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Abstract. We propose a new machine learning formulation designed specifically
for extrapolation. The textbook way to apply machine learning to drug design is
to learn a univariate function that when a drug (structure) is input, the function
outputs a real number (the activity): F(drug) → activity. The PubMed server lists
around twenty thousand papers doing this. However, experience in real-world drug
design suggests that this formulation of the drug design problem is not quite cor-
rect. Specifically, what one is really interested in is extrapolation: predicting the
activity of new drugs with higher activity than any existing ones. Our new formu-
lation for extrapolation is based around learning a bivariate function that predicts
the difference in activities of two drugs: F(drug1, drug2) → signed difference in
activity. This formulation is general and potentially suitable for problems to find
samples with target values beyond the target value range of the training set. We
applied the formulation to work with support vector machines (SVMs), random
forests (RFs), and Gradient BoostingMachines (XGBs). We compared the formu-
lationwith standard regression on thousands of drug design datasets, and hundreds
of gene expression datasets. The test set extrapolation metrics use the concept of
classification metrics to count the identification of extraordinary examples (with
greater values than the training set), and top-performing examples (within the top
10% of the whole dataset). On these metrics our pairwise formulation vastly out-
performed standard regression for SVMs, RFs, and XGBs. We expect this success
to extrapolate to other extrapolation problems.

Keywords: machine learning · extrapolation · drug discovery

1 Introduction

The original motivation for this work came from applying machine learning (ML) to
drug design, specifically quantitative structure activity relationship (QSAR) learning.
The standard way to cast QSAR learning as ML is to learn a univariate function that
when a drug (structure) is input, the function outputs a real number (the activity):F(drug)
→ activity. The PubMed server lists around twenty thousand papers doing this.

Experience in real-world drug discovery suggests that this formulation is not exactly
what is really required in practice. Specifically, what one is really interested in is predict-
ing the activity of new drugs with higher activity than any existing ones - extrapolation.
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N.B. extrapolation inQSAR learning has two relatedmeanings: one is the ability tomake
predictions for molecules with descriptor values (xi) outside the applicability domain
defined by the training set of the model (Fig. 1a) [1–3]; the other is the identification
of the “extraordinary molecules” with activities (y) beyond the range of activity values
in the training data (Fig. 1b) [1, 4]. In drug discovery both types of extrapolation are
important. Extrapolating beyond training set descriptor values enables new molecular
types (maybe unpatented) to be proposed. Extrapolating beyond the highest observed y
values is strongly desired to select more effective drugs.

Fig. 1. The illustration of two types of extrapolation in drug discovery. (a) extrapolation outside
the applicability domain, (b) extrapolation outside the range of drug activities.

Although many QSAR learning studies have reported advantageous ML methods
based on their model prediction accuracy using metrics such as mean squared error, in
practice the ability to produce accurate predictions is less valuable than the extrapolation
ability in this type of application [4, 5]. In fact, someMLmethods can hardly extrapolate
beyond the training sets. For example, randomforest (RF) is incapable of predicting target
values (y) outside the range of the training set because it gives ensembled prediction by
averaging over its leaf predictions [4, 6]. Our study is therefore motivated by the purpose
to improveMLmethods to be better at finding extraordinary samples (Fig. 1b). This will
also be a tool that benefits many other applications, such as material sciences, dynamics
modelling and system management.

Our extrapolation problem can be defined as following. Consider a training set ofNtr

samples, its feature vectors of length Nf is x ∈ R(Nf ×Ntr), and its target activity values is
y ∈ RNtr . Therefore, the range of the target values for the training set is {ytr,min, ytr,max}.
A ML model f is then obtained so that f (xi) ≈ yi. Suppose there exist a test set xts of
size Nts containing Nex,true (Nex,true <= Nts) extraordinary samples with target values
yex > ytr,max. The extrapolation problem will be if the test samples with f (xts) > ytr,max
are truly extraordinary, or if themodel f can rank extraordinary test samples above xtr,max
if f is a ranking method. In addition, we also define Ntop,true top-performing samples
whose rank is within the top 10% of the whole dataset. We would like to know if the
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model can rank the top-performing test samples as top 10% of the dataset of (Ntr +Nts)
samples, once the model predicts ypredts = f (xts) and rank the training and test samples
by ytr and ypredts together.

