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Capability Estimation of Lithium-Ion Batteries
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D. Mahinda Vilathgamuwa, Fellow, IEEE

Abstract—The power capability of a lithium-ion battery sig-
nifies its capacity to continuously supply or absorb energy
within a given time period. For an electrified vehicle, knowing
this information is critical to determining control strategies
such as acceleration, power split, and regenerative braking.
Unfortunately, such an indicator cannot be directly measured
and is usually challenging to be inferred for today’s high-energy
type of batteries with thicker electrodes. In this work, we propose
a novel physics-based battery power capability estimation method
to prevent the battery from moving into harmful situations during
its operation for its health and safety. The method incorporates a
high-fidelity electrochemical-thermal battery model, with which
not only the external limitations on current, voltage, and power,
but also the internal constraints on lithium plating and thermal
runaway, can be readily taken into account. The online estimation
of maximum power is accomplished by formulating and solving a
constrained nonlinear optimization problem. Due to the relatively
high system order, high model nonlinearity, and long prediction
horizon, a scheme based on multistep nonlinear model predictive
control is found to be computationally affordable and accurate.

Index Terms—Lithium-ion batteries, model predictive control,
P2D model, physics-based model, power capability, state of power.

I. INTRODUCTION

THE ongoing transportation electrification process across
the globe relies heavily on the development of lithium-

ion (Li-ion) battery systems [1]. A battery management system
(BMS) is essential for ensuring the efficiency, safety, and
longevity of these delicate electrochemical devices. Many fun-
damental functionalities must be carefully designed to monitor
the internal states, and operating limits, which can provide
critical signs for high-level energy management and control
systems [2]. The power capability of a battery is such a useful
performance indicator, which represents how much energy the
battery can charge or discharge within a given time interval
[3]. For example, the discharge power capability signifies the
accelerating capability of an electric vehicle (EV), and the
charge power capability is associated with the effectiveness of
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regenerative braking. When an EV is under recharging at the
fast charging station or participating in vehicle-to-grid/vehicle-
to-home services when parking, the power capability deter-
mines the maximum charging/discharging rate that can be
reached [4]–[6]. Furthermore, for hybrid electric vehicles,
knowing the power capability can be helpful in determining
the power split. As the power capability is affected by various
factors such as the battery state of charge (SOC), state of
health (SOH), temperature, and some external operating lim-
itations, battery manufacturers usually cannot provide exact
power capability information in the specification. An accurate
estimate of the power capability is essential to achieve high-
performance management of the battery itself as well as the
entire energy conversion system.

In the literature, the term power capability is also referred
to as or related to state-of-power, available power, peak power,
state of available power, and state of function, to name a few.
Despite the variation in names and definitions, the difference in
usage is trivial, and the estimation algorithms for these power
indicators can be generally classified into the offline and the
online methods. Offline methods, such as characteristic maps,
are established based on deterministic relationships between
state variables such as SOC and temperature, as well as
power pulse parameters [7]. However, these static methods
lack the necessary adaptation to the varying performance of
cells, caused by battery aging and past and present oper-
ating conditions. In contrast, online power capability pre-
diction/estimation techniques based on mathematical battery
models have been explored and exploited more extensively.
Commonly, equivalent circuit models (ECMs) are adopted
in the existing works due to their simple structure and low
computation [8]–[10]. The constraints that can be used to
calculate the power limits include the current, voltage, SOC,
and temperature. A comparative study on different ECM-based
power capability estimation methods can be found in [11].

Unfortunately, the ECM-based power capability estimation
is plagued by the requirements of accurate parameter identifi-
cation for extreme conditions close to the constraint boundary.
Usually, circuit parameters are considered as a function of
SOC and temperature, and simple recursive algorithms can be
used to estimate the circuit parameters during online opera-
tion [12]. However, as an electrochemical device, a battery
is a highly nonlinear and infinite-dimensional system, and
the circuit parameters can also be affected by many other
factors such as current magnitude and frequency [13]. Since
current or power is the quantity to be estimated, usually with
large magnitudes, it is less reasonable to use the parameter-
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s identified under a different operating condition. In other
words, apart from the bulk indicators such as SOC, SOH,
and lumped cell temperature, the power capability is also
closely related to the nonuniform behaviors of internal states,
while the generalization capability of the conventional lumped-
parameter ECM can be poor unless high-order ECMs and
high-dimensional lookup tables are adopted to characterize the
RC components at various operating conditions. Nevertheless,
due to the empirical nature of conventional ECMs, even
significantly increased experiments and model complexity do
not guarantee that accurate results can be obtained under
extreme conditions where data are not covered. Extrapolation
of the degradation behaviors and prediction of safety margin
inside of the cell using ECMs is also prone to fail due to the
lack of mechanistic description of related behaviors, e.g., the
growth of the solid-electrolyte interphase film, Li plating, and
thermal runaway.

Instead, one can use a physics-based model (PBM) to solve
the problems of empirical ECMs due to its high extrapolability
and the capability to predict the internal behaviors related to
battery health and safety. One of the most widely adopted
PBMs, namely the pseudo-two-dimensional (P2D) model, can
be used to describe various electrochemical phenomena, such
as ion diffusion, intercalation kinetics, as well as heat gen-
eration/heat transfer. Such a model is capable of reproducing
battery dynamics and accurately predicting the internal operat-
ing limits with high fidelity [14]. Since the P2D model consists
of coupled partial differential-algebraic equations (PDAEs),
model order reduction is commonly needed for designing
and implementing online model-based algorithms [1]. The
most widely investigated reduced-order model (ROM) is the
isothermal single particle model (SPM), which describes the
diffusion of each electrode in a lumped spherical particle
and ignores the influences of electrolyte dynamics and heat
transfer. However, its capability to predict battery performance
is only limited to low to medium current rates. The accuracy
of the SPM can be first improved by adding back the elec-
trolyte dynamics as considered in the P2D model, and further
enhanced by incorporating a certain thermal model [15].
Although the single-particle-based model has been adopted in
the literature for advanced power capability prediction [16],
the uniform assumption for each electrode holds only for very
thin electrodes or under low to medium current rates, but can
be significantly violated in other conditions, especially for the
future high-energy battery cells with ever-thicker electrodes
[17]. Furthermore, the extended operating range can lead to
significant nonuniform degradation behaviors in the electrode.
For example, degradation behaviors such as Li plating can
develop nonuniformly over the negative electrode and is
observed to occur most significantly at the separator-anode
interface [18]. Clearly, the lumped electrode in the single-
particle-based models does not comply with the operating
conditions under which the power capability is calculated.

