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Introduction: Cycling is popular for its ecological, economic, and health benefits. However, especially in
rural areas, cyclists may need to share the road with motorized traffic, which is often perceived as a
threat. Overtaking a cyclist is a particularly critical maneuver for drivers as they need to control their lat-
eral clearance and speed when passing the cyclist, possibly in the presence of oncoming vehicles or view-
obstructing curves. An overtaking vehicle can destabilize the cyclist when passing with low clearance and
high speed. At the same time, the cyclist may get scared and eventually stop cycling. In this work, we
investigated how visibility regarding available sight distance—an important factor for infrastructure
design and regulation—affects drivers’ behavior when overtaking cyclists. Method: Using four roadside-
based traffic sensors, we collected naturalistic data that contained kinematics of drivers overtaking
cyclists on a rural road in Sweden. We modeled lateral clearance and speed at the passing moment in
response to variables such as sight distance and oncoming traffic with a Bayesian multivariate approach.
Results: Fitted on 81 maneuvers, the model revealed that drivers reduced lateral clearance under reduced
sight distance. Speed was similarly reduced, however, not as clearly. When an oncoming vehicle was pre-
sent, it had a similar—yet stronger—effect than sight distance. While we found an overall correlation
between clearance and speed, some maneuvers were recorded at critically low clearance. Conclusions:
Cyclists’ safety is endangered when passed by drivers under reduced visibility or close to oncoming traf-
fic. Practical Applications: Decision-making for infrastructure and policymaking should aim at prohibiting
overtaking in areas with reduced visibility or close oncoming traffic. The model developed in this study
may serve as a reference to vehicle active-safety systems and automated driving. The collected and pro-
cessed data may support evaluating driver models fitted on less ecologically valid data and simulated
active-safety systems.
� 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With a growing interest in more sustainable transportation has
come an ever-increasing interest in cycling as an alternative to car
driving for commuting, sports, and other leisure activities (Buehler
& Pucher, 2021b). This growth received a recent push when the
COVID-19 pandemic forced societies into lockdowns and social dis-
tancing (Buehler & Pucher, 2021a). Cycling has been shown to
increase health benefits; however, it is still met with physical
and psychological barriers in environments where it has not yet
gained enough attention (Kircher et al., 2022). Rural roads present
such an environment, where cyclists are often exposed to sharing
the road with motorized vehicles due to an absence of separating
infrastructure (Kircher et al., 2022). Rural roads were originally
designed for, and are still predominantly used by, motorized traf-
fic; however, they are being increasingly used by cyclists, for
instance, for sports activity (Moll et al., 2021). Impact speeds on
rural roads are often high and consequences of collisions can, as
a result, become catastrophic (Hosseinpour et al., 2021; Isaksson-
Hellman & Töreki, 2019; Isaksson-Hellman & Werneke, 2017).

Overtaking maneuvers of cyclists represent a frequent and crit-
ical scenario on rural roads, which presents collision risks for all
involved road users: the cyclist, the overtaking driver, and a possi-
bly present oncoming vehicle. For the cyclist, the most common,
critical scenario is being overtaken too closely or too fast. The aero-
dynamic effect of a combination of lateral clearance and speed of
the overtaking vehicle when passing the cyclist has been shown
to decrease both stability (Gromke & Ruck, 2021) and perceived
safety (Llorca et al., 2017; Rasch et al., 2022) of the cyclist. While
ralistic
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a decrease in stability may result in the cyclist falling to the ground
and becoming injured, a decrease in perceived safety may result in
the cyclist no longer being willing to cycle (Sanders, 2015).

Recent studies have shown the importance of overtaking
crashes, particularly in later phases after the overtaking vehicle
has steered out to pass the cyclist. Díaz Fernández et al. (2022)
analyzed crashes between cyclists and motorized vehicles from
various data sources, including insurance reports and crash data-
bases. They concluded that the passing scenario is particularly dan-
gerous and new safety countermeasures are needed. Furthermore,
Gildea et al. (2021) showed through a self-reported survey among
cyclists that a significant amount of side-swipe crashes and near-
crashes with lower severity of injuries remains unreported. This
underlines the importance of investigating further in what situa-
tions the side-swipe risk for cyclists increases and how it can be
effectively decreased.