There have been several studies recognising the importance of ranking performance
in drug screening. Some have proposed to optimise the ML method directly to achieve
higher ranking coefficients [7, 8], while some have instead proposed to boost the ranking
performance from non-ML perspectives [9, 10]. Agarwal et al. proposed the method,
RankSVM, to directly minimise a ranking loss to maximise the number of correctly
ordered pairs of molecules for all ranks [7]. Rathke et al. reported a new algorithm,
StructRank, which also directly solves the ranking problem with better focus and opti-
misation on the top-k-ranked molecules [8]. Al-Dabbagh et al. developed a probabil-
ity ranking approach that employed quantum interference analogy [9]. Liu and Ning
improved the ranking performance of SVMrank by leveraging assistance bioassays and
compounds [10]. Zhang et al. have also deployed “Learning-to-rank” (LTR) from infor-
mation retrieval successfully to integrate heterogeneous data and to identify compounds
by prioritising their relevance to drug targets in a cross-target manner, similar to match-
ing queries and documents in information retrieval applications [11]. Although our new
approach also emphasises the importance of ranking to meet the problem specifications,
it differs from LTR ranking algorithms. LTR data usually contain a large, fixed number
of items matched with different queries. LTR models are trained to rank a fixed set of
instances given queries, focusing on if the top-k items are correctly placed and extrap-
olation is not needed. LTR algorithms are therefore designed to incorporate the ranking
of the items in the model objective directly, putting emphasis on the relative positions of
test samples within the test set, rather than the extrapolation behaviour of a model. Our
approach, however, makes commonMLmethods learn explicitly to distinguish samples’
differences, so that it can later rank training and test samples to achieve extrapolation
over the training set.

Some recent work has emphasised the importance of extrapolation and proposed
new evaluation procedures for extrapolation performance of ML models. Kauwe et al.
tested the extrapolation ability of several common ML methods by keeping the top 1%
of the instances in the test sets for properties calculated from density functional theory
[1]. Von Korff and Sander used sorted and shuffled datasets to evaluate extrapolation
and interpolation performance, respectively [4]. Xiong et al., Meredig et al. and Wat-
son et al. have each proposed a newmodel validation technique to evaluate extrapolation
performance of ML methods [6, 12, 13]. However, due to a lack of systematic review
for them, it is unclear that these methods are statistically meaningful. Therefore, in this
study, we apply standard k-fold cross validation [2, 6, 14].

This study proposes aML configuration approach, the “pairwise approach”, to boost
the extrapolation ability of a traditional regression learning method. A pairwise model
is designed to model the relationship between the differences in the structures of pairs
of drugs and the sign of differences in their activity values. The learned pairwise model
is a bivariate function, F(drug1, drug2) → signed difference in activity, whose outputs
can give a better ranking of drugs by ranking algorithms. By transforming the learning
objective, the pairwise model enables improved performance in extrapolation compared
to traditional regression evaluation.
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2 Method

2.1 Datasets and Data Pre-processing

ChEMBL is a chemical database of bioactive molecules [15, 16]. It contains a large
number of molecules and their measured activities against a variety of targets. Due to
their size and scope, these datasets are suitable for benchmarkingML applications in the
realm of QSAR [17]. ChEMBL features a number of different activities, in this study
we are employing pXC50 as our target values, i.e. -log(measured activity). The structure
of drug molecules is represented by the commonly employed Morgan fingerprint (1024
bits, r = 2) encoding the molecular substructures by Boolean values [18].