The recent technological advancements in modern micro-
processors and cloud computing unlock the possibility of
using high-fidelity models for battery state estimation and
control purposes in advanced BMS. This fact motivates us
in this work to develop novel physics-based power capability

estimation algorithms to close the gap as mentioned above,
and to overcome the problems of existing power capabili-
ty estimation algorithms based on offline, lumped-parameter
ECMs, or electrochemical SPM-based algorithms. Specifically,
in contrast, a computationally affordable physics-based circuit
model is adopted to design model predictive control (MPC)
strategies to predict the maximum battery power. The major
advantages of the proposed methods over the existing power
capability estimation methods are the ameliorated generality
and extrapolability to wide operating regimes and the potential
to include the internal health and safety constraints to avoid
critical issues, including Li plating and thermal runaway. To
our best knowledge, this is the first attempt to use high-fidelity
physics-based models with nonuniform porous electrodes for
Li-ion battery power capability estimation.

II. PHYSICS-BASED MODELING OF LI-ION BATTERIES

As mentioned in the introduction section, a PBM can pro-
vide much more insight into the internal operating limits apart
from the external constraints under extended operating ranges
for power capability prediction. In this section, we provide an
overview of a high-fidelity PBM of Li-ion batteries for the
development of the power capability estimation algorithm in
the latter sections.

The P2D model of Li-ion batteries is a PDAE system estab-
lished using the porous electrode theory and the concentrated
solution theory [14]. Three physical compartments, including
the positive electrode (i.e., the cathode, denoted by “pos”),
the negative electrode (i.e., the anode, denoted by “neg”), and
the separator (sep), are modeled within three mathematical
domains. The submodels of the P2D model describe the
diffusion and migration of Li species in different domains.
The transmission-line-like circuit network in Fig. 1 can be
used to illustrate the model structure. This network can be
obtained by applying the finite volume method (FVM) to the
partial differential equations (PDEs) that describe the charge
transport along the horizontal direction. The domains of the
positive electrode, separator, and negative electrode are divided
into N pos, N sep, and N neg control volumes, respectively. The
subscript i ∈ {1, 2, · · · , N tot} indicates the local quantities at
the ith control volume, where N tot = N pos + N sep + N neg is
the total number of control volumes. This spatially discretized
model will be briefly explained next. For the ease of nota-
tion, we define the following index sets of control volumes
Ipos := {1, 2, · · · , N pos}, Isep := {N pos+1, · · · , N pos+N sep},
and Ineg := {N pos + N sep + 1, · · · , N tot}. Furthermore, we
use superscripts such as “neg/sep” and “pos/sep” to indicate
the control volume at an electrode/separate boundary, and use
“neg/col” and “pos/col” to indicate the control volume at an
electrode/current collector boundary, as indicated in Fig. 1.

In Fig. 1, Uss,i and Ue,i are concentration- and temperature-
controlled voltage sources, denoted by

Uss,i = fss,i(css,i, Tbat), i ∈ Ipos ∪ Ineg (1)
Ue,i = fe,i(ce,i, Tbat), i ∈ Ipos ∪ Isep ∪ Ineg (2)

where css,i, ce,i, and Tbat are the local solid-phase surface
concentration, local electrolyte concentration, and lumped bat-
tery temperature, respectively. fss,i(·) and fe,i(·) are nonlinear
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Fig. 1. Equivalent circuit representation of PBM of a Li-ion battery cell with
thick electrodes.

functions determined by the material characteristics of the
electrodes and the electrolyte material, respectively.

According to the equivalent circuit network in Fig. 1, given
the input current Iapp and considering that the voltage sources
Uss,i and Ue,i are only state-dependent, one can solve for
all branch currents including In,i, Ie,i±0.5, and Is,i±0.5. For
example, the solution of In,i (which is proportional to the
local pore-wall molar flux jn,i) in the positive electrode can
be vectorized as,

Ipos
n = Kpos

n,ZSRIapp + Gpos
n,ZIR(Upos

ss + Upos
e ) (3)

where Ipos
n , Upos

ss , and Upos
e are vectors that contain In,i, Uss,i,

and Ue,i, respectively, where i ∈ Ipos. In the circuit theory,
the two terms on the RHS of (3) are the zero-state response
(ZSR) and zero-input response (ZIR) components of Ipos

n ,
respectively. For the negative electrode, A similar result can
be obtained, i.e.,

Ineg
n = Kneg

n,ZSRIapp + Gneg
n,ZIR(Uneg

ss + Uneg
e ) (4)

Here, the vectors Kpos
n,ZSR, Kneg

n,ZSR and the square matrices
Gpos
n,ZIR, Gneg

n,ZIR are determined by the resistances in the
respective electrodes as shown in Fig. 1 and the reader is
referred to Eqs. (C.3) and (C.4) of [14] for their detailed
expressions.

The local concentrations css,i and ce,i, and battery SOC are
governed by reduced diffusion equations that can be generally
expressed by

ẋc = Acxc + Bc

[
Ipos
n

Ineg
n

]
(5)

[c>ss , c
>
e , c

neg
s,avg]> = Ccxc (6)

SOC =
cneg
s,avg − cneg

s,0%

cneg
s,100% − c

neg
s,0%

(7)

where xc is a vector containing all concentration states, css is
a vector containing all css,i, ce contains all ce,i, and cneg

s,avg

is the bulk concentration of Li species averaged over the
negative electrode volume. cneg

s,100% and cneg
s,0% are the solid-

phase concentrations corresponding to the fully charged and
fully discharged states, respectively. The matrices Ac, Bc,
and Cc are determined by the model reduction method and
diffusion-related parameters. The specific methods we used in
this work are described in Section A of Appendix.

