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A B S T R A C T

A method of calculating the neutron multiplicity rates (singles, doubles and triples rates), based on transport
theory, was developed by us recently. The model treats the full 3-D spatial transport and multiplication of
neutrons, accounting also for the shape of the item and the spatial distribution of the source, in one-speed
theory. For a given item and its source distribution, the model can predict the multiplicity rates more precisely
than the point model, on which traditional neutron multiplicity counting is based. However, so far it has not
been investigated how the enhanced accuracy of the calculated multiplicity rates (i.e. the solution of the direct
task) can be used to estimate the parameters of interest of the measurement item, primarily the fission rate
(the solution of the inverse task). Unlike for the point model, the multiplicity rates under the extended scheme
can only be given numerically, as solutions of integral transport equations, and hence an analytical inversion
of the formulae is not possible. In this work it is investigated how machine learning methods, primarily the
use of artificial neural networks, which only need numerical values of the solution of the direct task (the
multiplicity rates), can be used for this purpose. It is shown that for numerical test items containing a mixture
of 239Pu and 240Pu, the fraction of the latter varying between 4% and 25%, one can extract the masses of both

isotopes from a properly trained network.
1. Introduction

Neutron multiplicity counting is a non-destructive method of deter-
mining the fission rate of a multiplying material [1–3]. The material
usually consists of both fissile and fertile material, such as 239Pu and
240Pu as metal, or their oxides, plus possibly a matrix of non-fissile ma-
terial, where here the 240Pu plays the role of the source of spontaneous
fission (SF) neutrons. The primary fission rate is the intensity of the
spontaneous fission events, hence determining the fission rate amounts
to determining the mass of the 240Pu content of the item.

One has to add that in reality the SF rate is governed by a linear
combination of the 238Pu, 240Pu and 242Pu content, which is tradition-
ally clumped together and described by an effective mass of 240Pu.
Also, fission can be induced in all Pu isotopes present, including 241Pu.
241Am, a decay product of 241Pu can add to the (𝛼, 𝑛) source term in
oxides and impure metals. In the present demonstration of concept we
simplify the item description for clarity by considering only 239Pu and
240Pu mixtures in pure metallic form, for which the (𝛼, 𝑛) contribution
is zero.

The fission rate is determined from the measured singles, doubles
and triples rates (𝑆, 𝐷 and 𝑇 rates, also commonly referred to as
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multiplicity rates), i.e. the rate of detecting in coincidence one, two
and three neutrons emitted from the item. One can derive analytical
expressions for these from a simplified model (the so-called point
model) of the internal multiplication in the item. These formulae are
derived such that the first three factorial moments of the number of
neutrons leaving the sample due to a source event (spontaneous fission
or (𝛼, 𝑛) event) are first expressed by the lumped parameters of the item.
The factorial moments are then easily converted to 𝑆, 𝐷 and 𝑇 rates
through the source event intensity and the detector efficiency.

In the usual point model, similarly to the theory of the Feynman-
and Rossi-alpha methods of determining the subcritical reactivity of
a reactor core, the material is assumed to be homogeneous, and all
neutrons have the same energy (one-speed model). The leakage of
the neutrons from the finite sample (which does not appear in the
Feynman- and Rossi-alpha methods) is described by a universal first
collision probability leading to fission, which is the same for all neu-
trons of all generations in the chain. Spatial transport, and hence the
scattering events, are completely disregarded. Only the fission reaction,
and the multiplicities of the spontaneous and induced fission neutron
multiplicities, or rather their first three factorial moments, are explicitly
accounted for.
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The point model is obviously a substantial simplification of the
true physical processes. On the other hand, it has the strength which
all lumped parameter models have in solving inverse tasks. Namely,
even if it might not give an accurate description of the direct task,
i.e. predicting the multiplicity rates for a given sample correctly, it
has some definite advantages. Because it supplies a simple expression
for the multiplicity rates, which contain only a very few global pa-
rameters, it is amenable to an analytical inversion, i.e. to express the
sought sample parameters in terms of the measured multiplicity rates
and known nuclear constants (fission neutron multiplicities). Further,
experience shows that this inversion or unfolding procedure, perhaps
surprisingly, is remarkably robust and reliable, in that the item fission
rate is determined with a reasonably good accuracy, independently of
the fine details of the item.

Nevertheless, despite the robustness, the simplifications represented
by the point model will inevitably lead to an item specific systematic
error, or bias, in determining the parameters of the item. Again, this
is analogous to the Feynman- and Rossi-alpha methods [3], where it
is known that a significant deviation in the system behaviour from
point kinetics leads to a bias in the determination of the subcritical
reactivity. This is only a conceptual comparison, since from the neutron
physics point of view, the safeguards problem (deeply subcritical,
neutronically thin systems with fast neutrons) and that of reactivity
measurement (large, thermal systems close to criticality) differ sig-
nificantly. To remedy the problems of the Feynman- and Rossi-alpha
methods, corrections are usually applied. These corrections are not
straightforward, since they only work if some a priori knowledge on the
geometry and materials make-up of the system is available, hence they
are not universally applicable, or require an unfolding procedure in
which some extra parameters of the system beyond those of the lumped
parameter method also need to be unfolded. The gain of introducing a
more complete model of the system is therefore not granted.

Although the above problem has been studied extensively with
regards to reactivity measurement methods, no similar studies have
been conducted what regards the possible improvement of the point
model-based multiplicity counting methods by introducing more realis-
tic models (except possibly comparisons with Monte-Carlo predictions,
or by the weighted point model [4]). Therefore, in recent work, we
initiated the extension of the point model-based multiplicity counting
to more realistic models [5–7]. We elaborated the stochastic theory of
emission of neutrons from a finite item with a given geometry, using
one-speed transport theory. At the beginning, similarly to the point
model, fission was considered as the only reaction that the neutrons
can undergo. Quantitative results were obtained for simple shapes, such
as spheres, cylinders and shells, both with distributed neutron sources
(which is the default assumption in nuclear safeguards tasks) as well as
with point sources (as it was in the case of the measurements made on
the Rocky Flats Shells during the MUSIC experimental campaign [8–
11]).

