows:

Sij =< si, di, ai, ni, li, fi, ti, ci, FRSS, FSE, fij, tij, cij, Fij
RSS, Fij

SE > ,

where li is the number of links along the path allocated to the
connection, fi is the currently assigned starting spectrum slot,
ti is the total number of available slots along path, and ci is the
number of cuts (as defined in Sec. 2.A) along the current path.
The RSS and SE metrics for the current state of the network

are represented by FRSS and FSE, respectively. fij, cij, and tij
represent the new candidate starting slot, the number of cuts,
and the size of the free spectrum block used by option j for
reallocating connection Di, respectively. Finally, Fij

RSS, Fij
SE are

the RSS and SE metrics of the network if Di is chosen to be
reallocated to option j. The example of the state representation
for option o1

4 is represented in Fig 3.

B.2. Action space

The action space represents the set of all actions the agent can
perform in a specific environment. As shown in Fig 2, for our
environment, the agent can select one of the available options in
each decision step. In the DeepDefrag environment, we denote
the set of possible actions as J. Each action is characterized by
the tuple <Di, fij>, which represent the connection and the new
starting slot of the selected option, respectively. The set J also
contains the ∅ action, which denotes termination of an SD cycle
in progress, or the absence of initiating a new one.

B.3. Reward function

The reward function is a function that provides a numerical
score based on the state of the environment and the action taken
by the agent. The critical challenge of using RL is to find the
appropriate reward function that reflects the behavior of the
environment and steers the agent towards the most suitable
policy. The reward value ri for DeepDefrag is defined by (5).

ri =


− log10 SBR

3 θ ∈ {0, 1} ∧ α=∅

− log10 SBR
3 − Ps − Pe θ = 0 ∧ α ̸= ∅

1 + log10(Fij
RSS−FRSS)
3 − Pe θ = 1 ∧ α ̸= ∅

, (5)

The SBR is the main term of the reward function due to its
direct representation of the objective of performing SD. The
value of SBR is defined as the ratio between the blocked and the
total number of processed service requests. The design of the
reward function aims to strongly penalize even a slight increase
of the SBR. Therefore, the logarithm of the SBR is used in the
reward function to amplify the small changes of SBR when the
agent chooses not to start an SD cycle (α=∅, i.e., the first term of



Research Article 6

(5)). To limit the SD overhead, each new SD cycle and each con-
nection reallocation are associated with a penalty, denoted by Ps
and Pe, respectively. Both penalties are considered in the reward
function whenever the agent initiates a new SD cycle by reallo-
cating a connection, i.e., the second term in (5). The third term in
(5) refers to the reward for connection reallocation within an SD
cycle in progress. As mentioned in Sec. 2.A, a higher value of the
RSS metric implies lower fragmentation. Hence, the agent uses
the difference between the RSS metric before and after recon-
figuration to evaluate the benefit of the connection reallocation.
The logarithmic function is employed to guarantee that a small
increment of the RSS metric yields a significant increase of the
reward value. The penalty for connection reallocation is also
considered. The logarithm addends in the reward function are
normalized using a factor of 3 to conform to the range between
zero and one. This normalization process facilitates setting the
values of the penalties relative to the other components of the
reward. It also helps the DRL agent to learn more efficiently by
balancing the magnitudes of the reward values and preventing
them from becoming too large or too small.

The penalty values in the reward function (i.e., Ps and Pe) are
determined by the network operator based on the costs associ-
ated with each proactive SD cycle and reallocation, respectively.
In this work, the values of the penalties are selected based on
the target resulting SD overhead.