In addition, the battery temperature Tbat is described by a
lumped heat transfer model,

CT Ṫbat = −(Tbat − Tamb)/RT +QT (8)

where CT is the thermal capacitance, RT is the thermal re-
sistance, Tamb is the ambient temperature. The heat generation
term QT is considered as the sum of the power loss from
all the elements in the equivalent circuit in Fig. 1. Note
that this lumped thermal model is used for demonstrative
purposes without the need to consider the cell’s geometrical
properties, while more advanced thermal models (e.g., [19])
can be incorporated into the current framework.

Since all the nodal voltage including the solid phase po-
tential Φs,i can be obtained once (3) and (4) are solved, the
battery voltage can be readily calculated by

Vbat = Φpos/col
s − Φneg/col

s +RcolIapp (9)

where Rcol is the lumped resistance of the current collectors.
Next, the local Li plating is determined by the following

side-reaction potential

ηLiP,i = Uss,i +RΣ,iIn,i. (10)

The reader is referred to works such as [14], [20] for
detailed information on the PBM, denoted by the P2D-T in
the rest of this work.

III. PROBLEM FORMULATION

A. Model Discretization and Reformulation

The P2D-T model presented in the previous section is a stiff
system of nonlinear ordinary differential equations (ODEs).
To improve the numerical stability, we discretize the ODEs
in the time domain using an implicit-explicit (IMEX) method
as described in Section B of Appendix. This yields a state
transition equation in the form of

x(k + 1) = f(x(k), u(k)) (11)

where k ∈ {0, 1, · · · } is the discrete-time instant, f : Rnx ×
R → Rnx is a nonlinear map. The system state vector x of
the PBM consists of concentration states and temperature, i.e.,
x = [x>c , Tbat]

> ∈ Rnx . The battery current u = Iapp is the
single input of the system.

The output of the model contains all variables that can limit
the battery’s power capability. We divide the output variables
into two groups. First, y1 is used to represent the output
variables that are directly affected by the input u, such as
the voltage Vbat and battery power Pbat = VbatIapp, governed
by

y1(k) = g1(x(k), u(k)). (12)

Note that the model input, i.e., the battery current Iapp, is also
considered as an element of y1. On the other hand, we use
y2 to denote the variables not directly affected by u but only
dependent on the state x. These variables, including SOC,
concentrations, and temperature, are governed by

y2(k) = g2(x(k)). (13)
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To consider the influence of u on y2, we propagate the
model (11) to yield one-step forward time-shift,

y2(k + 1) = g2(x(k + 1)) = g2(f(x(k), u(k))). (14)

Next, we define a generalized output as

y(k) = g(x(k), u(k)) (15)

where

y(k) :=

[
y1(k)

y2(k + 1)

]
, g(x(k), u(k)) :=

[
g1(x(k), u(k))

g2(f(x(k), u(k)))

]
.

By expressing the output as (15), one can simplify the anal-
ysis and implementation of the MPC-based power capability
prediction algorithm, as will be explained in detail next.

B. General Problem Statement
The power capability of a battery is defined as the maximum

continuous charge or discharge power under which the internal
and external operating constraints are not violated over a time
horizon τJ (e.g., 10− 30 s). The power capability is obtained
by solving Problem 1.

Problem 1: At instant k, given the state estimate x(0|k) =
x̂(k), we seek the optimized present and future input sequence

u?±(k) = arg max
u(k)

(±Pbat(0|k)) (16a)

s.t. x(j + 1|k) = f(x(j|k), u(j|k)), (16b)
y(j|k) = g(x(j|k), u(j|k)), (16c)

Pbat(0|k) = Pbat(1|k) = · · ·Pbat(NJ − 1|k), (16d)
y(j|k) � y ⊂ Rny , (16e)

with respect to u(k) := [u(0|k), u(1|k), · · · , u(NJ − 1|k)]>.
The argument j|k denotes the predicted quantity at the time
instant k + j, j ∈ J := {0, 1, · · · , NJ − 1} represents the
distance from the predicted time instant to the present time
instant k, and NJ = τJ /∆t is the prediction horizon. The
equality constraint (16d) ensures the power in the prediction
horizon remains constant to meet the strict definition of the
power capability. The symbol ± is “+” when evaluating the
charge power capability P chg

max(k), while it becomes “−” for
evaluating the discharge power capability P dch

max(k). It can be
seen that by defining the general output y (15), the formulation
of the power capability estimation problem can readily cover
the terminal constraints for y2(NJ ). The constraints on input
and state are incorporated into the general output constraints
in (16e). The battery model (16a), (16b), and the inequality
constraints (16e) will be discussed in the subsequent subsec-
tion.

C. Limiting Factors of Battery Power Capability
Many health and safety factors can limit the power capa-

bility for Li-ion batteries in practice. Conventionally, only the
terminal conditions including battery current Iapp, voltage Vbat,
and power rating Pbat are considered, i.e.,

Iapp ≤ Iapp(j|k) ≤ Iapp (17a)

V bat ≤ Vbat(j|k) ≤ V bat (17b)

P bat ≤ Pbat(j|k) ≤ P bat. (17c)

Due to the limited diffusivities, the concentrations in both
the solid phase and the electrolyte can show significant nonuni-
formity. The charge power capability is usually limited by
the graphite-based negative electrode. During the charging
process, the solid-phase concentration tends to saturate first
at the neg/sep boundary, while the electrolyte concentration
at the neg/col boundary tends to deplete first. To avoid bulk
and local overcharge/overdischarge phenomenon as well as the
depletion of lithium ions in the electrolyte, it is required to
enforce the boundary constraints:

SOC < SOC(j + 1|k) ≤ SOC (17d)

cneg
s ≤ cneg/sep

ss (j + 1|k) ≤ cneg
s (17e)

cneg
s ≤ cneg/col

ss (j + 1|k) ≤ cneg
s (17f)

cneg/col
e (j + 1|k) ≥ ce (17g)

cpos/col
e (j + 1|k) ≥ ce. (17h)

Next, to avoid Li plating, the Li plating potential at the
neg/sep boundary should be regulated above zero, i.e.,

η
neg/sep
LiP (j|k) ≥ η

LiP
≥ 0. (17i)

Last, high current flowing through the resistive components
as well as electrochemical reactions can produce a large
amount of heat, and heat accumulation can cause safety
issues such as thermal runaway and health issues leading to
accelerated aging. Assuming T bat is the maximum temperature
limit for health and safe operation, we have

Tbat(j + 1|k) ≤ T bat. (17j)

Note that either the upper or the lower constraints will
be activated for the charging and discharging processes.
In summary, for the charging process, the output vector is
y = [Iapp, Vbat, Pbat,SOC, cneg/sep

ss ,−cneg/col
e ,−ηneg/sep

LiP , Tbat]
>.