Comparison of the calculated results with these latter measure-
ments, made on items with known geometrical and material properties,
as well as with known criticality data of pure 235U and 239Pu spheres,
ave us the possibility to validate the extended model. It was found
hat in order to have a good agreement, scattering events had to be
ccounted for. Given the small energy loss and nearly isotropic angular
istribution of the elastically scattered neutrons on heavy nuclei (as-
uming pure metallic items), elastic scattering could be included into
he model, while still keeping its one-speed character. On the other
and, inclusion of inelastic scattering would require the extension of
he model to energy-dependent cases and the handling of input data
ibraries. While work in this direction is already underway [12], in
he works cited above the effect of inelastic scattering was estimated
y an empirical way only, namely by a suitable choice of the neutron
nergy (which influences both the cross sections and the fission neutron
2

ultiplicities). This way, a reasonably good agreement was obtained
between the measurements and calculations, as well as between the
calculated and true critical sizes of pure 235U and 239Pu spheres.

Having reached this point, even if the extended model is not perfect,
one can now investigate the question how this substantially more
realistic model can be used for the unfolding of item parameters. This
concerns both the elaboration of the unfolding procedure, as well as its
mass assay accuracy. Since the factorial moments, and hence also the
multiplicity rates can only be obtained numerically (through a collision
number expansion solution of the corresponding integral equations), an
analytical inversion is not possible. The most straightforward method
appears to be the application of artificial neural networks (ANNs). In
this procedure, first the model is used to generate a large set of training
patterns, i.e. 𝑆, 𝐷 and 𝑇 rates, belonging to items of various sizes
nd isotopic compositions over ranges that likely to appear in practice.
he trained network then receives a measured triplet of multiplicity
ates (𝑆, 𝐷 and 𝑇 ) as input, from which it can unfold a few relevant

parameters of the unknown item, as it will be discussed in Section 3.
The purpose of the present paper is to investigate the feasibility

of such a procedure, together with its accuracy, and to make a first
study of the conditions of its applicability. In Section 2, the principles
of the space-dependent calculation of the multiplicities are briefly
summarized, in comparison with the point model. Then the details of
the use of the model to generate the training set as input to the ANN
are discussed. In Section 3 the training and the test of the ANN are
described. It is shown that within the assumptions and limitations of the
model (mainly, its relying on some a priory knowledge on the item), the
trained ANN can extract not only the mass of the 240Pu, but also that
of the 239Pu directly from the measurement, thereby outperforming the
point model not only in accuracy, but also in the range of applicability.

2. General principles

For the sake of completeness, the principles of both the point model
and the space dependent model will be briefly summarized here. This
is not only to make the paper self-contained, but it is also necessary
in order to compare the advantages and disadvantages of the two
approaches. And not the least, it is needed for the description of the
unfolding method based on the space dependent model, which is the
main subject of the paper.

2.1. The point model

From this point on, the description will be restricted to the case
of pure metallic items, in which no (𝛼, 𝑛) reactions take place, hence
in the traditional expressions one has the ratio of (𝛼, 𝑛) to spontaneous
fission neutrons, 𝛼 = 0. This is not only for the sake of the simplification
of the formalism, but also for intrinsic characteristics of the transport
model-based sample identification, as will be elaborated on in the
forthcoming. The case of 𝛼 ≠ 0 requires special considerations, which
will be discussed in a subsequent communication.

As is known, under these conditions the multiplicity rates 𝑆, 𝐷 and
𝑇 are expressed in terms of the factorial moments 𝜈̃𝑖, 𝑖 = 1, 2, 3, of the
umber of neutrons emerging from the item following a source event
spontaneous fission) as

𝑆 =𝑭 𝜀 𝜈̃1 (1)

=
𝑭 𝜀2 𝑓𝑑

2
𝜈̃2 (2)

𝑇 =
𝑭 𝜀3 𝑓𝑡

6
𝜈̃3. (3)

In the above, 𝑭 is the spontaneous fission rate (to be determined), 𝜀 is
he detector efficiency (counts per emergent neutrons, assumed to be
nown), and 𝑓𝑑 and 𝑓𝑡 are the doubles and triples gate factors, which

account for the finite period of observation following every recorded
neutron event (in the continuation assumed to be unity). Following the
conventions used in most of our previous work, such as in [3], the tilde
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in the 𝜈̃𝑖 indicates that these are the factorial moments of the number
of neutrons emitted from the item generated by a source event (primary
or initiating spontaneous fission), in order to distinguish them from the
factorial moments of the neutrons emitted from the item for a single
starting neutron (which will be needed in the next Section).

On their turn, the 𝜈̃𝑖 are given by

𝜈̃1 =𝐌 𝜈𝑠𝑓 ,1 (4)

𝜈̃2 =𝐌2
[

𝜈𝑠𝑓 ,2 +
(

𝐌 − 1
𝜈𝑟,1 − 1

)

𝜈𝑠𝑓 ,1 𝜈𝑟,2

]

(5)

𝜈̃3 =𝐌3

[

𝜈𝑠𝑓 ,3 +
(

𝐌 − 1
𝜈𝑟1 − 1

)

[

3𝜈𝑠𝑓 ,2 𝜈𝑟,2 + 𝜈𝑠𝑓 ,1 𝜈𝑟,3
]

(6)

+ 3
(

𝐌 − 1
𝜈𝑟1 − 1

)2
𝜈𝑠𝑓 ,1 𝜈2𝑟,2

]

Here,

𝐌 =
1 − p

1 − p 𝜈𝑟,1
(7)

s the leakage multiplication, defined in terms of the (unknown) proba-
ility p that a neutron released into the item will induce fission, the 𝜈𝑟,𝑖,
= 1, 2, 3 are the known factorial moments of the number of neutrons
orn in an induced fission in the fissionable isotope, and the 𝜈𝑠𝑓 ,𝑖 are the
actorial moments of the number of neutrons emitted in a spontaneous
ission event (which is the only primary source of neutrons in absence
f (𝛼, 𝑛) reactions), also known. In (7) we have also neglected parasitic
apture mechanisms.

Naturally, one could have written the expressions for the 𝑆, 𝐷 and
rates in a more compact form, by substituting Eqs (4)–(6) into (1)–

3), as was done e.g. in [5,13]. The equations here were kept separate
n purpose, in order to have a better comparison with the similar
xpressions of the space-dependent model, where a compact form is
ot possible to give.