The other large-scale database we used is the human gene expression datasets (acces-
sion code GSE70138) from the Library of Integrated Network-based Cellular Signatures
data (LINCS) [19]. These datasets were used byOlier et al. in transformationalML study
[16]. This set of datasets contains themeasured gene expression level across different tis-
sue types and drug treatments in cancer cell lines. There are in total of 978 human genes,
each of which was measured under 118,050 experimental conditions. Each dataset is the
expression levels of a gene, measured and processed as level 5 differential gene expres-
sion signatures, under a series of conditions. The conditions are featured into 1,154
Boolean values describing drugs’ fingerprints (1024 bits) and experimental settings,
which include 83 dosages, 14 cell types and 3 time points.

Before training any ML model, a basic feature selection is performed to reduce the
large feature space and accelerate the learning process. For a given dataset, the features
were removed if they have the same feature value assigned to every sample in a dataset.
The features that repeat to have the same pattern for all the samples were also removed.

2.2 Formulation of Baseline Approach

In this study, when evaluating the performance of the pairwise approach on a specific
dataset, in most cases it is compared with that of a baseline ML configuration, addressed
as the “standard approach”. It refers to the standardway of learning a regression problem.
For a dataset, the model is built directly between the feature vector, xi ∈ R(Nf ×Ns),
and the target value, yi ∈ RNs of all the samples. With multiple samples of known
(x, y), a ML method can learn the relationship between features, x, and target values,
y, establishing a model f which can produce f (xi) ≈ yi for the training set. The feature
values of the test samples, xts are fed into the model f to obtain the predicted target
values, ypredts = f (xts). The performance of this model is then evaluated using metrics
for evaluating the extrapolation performance (see Sect. 2.6).

2.3 Formulation of Pairwise Approach

For a given Boolean dataset, a pair of samples PAB is derived from sample A (SA) and
sample B (SB). The difference in the ith feature for this pair can be presented in one
of the following ways: present in both samples (xA,i = 1, xB,i= 1), present in SA but
not in SB (xA,i= 1, xB,i= 0), present in SB but not in SA (xA,i= 0, xB,i= 1), and absent
from both samples (xA,i= 0, xB,i= 0). To represent each type of difference in a feature, a
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unique value is assigned to the ith feature of the pair. An example of generating pairwise
feature for the ith feature from a ChEMBL dataset is shown in Fig. 2. The unique values
used in our experiments are:

xA,i = 1, xB,i = 1 → XAB,i = 2

xA,i = 1, xB,i = 0 → XAB,i = 1

xA,i = 0, xB,i = 1 → XAB,i = −1

xA,i = 0, xB,i = 0 → XAB,i = 0

Fig. 2. An example of generating pairwise samples for a ChEMBL dataset.

The way of generating pairwise features is called ordinal encoding. It is often used
for categorical features and each category value is assigned an integer value. Another
popular way to encode real values for categorical features is one-hot encoding. It assigns
Boolean bits to describe the absence or presence of each category. Therefore, it needs to
at least double the size of features space. In the pairwise case, one-hot encoding is equiv-
alent to the concatenation of features of two samples to generate the pairwise features.
Considering the large expansion of training set by permutation, the further expansion
in the feature size can greatly increase training time. Furthermore, our experiments on
ChEMBL datasets have shown that one-hot encoding made little difference in the train-
ing accuracy. Therefore, we decided to use ordinal encoding for the pairwise features. In
ordinal encoding, the choice of the integer value for each category is not restricted [20].
Despite potential doubts regarding the effect of their relative magnitudes under numeric
transformations [21], it has been proven not to affect our study through simple tests. We
endeavoured to assign each combination listed above with a different value (e.g., xA,i =
1, xB,i= 1 → XAB,i = -1; xA,i = 0, xB,i= 1 → XAB,i = 0). We have also tried a different
set of ordinal values, for example, using {1, 2, 3, 4} instead of {-1, 0, 1, 2}. In both tests
the results were hardly varied by the choice of ordinal values.