The corresponding bound vector of the output is
y = [Iapp, V bat, P bat,SOC, cneg

s ,−ce,−ηLiP
, T bat]

>. On
the other hand, for the discharging process, we have
y = [−Iapp,−Vbat,−Pbat,−SOC,−cneg/col

ss ,−cpos/col
e , Tbat]

>

and y = [−Iapp,−V bat,−P bat,−SOC,−cneg
s ,−ce, T bat]

>.

IV. POWER CAPABILITY ESTIMATION BASED ON
MULTISTEP NONLINEAR MODEL PREDICTION CONTROL

A. Offline and Online Solutions

The most direct approach to solve (16) is to use a global
optimization technique, such as dynamic programming, or a
metaheuristic method, such as the genetic algorithm. However,
in a typical BMS, the optimization horizon (pulse width) τJ
can be long as 10 to 30 s, or even longer, while the sampling
time ∆t is much shorter, e.g., 1 s. The long optimization
horizon requires intractable computation for online operation
due to the present high-order and highly nonlinear system.

There are several pathways to solve the above problem.
First, model order reduction can be used to simplify the
system. Although there is a vast body of model order reduction
techniques for the battery models, see, e.g., [1], most of the
techniques rely on the assumptions that the battery is under
normal operating conditions: away from the bounds, low-to-
medium current rates, normal temperature ranges, uniform
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concentration distribution, etc. As for the power capability
estimation, the battery is to be pushed toward the operating
limits under some extreme conditions, and the underlying
assumptions for most model reduction techniques become
invalid. Hence, the FVM is used since it is a generic discretiza-
tion technique that does not need any assumptions. The system
order is not limited but subject to the requirement of model
accuracy. Furthermore, the FVM preserves several physical
properties, such as mass conservation, which is important for
advanced battery management [21].

The second category of approaches is to use a real-time
optimization method such as MPC to obtain an approximate
solution. The nonlinear MPC (NMPC) is an effective method
to obtain an approximate solution to global optimization.
However, NMPC is subject to high computational costs and
is thus considered intractable for real-time implementation of
the present high-order system. The linear time-varying MPC
(LTV-MPC) can be used to combat the computational problem
of the NMPC, but it is not suitable for highly nonlinear
systems with a long prediction horizon. This motivates us to
develop a new scheme to overcome the problems of NMPC-
and LTV-MPC-based schemes for the challenging task of
power capability estimation.

B. NMPC-Based Power Capability Prediction

A multistep NMPC-based method is proposed as follows: At
instant k, we repeatedly seek the optimizing input subsequence
over a reduced, receding horizon NL < NJ given the initial
state x(0|l|k),

u?±(l, k) = arg max
u(l,k)

[±Pavg(l, k)] (18)

where u(l, k) := [u(0|l|k), u(1|l|k), · · · , u(NL − 1|l|k)]> ∈
RNL and

Pavg(l, k) =
1

NL

NL−1∑
j=0

Pbat(j|l|k). (19)

Here, NL is denoted as the prediction horizon. Note that
instead of placing an equality constraint on instantaneous
battery power as in (16d), we relax the objective to maximize
or minimize the average power over each prediction horizon.
Such a simpler optimization problem can be solved as a
constrained nonlinear programming problem with a finite time
horizon. Once u?±(l, k) is obtained, only the first H elements
are used for forwarding the battery model and obtaining the
initial state x(0|l +H|k) for the next optimization. Here H is
denoted as the control horizon. The above optimization prob-
lem is repeatedly solved for l ∈ {0, H, 2H, · · · (NO − 1)H}
to construct the final input sequence for instant k, i.e.,

...

u(0|0|k)

u(1|0|k)

u(0|2|k)

u(1|2|k)

u(0|4|k)

u(1|4|k)

u(2|4|k)

u(3|4|k)

u(0|k)

u(1|k)

u(2|k)

u(3|k)

u(4|k)

u(5|k)

u(6|k)

u(7|k)

u(k)

u(0,k)

u(2,k)

u(4,k)

Fig. 2. Schematic of the multistep MPC based algorithm for power capability
estimation with NJ = 8, NL = 4, H = 2, and NO = 3.

u?±(k) :=



u?(0|0|k)
u?(1|0|k)

...
u?(H − 1|0|k)
u?(0|H|k)
u?(1|H|k)

...
u?(H − 1|H|k)

...
u?(0|(NO − 2)H|k)

...
u?(H − 1|(NO − 2)H|k)

u?((NO − 1)H, k)



(20)

where NO is the number of optimization problems that need
to be solved successively per pulse, calculated by

NO = d(NJ −NL)/He+ 1 (21)

and d·e represents the ceiling function, i.e., the least integer
greater than or equal to the input. Note that when solving for
(20), the corresponding power sequence, denoted by P?±(k),
has also been calculated. The power capability is determined
by the last component in P?±(k), i.e.,

P chg
max(k) = P?+(k +NJ − 1) (22)

P dch
max(k) = P?−(k +NJ − 1) (23)

Similarly, the last component in u?±(k) denotes the current
capability Ichg

max(k) and Idch
max(k). To further reduce the compu-

tational burden, a commonly adopted technique can be used
to impose

u?(0|l|k) = u?(1|l|k) =, · · · ,= u?(H − 1|l|k), (24)

so that the number of decision variables can be further reduced
approximately by a factor of H .