The unfolding of the unknown parameters 𝑭 and 𝐌 (and when rele-
ant, the 𝛼 factor), is achieved by first deriving and solving an algebraic
quation for the leakage multiplication 𝐌, and then substituting the
olution to Eqs. (4) and (1) to express the fission rate. The general
rocedure is described in the literature [2,13,14]. Here we only write
own the procedure for 𝛼 = 0, which is a special case of known 𝛼. Then,
aving only two unknowns, it is sufficient to use the 𝑆 and 𝐷 rates (this
oint will be returned on later). An equation of second order for 𝐌 can
e derived in the form

+ 𝑏𝐌 +𝐌2 = 0 (8)

here the coefficients 𝑎 and 𝑏 are given as

= −
2𝐷 (𝜈𝑟,1 − 1)

𝑆 𝜈𝑟,2
, (9)

𝑏 =
𝜈𝑠𝑓 ,2 (𝜈𝑟,1 − 1) − 𝜈𝑠𝑓 ,1𝜈𝑟,2

𝜈𝑠𝑓 ,1 𝜈𝑟,2
, (10)

fter which the fission rate can be obtained from substituting the
olution to (4) and (1).

A few comments are in order here, before turning to the space-
ependent model, to facilitate the comparison of expected performance
f the two models. The first is that in the point model, one does not
eed to be concerned with the shape of the item, since it cannot be
aken into account explicitly. The effect of the geometry is represented
y the fission probability p, which is an unknown of the procedure,
ence one might expect that it will ‘‘adjust itself’’ to the actual geom-
try. Assuming a uniform (volume-averaged) fission probability for all
enerations of neutrons is of course an approximation, which will lead
o a bias in the fission rate extracted. This bias may be different for the
ifferent geometries, as was discussed recently [5,6]. Nevertheless, it
s a strength of the point model that its application is not bound to

given geometry of the item. This is in contrast to the case of the
3

pace-dependent model. r
The second remark concerns the fact that the primary neutron
ource, whose fission rate is the most important parameter to be
etermined, and which supplies the effective mass of the 240Pu com-
onent, is treated conceptually. Its spatial distribution, which certainly
ffects the multiplicity moments, is not specified. Again, this lacking
nowledge is included in the fission probability parameter, which
ight compensate for this lacking information. More important, the

act that induced fission may take place in the non-fissile component,
s traditionally completely neglected. The factorial moments 𝜈𝑟,𝑖 are
onventionally taken to be solely those of the fissile component, the
39Pu, and no neutron reactions in the 240Pu component are taken into
ccount. This may be a good approximation for low 240Pu content in
he item, but it becomes increasingly worse with the increase of the
40Pu content. As it will be seen in Sections 2 and 3, fission in both
sotopes can be accounted for in the space-dependent model.

The last remark is that the identification procedure based on the
oint model can only determine the fission rate, and hence the mass, of
he 240Pu content of the item. There is no way that the more interesting
39Pu mass could be extracted by the same non-destructive method. The
oint model only extracts the leakage multiplication, which is related
o the mass of the fissile component in an indirect and unknown way.
ence the determination of the 239Pu mass requires the laboratory
etermination of the 239Pu/240Pu ratio, which, on its turn, requires
he application of destructive methods, or a different non-destructive
ethod, usually high resolution gamma spectroscopy. As it will be

een in the forthcoming text, the identification procedure based on the
pace-dependent model has the potential to be able to extract the 239Pu
ass of the item, since it accounts for all reactions in the full isotopic

ontent of the item.

.2. The space-dependent model

The principles of this model, and quantitative results obtained from
t, were published in a few recent papers [5–7]. In this model there are
o lumped parameters, such as the fission probability or the leakage
ultiplication. Rather, the full geometry, and the possible reactions

hat the neutrons can undergo, are accounted for through a one-speed
ransport equation. In the first two papers, similarly to the point model,
nly induced fission in the fissile isotope was accounted for, and the
ource was also treated in a similar way, as a source of neutrons, but
ithout taking the presence of the non-fissile component into account

hrough neutron reactions. In the most recent publication [7], which
imed to yield results comparable with some present measurements
ade on the Rocky Flats Shells [8–11], the need to include the elastic

cattering into the formalism arose. Elastic scattering could be included
nto the formalism in a relatively simple way, as it will be described
elow. The spontaneous fission neutron source (a small amount of
52Cf in the cavity in the middle of the shell) was still accounted for
n a conceptual way (no induced fission reactions in the 252Cf were
aken into account), which is a rather good approximation. However,
ince the Rocky Flats Shells have a composition of 93% 235U and 7%
38U, the model was extended to the case of using cross sections and
ultiplicities in a medium containing two isotopes.

The above formalism, which will be described concretely below,
ontains all ingredients which are necessary to calculate the multiplic-
ty rates emerging from an item containing a mixture of 239Pu and
40Pu with a given weight percentage. It will be assumed that the item
s homogeneous, which means that the source is uniformly distributed
ithin the sample. In order to calculate the multiplicity rates, one has
lso to fix the geometry of the item. As mentioned before, neither the
ource distribution, nor the shape of the item is either necessary or
ossible to specify in the point model. These can and must be specified
n the space-dependent model, which is both to its advantage and
isadvantage. But for a class of measurement problems this may not
e restrictive, and of course the point model and the extended model

esults can both be generalized for comparison.
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Below the principles of the model will be specified for the case
described above, i.e. a uniform mixture of two Pu isotopes according to
a weight percentage for an item with spherical shape, with the inclusion
of scattering. First we start with the inclusion of scattering in a material
containing a single isotope. As described in [7], if one neglects the
slight energy loss and slight anisotropy of the elastically scattered
neutrons,1 then one can interpret scattering as a fission event with one
outgoing neutron. The procedure is completely analogous with how the
effect of (𝛼, 𝑛) neutrons can be combined with the number distribution
of the spontaneous fission, to obtain the probability distribution, and
hence the factorial moments, of the source emission event.2

Let us denote the induced fission and elastic scattering macroscopic
cross sections with 𝛴𝑓 and 𝛴𝑒𝑙, respectively, and introduce the total
cross section 𝛴𝑇 and the fractional contributions 𝑐𝑓 and 𝑐𝑒𝑙 of fission
and scattering, respectively as3