C. Learning Process using Deep Q-Networks
We utilize the deep Q-Networks (DQN) algorithm [36] to deter-
mine the policy for the proposed SD approach. The objective
of the DQN algorithm is to learn a policy that maximizes the
long-term reward by estimating the state-action values, also
known as Q-values, using a DNN. These Q-values represent the
expected long-term reward for each state-action pair. To approx-
imate the Q-values, we employ an NN, which takes the network
state St as input. The output of the NN provides the predicted
state-action values for all possible actions given the input state.
For training, we utilized two NNs with the same architecture.
One network, called the Q-Value-Network, uses the parame-
ter θ to estimate the state-action values Q(St, At, θ) for a given
state-action pair (St, At), where St represents the network state
at time t, and At represents the action taken by the agent at time
t. The other network, called the Q-Target-Network, employs
the parameter θ− to determine the target Q-value. Algorithm 1
illustrates the DeepDefrag training and operation, which com-
bines DQN training with proactive SD. In this algorithm, M
represents the number of episodes, T denotes the length of each
episode, γ represents the discount factor, ϵ represents the explo-
ration rate, and C signifies the frequency of updating the target
network. A detailed description of all the hyperparameters can
be found in the original DQN paper [36]. The algorithm begins
with the initialization step (lines 1-3). Then, for each episode
of the training process, the environment is reset, and the loop
for time steps begins (lines 4-6). During the training process,
the agent adopts the ϵ-greedy policy to balance exploration and
exploitation. This means that the agent selects the action with
the maximum Q-value with a probability of 1-ϵ, and chooses
a random action with a probability of ϵ (line 7). If the agent
decides to perform a reallocation, it moves the connection Di
to the starting slot related to the selected action fij (lines 8-9).
Otherwise, it continues the network operation while observing
the reward and the next state (lines 10-11). The agent stores the
transition samples in the replay memory for training purposes
(line 12). The training step takes place at the end of each episode.

Samples are randomly selected from the replay memory to train
the NN (line 13). The target values for each transition in the
mini-batch are calculated (line 14). If the next state is terminal,
the target value is set to the immediate reward ri. Otherwise,
it is calculated as the sum of the immediate reward ri and the
discounted maximum expected reward. The NN parameter θ
is updated using Mini-batch Gradient Descent (line 15), while
the Q-Target-Network parameter θ− is updated with the current
Q-Value-Network parameter θ every C iterations

Algorithm 1. DeepDefrag Algorithm: Combination of DQN
algorithm and proactive spectrum defragmentation.

1: Initialize replay memory D with size N
2: Create action-value function Q with random weights θ
3: Create target action-value function Q̂ with weights θ− = θ
4: for episode = 1 to M do
5: Reset environment to initial state s0
6: for time step t = 1 to T do
7: Choose action at using ϵ-greedy policy based on Q
8: if at is <Di, fij> then
9: Reallocate Di to slot fij , observe reward rt and

next state st+1
10: else if at is ∅ then
11: Serve the next incoming service request, observe

reward rt and next state st+1

12: Store transition (st, at, rt, st+1) in D
13: Randomly sample a minibatch of transitions

(si, ai, ri, si+1) from D

14: yi =

{
ri if t = T − 1
ri + γ maxa′ Q̂(si+1, a′, θ−) otherwise

15: Perform gradient descent on loss L(θ) = 1
B ∑i(yi −

Q(si, ai, θ))2

16: Every C steps, update target network weights: θ− = θ

The training phase of the agent (lines 13–16 of Alg. 1) can
be executed offline, meaning that it will not interfere with the
network operation. In the predicting phase of the DQN (line 7
of Alg. 1), the trained model is utilized to predict the action for
a given state. This phase is composed only of a simple DNN
inference. Consequently, the time required for performing an
inference becomes negligible compared to other events taking
place in the network. Ideally, new experiences collected dur-
ing operation are included in the memory and used to further
improve the agent.

5. SIMULATION SETTINGS

We conduct simulations on a dynamic traffic scenario to evaluate
the performance of DeepDefrag. We use the value of SBR, fre-
quency, and volume of reconfiguration actions as performance
metrics. Two network topologies are used to evaluate the Deep-
Defrag model: the NSFNET topology [13] with 14 nodes and
22 links, and the German topology [37] with 50 nodes and 88
links. In both topologies, we assume that each link supports
320 spectrum slots. To generate service requests, we use a Pois-
son process and tune the traffic load to 80 and 340 Erlang for
the NSFNET and German topology, respectively. These values
ensure a SBR of approximately 2% for the scenario without SD.
80% of service requests are long-lived with an average holding
time of 25 time units, while the remaining 20% have an average



Research Article 7

holding time of 12.5 time units. The holding time of the connec-
tions follows an exponential distribution. The considered bit
rate is 100 Gbit/s for 50%, 200 Gbit/s for 30%, and 400 Gbit/s for
the remaining 20% of the service requests. The choice of having
an 80-20 split between long short-lived traffic aims at recreating
a realistic traffic scenario experienced by a network operator
in the Nordic countries where, within the optical layer, there
exist connections that support the packet network and carry
the majority of the traffic load. These connections are typically
bound by long-term contracts and demonstrate consistent and
stable behavior at the optical layer within the network. We
adopt BPSK, QPSK, 8-QAM, and 16-QAM modulation formats,
with a spectral efficiency m of 1, 2, 3, and 4 b/Hz/s, respectively,
as described in [13]. Modulation formats with higher spectrum
efficiency are preferred, as long as the distance of the path is
supported by the chosen modulation format. Specifically, the
reach for the different modulation formats are as follows: 625 km
for 16-QAM, 1250 km for 8-QAM, and 2000 km for QPSK. BPSK
can be used for any path length in the adopted topologies [38].
For each request for all considered scenarios, the RMSA solution
is obtained by choosing the shortest available path among five
pre-computed shortest paths, and assigning the first available
slots (first fit).

