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Structural coverability for intelligent automation systems

Endre Erős1, Kristofer Bengtsson2, and Knut Åkesson1

Abstract— In order to be flexible and handle complex
scenarios, intelligent automation systems might benefit from
automated planning techniques which rely on specifications and
models describing their behavior. However, due to the presence
of message passing, latency, jitter, timeouts, failures, and error
handling, the verification of such behavior models using formal
methods is often unfeasible. Therefore, testing has emerged as
an approach to evaluating the behavior of intelligent automation
systems. This paper presents a way to analyze structural cov-
erability of behavior models for intelligent automation systems,
which is inspired by the modified condition/decision coverage
(MC/DC) criterion. This is paired with a testing procedure
that enables each test case to influence both the controller
and the simulated environment by injecting some specific state.
As a result, the proposed coverability criterion can effectively
identify segments of the behavior model that have not been
adequately tested and suggest additional test cases to improve
coverability. An example use case is presented to demonstrate
the effectiveness of this approach.

I. INTRODUCTION

The process of testing is a crucial element in the de-
velopment of control software and plays a key role in
ensuring the reliability, functionality, and performance of
automation systems [1], [2]. Although formal verification
can benefit subsystems in automated systems, it is generally
impractical to use model checking [3] to verify a complete
implementation due to various challenges such as lack of
formal models. Therefore, it is essential to implement and
utilize a comprehensive testing strategy that can identify
software defects before deploying the system [4]. Despite its
significance in ensuring system reliability, determining the
appropriate level of required testing is a common challenge.

To address this challenge, different coverage criteria can
help assess to which extent the code is exercised [5]. One
coverage criterion that is widely used in the automotive
and aerospace industries, is the Modified Condition/Decision
Coverage (MC/DC) [6]. Naturally, MC/DC has also seen
adoption in industrial automation systems [7].

Such criteria exist to ensure that the testing process
provides sufficient coverage of the System Under Test (SUT)
[8], otherwise the provided test has failed to exercise parts
of the SUT. High coverage can help minimize the risk of
unexpected software failures and ensure that the system
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performs as expected. Therefore, coverage metrics might be
beneficial to assess the adequacy of the testing process and
determine whether more tests are necessary [5]. This work
focuses on increasing the coverability of the SUT using an
MC/DC inspired approach.

In this work, the SUT is identified as the behavior model,
which is used by the controller’s planning and acting al-
gorithms to control a set of resources. A resource refers
to any physical or virtual component that is used to carry
out a specific task or function. This can include hardware
components such as sensors, actuators, and controllers, as
well as software components such as algorithms, programs,
and databases. To connect and control such resources, we
use the Robot Operating System 2 (ROS2) [9].

The intelligent automation system framework presented in
this work is based on our previous work from [10], and it
is implemented in Rust [11] using the async Rust bindings
for ROS2 [12]. In this framework, the control algorithms,
resources, and corresponding drivers are distributed across a
set of computational nodes. In order to achieve control over
the system, these nodes must communicate with each other
through a network, utilizing message-passing protocols.

The importance of testing and verification of ROS-based
systems is addressed in [13], where the authors introduce
a framework for analysis and quality improvement for soft-
ware implemented with ROS. For example, [14] investigates
property-based testing of various configurations of a ROS
system, while [15] proposes a technique to automatically ver-
ify system-wide safety properties of ROS-based applications.

During the development phase of such ROS-based intelli-
gent automation systems, resources are usually simulated to
allow developers to test and verify the implemented behavior
model before deploying it in a real-world environment In this
work, we utilize such resource simulations which enable us
to quickly test and iterate the behavior model.

The main contribution of this paper is the introduction of
Structural Coverability of Behavior Models for Intelligent
Automation Systems (SCBM-IAS), which is inspired by
MC/DC criterion. We define a modeling abstraction called
an operation, and define the SCBM-IAS criterion based on
the coverability of its states during execution.

Additionally, we present a testing procedure inspired by
mutation testing [16], which enables the tester to inject state
to the controller and simulated resources during testing.

Finally, we use the SCBM-IAS criterion during the testing
procedure to help us define additional test cases and catch
modeling errors. This is exemplified with a use-case consist-
ing of a robot manipulator, a structured light scanner, and a
gripper.