The pairwise target value needs to represent the difference in target values. For a
specific pair, PAB, its pairwise target value, YAB, is equal to yA − yB. Pairs PAB and
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PBA are treated differently as two pairwise samples despite YAB = −YBA. AMLmethod
can learn to predict the real values of those pairwise differences Y via regression or
learn to predict the sign of the pairwise differences, sign(Y ) via classification. The latter
type of learning was found to be more advantageous to extrapolate the model and find
extraordinary samples (see Sect. 2.4).

Suppose a dataset is split into a training set of size Ntr and a test set of size Nts.
The training samples are paired via permutation, creating N 2

tr pairwise training pairs.
This type of pairs is referred to as C1-type training pairs in this study. The test pairs
can be obtained in two ways: (1) C3-type test pairs: generate from a permutation of test
samples, giving N 2

ts test pairs; (2) C2-type test pairs: generate from pairing test samples
with training samples, giving 2NtrNts test pairs. The naming of the pair types follows
the notation in [22] which considers the amount of shared information between training
and test data within a pair. Because this work is about the extrapolation of the pairwise
approach, C2-type test pairs are more studied than the C3-type test pairs due to their
ability to compare between training samples and test samples.

2.4 Extrapolation Strategy

The pairwise model only predicts the differences of pairs of samples. Therefore, a con-
clusive decision needs to be made to point out the predicted extraordinary samples. We
propose to use rating algorithms to estimate the ranking of the test samples with the
training set. The idea is to treat each predicted difference as the result of “a game match”
between two samples. If the difference between sample A and sample B is greater than
0, then sample A wins sample B. This “league table of samples” gets updated from the
predicted differences of the test pairs. In the end, we can identify the extraordinary or
top-performing test samples.

Most of the generic rating algorithms were developed based on absolute wins or
losses to give rating scores to the players, such as Elo’s rating algorithm for chess com-
petition and Trueskill for computer games [23, 24]. There has also been some advanced
research that enables these methods to take score differences to help the rating [25].
But for their application in the pairwise approach, it was found that the former version
can serve our purpose better than the latter advanced version. We have noticed that if
the pairwise model is trained on signed differences via classification, the accuracy of
the predicted signs (wins, losses and draws) is higher than if it is trained on numerical
differences via regression, from which the signs are then extracted. In other words, the
accuracy of sign(Y )pred is higher than that of sign(Y pred). This result may come from
the fact that there exist pairs with the same differences in features (X) but different dif-
ferences in target values (Y ). Despite some loss of information when taking the signs,
the training of the classification model can suffer from less “noise” in pairwise target
values than the regression model. For a rating algorithm, correct results of win or loss are
more informative in deciding the rank of the samples than the more accurate numerical
score differences with potentially wrong signs. Therefore, training the pairwise model
via classification and generic version of rating algorithm were used.

We have also experimentally examined several generic ranking algorithms and found
that the choice of the generic ranking algorithm can merely affect the ranking accuracy
given the same sets of sign(Y )pred, usually by about 1%. It is believed that the main
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contribution to accurate ranking should come from the accuracy in sign(Y )pred rather
than the rating algorithm. Therefore, Trueskill is selected and used to rank the samples
from the predicted signs. Trueskill is originally designed to rank players in the game
“Halo”. Because it assumes variances both in players’ performance and skill levels, it
can deal with potential conflicts in match outcomes, in our case, conflicts in sign(Y )pred

due to learning errors. For example, when sign(Y )
pred
AB = –1 and sign(Y )

pred
BC = –1, it

implies that sample A < sample B < sample C. But if sign(Y )
pred
AC = 1, which implies

sample A > sample C, then these predictions are suggesting opposite opinions. This
situation is similar to game tournaments, in which a strong player does not necessarily
win every time. The python package for Trueskill was already made available [26]. In
our experiment, the default Trueskill parameters were used.