The performance of DeepDefrag is assessed through com-
parison with three heuristic algorithms denoted as older-first
first-fit (OF-FF), exhaustive spectrum defragmentation (X-SD),
and no spectrum defragmentation (No-SD). In the OF-FF strat-
egy, the connections are selected according to their age, where
the longest-running connections are reconfigured first, and the
new spectrum is decided using the first-fit spectrum allocation
scheme. This strategy is used for benchmarking purposes as it
has shown excellent performance in terms of SBR [9]. OF-FF has
two parameters: the SD period, which defines the number of
request arrivals between two defragmentation cycles, and the
number of connection reallocations per SD cycle. We evaluate
the performance of OF-FF under different configurations and
report on two representative settings to enable a fair comparison
with DeepDefrag. The first setting has the same defragmentation
overhead as DeepDefrag, enabling us to compare their perfor-
mance in terms of SBR. In the second configuration, we ensure
that the OF-FF has comparable levels of SBR as DeepDefrag.
This enables a direct comparison of their performance in terms
of SD overhead, namely the number of connection reallocations
and SD cycles.

We also simulate the X-SD approach to find a (heuristic) lower
bound on the SBR by reallocating an unlimited number of con-
nections upon each connection departure and applying FF spec-
trum assignment to find the new slots. Note that the service
blocking in this strategy occurs due to lack of resources, which
cannot be avoided by any proactive defragmentation scheme.
Moreover, achieving the absolute minimum SBR would require
the use of optimal techniques (e.g., ILP). However, these tech-
niques are not practical for this problem due to their complexity
and scalability issues. Finally, the No-SD approach represents
the network performance without defragmentation.

To implement the DeepDefrag scheme, we extended the Op-
tical RL-Gym framework, which models optical networking
problems related to resource management and reconfiguration
as RL environments [39]. The DRL agent was trained using
Stable-Baselines3 [40], an open-source implementation of DRL
algorithms in Python. We trained the DRL agent using the DQN
algorithm with a learning rate of 5 ∗ 10−6, exploration rate 0.2,
and a discount factor of 0.96. The NN has 5 layers with 384

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Episode

100

50

0

50

100

150

200

250

300

 R
ew

ar
d

DeepDefrag-nsfnet_chen_eon-80--0.8--0.1-10-18-1-5-0.2-384-0.96-0.0001-True-400-v2

Fig. 4. Episodic sum of reward values for NSFNET.

neurons each. The values of DRL hyperparameters were de-
fined through a hyperparameter analysis performed offline. Ten
possible options for the oldest connections are introduced to the
DRL agent.

To assess the impact of defragmentation penalties on the per-
formance of DeepDefrag, we conduct experiments using two
sets of penalty factors. The first one consists of Ps=0.8 and
Pe=0.1, while the second set has Ps=0.3 and Pe=0.05. In both
sets, the value of Ps is higher than Pe, reflecting the higher cost
associated with initiating an SD cycle compared to a connec-
tion reallocation. The use of these two penalty sets allows us
to understand the impact of SD penalties on the behavior of
DeepDefrag, showing that network operators can fine-tune the
penalty values based on their specific requirements, costs, and
priorities.

Finally, we assess the performance of the proposed DeepDe-
frag approach under varying traffic load. To this end, we initiate
the network operation with a load of 80 Erlang for the NSFNET
topology. Subsequently, we change the load to new values: a
higher load of 90 Erlang, and a lower load of 70 Erlang. This
allows us to assess the agent’s ability to adjust and converge to
effective solutions under changing load conditions.

To train the agent, we set the episode length to 400 decision
steps and perform training over 8000 episodes, which includes
approximately 2 million service arrivals. It is important to note
that fluctuations in the results are expected due to the inherent
stochastic nature of the Poisson process. Hence, we conduct
simulations of the DeepDefrag agent using 10 different seeds
for the random number generator of the network environment
to ensure robustness of the numerical results. We assess the
performance of the DeepDefrag agent as it is trained and average
the results over the last 1000 episodes for statistical purposes,
followed by a calculation of the confidence interval to quantify
the level of uncertainty in the results.