Countermeasures to overtaking crashes can be manifold: infras-
tructure design, for instance, typically aims at separating cyclists
from motorized traffic, while policymaking can prescribe, for
instance, a minimum clearance through traffic regulations. Such
a regulation is already in place in many countries that have pre-
dominantly used a minimum clearance of 1.5 m (Rubie et al.,
2020). In Sweden, a legal minimum clearance is not quantified;
the traffic regulation says that a driver must leave a safe distance
laterally between the vehicles (Ministry of Rural Affairs and
Infrastructure, 2022). Vehicles themselves can be equipped with
active-safety systems that can assist the driver when overtaking
the cyclist, or, in the future, might overtake the cyclist autono-
mously. However, their effectiveness is limited by how well they
are accepted by drivers (Lübbe, 2015). Detailed knowledge of dri-
ver behavior, as well as models that can predict certain behavior,
may improve acceptability of such systems (Abe et al., 2018).

Visibility, that is, how far drivers can look ahead to estimate the
distance to approaching curves and possibly appearing oncoming
traffic, has been a critical design parameter for rural roads
(Lippold et al., 2017). Sight distance, for instance, determines
where overtaking maneuvers should be prohibited (with traffic
signs or solid lines on the road) because of possibly appearing
oncoming traffic that may cause a head-on collision
(Trafikverket, 2022). To date, only studies on car-to-car overtaking
maneuvers have investigated the effect of visibility. For instance,
Llorca et al. (2015) parametrized a microscopic traffic model of
overtaking desire and duration with the available sight distance
to the driver. In a simulator study, Figueira and Larocca (2020)
investigated the effect of sight distance on the gap to a lead vehicle
before overtaking and concluded that the speed of the overtaken
vehicle had a stronger influence on driver behavior than sight dis-
tance. Bassani et al. (2019) conducted a simulator study with dri-
vers in a virtual rural-highway environment and found that
drivers tended to speed when the available sight distance
increased.

Previous work on overtaking of cyclists has predominantly been
conducted in simulator (Bianchi Piccinini et al., 2018; Goddard et al.,
2020; Huemer & Strauß, 2021) or field-test (Dozza et al., 2016;
Llorca et al., 2017; López et al., 2020) environments. However, nat-
uralistic studies have the highest ecological validity because they
unobtrusively capture road users’ behavior in everyday traveling
(Bärgman, 2016). Furthermore, data collected in naturalistic studies
may allow the validation of driver models fitted in environments
with lower ecological validity (Rasch & Dozza, 2022). Naturalistic
data may further enable simulations of active-safety systems to
estimate their effectiveness (Kovaceva et al., 2022). However, their
existence for cyclist-overtaking studies has been scarce (Beck et al.,
2019; Kovaceva et al., 2019), because of their costs in terms of
instrumentation efforts and time duration to capture a desired
amount of information, as well as privacy concerns.
2

Previous research has explored the effect of sight distance on
driver behavior when overtaking cars (Figueira & Larocca, 2020;
Llorca et al., 2015), but not when overtaking cyclists. However, to
increase cyclist activity on rural roads, cyclists’ physical and psy-
chological safety must be guaranteed; therefore, detailed informa-
tion on driver behavior is needed. Furthermore, naturalistic data
for cyclist-overtaking maneuvers have been scarce in previous
work, despite their importance in understanding drivers’ realistic
behavior and developing effective countermeasures to overtaking
crashes. The aim of this study was to model driver behavior when
overtaking cyclists in a novel, naturalistic, study based on a set of
roadside-based traffic sensors, investigating, among others, the
effect of visibility in terms of sight distance. Another aim of this
study was to provide a naturalistic data set that could be used by
future studies to validate driver (and possibly cyclist) models, fit-
ted on less ecologically valid data, and to evaluate simulated
active-safety systems.
2. Method

2.1. Naturalistic-data collection

We collected naturalistic data from smart traffic sensors over
seven consecutive days in August and September 2021 on the
two-lane rural road Spårhagavägen in Mölndal, Sweden (Fig. 1,
a). The investigated road stretch was straight and had a speed
limit of 70 km/h (GPS coordinates of the center of the road
stretch: 57.559778� latitude, 12.013694� longitude). The road
had a lane width of about 3.6 m and connected two curve ele-
ments. The curve element at the western end of the observed
road stretch (Fig. 1, b) was closer to the locations of the sensors
than the curve at the eastern end (Fig. 1, c), resulting in a
decreased sight distance for drivers. Furthermore, a solid line
prohibited crossing the center line towards the western end of
the road (see the red-shaded area in Fig. 1, d). The dashed line
marks the edge of the lane and simultaneously the beginning
of the road shoulder (Fig. 1, c).