𝛴𝑇 = 𝛴𝑓 + 𝛴𝑒𝑙; 𝑐𝑓 ≡
𝛴𝑓

𝛴𝑇
; 𝑐𝑒𝑙 ≡

𝛴𝑒𝑙
𝛴𝑇

(11)

Then, if 𝑓𝑘 stands for the number distribution of the induced fission
eutrons, with 𝜈𝑓.𝑖 being its factorial moments, then the probability
istribution 𝑝𝑟(𝑘) of the number of secondaries in a reaction will be

given as

𝑝𝑟(𝑘) = 𝑐𝑓 𝑓𝑘 + 𝑐𝑒𝑙 𝛿𝑘,1 (12)

and hence one has for the factorial moments 𝜈𝑟,𝑖 of the number of
secondaries as

𝜈𝑟,𝑖 = 𝑐𝑓 𝜈𝑓,𝑖 + 𝑐𝑒𝑙 𝛿𝑖,1 (13)

Regarding a mixture of two isotopes, then one has to calculate
first the fission and elastic scattering cross sections for the mixture.
This is made by first calculating the fission, elastic scattering and total
cross section of the mixture, and then applying Eqs. (11) and (13). In
principle, this is a very simple task, if one knows the density of the
compound and the weight fractions of the components. As is described
in [7], this simply requires the application of the well-known formula

𝛴𝑖
𝑥 = 𝜎𝑖𝑥 𝑤𝑖 𝜌

𝑁𝐴𝑣𝑜
𝑀𝑖

(14)

where 𝑥 stands for the type of the reaction (fission or elastic scattering)
and 𝑖 for the nuclide index in question (239 for 239Pu and 240 for
40Pu), 𝑤𝑖 is the weight fraction of the corresponding isotope, 𝜌 is
he density of the compound, 𝜎 is the microscopic cross section, and
𝐴𝑣𝑜 stands for Avogadro’s number. Once the fractional cross sections

re found, they are simply added to represent the fission, elastic and
otal cross section of the mixture. The fission neutron multiplicities, and
ence also the factorial moments thereof, will be weighted averages of
he two isotopes, the weighting factors being the relative contributions
f the individual fission cross sections to the total fission cross section of
he compound [7]. The only problematic point here is that the density
f Pu samples with different isotopic content is not available in general
or an unknown item being assayed. We will return to this point later.

With these preliminaries, the calculation of the 𝑆, 𝐷 and 𝑇 rates
n the space dependent model is performed as follows. Eqs. (1)–(3)
emain the same, the difference is in the model representation and
he consequent calculation of the factorial moments 𝜈̃𝑖. This will be
escribed only very cursorily for spherical geometry, with the details of
he derivation we refer to [5,12]. The starting point is the equation for
he probability distribution 𝑝(𝑛 |𝑟, 𝜇) of the number of neutrons emitted

1 The anisotropy of the scattering can be trivially easily incorporated into
he model, as described in [12]. It is neglected here for simplicity.

2 Similarly, one can formally include capture as fission in which no neutrons
re emitted.

3 The fractional contributions 𝑐𝑖 and 𝑐𝑒𝑙 were denoted as 𝛼𝑠 and 𝛽𝑠 in [7].
The new notations 𝑐𝑓 and 𝑐𝑒𝑙 are introduced here because they feel more logical
4

nd are easier to identify. o
from the item by one single source neutron with co-ordinates (𝑟, 𝜇).
By adding the probabilities of the mutually exclusive events of having
or not having a first collision for the starting neutron to the system
boundary, one has

𝑝(𝑛| 𝑟, 𝜇) = 𝑒−𝓁(𝑟, 𝜇) 𝛿𝑛,1+
𝓁(𝑟, 𝜇)

0
𝑑𝑠 𝑒−𝑠

∞
∑

0
𝑝𝑟(𝑘)

∑

𝑛1+𝑛2+⋯+𝑛𝑘=𝑛
∫

1

−1

𝑑𝜇1
2

𝑑𝜇2
2

…
𝑑𝜇𝑘
2

×

𝑝(𝑛1| 𝑟′(𝑠), 𝜇1) 𝑝(𝑛2| 𝑟′(𝑠), 𝜇2)… 𝑝(𝑛𝑘| 𝑟′(𝑠), 𝜇𝑘).

(15)

n writing down (15), the radial coordinate is expressed in units of the
ean free path 1∕𝛴𝑇 . Here 𝑟′(𝑠) is the radial position of the neutron

t a distance 𝑠 away from the starting point 𝑟 along direction 𝜇, and
(𝑟, 𝜇) is the distance, in optical units, to the boundary of the system
rom the radial position 𝑟 in direction 𝜇.4 Introducing the generating
unction 𝑔(𝑧| 𝑟, 𝜇) of 𝑝(𝑛| 𝑟, 𝜇) in the usual way, one obtains the more
ompact equation

(𝑧| 𝑟, 𝜇) = 𝑧 𝑒−𝓁(𝑟,𝜇) + ∫

𝓁(𝑟,𝜇)

0
d𝑠 𝑒−𝑠 𝑞𝑟

[

𝑔(𝑧| 𝑟′(𝑠))
]

. (16)

here 𝑔(𝑧 | 𝑟) is the ‘‘scalar’’ (angularly integrated) generating function,
𝑟 is the generating function of the number distribution of neutrons
rom a reaction, and 𝑔(𝑧| 𝑟′(𝑠)) here stands as its argument.

Eq. (16) shows similarities with the corresponding equation of the
oint model [1,3], except that it is an integral equation, not a pure
lgebraic equation. From (16) equations can be derived for the factorial
oments of the emitted neutrons due to a single starting neutron,
hich are still integral equations, hence, in contrast to the point
odel, cannot be solved explicitly. These factorial moments, which are

unctions of the coordinates (𝑟, 𝜇) of the starting neutron, were denoted
s 𝑛(𝑟, 𝜇), 𝑚(𝑟, 𝜇) and 𝑤(𝑟, 𝜇) in our previous work. We will quote only
he equation for the first moment 𝜈1(𝑟, 𝜇) ≡ 𝑛(𝑟, 𝜇):

(𝑟, 𝜇) = 𝑒−𝓁(𝑟,𝜇) + 𝜈𝑟,1 ∫

𝓁(𝑟,𝜇)

0
d𝑠 𝑒−𝑠 𝑛(𝑟′(𝑠)). (17)

here 𝑛(𝑟′(𝑠)) is the angularly integrated first moment. As is always
he case with backward type master equations, completely analogous
quations can be derived for the second and third moments, with the
nly difference that the inhomogeneous part on the right hand side,
−𝓁(𝑟,𝜇), will be replaced by functions of the lower order moments. These
quations need to be solved numerically and sequentially, since the
quations for the higher order moments contain the solutions of the
ower order moments as the inhomogeneous part of the equation. The
umerical solution can be conveniently obtained by a Neumann-series
collision number) expansion, which was used in our previous work.