6. NUMERICAL RESULTS

Figure 4 depicts the progression of the episodic sum of reward
values for DeepDefrag with the penalty set (0.8, 0.1) in the
NSFNET topology. The plot shows the sum of the rewards of all
actions taken within an episode. The result demonstrates how
DeepDefrag optimizes its policy over time, leading to higher
reward values. Eventually, around episode 6,000, the agent con-
verges to a stable value. Naturally, as discussed later in this
section, in normal operating conditions, the agent will continue
to be trained in order to reflect the latest network conditions.



Research Article 8

0 1000 2000 3000 4000 5000 6000 7000 8000
Episode

0.008

0.010

0.012

0.014

0.016

0.018

Se
rv

ic
e 

B
lo

ck
in

g 
R

at
io

 (S
B

R
)

(a) Service blocking ratio (SBR)

0 1000 2000 3000 4000 5000 6000 7000 8000
Episode

0

10

20

30

40

50

60

70

 N
um

be
r o

f S
D

 c
yc

le
s p

er
 1

00
 a

rr
iv

al
s OF-FF(8,10)

OF-FF(5,15)
X-SD
No-SD
DeepDefrag(Ps=0.8, Pe=0.1)
DeepDefrag(Ps=0.3, Pe=0.05)

(b) Number of SD cycles per 100 arrivals

0 1000 2000 3000 4000 5000 6000 7000 8000
Episode

0

100

200

300

400

500

600

N
um

be
r o

f r
ea

llo
ca

tio
n 

pe
r 1

00
 a

rr
iv

al
s

(c) Number of reallocations per 100 arrivals

Fig. 5. Performance of the considered spectrum defragmentation schemes for the NSFNET network topology.

0 1000 2000 3000 4000 5000 6000 7000 8000
Episode

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

Se
rv

ic
e 

B
lo

ck
in

g 
R

at
io

 (S
B

R
)

(a) Service blocking ratio (SBR)

0 1000 2000 3000 4000 5000 6000 7000 8000
Episode

0

10

20

30

40

50

60

70

80

 N
um

be
r o

f S
D

 c
yc

le
s p

er
 1

00
 a

rr
iv

al
s OF-FF(8,10)

OF-FF(5,20)
X-SD
No-SD
DeepDefrag(Ps=0.8, Pe=0.1)
DeepDefrag(Ps=0.3, Pe=0.05)

(b) Number of SD cycles per 100 arrivals

0 1000 2000 3000 4000 5000 6000 7000 8000
Episode

0

200

400

600

800

N
um

be
r o

f r
ea

llo
ca

tio
n 

pe
r 1

00
 a

rr
iv

al
s

(c) Number of reallocations per 100 arrivals

Fig. 6. Performance of the considered spectrum defragmentation schemes for the German network topology.

Figure 5 shows the performance of the considered schemes
for the NSFNET topology, indicating the advantages of Deep-
Defrag. As shown in Fig. 5a, the two approaches performing
the best and the worst in terms of the SBR are X-SD and No-SD,
respectively. X-SD achieves 49% lower SBR than No-SD, which
indicates the potential gain that can be achieved by sequential
proactive SD algorithms. Figures 5b and 5c depict the number
of SD cycles and connection reallocations per 100 arrivals for the
different strategies.

Upon convergence of the DRL agent, DeepDefrag leads to a
notable SBR reduction compared to the No-SD scenario. With
the penalty set (0.8, 0.1), DeepDefrag achieves a 32% lower SBR
than No-SD. For the penalty set (0.3, 0.05), DeepDefrag reduces
the SBR by 38.6%. The confidence interval of the results for
DeepDefrag is 1.6% with a 95% confidence level. For the sake
of simplicity, we select penalty configuration (0.8, 0.1) for the
rest of the paper. Two different configurations are evaluated
for OF-FF. The first configuration is denoted by OF-FF (5, 15),
with the SD period equal to 5 connection departures, and allow-
ing up to 15 connection reallocations per SD cycle. OF-FF (5,
15) achieves approximately the same SBR as DeepDefrag in the
NSFNET topology, allowing for a comparison of their defrag-
mentation overheads. The second configuration is denoted by
OF-FF (8, 10), with the SD period equal to 8 request departures
and 10 reallocations per cycle. This results in almost the same
defragmentation overhead as DeepDefrag, enabling an exam-
ination of their SBR. On average, the OF-FF (8, 10) and OF-FF
(5, 15) schemes yield a 20.2% and 29.4% lower SBR than No-SD,
respectively, which aligns with the result reported by [9]. As
shown in these figures, DeepDefrag has almost the same defrag-
mentation overhead as OF-FF (8, 10), while it reduces SBR by
15.8%. The X-SD achieves 23.3% lower SBR than and DeepDe-
frag, but at the cost of a higher defragmentation overhead. This
confirms the effectiveness of DeepDefrag in reducing the SBR