The data were collected using Viscando’s proprietary data col-
lection system consisting of four infrastructure-based sensors
OTUS3D.1 The sensors use 3D vision and artificial intelligence to
detect, track, and classify vehicles, cyclists, and pedestrians, cover-
ing a road stretch of approximately 150 meters in length (Fig. 2).
Vision data are processed in the embedded computational unit
and removed within 20 ms from being captured. Thus, fully anony-
mous data comprising object positions, velocities, 3D rectangular
bounding boxes, and road-user types are stored (Fig. 2), ensuring
full compliance with the General Data Protection Regulation of
the European Union (GDPR2) because personal information is nei-
ther stored in the sensors nor transmitted. Furthermore, in cus-
tomized sensors used in research and development projects,
there is also a possibility to store low-resolution and anonymized
video, where identification of persons and vehicles is impossible
(hence GDPR compliance is preserved), which was done for anno-
tation purposes in this study. The sensors were installed on light
posts in a way to cover the whole road stretch in both directions.
The object data from all sensors were fused and filtered in post-
processing, yielding complete trajectories for vehicles and cyclists
on the entire measurement stretch.

https://viscando.com/
https://eur-lex.europa.eu/eli/reg/2016/679/oj
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Fig. 1. Setup for the naturalistic study. Panel a shows how the four sensors were
installed on two light poles. Panel b and c show the view from the center of the
observed road stretch towards the westbound and eastbound directions, respec-
tively. Panel d shows the road layout and how the four sensors were oriented to
cover the desired road stretch. The street images in panel b and c were obtained
from eniro (Eniro Group AB (https://www.eniro.se/, retrieved June 12, 2023)).

3 Google Maps (https://www.google.com/maps/, retrieved June 12, 2023).
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2.2. Data post-processing and validation

We identified overtaking maneuvers by the following criteria:
(1) a car and a bicycle traveled in the same direction, and (2) there
was a passing moment when the car and bicycle were exactly next
to each other. We focused on cars because trucks and buses were
not common on the observed part of the road. We excluded events
from the further analyses where multiple cyclists were overtaken
since they presented a substantial minority in the data that would
have been hard to capture and might have confounded the results
for our variables of interest. To further narrow the scope and
reduce the complexity of the modeling, we did not consider piggy-
backing maneuvers in the data since they involved a lead vehicle
that might have influenced the behavior of the following vehicle’s
driver. We identified piggybacking vehicles with the definition
from Dozza et al. (2016), that is, when the distance to the lead
vehicle at the passing moment was less or equal to 60 m.

We manually reviewed the recorded anonymized videos from
the sensors for all of the found overtaking events. This was done
to verify that the cyclist was correctly classified and was not, for
instance, a motorized scooter. Furthermore, we confirmed that
the bounding boxes qualitatively matched the actual road-user
dimensions by visually verifying that the road user was well
enclosed within the cuboidal box, without clear gaps or excesses.
Based on Viscando data collected alongside accurate differential
GNSS ground truth in earlier measurements, we expect the error
of the lateral positions on average (standard deviation) to be 0.00
(0.39) m and 0.00 (0.11) m for cars and bicycles, respectively.
The error of the bounding-box widths was estimated to be 0.05
(0.09) m and 0.27 (0.07) m for cars and bicycles, respectively. Bicy-
cle widths were, therefore, slightly overestimated, which may have
resulted, on average, in shorter lateral clearances; however, we
3

expect this systematic bias not to have affected the general trends
in driver behavior (for instance, the signs of model coefficients).

2.3. Statistical modeling

To quantify the effect of sight distance and other variables of
interest on cyclist safety, we modeled drivers’ choice of lateral
clearance and overtaking speed at the moment of passing, as a
function of certain input variables to the driver.