In possession of the factorial moments of the number of neutrons
eaving the sample due to one single starting neutron, one can easily
alculate the factorial moments 𝜈̃𝑖 (denoted in the previous space-
ependent works as 𝑁 , 𝑀 and 𝑊 , respectively), which are needed in
1)–(3) to obtain the space-dependent multiplicity rates 𝑆, 𝐷 and 𝑇 .
hese are derived from an equation connecting the probability of the
mission of a total number of neutrons by a spontaneous fission event
n the system, integrated over the system, weighted with the spatial
robability density 𝑝𝑟(𝒓) of the occurrence of the spontaneous fission
ource event. For this one needs also the number distribution 𝑝𝑠(𝑘) of
he source emission, which for the cases treated here is the probability
hat in a spontaneous fission there will be 𝑘 neutrons emitted. Here
e only write down the equation for the generating function 𝐺(𝑧) of
mitted neutron number distribution due to a source emission, relating
t to the single neutron initiated scalar generating function, which reads
s

(𝑧) = ∫𝑉
d𝒓 𝑝𝑟(𝒓) 𝑞𝑠 [𝑔(𝑧| 𝒓)] =

1
𝑉 ∫𝑉

d𝒓 𝑞𝑠 [𝑔(𝑧| 𝒓)] , (18)

4 As in the case of the traditional point model development, we are ignoring
ncapsulation effects, which formally we can accommodate in the definition
f the efficiency, unless the container is highly reflective.
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where 𝑞𝑠(𝑧) is the generating function of 𝑝𝑠(𝑘). Usually, one can assume
that the source is uniformly distributed within the item, which is
expressed by the second equality. Without going into details, it is seen
that the factorial moments 𝜈̃𝑖 of 𝐺(𝑧) can be easily obtained from
those of the scalar single neutron induced generating function 𝑔(𝑧| 𝒓),
.e. from 𝑛(𝑟), 𝑚(𝑟) and 𝑤(𝑟), by a simple integration.

It has to be mentioned that the above formalism, using one-speed
ransport theory and isotropic scattering in the laboratory system,
an only be used for pure metallic items. The presence of low-𝑍
lements, such as O in Pu oxides or both H and O in the presence of
oisture, will lead to significant energy loss of the neutrons and non-

sotropic scattering. Inclusion of this aspect into the model, likewise
he inclusion of inelastic scattering, necessitates the extension of the
odel to account for energy dependence. Given the simple analytical

orm of the scattering function of elastic scattering, this extension is
onceptually very straightforward and work in this direction is already
nderway [12]. Introducing a new variable will of course increase the
omputational burden significantly, but this is only a technicality.

Extending the model for items containing Pu oxides will not affect
he complexity of the unfolding process. This is because the Pu/O ratio
s fixed, and hence no new unknown appears in the formulae. The
resence of moisture, on the other hand, means the appearance of
n unknown quantity of light materials (H2O). The complexity of the
alculation of the direct task (the multiplicities) is not affected, apart
rom the fact that calculations will have to be made for a larger set of
ariables, including a variable amount of moisture. On the other hand,
n the inversion step, a new unknown, the quantity of the moisture,
ill also have to be unfolded. The sensitivity of the method for the
eglection of the presence of a small amount of moisture, as well as
he possibility of unfolding the unknown amount of moisture, will be
nvestigated in future work.

One can now discuss the possibilities of unfolding item specific
odel parameters from the measured multiplicity rates based on the

pace-dependent model. It is seen that unlike in the point model, where
o assumptions need to be made on the geometry of the sample and
he spatial distribution of the source, in the space dependent model
hese need to be specified in order to obtain concrete quantitative
alues of the multiplicity rates. Once assumptions are made on these,
he corresponding multiplicity rates can be calculated. In this paper, to
emonstrate the approach for the first time, we restrict the studies to
pherical geometry and a homogeneously distributed primary neutron
ource, but the model is capable of calculations to any other geometry
r source distribution, as is was demonstrated in [6,7]. In particular,
n [15], comparisons were made between spheres and cylinders of
arious aspect ratios. On the other hand, the space dependent model
s more realistic than the point model not only due to the fact that it
reats the spatial transport of the neutrons, but also because it takes
nto account the presence of the non-fissile component (here, 240Pu),
xplicitly. More importantly, the parameters of the fissile component
ppear explicitly in the equations, which gives a chance to determine
ot only the mass of the spontaneous fission source component, but also
f the fissile component; in other words, the isotopic grade of the Pu
resent.

Since there is no explicit inversion formula available for the space-
ependent model, the only way is to numerically generate a multitude
f solutions of the direct task, i.e. calculating the multiplicity rates for
large number of item parameters, i.e. size of the item and varying

ractional weights of the two components, covering the domain of cases
ikely to occur in practice. Then the input parameters to the calculation
re selected which yield the multiplicity rates closest to the measured
nes. This is a multidimensional optimization problem, which can be
ffectively tackled by the use of artificial neural networks, ANNs. An
nvestigation of the performance of an ANN-based inversion procedure
ill be performed in the next section.
5

. The ANN model

Artificial Neural Networks (ANNs) as an advanced numerical ap-
roach are suitable for modelling nonlinear relationships. They can be
pplied in different systems such as image, voice and text recognition
ystems [16] as well as in nuclear reactor diagnostics and monitor-
ng [17,18]. In nuclear safeguards, neutron and gamma multiplicity
ates based on the point-model were used for determining sample
arameters by the ANN approach [19,20]. Another recent applica-
ion concerns the investigation of partial defects in spent nuclear fuel
ssemblies [21,22].