II. PRELIMINARIES

In this work we represent the behavior of intelligent
automation systems with variables, states, transitions, and
operations. With such a model in place, a planning algorithm
can be employed to determine plans, considering defined
objectives and the current state of the system. Such plans
are then executed by a runner which communicates with the
resources using messages. The descriptions below outline the
components of modeling and execution:

- Variable: A variable v is a named unit of data that can
be assigned a value x from a finite domain V .

- State: A state S is a set of tuples S = {⟨vi, xi⟩}, where
vi is a variable with domain Vi and xi ∈ Vi is a value.

- Predicate: A predicate is an equality logic formula F
that evaluates to either true or false.

- Equality logic formula: An equality logic formula F is
defined with the following grammar:

F : F ∧ F | F ∨ F | ¬F | atom
atom : term == term | true | false
term : variable | value

- Planning transition: A planning transition t contains a
guard predicate g : S → {false, true}, and a set of action
functions A, where ∀a ∈ A, a : S → S models the updates of
the state variables. If the guard predicate evaluates to true, the
transition can occur, after which the actions of the transition
describe how the variables are updated. The notation we use
to represent a planning transition is t : g/A.

- Running transition: A running transition tr extends the
planning transition with an additional running guard gr and
additional running actions Ar. We write running transitions
as tr : g/gr/A/Ar, where g and gr are both guard predicates
g ∧ gr : S → {false, true}, and A and Ar are both sets of
action functions, where ∀a ∈ A∪Ar, a : S → S models the
updates of the values of the state variables.

While planning, only g and A are considered, i.e. the
running transition is evaluated and taken as a planning
transition. When the execution engine is running the plan, it
is considering all components of tr, i.e. the running transition
guard becomes g ∧ gr and the set of transition actions
becomes A ∪Ar.

- Operation: An operation O captures the behavior of
tasks that can take some time to complete, and it is a
convenient modeling abstraction for both planning and plan
execution. A model of an operation can be in its initial (init)
or executing (exec) state, see Fig. 1.

The precondition is a running transition associated with
the start of the operation, switching it to the executing
state. The operation will be in its executing state until the
guard of the postcondition running transition is satisfied. The
satisfaction of the postcondition implies that the operation is
completed and can return to the initial state.

Fig. 1. A model of an operation.

- Automatic transition: Automatic transitions are running
transitions that can be taken at any time assuming that the
corresponding guard predicate is satisfied. These can be used
to trigger some specific behavior, for example triggering
safety mechanisms, resets, timeout behavior, etc.

- Behavior model: A behavior model M is a collection
of variables, operations, and automatic transitions that model
the behavior of that system.

- Planning problem: A planning problem Ψ is a 4-tuple
Ψ = ⟨S, g,M, pmax⟩ where S is the current state of the
system, g is the goal predicate, M is the behavior model of
the system, and pmax is a limit on the plan length.

- Operation planner: An operation planner is an algorithm
which given a planning problem Ψ, returns a sequence of
operations that takes the system from its current state to a
state where the goal predicate is satisfied. While planning,
the operation planner is avoiding the running guards gr and
the running actions Ar, treating operation preconditions and
postconditions as planning transitions.

- Plan: A plan P is a sequence of operations.

- Operation runner: An operation runner is an algorithm
which executes the plan P based on the model M , the current
state of the system S, and a goal predicate g. While running,
the operation planner is considering both the planning and
running components of guards and actions of operation
pre- and postconditions. Moreover, the runner is taking all
automatic transitions that are enabled as soon as possible,
regardless of the queue.

- Communication: The communication protocol between
resources and runners within a distributed system, as de-
scribed in this work, is message-based. These messages are
transmitted through various data channels, and depending on
the number of receivers and the tasks they are executing,
these channels may adopt either a publish/subscribe or re-
quest/response communication model. For the sake of sim-
plicity, this work relies only on a request/reply communica-
tion model. The communication in this work is implemented
with ROS2 which uses the DDS standard, however, the
methods presented in this work can use any other message-
based communication framework.