With (24), the proposed method to construct u?(k) at instant
k is illustrated in Fig. 2 with NJ = 8, NL = 4, H = 2, and
NO = 3. The algorithm is summarized as Algorithm 1.
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Algorithm 1 Multistep NMPC-Based Power Capability Esti-
mation

1: Give an initial guess of the state x̂(0).
2: while k do
3: Estimate the state x̂(k).
4: x(0|k)← x̂(k).
5: for l = 0 : H : (NO − 1)H do
6: x(0|l|k)← x(l|k).
7: Solve (18) to obtain a sequence u?(l, k) ∈ RNL with

(Algorithm 1.1) or without (24) (Algorithm 1.2).
8: if l < (NO − 1)H then
9: u?(l|k)← u?(0|l|k).

10: u?(l + 1|k)← u?(1|l|k).

11:
...

12: u?(l +H − 1|k)← u?(H − 1|l|k).
13: Forward the physics-based battery model using

u?(l|k), · · · , u?(l +H − 1|k) to obtain the end-
time state x(l +H|k).

14: else if l = (NO − 1)H then
15: for n = 1 : NJ −H(NO − 1) do
16: u?(n+ l|k)← u?(n|l|k).
17: end for
18: end if
19: Obtain the power capability P chg

max(k) using (22) and
P dch

max(k) using (23).
20: end for
21: end while

C. Ensemble-Based State Estimator for High-Dimensional
Systems

Note that the state variable x(k) should be estimated as the
initial condition for solving the MPC problem. Since the state
variables of the present battery model are all unmeasurable, a
state observer shall be designed to estimate them based on the
battery model and measurements. Due to the presence of mod-
el uncertainty, measurements errors, and the high-dimensional
nature of the battery model, an ensemble-based state estimator,
such as the ensemble Kalman filter (EnKF) [20] or the singular
evolutive interpolated Kalman filter [21] can be used in this
framework. These ensemble-based state estimation algorithms
are much less computationally demanded than conventional
nonlinear observers, such as the extended Kalman filter and
the unscented Kalman filter that have been widely adopted in
the battery management community.

As an example, the EnKF is adopted in this work, initial-
ized by choosing a proper initial state ensemble X̂(0|0) :=
[x̂(1)(0|0), x̂(2)(0|0), · · · , x̂(NP)(0|0)] where NP is the en-
semble size. The prior state ensemble X̂(k|k − 1) :=
[x̂(1)(k|k−1), x̂(2)(k|k−1), · · · , x̂(NP)(k|k−1)] is obtained
according to the state equation, i.e.,

x̂(p)(k|k − 1) =f(x̂(p)(k − 1|k − 1), u(k))

+ w(p)(k) ∀p ∈ P. (25)

where P := {1, 2, · · · , NP}.
To assimilate the latest measurements z(k) = Vbat(k)

to obtain the posterior state ensemble X̂(k|k) :=

[x̂(1)(k|k), x̂(2)(k|k), · · · , x̂(NP)(k|k)], a measurement en-
semble Ẑ(k) := [ẑ(1)(k), ẑ(2)(k), · · · , ẑ(NP)(k)] is generated,
where

ẑ(p)(k) = h(x̂(p)(k|k − 1), u(k)) ∀p ∈ P (26)

The member of the posterior state ensemble X̂(k|k) in the
EnKF is updated via

x̂(p)(k|k) = x̂(p)(k|k − 1)

+ K(k)(z(k) + v(p)(k)− ẑ(p)(k)) ∀p ∈ P (27)

where v(p)(k) ∼ N (0,R(k)) is the pseudo measurement
perturbation added to obtain the correct error covariance. K(k)
is the ensemble Kalman gain expressed by

K(k) =
X̃(k|k − 1)Z̃(k)>

NP − 1

(
Z̃(k)Z̃(k)>

NP − 1
+ R(k)

)−1

(28)

Here, X̃(k|k − 1) = [x̃(1)(k|k − 1), · · · , x̃(NP)(k|k − 1)]
is the perturbation part of X̂(k|k − 1), where

x̃(p)(k|k − 1) = x̂(p)(k|k − 1)− 1

NP

NP∑
p=1

x̂(p)(k|k − 1) (29)

Similarly, Z̃(k) := [z̃(1)(k), · · · , z̃(NP)(k)] is the perturba-
tion part of Ẑ(k), where

z̃(p)(k) = ẑ(p)(k)− 1

NP

NP∑
p=1

ẑ(p)(k) (30)

Finally, the estimate of the system state at time instant k is
considered as the ensemble mean of X̂(k|k), i.e.,

x̂(k) =
1

NP

NP∑
p=1

x̂(p)(k|k) (31)

V. ILLUSTRATIVE EXAMPLES

A. System Configuration

In this section, the proposed battery power capability esti-
mation strategy is numerically examined. Both the plant and
the control were simulated in MATLAB R2019b on a PC
with a processor of Intel Core i7 and RAM of 16 GHz. The
fidelity of the presented P2D-T model has been validated in
various existing works. For parameterizing a Li-ion battery,
the general steps are briefly described as follows. First, the
function of the open-circuit potential (OCP) of the negative
electrode (i.e., fss,i(·), i ∈ Ineg in (1)) was obtained from the
literature, and the OCP function of the positive electrode was
fitted as the sum of measured open-circuit voltage and the
OCP of the negative electrode. Sensitivity analysis was next
conducted based on the measurements. Most of the material-
dependent parameters and the parameters with low sensitivities
to input were obtained from the literature, and the remaining
parameters were identified using the genetic algorithm. In this
work, the model parameters are for a 5-Ah NMC811/graphite-
silicon battery cell and provided in Table II and Table III in
Section A of Appendix.

The ODE plant model (1)–(10) was solved using ode32tb
function and the numbers of control volumes were selected as
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Fig. 3. Model comparison for battery power capability estimation. (a) Applied
current rate. (b) Li plating potential in the negative electrode. (c) Solid-
phase surface concentration in the negative electrode. (d) Pore-wall molar flux
in the negative electrode. (e) Charge power capability. (f) Discharge power
capability.