The generation of the training set, namely that of the 𝑆, 𝐷 and 𝑇
ultiplicity rates was performed as follows. For a given case, the total
ass of the item and the weight fraction of the 240Pu component was

elected. If the density of the compound was known, then this would
etermine all input parameters to the space-dependent calculation of
he multiplicity rates. The density of the compound constitutes a slight
roblem, since it is not known for a large number of different weight
ractions of 240Pu. If it was granted that in the mixture of the two
sotopes each would be present with its own specific density, then one
ould calculate the density 𝜌 of the compound by the formula
1
𝜌
= 1 −𝑤

𝜌239
+ 𝑤

𝜌240
(19)

where 𝑤 is the weight fraction of the 240Pu component. In general,
however, one cannot count on this assumption being true. For instance,
for the Rocky Flats Shells, consisting of 93% 235U (18.811 g/cm3) and
% 238U (19.052 g/cm3) (data taken from [23]), Eq. (19) would yield
density of 18.827 g/cm3, whereas the true density of the shells,

iven by [24], is 18.66 g/cm3, i.e. less than that of any of the two
omponents. In the calculations we used the density of 15.9 g/cm3 for
delta phase of plutonium given by [25].

With this, given the total mass and the weight fraction of 240Pu,
verything is available for the space-dependent model to calculate the
ultiplicity rates 𝑆, 𝐷 and 𝑇 , as it would be for a full Monte Carlo

alculation of ground truth. The macroscopic cross sections for the
ompound, both the fission, elastic scattering and total cross section,
an be calculated from the microscopic cross sections, taken from the
NDF/B-VIII library, and using the partial fission and elastic scattering
ross sections of the compound, the multiplicity rates can also be
alculated using the data from [26]. All cross sections and fission
eutron multiplicities were taken at 2 MeV. The physical size of the
tem is calculated from the weight and the density, and the radius of the
phere in optical units is calculated from the total cross section of the
ompound. The spontaneous fission rate is determined uniquely from
he mass of the 240Pu and the specific spontaneous fission rate of 479
ission/s/g.

The neutron multiplicity rates for a Pu metal sphere with the 240Pu
raction between 4 and 25% and the sphere radius between 0.3 and
.7 cm were used as the input data for the constructed ANNs. The
elected range of the sphere radii is of practical interest for nuclear
afeguards. Naturally, a similar investigation for a larger range of radii
an also be easily made. Weapon grade plutonium contains less than
% of 240Pu, fuel grade plutonium contains 7%–18% of 240Pu, whereas
eactor grade plutonium contains over 18% of 240Pu [27]. According
o [28] the fraction of plutonium isotope 240Pu of most pressurized-
ater-reactor spent fuel upon discharge would typically be of the order
f 21 percent. The isotopic composition of MOX fuel for Light Water
eactors (LWRs) includes about 25% of 240Pu when first loaded. Plu-

onium metal plate (referred to as PANN), which is used as fuel of the
ero Power Physics Reactor (ZPPR) at the Idaho National Laboratory
INL) [29] contains 95% of 239Pu and 4.5% of 240Pu by mass. A set
f four 240Pu scrap metal samples with mass of 6.6 g each and the
40Pu fraction between 6.3 to 24.9% were measured using a standard
eutron coincidence counter, i.e. Plutonium Scrap Multiplicity Counter
PSMC), at the Joint Research Center (JRC) laboratory, Ispra [30,31].
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Fig. 1. Neutron multiplicity rates for a Pu metal sphere in the mass range between
about 1.8 g and 327.2 g of plutonium.

Considering the data mentioned above, we selected the 240Pu fraction
between 4 and 25% for the initial ANN training data.

A training set consisting of the multiplicity rates according to
Eqs. (86)–(88) in [5] was generated by assuming the alpha-ratio 𝛼
(the ratio of the rate of random neutrons, that are mostly due to (𝛼, 𝑛)
reactions, to the rate of the average number of neutrons emitted from
spontaneous fission [32]) is equal to zero, whereas the detection system
efficiency, the gate utilization factors for doubles and triples counting
were taken equal to unity [5]. For the investigation of the feasibility of
the method, the actual value of the gate factors is irrelevant, because
they affect the measurements and the corresponding simulations in the
same way. In a concrete application, the simulations will have to be
made by the proper values of the gate factors in the corresponding
measurement.

The multiplicity rates 𝑆, 𝐷 and 𝑇 , calculated from the factorial
moments, were used to generate input patterns for the training of a
feed-forward backward-propagation network [33] with three inputs
(originally the 𝑆, 𝐷, 𝑇 rates for different values of the sphere radius
and different values of the 240Pu fraction; these inputs were modified
later, see below); and the two outputs for the spontaneous fission rate
𝑭 and the mass 𝑀 of the 239Pu content of the item5 for each size of
the sphere and each value of the 240Pu fraction between 4 and 25%.
The calculated multiplicity rates depending on the sphere radius and
the 240Pu fraction in the mass range between about 1.8 g and 327.2 g
of plutonium are given in Fig. 1.

Given that in the absence of (𝛼, 𝑛) neutrons, there are only two
parameters to be determined (the spontaneous fission rate 𝑭 and the
mass 𝑀 of the 239Pu), in principle it would be sufficient to use only two
measured quantities as the input of the ANN, namely the 𝑆 and 𝐷 rates,
similarly to the analytic inversion of the point model for such a case,
Eqs. (8)–(10). However, an ANN can very effectively utilize redundant
information, represented here by the 𝑇 rate, which is particularly useful
in the case of possible uncertainties in the input data, which is always
the case in practice. Indeed, as will be shown shortly, using the 𝑆, 𝐷
and 𝑇 rates as opposed to using the 𝑆 and 𝐷 rates only, improves both
the convergence speed of the training and the accuracy of the unfolding
of the two searched parameters 𝑭 and 𝑀 .