by selecting appropriate actions. Next, we move our attention to
the configuration when DeepDefrag and OF-FF have close SBR
performance, i.e., OF-FF (5, 15). DeepDefrag triggers 14.1 SD
cycles per 100 arrivals on average as depicted in Fig. 5b. This is
29.5% lower than the number of SD cycles triggered by OF-FF.
As shown in Fig. 5c, DeepDefrag reallocates 132 connections
per 100 request arrivals on average, which is a 56% reduction
compared to OF-FF (5, 15).

The observed results illustrate how, during the training phase,
the lower SBR values can be attributed to the agent’s frequent
execution of SD cycles and reallocation of a significant number
of connections. As the agent progresses and learns to make
better decisions, it finds a beneficial trade-off between the SBR
and extensive reallocation, i.e., reduces the number of SD cycles
and connection reallocations, while slightly increasing the SBR.

When comparing the two penalty sets, DeepDefrag with the
(0.3, 0.05) configuration achieves a 10.2% lower SBR than the
(0.8, 0.1) configuration. This advantage comes at the expense
of a 44.2% higher number of connection reallocations and a
30% higher number of SD cycles. These results highlight the
trade-offs involved in selecting penalty values for DeepDefrag.
By adjusting the penalties, operators can effectively balance
the reduction in SBR with the associated costs of connection
reallocations and SD cycles.

Figure 6 depicts the SD performance when the considered
schemes are applied in the German topology. Also for this topol-
ogy, DeepDefrag, after convergence, outperforms all the bench-
mark SD heuristics. In this case, X-SD reduces the SBR by 69.5%
compared to No-SD (Fig. 6a). DeepDefrag with the penalty
set (0.8, 0.1) achieves 50% lower SBR than No-SD. Moreover, it
decreases the SBR by 34.8% in comparison with OF-FF (8, 10),
which has an equivalent defragmentation overhead to DeepDe-
frag. In addition, DeepDefrag has comparable SBR as OF-FF
(5, 20), while reducing the number of SD cycles and connection



Research Article 9

0 2000 4000 6000 8000 10000
Episode

0.010

0.015

0.020

0.025

Se
rv

ic
e 

B
lo

ck
in

g 
R

at
io

 (S
B

R
)

(a) Service blocking ratio (SBR)

0 2000 4000 6000 8000 10000
Episode

0

10

20

30

40

50

60

70

 N
um

be
r o

f S
D

 c
yc

le
s p

er
 1

00
 a

rr
iv

al
s OF-FF(10,8) -70 E 

No-SD -70 E
No-SD -90 E
OF-FF(6,10) -90 E
DeepDefrag -80->70 E
DeepDefrag -80->90 E

(b) Number of SD cycles per 100 arrivals

0 2000 4000 6000 8000 10000
Episode

0

50

100

150

200

250

300

350

N
um

be
r o

f r
ea

llo
ca

tio
n 

pe
r 1

00
 a

rr
iv

al
s

(c) Number of reallocations per 100 arrivals

Fig. 7. Performance of DeepDefrag for the NSFNET network topology with changing load conditions. The black dashed vertical
line indicates the moment when the load changes.

reallocations by 34.1% and 75%, respectively (Figs. 6b and 6c).
Similar trends for the different sets of DeepDefrag penalties are
observed as in the case of the NSFNET topology, trading-off the
frequency and volume of reallocations for the SBR. Examining
the learning aspects depicted in the figures indicates the ability
of DeepDefrag to reduce the SD overhead in terms of connection
reallocations and defragmentation cycles upon 5,500 and 6000
training episodes for the NSFNET and the German topology,
respectively.

The gap between X-SD and No-SD in terms of SBR is 49%
and 69.5% for the German and the NSFNET topology, respec-
tively, indicating a more prominent effect of SF in the German
network under the considered traffic scenario. Hence, the ability
of DeepDefrag to select appropriate actions becomes more sub-
stantial, resulting in a better overall performance in the German
topology compared to the NSFNET. In summary, DeepDefrag
outperforms the considered SD heuristic algorithms evaluated
across all of the examined metrics. It also achieves an acceptable
performance in terms of SBR compared to X-SD.