N pos = 10, N sep = 5, and N pos = 10. The noise-corrupted
measurements z(k) sampled at ∆t = 1 s, were used for
estimating the battery state x̂(k) based on the ensemble-based
estimator (25)–(31). The constraints were selected as Iapp =
4C, Iapp = −4C, V bat = 4.2 V, V bat = 2.5 V, P bat = 65 W,
P bat = −65 W, SOC = 1, SOC = 0, cneg

s = 33, 000 mol/m3,
cneg
s = 1000 mol/m3 , ce = 200 mol/m3, η

LiP
= 0, and

T bat = 310.15 K (37 ◦C). The constrained nonlinear opti-
mization problems (16) and (18) were solved using fmincon
function with the sequential quadratic programming.

B. Comparison of Different Physics-Based Models

In order to demonstrate why and how the proposed algo-
rithm based on a high-dimensional physics-based model is su-
perior to existing electrochemical models for power capability
prediction, we first compare the predicted power capability
with 1) a single particle model enhanced by electrolyte and
thermal dynamics (SPM-eT) [22] and 2) a single particle
model with thermal dynamics (SPM-T) [23]. In both the SPM-
eT and SPM-T, the distributed behaviors along the electrode
thickness are ignored, and it is assumed that spatio-temporal
variables such as the molar flux, solid-phase concentration, and
overpotentials for reactions are all uniform in the respective
electrode [1]. Note that in this example, the same model is
used for both simulating the battery and power capability
estimation. The battery is discharged at room temperature
(Tamb = 25 ◦C) with 1C constant current from SOC = 0.9.
Suppose the battery requires a 10-s charging power to achieve
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Fig. 4. Simulated results with different power capability estimation algo-
rithms: (a) Current rate. (b) Current rate (detail). (c) Battery power. (d) Battery
power (detail). (e) Li plating potential at the sep/neg boundary. (f) Li plating
potential at the sep/neg boundary (detail).

regenerative braking from 10 s to 20 s (i.e., NJ = 10). The
simulated results with the three PBMs are shown in Fig. 3.
At this high SOC level, the limiting factor is the Li plating
potential: As can be observed from Fig. 3(b), by applying the
maximum charging power, all the local Li plating potentials
can be kept nonnegative. However, the predicted power ca-
pabilities from different models have significant differences,
as can be seen in Fig. 3(e) and Fig. 3(f). The reason for
these differences is mainly because for a thick electrode,
there are considerable nonuniform behaviors (see Fig. 3(c) and
Fig. 3(d)). The resulting Li plating potential should be much
lower in the neg/sep boundary than in other positions, and this
can be accurately captured by the P2D-T model. In contrast,
both the SPM-eT and SPM-T are only able to predict the
average effects of the Li plating potential. Fig. 3(e) shows that
the predicted charge power capabilities are overestimated for
these ROMs. For a real battery, overestimated power capability
can lead to aggressive control and accelerated aging/failure.
Hence, the results demonstrate the significance of using the
high-dimensional model for predicting the battery power ca-
pability to consider battery health information.

C. Comparison of Different Power Capability Prediction Al-
gorithms

Under the same operating condition as the previous sub-
section, we evaluate the effectiveness of different algorithms
to predict the battery power capability. In this case, the true
battery state is assumed to be accessible, and thus the state
estimator is not applied. Five schemes are compared, including

1) Global optimization for Problem 1 (benchmark);
2) Algorithm 1.1 with NL = 1, H = 1, NO = 10;
3) Algorithm 1.2 with NL = 5, H = 5, NO = 2; and
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4) Algorithm 1.2 with NL = 10, H = 10, NO = 1.
5) LTV-MPC with NL = 10, H = 10, NO = 1.

The results are shown in Fig. 4 and Fig. 5, and the perfor-
mances are summarized in Table I. In this case, according to
Scheme 1, the true charge power capability at t = 10 s is
12.84 W. From Figs. 4(e) and (f), the Li plating potential ηLiP
are all maintained nonnegative to avoid accelerated battery
aging. For Algorithm 1.1 (Scheme 2), both power and current
are reduced in a drastic manner due to its shortsightedness
during prediction. The predicted power at the end of the
period is slightly lower than the benchmark value. However,
Scheme 2 demands high computation, as indicated in Table I.
In contrast, we consider that Algorithm 1.2 (Schemes 3 and
4) has the advantages of high accuracy and computational
efficiency. However, Fig. 4(d) shows that for Scheme 4, the last
element in the sequence is slightly higher than the benchmark
value, which might lead to the violation of the constraints.
Hence, Scheme 3 will be used to demonstrate the performance
of the proposed power capability estimation method next,
as its conservativeness can offer a certain safety margin.
Furthermore, the results of the LTV-MPC-based algorithm
(Scheme 5) show that the estimated charge power capability is
underestimated due to the overestimated Li plating potential.
The predicted charge power capability is about 7% lower
than the benchmark value. Although from Figs. 4(e) and (f),
the LTV-MPC scheme is seen to provide a 0.005-V safety
margin against Li plating, whether such a good property is
available under all operating conditions and with different
battery parameters need further investigation.

TABLE I
COMPARISON OF PERFORMANCES OF DIFFERENT SCHEMES

Scheme 1 2 3 4 5
Pbat (W) at t = 20 s 12.84 12.82 12.83 12.85 11.95

CPU runtime (s) 25.1 1.0 0.26 0.22 0.02

Fig. 6 shows the results under alternate charge and discharge
current pulses according to the predicted maximum power,
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superimposed on a constant 1C discharge profile. From the
high to the low SOC levels, it can be seen that the succes-
sive limits of the charge power capability are the voltage,
Li plating potential, temperature, and power rating. On the
other hand, the discharge power capability is sequentially
limited by the power rating, current, temperature, and solid-
phase concentration. Furthermore, it is also shown that the
electrolyte concentration and SOC are not limiting factors for
the power capability. This example exhibits the significance
of considering the electrochemical and thermal quantities as
constraints for power capability calculation.