Another possibility would be to use the 𝑆, 𝐷 and 𝑇 rates to unfold,
in addition to 𝑭 and 𝑀 , a third parameter, namely the detection

5 The mass 𝑀 of the 239Pu content of the item is not to be mixed up with
the leakage multiplication 𝐌 of the point model, Eq. (7).
6

efficiency 𝜀. To this order one has to use an ANN with three input and
three output nodes. This possibility was also investigated. However, it
was found that the detection efficiency could not be determined with
an acceptable accuracy, and in addition the accuracy of the unfolding
of the other two parameters, 𝑭 and 𝑀 , also decreased noticeably. Just
out of interest, we made then a conceptual test to unfold the detection
efficiency with an ANN structure of three input nodes and one single
output node, this latter yielding the detection efficiency 𝜀. All three
parameters (𝑭 𝑀 and 𝜀) were varied during the training, but only 𝜀 was
unfolded. In that case, the determination of 𝜀 was successful. However,
since such a scenario lacks any practical relevance, this investigation
will not be discussed any further, and in the continuation only results
with unfolding of 𝑭 and 𝑀 with ANNs having three input and two
output nodes will be reported.

As is the case when solving any multi-variable problem, especially in
a purely numerical way with possible uncertainties in the input data, a
pre-requisite of a successful and accurate solution is that the dependent
variables (in our case the 𝑆, 𝐷 and 𝑇 values) are sufficiently sensitive
functions of the independent variables (here, 𝑭 and 𝑀).6 In pattern
recognition parlance, this means that the selected feature parameters
should be sensitive functions of the input patterns. In a linear system
of differential equations, this can be decided from the determinant
of the characteristic equation. No such possibility is available for the
present case, where only a highly implicit numerical relationship exists
between the input and output data.

However, one can check the suitability of the selected features
(the inputs of the indirect task, such as 𝑆, 𝐷 and 𝑇 , or their various
combinations) by calculating the correlation coefficients between them
for a set of randomly chosen input variables 𝑭 and 𝑀 of the direct
task, by a bootstrap procedure. This means selecting fixed values of
the input data 𝑭 and 𝑀 , and then varying their values as if adding
a ‘‘random noise’’ to these input parameters. The outputs 𝑆, 𝐷 and
𝑇 are then calculated for each random value of the inputs, and the
correlation coefficient is calculated. A strong correlation between these
data, which serve as the input of the ANN, is an indication of an
expected deteriorated performance of the process of extracting the 𝑭
and 𝑀 data.

The accuracy of identification with the ANN depends on how sensi-
tive the results are to the input parameters of the ANN (the multiplici-
ties). In the search of the most sensitive set of input data, we tested both
the pure 𝑆, 𝐷 and 𝑇 multiplicity rates as the input data to the ANN, as
well as some combinations such as 𝑆, 𝐷∕𝑆 and 𝑇 ∕𝑆 and 𝑆, 𝐷∕𝑆 and
𝑇 ∕𝐷. Fig. 2 shows histograms of the correlation coefficients obtained
after 1000 times bootstrap sampling of input vectors with added 3%
by magnitude of a random noise drawn from the normal distribution.
The correlation coefficient between inputs such as 𝑆, 𝐷∕𝑆 and 𝑇 ∕𝑆 can
be reduced from 0.99 (𝑆, 𝐷) to 0.81 for the second configuration (𝑆,
𝐷∕𝑆) and from 0.98 (𝑆, 𝑇 ) to 0.83 for the third configuration (𝑆, 𝑇 ∕𝑆).
Accordingly, as Fig. 3 shows, the target mass of the 239Pu and fission
rate was recovered with significantly better accuracy (smaller deviation
or error of the identification) for the ANN input set 𝑆, 𝐷∕𝑆 and 𝑇 ∕𝐷
than for the original input set 𝑆, 𝐷, 𝑇 . Fig. 4 shows the effect of the
input data configuration on the ANN unfolding results by a comparison
between the cases of three versus two input data. It can be seen that
the relative deviations of the unfolded results from the target values
for both parameters such as the mass of the 239Pu content and the
spontaneous fission rate are smaller for the configuration with three
inputs than with those with two inputs.

In the unfolding calculations, we have used a typical feed-forward
ANN consisting of interconnected neurons, with an input layer, one or
more hidden layers (one layer for the case with ‘‘clean’’ input data and
two layers for ‘‘noisy’’ input data), and an output layer. Fig. 5 shows
the structure of the case with one hidden layer.

6 Note that 𝑭 and 𝑀 are the input and 𝑆, 𝐷 and 𝑇 are the output of the
direct task, i.e. the calculation of the multiplicity moments from the material
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Fig. 2. Histograms of the correlation coefficients obtained by bootstrap sampling of the input data with random noise.
Fig. 3. The unfolding results for the input data set 𝑆, 𝐷∕𝑆 𝑇 ∕𝑆 compared to the 𝑆, 𝐷, 𝑇 input configuration.
4. Results

4.1. Fission rate and 239Pu mass unfolding from the multiplicity rates
without noise

In order to properly tune the constructed ANN for the problem
studied, sets of inputs (the multiplicities calculated from the factorial
moments) and outputs (the mass of 239Pu and the fission rate) are
used for learning the ANN relationship. The number of neurons in the
input layer corresponds to the number of input features, the number

and geometry data of the item. The ANN solves the inverse task, hence it takes
the 𝑆, 𝐷 and 𝑇 as input, and supplies the 𝑭 and 𝑀 as its output.
7

in the output layer is equal to the output size, whereas the number of
neurons in hidden layers needs to be tuned in order to optimize the al-
gorithm performance. We used the Neural Net Fitting application [33]
to create a feed-forward network with one hidden layer with 20 nodes
determined on the basis of the k-fold cross validation analysis.

K-fold cross-validation is a process used to estimate the accuracy
of an ANN model. It is a common practice to randomly divide data
into 10-folds or subsets of roughly equal size. In each run, one of the
folds is used for validation and the remaining folds for training. The
process is repeated 𝑘 times so that each of the 𝑘 subsets is used once
for validation. The estimate of the ANN model accuracy was taken as
the average value of a performance function in each run. The data set
of the constructed ANN includes 330 cases for the input multiplicity
rates depending on the sphere radius in the range between 0.3 and
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Fig. 4. The effect of the input data configuration on the accuracy of the ANN unfolding results.
Fig. 5. A typical feed-forward ANN used in the unfolding calculations.
1.7 cm with a step of 0.1 cm and the 240Pu fraction between 4 and
25 wt% with a step of 1 wt%. The input data were split randomly into
training (231 cases, i.e. 70%), validation (50 cases, i.e. about 15%), and
test (49 cases, i.e. about 15%) sets. Bayesian regularization was applied
via the network training function trainbr to produce a network that
generalizes well.