In an extrapolation task, the relationship between the test samples and the training
samples is important for comparing the training and test data in order to predict the
extraordinary samples. So, despite the existence of C3-type test pairs, using them to
rank solely can only tell the relative ranks within the test set. On the other hand, C2-
type test pairs describe the relative differences between training and test samples. These
are better suited for the extrapolation task. Therefore, in the following experiments on
extrapolation, the signed differences of C2-type test pairs will be primarily used to rank.

2.5 Machine Learning Methods

The pairwise formulation is potentially ML method agnostic. We utilised the most com-
monMLmethods applied to QSAR learning: support vector machines (SVMs), random
forests (RFs), Gradient Boosting Machine (XGBs) and K-nearest neighbours (KNN).
We did not use deep learning as the datasets were generally too small. The ML methods
used in this study are all based on the open-source ML python library, scikit-learn [27].
When aMLmethod is used to compare the standard and pairwise models, it is used with
the default parameter setting from scikit-learn.

The pairwise approach uses classification for the predictions of signed differences,
we therefore compared classification version of each ML method versus the standard
regression approach. For each evaluation, 10-fold cross validation is used.

2.6 Extrapolation Metrics

To evaluate the extrapolation ability of a ML method, metrics other than the traditional
evaluation metrics, such as mean squared error and R2, are required. This is because the
common metrics are usually designed to cover predicted results over the whole test set,
resulting in an averaged performance evaluation for both interpolation and extrapolation.
In a random splitting in cross validation, the test set usually contains more interpolating
samples than the extrapolating samples. Therefore, these metrics are good for evaluating
the interpolation power of a model, but not very informative in terms of extrapolation
power [6]. In this study, we decided to adopt the classificationmetrics of precision, recall
and f1 score to count the identification of extraordinary and top-performing samples [1,
6]. This will give a more direct view of how useful a ML method is in an application
where identifying top-performing samples is highly desired.
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3 Results and Discussion

3.1 The Pairwise Approach Extrapolates Better

Our extrapolation experiments on 1436 ChEMBL datasets showed a clear advantage of
the pairwise approach over the standard approach (Table 1 and Fig. 3). The ChEMBL
datasets were sorted by size and experimented in order. When comparing the two
approaches, the standard approach uses the regression version of aMLmethod to predict
target values y and rank the test samples with training samples by predicted target values,
while the pairwise approach uses the classification version of that ML method to predict
sign(YC2) to rank the whole dataset.

Table 1. (a) The percentages of 1436 ChEMBL datasets indicating the pairwise approach had
an equal or better performance than the standard approach, i.e., metric(pairwise) > = met-
ric(standard) by each ML method. (b) The percentages of ChEMBL datasets indicating the pair-
wise approach was better than the standard approach, i.e., metric(pairwise) > metric(standard),
excluding datasets showing equal performance. All the values have a binomial p-value < 0.05.

Metrics (a) Percentage of equal or better
performance

(b) Percentage of better performance,
excluding equally performed datasets

RF SVM XGB RF SVM XGB

pextra 99.8% 100% 99.4% 99.2% 100% 96.6%

rextra 99.9% 100% 99.5% 99.6% 100% 97.4%

f 1extra 99.9% 100% 99.4% 99.2% 100% 97.0%

ptop10% 78.1% 92.4% 72.4% 66.8% 89.7% 58.8%

rtop10% 88.7% 97.2% 86.4% 82.4% 96.3% 78.5%

f 1top10% 82.3% 95.4% 76.7% 74.3% 93.9% 66.7%

It was found that the pairwise approach was much better at recognising the extraor-
dinary and top-performing molecules than the standard approach. For all the three ML
method (RF, SVM and XGB) tested, the pairwise approach almost always found equally
or more extraordinary molecules than the standard approach (Table 1a). It can also iden-
tify more test molecules ranked within top 10% of the dataset most of the time, as shown
by a high percentage for rtop10%. Its outperformance in ptop10% is not as good as that
in rtop10%, but is still overall better than the standard approach. However, it was noted
that this outperformance is less good for XGB or for larger datasets. This means that the
ratio of false positives in the top-performing molecules by the pairwise approach can
sometimes be similar to that by the standard approach. At the same time the pairwise
approach often caused a greater increase in recall, which means it proposed more true
positives. Hence, despite an outperformance in ptop10%, the pairwise approach could
propose slightly more false positives together with more true positives.