D. Power Capability Estimation Under a Dynamic Profile

By incorporating the EnKF-based battery state estimator
in Section IV-C, Fig. 7 shows the charge power capability
estimation results based on the proposed algorithm under
a modified Federal Urban Dynamic Schedule (FUDS) pro-
file with the initial SOC being 0.99. The ensemble size is
chosen to be NP = 5, and the measurement covariance is
R = (0.01 V)2. The amplitude of the original current profile
is doubled, leading to a maximum current rate of 3C. We
compare the proposed method with a conventional scheme
where only battery current, voltage, and terminal power are
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considered as constraints. Since no internal electrochemical-
thermal variables are considered in this conventional scheme,
an ECM can be used with a similar NMPC algorithm proposed
in the present work. It can be seen from Fig. 7(a) that the
allowable maximum charge power is much lower than the one
only limited by the external electrical constraint after about
1100 s. This reduced charging capability is mainly limited by
the internal constraints on Li plating and temperature. On the
other hand, as can be observed from Fig. 7(c), a considerably
reduced discharge power capability can be seen at the end
of the cycling process where the temperature limit has been
reached.

Based on the proposed scheme, the root-mean-square error
(RMSE) and maximum absolute error (MAE) of the charging
power capability estimation are 0.08% and 0.98%, respective-
ly. The RMSE and MAE of the discharging power estimation
are 0.02% and 1.14%, respectively. These results highlight
the high accuracy of the proposed power capability estimation
scheme. It should also be mentioned that as shown in Fig. 8,
it requires an average of 0.15 s for the CPU to calculate the
charge and discharge power capabilities per sampling time
(∆t = 1 s), and 95% CPU runtime is shorter than 0.2 s. Thus,
the computational load of the proposed algorithm is considered
affordable for online operation.

In another example shown in Fig. 9, we compare the results
of the estimated power capabilities under the different ambient
temperatures. In this example, the upper temperature limit was
raised up to Tamb = 45 ◦C. It can be readily observed from
Figs. 9(a) and (b) that at zero ambient temperature, both the
charging and discharging capabilities would be significantly
reduced compared to the case under the standard tempera-
ture condition of 25 ◦C. In the low-temperature environment
(Tamb = 0 ◦C), the charging and discharging capabilities are
mainly limited by the terminal voltage, Li plating potential
at the sep/neg boundary, and the concentration at the pos/col

0 2000 4000 6000 8000

Time (s)

0

0.2

0.4

0.6

C
P
U

R
u
n
ti
m

e
(s

)

0 0.2 0.4 0.6

CPU Runtime (s)

0

0.05

0.1

0.15

D
en

si
ty

(b)(a)

Fig. 8. Computational efficiency in terms of (a) average CPU runtime per
sample and (b) distribution of CPU runtime.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (s)

-80

-60

-40

-20

0

20

40

60

80

P
d
ch

m
a
x
an
d

P
ch
g

m
a
x
(W
)

Pbat
Est. (Tamb = 0 /C)

Est. (Tamb = 25 /C)

Est. (Tamb = 38 /C)

0 2000 4000 6000 8000
0

20

40

60

T
b
a
t
(/
C
)

Ref. (Tamb = 0 /C)

Ref. (Tamb = 25 /C)

Ref. (Tamb = 38 /C)

0 2000 4000 6000 8000

2.5

3

3.5

4

4.5

V
b
a
t
(V
)

0 2000 4000 6000 8000

Time (s)

0

0.5

1

2
se
p
=
n
eg

L
iP

(V
)

0 2000 4000 6000 8000

Time (s)

0

500

1000

cp
o
s=
co
l

e
(m
ol
/m

3
)

(b) (c)

(e)(d)

(a)
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boundary, respectively, which can be shown from Figs. 9(c)–
(e). On the other hand, under a high ambient temperature
(Tamb = 38 ◦C), the charge power capability is generally
increased. However, the discharge power might be reduced
during the period when the battery temperature is close to the
upper limit, as can be observed from Fig. 9(c). Within this
wide temperature range, the proposed algorithm can achieve
high estimation accuracy in the power capability with an
average RMSE of less than 0.1%.

VI. CONCLUSION

We propose a framework of power capability estimation for
lithium-ion batteries. Compared to the existing method, we use
a high-fidelity electrochemical-thermal model to predict the
battery’s internal behaviors that can limit the operation of the
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TABLE II
ELECTROCHEMICAL-THERMAL PARAMETERS IN THE P2D-T MODEL

Symbol Unit i ∈ Ipos i ∈ Isep i ∈ Ineg

Rp m 5.22 · 10−6 – 5.86 · 10−6

Ds m2/s 4.0 · 10−15 – 3.3 · 10−14

εs – 0.665 – 0.75
as m2/s 382, 183 – 383, 959
cs,0% mol/m3 52, 782 – 856
cs,100% mol/m3 16, 650 – 29, 283
cs,max mol/m3 63, 104 – 33, 133
σ S/m 0.18 – 215

k A · m2.5/mol1.5 3.5 · 10−11 – 6.7 · 10−12

rf Ω · m2 0 – 0.01

Eφa J 17, 800 – 35, 000

EDea , Eκa J 20, 000 ∗ 20, 000 ∗ 20, 000 ∗

δ m 75.6 · 10−6 12 · 10−5 85.2 · 10−6

εe – 0.335 0.47 0.25
brugg – 1.5
R J/(K · mol) 8.314
F C/mol 96, 487
A m2 0.1027
Tref K 298.15
Tamb K 298.15
c0e mol/m3 1000
t0a – 0.7406
Rcol Ω 0.001 ∗

CT J/K 17.79 ∗

RT K/W 8.43 ∗

*: Assumed

battery under extreme conditions with wide temperature ranges
and high current rates. Conventionally, these operating modes
are avoided due to the lack of a pathway to design a health-
and safety-aware algorithm. With the highly accurate but more
complex model, formulating the power capability estimation
into an optimal control problem requires tractable algorithms
for real-time operation. To prevent the loss of model fidelity,
we reduce the global optimization problem into a finite-time
nonlinear optimization problem and solve it using multistep
NMPC. The algorithm is aided by precise battery internal
state information estimated using an ensemble-based estimator.
Comparative studies have shown that the proposed method
is effective in estimating the power capability under a wide
operating range by considering additional electrochemical and
thermal constraints that cannot be imposed in conventional
methods. The presented framework can be extended by incor-
porating additional constraints and/or control objectives, such
as those related to other degradation modes and nonuniform
temperature distribution, once mathematical descriptions of
respective physical mechanisms are available. However, as the
predictive model becomes more complex, additional investiga-
tions on model reduction are essential to further improve the
computational efficiency for low-cost implementation.