The trained ANN was tested to determine the fission rate and
the mass of 239Pu of an unknown item. The difference between the
recovered value by the ANN approach and the true (known) value
indicates the inaccuracy of the unfolding method. This inaccuracy is dif-
ferent for each fold, and is random in its character. For simplicity, the
deviation between the true value and the one recovered by the ANN,
expressing the inaccuracy of an individual identification, will be termed
as ‘‘error’’ or ‘‘errors’’ in the tables and figures, and the expressions
‘‘error’’, ‘‘deviation’’ and ‘‘inaccuracy’’ will be used interchangeably in
the text and the captions. The maximum, minimum, mean and standard
deviation of the relative errors obtained for the whole set of the input
data (training, validation and test) used with the trained network are
given in Table 1. Histograms of the relative deviations between the
target and ANN values for the 239Pu mass and the fission rate for the
input data without noise are presented in Fig. 6. Table 1 and Fig. 6
demonstrate that the 239Pu mass and the fission rate were unfolded
with good precision in the test phase.
8

Table 1
Relative errors of the ANN outputs compared to the target values for the input data
without noise.

Relative error (%) 239Pu mass Fission rate

Maximum 0.081 0.0077
Minimum −0.0378 −0.0088
Mean 8.14e−05 3.02e−05
Standard deviation 0.0068 0.0018

4.2. Fission rate and 239Pu mass unfolding from the multiplicity rates with
added random noise

Since measurement data inevitably contain statistical uncertainties,
in order to simulate more realistic input data, we added a random
noise to all three neutron multiplicity rates 𝑆, 𝐷 and 𝑇 at a level of
3% in magnitude independently drawn from a normal distribution. The
constructed network is somewhat more complex than the previous one
and it includes two hidden layers with 35 and 15 nodes. Fig. 7 shows
histograms of the relative errors, whereas the relative errors of the
unfolded parameters are given in Table 2. The Figure and the Table
show that the fission rate can be unfolded with a relative error less than
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Fig. 6. Relative deviation between the target assay parameters and ANN values for the 239Pu mass and the fission rate for the input data without noise in the input data.
Table 2
Relative errors of the ANN outputs compared to the target values for the input data with
added random noise at a level of 3% of the magnitudes of the individual multiplicity
rates.

Relative error (%) 239Pu mass Fission rate (F)

Maximum 3.95 0.3
Minimum −4.15 −0.21
Mean −0.008 −9.0e−04
Standard deviation 0.612 0.083

about 0.3% whereas the 239Pu mass can be evaluated with the relative
error less than about 4.2%. In addition, we tested the ANN response for
the input data with a random noise at a level of 5% added separately
to the 𝑆, 𝐷, 𝑇 rates (combinations: (𝑆 + noise, 𝐷, 𝑇 ), (𝑆, 𝐷 + noise,
𝑇 ) and (𝑆, 𝐷, 𝑇 + noise)) and to all of them in the combination (𝑆 +
noise, 𝐷 + noise, 𝑇 + noise). In all the combinations, the fission rate
could be unfolded with a relative error less than 1%.

4.3. Fission rate and 239Pu mass unfolding from the multiplicity rates with
setting the standard deviations of added random noise to specific values

The 𝑆, 𝐷, 𝑇 multiplicity rates for weapons-grade metal samples
(‘‘PM’’ samples) with the masses in the range of 10–20 g and about
4.5% of a 240Pu content for two of the items and about 8.5% of a
240Pu content for the third item were measured at the Joint Research
Centre in Ispra [34]. The standard errors for the measured multiplicity
rates 𝑆, 𝐷 and 𝑇 were 0.5, 0.5 and 1.1%, respectively. Guided by this
experimental study, we have added random noise to the input data
setting the standard deviations of added noise to given values for the
measured 𝑆, 𝐷 and 𝑇 rates. The constructed ANN includes two hidden
layers with 35 and 15 nodes. Histograms of the relative errors between
the target and ANN responses for the 239Pu mass and the fission rate
for the input data with added noise are presented in Fig. 8, whereas
the maximum, minimum, mean and standard deviation of the relative
errors are given in Table 3.
9

Table 3
Relative errors of the ANN outputs compared to the target values for the input data
with added random noise.

Relative error (%) 239Pu mass Fission rate (F)

Maximum 0.59 0.013
Minimum −1.04 −0.012
Mean −0.007 −1.46e−04
Standard deviation 0.123 0.0042

5. Conclusions

The ANN approach was implemented to unfold a few parameters
(the fission rate and the 239Pu fraction) of an unknown plutonium item
in the mass range between 1.8 g and 327.2 g. It was demonstrated
that the constructed ANNs are suitable to unfold the fission rate as the
most important parameter (relating to the 240Pu mass) of interest in
nuclear safeguards with high accuracy for the clean multiplicity rates
and for the more realistic input data with added random noise even
for the sample with a few grams of plutonium. In other words, it has
been demonstrated that the ANN is a potential alternative to analytical
methods when a more sophisticated interpretational model is adopted
and analytical methods are not possible. The ANN unfolding results
were obtained for the input data with a high spatial resolution (step
of 0.1 cm) as well as for a high 240Pu fraction resolution of 1%. It
can be expected that the accuracy of the unfolded parameters can be
improved in the wider range of the plutonium sample mass with the
more pronounced differences between the neutron multiplicity rates.

The results of the current study showed how to extract the ‘‘correct’’
fissile mass of an unknown sample from the calculated neutron mul-
tiplicity rates based on the newly developed space dependent model
and by using machine learning methods, i.e. by applying the ANN
approach. The extended model is simpler and faster than a full Monte
Carlo simulation, and is commensurate with the few observable (𝑆, 𝐷,
𝑇 ) experimental data. The ANN approach is of course general and can
be applied to any training set (experimental or MC simulated).
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Fig. 7. Relative deviation between the target and ANN values for the 239Pu mass and the fission rate with added random noise at a level of 3% of the magnitudes of the individual
multiplicity rates.

Fig. 8. Relative deviation between the target and ANN values for the 239Pu mass and the fission rate with the added noise.
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