As extraordinary molecules do not necessarily exist every time when a train-test split
is made, there weremany datasets showing pextra = rextra = f 1extra = 0 or non-existing.
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Fig. 3. The six metrics obtained by the pairwise approach versus those metrics obtained by the
standard approach over 1436 ChEMBL datasets using SVM.

Therefore, to illustrate outperformance, the datasets showing equal performance were
removed. The percentage of datasets suggesting the pairwise approach outperformed
the standard approach were re-calculated for the rest of the datasets (Table 1b). Across
the three ML methods tested, the pairwise approach did outperform the standard app-
roach in finding both the extraordinary and top-performing molecules. The results also
suggested that using RF or XGB had less outperformance than SVM. Through further
investigation, we found that the difference among ML methods was due to the variation
in extrapolation performance by the standard approach. The standard approach using
RF and XGB can evidently produce higher extrapolation metrics than using SVM for
the ChEMBL datasets. At the same time, the pairwise approach performed similarly via
both ML methods. This gives rise to the higher percentage of datasets showing pairwise
approach was better with SVM in Table 1 and Fig. 3.

Fig. 4. The increase in f1 score for top-performing molecules versus the size of datasets with RF
for 1436 datasets. On y-axis, �f 1top10% = f 1top10% (pairwise) - f 1top10% (standard).

Apart from a statistical overview of the extrapolation power of the pairwise approach,
we had a close look at its performance versus the size of the datasets. Figure 4 shows
an example of the increase in f 1top10% versus the size of datasets for the experiments
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with RF for 1436 datasets of sizes from 30 to 298. The plots for other metrics showed
a similar trend, that is the pairwise approach is more advantageous on smaller datasets,
indicated by more data points above the line of�f 1top10%= 0 when the size of dataset is
less than 200. This is mainly due to the standard approach learning better when the size
of the dataset was larger, reducing the difference between the pairwise approach and the
standard approach.

To test the generality of the paired formulation on other application datasets, we
applied the same comparison experiment to a set of human gene expression datasets.
Because each dataset contains 118050 rows of experimental conditions (samples), if the
pairwise approach is applied for this size, the pairwise training set will be too large to
train given any reasonable computational resources. We therefore decided to randomly
sample a size 100 or 200 from each of the 978 gene datasets to compare the extrapolation
performance. The extrapolation metrics were evaluated for the standard and the pairwise
approach across four ML methods, random forest (RF), support vector machine (SVM),
k-nearest neighbour (KNN) and gradient boosting machine (XGB).

We can see from Table 2 that for the gene expression datasets, the pairwise app-
roach followed the trend seen in the ChEMBL experiments to outperform the standard
approach.When the size of the datasets increased from100 to 200, some of the extrapola-
tion metrics decreased. This is also because the standard approach improved its learning
through the additional data at a rate slightly greater than the pairwise approach, resulting
in a decrease in the percentage of datasets showing outperformance. This is consistent
with observations from Fig. 4.

Table 2. The percentages of gene expression datasets which indicate the pairwise approach had
an equal or better performance than the standard approach, i.e., metric(pairwise) > = met-
ric(standard) by each ML method for 978 gene expression datasets (except for KNN which was
run on fewer datasets due to computational restriction). All the percentages have a binomial p-value
< 0.05.