III. EXAMPLE

We investigate using a collaborative robot on a gantry
to support the operators that use a pick-to-light system to
assemble kits onto a trolley, see Fig 2. The robot can mount
a battery-powered structured light scanner from a toolbox,
which is used to detect and localize items that are to be
picked from the blue boxes, see Fig 3. The toolbox also
contains other tools which enable the robot to choose the
appropriate tool to perform various operations. The system
should allow the operators and robots to work in a shared
zone, pick the ordered material together, and put it on an
autonomous platform which will bring the material to an
assembly station. Controlling such a system involves various
challenges, including but not limited to ensuring the precision
and reliability of scanning and localization of items, prevent-
ing collisions between the robot and operators or surrounding
equipment, quickly and adequately responding to failures,
and achieving a balance between execution speed to meet
assembly cycle deadlines and ensuring operator safety and
equipment protection.

IV. OPERATIONS

To define the Structural Coverability of Behavior Models
for Intelligent Automation Systems (SCBM-IAS), we will
discuss how they are executed. Consider the following:

operation: scan_box
deadline: 10 seconds
pre: start_scan_box

g: scan_req_state == initial &&
scan_req_trigger == false &&
box_is_scanned == false

gr: true
a: [scan_req_trigger <- true]
ar: []

post: complete_scan_box
g: true
gr: scan_req_state == succeeded
a: [scan_req_state <- initial,

scan_req_trigger <- false,
box_is_scanned <- true]

ar: []

Fig. 2. Robot in the Air: An intelligent automation system.

Fig. 3. A detail of scanning boxes for items in a simulation.

The operation scan box models when and how the box
containing some items should be scanned, and as shown
on Fig 1, it has an initial and an executing state.
Guards and actions of the operation are marked with a, ar,
g, and gr, and are explained in more detail in Section 2. A
deadline parameter specifies a time limit on the executing
state, after which the operation should timeout.

Executing the scan box operation triggers a re-
quest/response mechanism that will issue a command to the
scanner and await a response. To do this efficiently, we
keep track of the request state with the scan req state
variable, and we enable the request to be issued with the
scan req trigger variable. To keep track if the box has
been scanned, we use the box is scanned variable.

Suppose that our system is in the following state:

goal: box_is_scanned == true
scan_req_state: initial
scan_req_trigger: false
box_is_scanned: false

While searching for a solution, the planning algorithm
evaluates only the precondition guard g, and since it is
evaluated to true, it first takes the precondition actions
marked with a and then the postconditions actions marked
with a. The planner constantly evaluates the goal predicate,
and since it is now satisfied, it returns the following plan that
contains one operation: scan box.

The runner will now take this plan and try to execute
it, which in the context of this work, means executing the
operations in the order of the plan, one at a time. The
procedure of executing operations is shown in Fig 4.

Continuing with the scanning example, the procedure of
executing the scan box operation is as follows. If the
operation is the next one in the plan to be executed, the
runner evaluates the precondition guard g ∧ gr. If the
precondition guard g ∧ gr is false, the operation will be in
its disabled state until the guard becomes true. Otherwise,
the runner will take all precondition actions from a ∪ ar,
and put the operation it its executing state.



Fig. 4. An operation and its states while being executed by the runner.

At this point, a timer will start to keep track of how long
the operation has been executing. If the operation does not
complete, nor fail, within the next ten seconds, the operation
will be timedout.

The scan box operation can fail if the scanning response
returns that the scanning process was unsuccessful, which
could mean that something bad has happened. For example,
causes for this could be that a very reflective surface has
produced an invalid point cloud, or that the scanner itself has
lost power, or that its driver was in an invalid state, etc. Such
failures are caught with automatic transitions, after which the
runner will put the operation in its failed state.

Finally, the operation can be completed if it is executing
and if the postcondition guard g ∧ gr evaluates to true.
The runner will then take all postcondition actions from a
∪ ar, and put the operation it its completed state. After
the operation has completed, failed, or timedout, it is re-
initialized so that it can be taken later, if necessary.