Figure 7 illustrates the results for the scenario with changing
load conditions in the NSFNET topology. The agent is initially
trained when the network is experiencing a load of 80 Erlang.
Around episode number 5,800, indicated by the black dashed
vertical line, the load changes to 90 Erlang and 70 Erlang, re-
spectively. The results demonstrate that the agent successfully
adapts to both an increase and a decrease of the traffic load. To
ensure a fair comparison, in this case we report the results for
the configurations of the OF-FF scheme that have equivalent
SD overhead as DeepDefrag. For the load of 90 Erlang, Deep-
Defrag outperforms the No-SD scheme by 36.7% in terms of
SBR. Additionally, it exhibits an 18.2% improvement over the
OF-FF (6,10) configuration. Similarly, for the load of 70 Erlang,
DeepDefrag demonstrates a 28.9% performance advantage over
the No-SD scheme, and a 9.5% improvement compared to the
OF-FF (10,8) configuration. These findings highlight DeepDe-
frag’s ability to adapt to acceptable solutions across varying
load levels, demonstrating its effectiveness in managing spec-
trum resources throughout the network lifetime under different
operating conditions.

7. CONCLUSION

In this paper, we propose a deep reinforcement learning (DRL)-
based framework called DeepDefrag. The framework jointly ad-
dresses different aspects of the spectrum defragmentation (SD)
problem. DeepDefrag determines when to perform SD, which
connections to reallocate and in what order, and which target
spectrum slots to be utilized by the reconfigured connections.

DeepDefrag considers spectrum occupancy information, includ-
ing three fragmentation metrics (i.e., number of cuts, Shannon
entropy (SE), and root of sum of squaress (RSSs)), as input to
the decision process. Simulation results show that DeepDefrag
can effectively reduce the service blocking ratio (SBR) while
requiring fewer SD cycles and connection reallocations com-
pared to heuristic methods from the literature. In some cases,
the SBR achieved by DeepDefrag approaches that of an exhaus-
tive method, while incurring substantially lower overhead. Fi-
nally, simulations with varying load conditions demonstrate
that DeepDefrag is able to effectively adjust to changing net-
work conditions.

FUNDING

Work partially supported by Sweden’s innovation agency VIN-
NOVA, within the framework of the EUREKA cluster CELTIC-
NEXT project AI-NET-PROTECT (2020-03506).

REFERENCES

1. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Mat-
suoka, “Spectrum-efficient and scalable elastic optical path network:
architecture, benefits, and enabling technologies,” IEEE Commun. Mag.
47, 66–73 (2009). DOI: 10.1109/MCOM.2009.5307468.

2. R. Wang and B. Mukherjee, “Provisioning in elastic optical networks
with non-disruptive defragmentation,” J. Light. Technol. 31, 2491–2500
(2013).

3. Y. Yin, H. Zhang, M. Zhang, M. Xia, Z. Zhu, S. Dahlfort, and S. B. Yoo,
“Spectral and spatial 2D fragmentation-aware routing and spectrum
assignment algorithms in elastic optical networks,” J. Opt. Commun.
Netw. 5, A100–A106 (2013). DOI: 10.1109/LCOMM.2021.3053279.

4. W. Shi, Z. Zhu, M. Zhang, and N. Ansari, “On the effect of bandwidth
fragmentation on blocking probability in elastic optical networks,” IEEE
Transactions on Commun. 61, 2970–2978 (2013).

5. B. C. Chatterjee, S. Ba, and E. Oki, “Fragmentation problems and
management approaches in elastic optical networks: A survey,” IEEE
Commun. Surv. & Tutorials 20, 183–210 (2017).

6. S. Ba, B. C. Chatterjee, and E. Oki, “Defragmentation scheme based
on exchanging primary and backup paths in 1+1 path protected elastic
optical networks,” IEEE/ACM Transactions on Netw. 25, 1717–1731
(2017).

7. M. Zhang, Y. Yin, R. Proietti, Z. Zhu, and S. J. B. Yoo, “Spectrum de-
fragmentation algorithms for elastic optical networks using hitless spec-
trum retuning techniques,” in Optical Fiber Communication Conference
and Exposition and the National Fiber Optic Engineers Conference
(OFC/NFOEC), (2013), pp. 1–3.