Metrics RF-100 RF-200 KNN-100
*313 datasets

KNN-200
*320 datasets

SVM-100 XGB-100

pextra 100% 100% 100% 100% 100% 99.9%

rextra 100% 100% 100% 100% 100% 99.9%

f 1extra 100% 100% 100% 100% 100% 99.9%

ptop10% 87.6% 71.6% 86.3% 77.2% 86.3% 76.6%

rtop10% 88.9% 77.3% 85.9% 80.3% 85.7% 78.2%

f 1top10% 87.2% 70.6% 85.6% 76.3% 85.3% 75.3%

3.2 The Extrapolation Strategy Improves Extrapolation

As shown in Sect. 2.4, we proposed a strategy to utilise the predictions of the pairwise
models to give a ranking of training and test sets combined. This strategy is not exclusive
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to the pairwise approach. It can be applied to the standard approach to improve its
extrapolation performance (Table 3). Once the standard approach has predicted the target
values for the test set, the signed differences of C2-type or C3-type test pairs can be
calculated from ytruetrain and y

pred
test . By inputting these signs to the rating algorithm, a ranking

of the dataset can be obtained for further extrapolation evaluation. We will abbreviate
the results from this procedure as the “standard rank approach”. Likewise, we compared
the standard approach and the standard rank approach on ChEMBL datasets, which were
sorted by size and experimented in order. Each of them was trained and tested via RF
with 10-fold cross validation. In this experiment, we also compared the extrapolation
results from both rankings obtained from C2-type test pairs and from C2-type test pairs
plus C3-type test pairs.

Table 3. (a) The percentages of ChEMBL datasets indicating the standard rank approach had an
equal or better performance than the standard approach. (b) The percentages of datasets indicating
the standard rank approach was better than the standard approach, among the datasets excluding
the ones showing equal performance. The models were obtained by RF from 1456 ChEMBL
datasets. Each column represents the type(s) of test pairs used to produce the overall ranking.
Bold means a binomial p-value < 0.05.

Metrics (a) Percentage of equal or better
performance

(b) Percentage of better performance,
excluding equally performed
datasets

C2-Type C2-Type + C3-Type C2-Type C2-Type + C3-Type

pextra 100% 100% 100% 100%

rextra 100% 100% 100% 100%

f 1extra 100% 100% 100% 100%

ptop10% 80.3% 85.2% 36.4% 46.5%

rtop10% 87.2% 93.7% 54.0% 74.7%

f 1top10% 80.1% 86.3% 41.4% 55.7%

The results in Table 3 show that the proposed extrapolation strategy can evidently
enable the standard regression to identify more extraordinary samples compared to the
direct regression with RF, which in theory is incapable to extrapolate outside the range of
training targe values. By taking the signs and re-ranking the samples, despite at a cost of
reducing the overall ranking correlation, which might have caused a reduced number of
identified top-performing samples, Trueskill had the chance to re-allocate their relative
positions by updating the probability distribution for each sample’s rating score. Because
Trueskill updates the samples’ rating scores by numbers of pairwise comparisons, the
more comparisons are entered the Trueskill algorithm, the more accurate and confident
the rating scores will be. This might account for the increased number of datasets finding
more top-performing molecules when C2-type and C3-type pairs are both used to rank.
We also tested the case when C1-type training pairs, C2-type and C3-type test pairs are
all entered the Trueskill and indeed the extrapolation performance was even better. To
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Fig. 5. F1 scores obtained by the pairwise approach (PA) or the standard rank approach (SRA)
versus f1 scores obtained by the standard approach over 1456 ChEMBL datasets using RF. The
upper row is the results from ranking with C2-type test pairs, whereas the lower row is from
ranking with C2-type + C3-type test pairs.

validate properly from a ML methodology standpoint the results are not included due to
its use of training pairs.

The main differences that distinguish the standard rank approach from the pairwise
approach are that (1) its calculated signed differences are all non-conflicting and con-
sistent with each other, (2) its prediction objective focuses on the accuracy of predicted
target values, and (3) the extraordinary samples are more likely to be predicted to draw
(Y = 0) with the best training samples than to win (Y = 1) them. We found that the
pairwise approach still can achieve a better extrapolation performance than the standard
rank approach (see Fig. 5 and Table 4). This indicates that the pairwise model can pro-
duce a set of signed differences that better describes the relative positions of the training
and test samples, resulting in the outperformance in extrapolation.