V. STRUCTURAL COVERABILITY

Measuring structural coverability involves quantifying the
adequacy of the testing process and providing insights into
the completeness of the test suite. This can be achieved
by defining a set of coverage measures that indicate the
degree to which the behavior model has been exercised
during testing. For example, during the process of testing
a system for a given set of requirements, it is possible to
monitor and quantify the frequency and extent to which
the behavior model is exercised. This evaluation can offer
valuable insights into how to optimize the initial set of
requirements and improve the overall coverability. By using
this feedback to refine testing, we can ensure that the system
is comprehensively tested to meet the required standards.

In this paper, we are inspired by the Modified Condi-
tion/Decision Coverage (MC/DC) criterion, however, this
criterion cannot be directly applied to evaluate the coverage
of behavior models. Therefore, we must shift our focus to
the operation runner and compile an overview of the various
running states of operation:

• Initial: The operation is not the next one in the queue.
• Disabled: The operation is next in the queue for exe-

cution, but the precondition guard is not yet enabled.
• Executing: The precondition guard is enabled and the

actions of the precondition are taken.
• Timedout: The operation was in the executing state for

more time than its deadline allows.
• Failed: The operations has failed due to an error.
• Completed: The postcondition guard is enabled and the

actions of the postcondition are taken. The operation is
successfully completed.

Using this overview, we can start defining the Structural
Coverability of Behavior Models for Intelligent Automation
Systems (SCBM-IAS) criterion for a test set as follows:

• Every queued operation in the behavior model has
visited its Disabled, Executing, Timedout, Failed, and
Completed, state at least once.

• Every operation has been queued in a plan at least once.
• Every automatic transition has been taken at least once.

Fulfilling these criteria for a set of requirements ensures
that the behavior model has been exercised and can be
used as a sanity check. Just as with MC/DC, meeting
the requirements of SCBM-IAS does not guarantee that
no defects remain. However, failing to meet this criterion
indicates that certain portions of the model have not been
sufficiently exercised, highlighting potential areas of concern.
Similarly to MC/DC, SCBM-IAS is given as a percentage.

Improving the SCBM-IAS is an iterative process. When
the criteria are not met, it is necessary to go back to the
model and identify the missed parts, then create specific
test cases to cover them. Alternatively, the tester can be
allowed to influence the simulation nodes to cover the missed
aspects faster. After additional tests, the SCBM-IAS can be
reevaluated, and the process repeated until the desired level
of coverage is achieved.



Fig. 5. The mutation inspired testing framework.

VI. TESTING

To test Intelligent Automation Systems, we propose a pro-
cedure that involves testing requirements, random test case
generation, coverability analysis, and creating finishing test
cases. We differentiate three groups of nodes: the controller,
the simulated resources, and the tester, as seen in Fig. 5.

Our testing procedure consists of the following steps:
1) Specification of a set of achievable goals.
2) Specification of requirements that must be met while

achieving these goals.
3) Generation of a set of test cases by the tester, which

consists of randomly chosen achievable goals and
random initial states, which are then transmitted one
by one to the controller and the simulated resources.

4) Execution of each test case by the controller and
with the results reported back to the tester. During
the execution of a test, the simulated resources can
randomly choose to fail, timeout, or succeed.

5) Collection of data from the controller in order to
determine the degree of SCBM-IAS after the entire
set of generated test cases has been exhausted.

6) If the SCBM-IAS is deemed unsatisfactory, identifica-
tion of the specific areas of the behavior model that
have not been sufficiently covered by the test cases.

7) Creation of additional targeted test cases that address
the missed areas of the behavior model, with the aim
of increasing SCBM-IAS.

By utilizing this testing procedure, we can ensure that
the behavior model of our Intelligent Automation Systems
is thoroughly tested for the specified set of requirements.

VII. EVALUATION

To limit the example from Section 3, we consider the
following objective: An order arrives which consists of only
one item from the material facade, item a. The robot should
use the scanner to scan a box box a for items, after which it
should be able to pick one of them using a gripper and place
it on the autonomous platform, AGV. As the robot can only
carry one tool at a time, either the gripper or the scanner
can be mounted and unmounted as required. Meanwhile, the
gantry has to move as well to allow the robot to reach the
boxes and the AGV.