APPENDIX

A. Reduced-Order Diffusion Equations and Model Parameters

In the original P2D model, the diffusion of Li species in the
solid phase is governed by a two-scale PDE for each electrode.
We first apply the FVM on the macroscale and then use a
frequency-domain method [25] on the particle scale to reduce
the PDE into an ODE submodel, i.e., ∀i ∈ Ipos ∪ Ineg,∀m ∈

TABLE III
CONCENTRATION/TEMPERATURE-DEPENDENT FUNCTIONS IN THE

P2D-T MODEL

1) Effective electrolyte diffusion coefficient (m2/s):

De,i =ε
brugg
e,i · [8.794× 10−11 · (ce,i/1000)2−

3.972× 10−10 · (ce,i/1000) + 4.862× 10−10]

2) Effective electrolyte conductivity (S/m) [14]:

κi =ε
brugg
e,i · [0.1297 · (ce,i/1000)3 − 2.51 · (ce,i/1000)1.5

+ 3.329 · (ce,i/1000)]

3) The OCP function is expressed by

fss,i(css,i, Tbat) = Uref,i + (∂U/∂T )i(Tbat − Tref)

For the positive electrode (i ∈ Ipos, θ := css,i/cs,max,i)

Uref,i =− 0.8090θ + 4.4875−
0.0428 tanh (18.5138(θ − 0.5542))−
17.7326 tanh (15.7890(θ − 0.3117))+

17.5842 tanh (15.9308(θ − 0.3120))

For the negative electrode (i ∈ Ineg, θ := css,i/cs,max,i)

Uref,i =1.97938 exp (−39.3631θ) + 0.2482−
0.0909 tanh (29.8538(θ − 0.1234))−
0.04478 tanh (14.9159(θ − 0.2769))−
0.0205 tanh (30.4444(θ − 0.6103))

Entropy coefficients (∂U/∂T )i: Positive electrode [24]; Negative
electrode [14]
4) Electrolyte: Ue,i = fe,i = (ce,i, Tbat) =

2RTbatt
0
a

F ln
(
ce,i
c0e

)
5) Resistances (Ω):

Re,i+0.5 = (∆δi/κ
eff
i + ∆δi+1/κ

eff
i+1)/(2A)

Rs,i+0.5 = (∆δi/σ
eff
i + ∆δi+1/σ

eff
i+1)/(2A)

Rsep
e =

∑Npos+N sep

i=Npos
Re,i+0.5

RΣ,i = (rct,i + reff
f,i)/(A∆δias,i)

rct,i = RTbat/[F2keff
i

√
ce,icss,i(cs,max,i − css,i)]

6) Temperature-dependent parameters (Arrhenius equation):

φeff
i = φi exp

(
−
Eφa,i

R

(
1

Tbat
−

1

Tref

))
, φ ∈ {k,Ds, σ, rf , De, κ}

Note: brugg is the Bruggeman’s constant, R is the universal gas
constant, Tref is the reference temperature, and c0e is the average
electrolyte concentration.

{1, 2, · · · ,M},

˙̃cs,i,m = −
αmD

eff
s,i

R2
p,i

c̃s,i,m −
βm
Rp,i

In,i
FA∆δias,i

(A1)

css,i =

M∑
m=1

c̃s,i,m (A2)

cneg
s,avg =

∑
i∈Ineg

c̃s,i,m=1 (A3)

where Deff
s,i is the effective solid-phase diffusion coefficient,

Rp,i is the particle radius, F is the Faraday constant, A is the
electrode cross-sectional area, as,i is the solid-phase surface
area per electrode volume, and ∆δi is the width of the control
volume. αm and βm are dimensionless coefficients determined
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by the selected system order M of the submodel. We adopt
M = 2 in this work, which gives α1 = 0, β1 = 3, α2 = 35,
and β2 = 7.

On the other hand, the ODE that governs the dynamics of
the electrolyte concentration is obtained by applying the FVM
to the corresponding PDE in the original P2D model, i.e.,

ċe,i =
1

∆δiεe,i

(
Deff
e,i+0.5

0.5

ce,i+1 − ce,i
∆δi+1 + ∆δi

−
Deff
e,i−0.5

0.5

ce,i − ce,i−1

∆δi−1 + ∆δi

)
+ λi, (A4)

where λi =
t0a
εe,i

In,i
FA∆δi

,∀i ∈ Ipos ∪ Ineg; λi = 0,∀i ∈ Isep.
Deff
e,i±0.5 = (∆δi + ∆δi+1)/

(
∆δi/D

eff
e,i + ∆δi±1/D

eff
e,i±1

)
.

Here, Deff
e,i is the effective electrolyte diffusion coefficient, εe,i

is the porosity, and t0a is the transference number.
The concentration state vector xc, and the matrices Ac, Bc,

and Cc in (5) and (6) can be thus readily obtained but not
explicitly provided here. The parameters used in this work are
given in Table II and Table III, mainly obtained from [26] for
a 5-Ah NMC 811/graphite-silicon battery except where noted.

B. An Implicit-Explicit Method

First, Substituting (3) and (4) into (5) yields the dynamic
equation for the concentrations of the form

ẋc = Acxc + B1u+ B2 (B1)

where Ac, B1, and B2 are matrices depending on the state
x = [x>c , Tbat]

>. We discretize (B1) as

[xc(k + 1)− xc(k)]/∆t = Acxc(k + 1) + B1u(k) + B2

(B2)

where k is the discrete time instant and ∆t is the sampling
time. Solving (B2) yields

xc(k + 1) = (I−∆tAc)
−1(xc(k) + ∆tB1u(k) + ∆tB2)

(B3)

where I is the identity matrix, and matrices Ac, B1, and B2

are calculated based on x(k).
This discretization method can also be applied to the tem-

perature equation (8). We then obtain an explicit expression
of the state transition equation in the form of (11).
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