Table 4. P-values from Friedman-Nemenyi test for each extrapolation metric among three
approaches: standard approach (SA), standard rank approach (SRA) and pairwise approach (PA).
Pairs of methods showing a p-value < 0.05 are highlighted in green, otherwise in orange.
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3.3 Discussion

The pairwise formulation is amethod of combingmodel-reconfiguration and feature pre-
processing techniques, rather than a newMLalgorithm. It can be applied tomultiple types
of ML. The new formulation transforms the ML learning objective so that the emphasis
is placed on the relationship between training and test samples. For a standard approach,
when ML algorithms learn from seen examples and try to predict unseen examples from
their “experience”, it can be difficult to extrapolate out of its “experience” domain. The
pairwise approach, on the other hand, learns from the differences in features, which
are sometimes more common and generalisable than the original features. It learns to
predict the difference between training and test sample, directly aiming to predict if a
test sample could win over the training samples. This transformed objective brings about
the extrapolation performance of the pairwise formulation.

This study also recommends using classification metrics to evaluate extrapolation
performance in a direct way. These metrics suit practical uses when extrapolation is
required to identify the extraordinary samples from a test set. For example, they can
be used to select ML algorithm for active learning. Active learning (AL) is a learning
algorithm that interactively selects unlabelled samples to be labelled to learn the model
in a goal-oriented way. In the selection, the exploration and exploitation are usually
balanced so that AL can both improve the model’s applicability to a larger domain and
improve the model’s prediction accuracy for the samples with desired properties. Hence,
these extrapolation metrics can be used to assess and selectMLmethods with the desired
exploitation property.

We believe that the extrapolation ability of the pairwise approach could be employed
directly to fulfil the exploitation duty in an AL task for top-performing samples. Tynes
et al. have also discovered the advantage of a pairwise approach for uncertainty-driven
AL tasks, which encourages the exploration of the wider domain by selecting samples
with less confident predictions [28]. We believe that it is possible to develop pairwise-
approach-based AL, combining both the exploration and extrapolation traits found by
Tynes’s study and ours. Despite the difference in how our pairwise approaches generate
the pairwise features, it is ultimately the difference induced by data pre-processing
techniques, which makes little differences between the two.

The main limitation of the pairwise approach is the additional time and memory
requirement to train a pairwise model, as pointed out by Tynes et al. [28]. This is
because the size of training set needs to be squared for the pairwise approach. Some
techniques such as batch training and sub-sampling could certainly mitigate this. More
generally, improvements in computer hardware will increasingly remove this limitation.
Nevertheless, the pairwise approach can be useful in novel discovery projects with a
limited budget or where data is scarce to better explore the surrounding space. In drug
design, for example, accurate data points are expensive to generate, so it is important
to utilise them efficiently. This study revealed the general applicability of the pairwise
approach over thousands of datasets using default ML methods. Our next study will
more thoroughly explore the new approach with tuned models on selected problems that
demand extrapolation in order tomimic practical applications. To enable reproducibility,
the code and datasets used for the experiments have been deposited on: https://anonym
ous.4open.science/r/pairwise_approach_extrapolation_2023-A188/
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4 Conclusion

In this study we proposed a new pairwise configuration by first learning a classification
function, F(sample1, sample 2) → signed difference in target values, then ranking the
samples through Trueskill rating algorithm. We have compared for extrapolation the
standard regression approach with our novel pairwise formulation. We found that the
pairwise approach can almost always find more extraordinary samples from the test sets
than the standard approach, across all the ML methods tested over 2400 ChEMBL and
gene expression datasets. The pairwise approach outperformed the standard approach in
identifying equally or more top-performing samples on ~ 70% of the datasets. It was also
observed that the pairwise approach is more advantageous and effective when applied
to smaller datasets. Additionally, we have found that this configuration can be adopted
by the standard regression to identify more extraordinary samples. Yet the pairwise
approach still outperformed the configured standard approach in all the extrapolation
metrics tested.
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