8. Y. Aoki, X. Wang, P. Palacharla, K. Sone, S. Oda, T. Hoshida, M. Sekiya,
and J. C. Rasmussen, “Dynamic and flexible photonic node architecture
with shared universal transceivers supporting hitless defragmentation,”

https://doi.org/10.1109/MCOM.2009.5307468
https://doi.org/10.1109/LCOMM.2021.3053279


Research Article 10

in European Conference and Exhibition on Optical Communications
(ECOC), (2012), pp. 1–3.

9. J. Comellas, L. Vicario, and G. Junyent, “Proactive defragmentation
in elastic optical networks under dynamic load conditions,” Photonic
Netw. Commun. 36, 26–34 (2018).

10. M. Zhang, C. You, and Z. Zhu, “On the parallelization of spectrum de-
fragmentation reconfigurations in elastic optical networks,” IEEE/ACM
Transactions on Netw. 24, 2819–2833 (2016).

11. D. Moniz, A. Eira, A. de Sousa, and J. Pires, “On the comparative
efficiency of non-disruptive defragmentation techniques in flexible-grid
optical networks,” Opt. Switch. Netw. 25, 149–159 (2017).

12. M. Shimoda and T. Tanaka, “Mask RSA: End-to-end reinforcement
learning-based routing and spectrum assignment in elastic optical
networks,” in European Conference on Optical Communication (ECOC),
(2021), p. Th1E.4.

13. X. Chen, B. Li, R. Proietti, H. Lu, Z. Zhu, and S. J. B. Yoo, “DeepRMSA:
A deep reinforcement learning framework for routing, modulation and
spectrum assignment in elastic optical networks,” J. Light. Technol. 37,
4155–4163 (2019).

14. M. R. Raza, C. Natalino, P. Öhlen, L. Wosinska, and P. Monti, “Rein-
forcement learning for slicing in a 5G flexible RAN,” J. Light. Technol.
37, 5161–5169 (2019).

15. E. Etezadi, C. Natalino, R. Diaz, A. Lindgren, S. Melin, L. Wosinska,
P. Monti, and M. Furdek, “DeepDefrag: A deep reinforcement learning
framework for spectrum defragmentation,” in IEEE Global Communica-
tions Conference (GLOBECOM), (2022), pp. 3694–3699.

16. X. Wang, Q. Zhang, I. Kim, P. Palacharla, and M. Sekiya, “Utilization
entropy for assessing resource fragmentation in optical networks,” in
Optical Fiber Communication Conference (OFC), (2012), pp. OTh1A–2.

17. D. Amar, E. Le Rouzic, N. Brochier, J.-L. Auge, C. Lepers, and N. Perrot,
“Spectrum fragmentation issue in flexible optical networks: analysis
and good practices,” Photonic Netw. Commun. 29, 230–243 (2015).

18. X. Yu, J. Zhang, Y. Zhao, T. Peng, D. Wang, and X. Lin, “Spectrum com-
pactness based defragmentation in flexible bandwidth optical networks,”
in National Fiber Optic Engineers Conference, (2012), p. JTh2A.35.

19. Y. Takita, K. Tajima, T. Hashiguchi, and T. Katagiri, “Wavelength defrag-
mentation with minimum optical path disruptions for seamless service
migration,” in Optical Fiber Communications Conference and Exhibition
(OFC), (2016), p. M2J.3.

20. P. Lechowicz, M. Tornatore, A. Włodarczyk, and K. Walkowiak, “Frag-
mentation metrics in spectrally-spatially flexible optical networks,” in
International Conference on Optical Network Design and Modeling
(ONDM), (Springer, 2020), pp. 235–247.

21. Y. Yin, M. Zhang, Z. Zhu, and S. B. Yoo, “Fragmentation-aware routing,
modulation and spectrum assignment algorithms in elastic optical
networks,” in Optical Fiber Communication Conference and Exposition
and the National Fiber Optic Engineers Conference (OFC/NFOEC),
(2013), p. OW3A.5.

22. P. Wright, M. C. Parker, and A. Lord, “Minimum- and maximum-entropy
routing and spectrum assignment for flexgrid elastic optical networking
[invited],” J. Opt. Commun. Netw. 7, A66–A72 (2015).

23. N. T. Khai, R. Romero Reyes, and T. Bauschert, “Spectrum defragmen-
tation with improved lightpath migration scheme in flex-grid networks,”
in International Conference on Optical Network Design and Modeling
(ONDM), (2021), pp. 1–6.