To further simplify the example, we implement the control
for all resources as a request/reply mechanism, thus all
operations in our model have a similar structure to the
scanning operation shown before. The behavior model of the
system consists of the following sixteen operations:

• robot move to: home, toolbox gripper,
toolbox scanner, box a, agv

• robot mount: scanner, gripper
• robot unmount: scanner, gripper
• scanner: scan item a
• gantry move to: box a, agv
• gripper: open, close
• pick: item a
• place: item a

Next, we define goals that should be possible to achieve:

• scanned a == true
• gripper act == closed ∧ robot at == agv
• item a at == agv ∧ robot at == box a
• item a at == gripper

As a first effort, after defining a few requirements that we
want to test our system for, we will let the tester generate
random initial states, and we will let the resource simulations
choose random responses. We allow the tester to generate
twenty test cases, and collect the data:

Coverabilty report: CSBM-IAS:...41.86 %
Testing duration:...............134.17s
=======================================
Visited disabled state:.........0 / 16
Visited executing state:........13 / 16
Visited failed state:...........7 / 16
Visited timedout state:.........0 / 16
Visited completed state:........13 / 16
Automatic transitions taken:....3 / 6

We observe that no operation has visited its timedout
state, so we can allow the tester to influence the simulators
and force the executions to take longer so that the timeouts
are triggered. Moreover, we see that only a few operations
have visited its failed state, which turns out only to be a
lucky run. We can allow the test to influence the outcome of
the request call, for example, to increase the chance to fail,
or even to force it to fail, however for the next run we did not
change those parameters, which shows the nature of random
testing. After the next run, we get the following result:



Coverabilty report: CSBM-IAS:...65.12 %
Testing duration:...............212.24s
=======================================
Visited disabled state:.........0 / 16
Visited executing state:........14 / 16
Visited failed state:...........11 / 16
Visited timedout state:.........12 / 16
Visited completed state:........14 / 16
Automatic transitions taken:....5 / 6

We see from the report that the disabled states are not
visited. If an operation is in its disabled state, it means
that the operation is queued but the precondition guard
disables the operation from being taken. Most often, it is
the runner guard gr that disables the operation, indicating
that something has to happen in the environment before we
can take the operation. An example of this can be a sensor,
awaiting an object to be present before the operation can
start and the execution of the plan can continue.

In our case though, we have to simulate that g ∧ gr
is false when the operation is queued. Thankfully, we can
influence the simulated environment, and continuing with the
scanner operation example, force scan req state to be
something else than initial. Practically, this could mean
that the scanner resource is occupied by another process.

Moreover, we can see that two operations and one auto-
matic transition were not taken, so if we look at the detailed
report, we can see that the following were missed:

at: abort_if_scanning_timedout_5_times
op: robot_move_to_home
op: robot_unmount_gripper

To address the first issue, we allow the test to further
increase the scanning time in order to cover scenarios where
scanning has timedout five times while executing a plan.
The next missing operation reveals a deeper problem, which
involves a missing requirement specification. In particular,
during gantry movement, it is essential for the robot to re-
main in its home position to prevent collisions with operators
and other obstacles. This can be fixed by extending the list of
requirements and repairing the behavior model to incorporate
an additional guard condition for the gantry move opera-
tions. This condition would ensure that the robot remains in
its home position while the gantry is in motion.

Finally, the third missing piece can be fixed by extending
the list of achievable goals with the following:

• mounted == scanner ∧ item a at == agv

When chosen by the random tester, this goal will force the
gripper to be unmounted after the object has been placed.
After fixing all the previous missing points, increasing the
test case generation size to thirty, and two runs where some
states were missed due to the nature of random testing, we
finally get the following report:

Coverabilty report: CSBM-IAS:...100 %
Testing duration:...............379.84s

VIII. CONCLUSION

The Structural Coverability of Behavior Models for In-
telligent Automation Systems (SCBM-IAS) criterion was
introduced to assist in the development of an proper test
suite. This criterion is helpful in identifying areas of the
model that have not been adequately exercised, thus guiding
the creation of additional test cases. In this work, we used
the proposed criterion to manually come up with new test
cases but the long-term goal is to use the same criteria to
automatically modify the behavior of the system under test
in order to increase the coverability.
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