24. M. Zhang, Y. Yin, R. Proietti, Z. Zhu, and S. B. Yoo, “Spectrum defrag-
mentation algorithms for elastic optical networks using hitless spec-
trum retuning techniques,” in Optical Fiber Communication Conference
(OFC), (2013), pp. OW3A–4.

25. S. Fernández-Martínez, B. Baran, and D. P. Pinto-Roa, “Spectrum
defragmentation algorithms in elastic optical networks,” Opt. Switch.
Netw. 34, 10–22 (2019).

26. S. K. Singh and A. Jukan, “Efficient spectrum defragmentation with
holding-time awareness in elastic optical networks,” J. Opt. Commun.
Netw. 9, B78–B89 (2017).

27. S. Selvakumar and S. Manivannan, “A spectrum defragmentation al-
gorithm using jellyfish optimization technique in elastic optical network
(eon),” Wirel. Pers. Commun. pp. 1–19 (2021).

28. S. Trindade and N. L. da Fonseca, “Machine learning for spectrum
defragmentation in space-division multiplexing elastic optical networks,”
IEEE Netw. 35, 326–332 (2021).

29. Y. Xiong, Y. Yang, Y. Ye, and G. N. Rouskas, “A machine learning
approach to mitigating fragmentation and crosstalk in space division
multiplexing elastic optical networks,” Opt. Fiber Technol. 50, 99–107
(2019).

30. R. K. Jana, B. C. Chatterjee, A. P. Singh, A. Srivastava, B. Mukherjee,
A. Lord, and A. Mitra, “Machine learning-assisted nonlinear-impairment-
aware proactive defragmentation for c+l band elastic optical networks,”
J. Opt. Commun. Netw. 14, 56–68 (2022).

31. R. Romero Reyes and T. Bauschert, “Towards DRL-based routing and
spectrum assignment in optical networks: Lessons to be learned from
Markov decision processes,” in IEEE Latin-American Conference on
Communications (LATINCOM), (2021), pp. 1–6.

32. N. D. Cicco, E. F. Mercan, O. Karandin, O. Ayoub, S. Troia, F. Musumeci,
and M. Tornatore, “On deep reinforcement learning for static routing
and wavelength assignment,” IEEE J. Sel. Top. Quantum Electron. 28,
1–12 (2022).

33. N. E. D. El Sheikh, E. Paz, J. Pinto, and A. Beghelli, “Multi-band provi-
sioning in dynamic elastic optical networks: a comparative study of a
heuristic and a deep reinforcement learning approach,” in International
Conference on Optical Network Design and Modeling (ONDM), (IEEE,
2021), pp. 1–3.

34. X. Luo, C. Shi, L. Wang, X. Chen, Y. Li, and T. Yang, “Leveraging
double-agent-based deep reinforcement learning to global optimization
of elastic optical networks with enhanced survivability,” Opt. express
27, 7896–7911 (2019).

35. R. Li, R. Gu, W. Jin, and Y. Ji, “Learning-based cognitive hitless spec-
trum defragmentation for dynamic provisioning in elastic optical net-
works,” IEEE Commun. Lett. 25, 1600–1604 (2021).

36. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”
arXiv preprint arXiv:1312.5602 (2013).

37. R. Carpa, M. D. de ASSUNÇÃO, O. Glück, L. Lefèvre, and J.-C. Mignot,
“Responsive algorithms for handling load surges and switching links on
in green networks,” in IEEE International Conference on Communica-
tions (ICC), (IEEE, 2016), pp. 1–7.

38. B. Kozicki, H. Takara, Y. Sone, A. Watanabe, and M. Jinno, “Distance-
adaptive spectrum allocation in elastic optical path network (slice) with
bit per symbol adjustment,” in Conference on Optical Fiber Commu-
nication (OFC/NFOEC), collocated National Fiber Optic Engineers
Conference, (2010), pp. 1–3.

39. C. Natalino and P. Monti, “The Optical RL-Gym: An open-source toolkit
for applying reinforcement learning in optical networks,” in International
Conference on Transparent Optical Networks (ICTON), (2020).

40. A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-Baselines3: Reliable reinforcement learning implemen-
tations,” J. Mach. Learn. Res. 22, 1–8 (2021).


	Introduction
	Related work and background
	Spectrum fragmentation metrics
	Spectrum defragmentation techniques
	Reinforcement learning in optical networks

	Problem formulation
	The DeepDefrag scheme
	System model
	Markov decision process modeling
	Observation space
	Action space
	Reward function

	Learning Process using Deep Q-Networks

	Simulation settings
	Numerical results
	Conclusion