2.3.1. Model variables
The dependent variables for the model were the lateral clearance

between the ego vehicle and the cyclist at the moment of passing
(LC), and the speed of the ego vehicle (Vego) at that same time.
While Vego was directly obtained from the data, LC was calculated
from the positions of ego vehicle and cyclist, considering their
widths (Fig. 3, a).

The independent variables consisted of a set of metrics that
were, based on previous work, assumed to influence driver
behavior and cyclist safety. The sight distance (dvis) was esti-
mated from a set of interpolated, manual distance measurements
made in Google Maps3: Thirteen points were distributed equally
spaced over the road stretch. Then, for each point, and each direc-
tion (westbound and eastbound), we measured the sight distance
as the distance from the point to the maximum-visible point on
the road, given a straight line-of-sight, approximately tangent to
the visual obstruction (road-side vegetation, Fig. 3, b). We then fit-
ted a quadratic and linear function to the measurements for the
westbound and eastbound direction, respectively, to be able to
interpolate the sight distance at arbitrary locations on the road.
The same procedure was done for the on-road distance, that is,
the distance that a vehicle would need to travel to the intersection
of the (possibly curved) road and the (straight) line-of-sight (Fig. 3,
b). The presence of an oncoming vehicle was assessed in the fol-
lowing way: If an oncoming vehicle was visible to the driver at
the passing moment, it was marked as present (OP ¼ 1), otherwise
it was marked as absent (OP ¼ 0). An oncoming vehicle was esti-
mated to be visible to the driver if its on-road distance at the pass-
ing moment was lower than the on-road sight distance at that
moment (Fig. 3 b). To know how much distance the oncoming
vehicle had covered, we extrapolated its position, assuming a con-
stant speed at the speed limit (70 km/h). This estimation was done
because of the limited detection range of the sensor system, as
illustrated in Fig. 3 b. The estimated presence of oncoming vehi-
cles outside of the detection range was verified in the manual
review of the anonymized videos that allowed a manual identifica-
tion of vehicles at farther distances. The distance to the oncoming
vehicle at the passing moment is denoted by donc. The speed of the
cyclist Vcyc and the width of the ego vehicle Wego were obtained
from the sensor data. To be able to compare the coefficients for dif-
ferent variables, we standardized all continuous independent vari-
ables by subtracting their mean and dividing by one standard
deviation. Table 1 summarizes, and Fig. 3 visualizes the indepen-
dent variables and their definitions.

2.3.2. Model specification
We modeled LC and Vego with a Bayesian regression model. In

contrast to their frequentist counterparts, Bayesian methods aim
at estimating model parameters’ full uncertainty as a probability
distribution that practitioners can use to draw inferences with dif-
ferent methods of effect existence (Makowski et al., 2019). To
account for the possible correlation between LC and Vego, we mod-
eled both metrics jointly, as sampled from a Multivariate Normal

https://www.eniro.se/
https://www.google.com/maps/


Sensors 1 & 2 Sensors 3 & 4

(a) Sensor 3 anonymized video snapshot

(b)

Fig. 2. Data snapshot for an example overtaking maneuver. Panel a shows the anonymized video feed of sensor 3. Panel b shows the top view of the road with the stitched and
rectified images from the four sensors, showing sensor locations and orientations, as well as the tracking outputs for the detected and classified road users (ego vehicle in
blue, cyclist in yellow) with their positions, and speeds, and bounding boxes (shown for every second; black dots mark the geometrical center). A video version of the
overtaking event is available at https://youtu.be/uLjw1yHNjwQ.
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(MVNormal) distribution, parametrizing the distribution mean

l ¼ lLC; lV

� �T as follows:
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In Eqs. (1)–(3), the subscript i denotes the sample index, while
the superscript s denotes a standardized variable. Sight distance
was included whenever there was no oncoming traffic present,
that is, through the interaction with 1� OPð Þ. This was done since
we hypothesized that sight distance had a similar effect as an
oncoming vehicle. Via model comparison, we also tested whether
this model was better than a version that included sight distance
for all samples, that is, even when an oncoming vehicle was pre-
sent. The distance to the oncoming vehicle donc was included as
an interaction with the presence of the oncoming vehicle OP. The
standard deviations of LC and Vego are denoted as rLC and rV,
respectively. q is the residual correlation between LC and Vego.

We fitted the model in R version 4.0.3 (2020-10-10) with the
package brms 2.18.0 (Bürkner, 2017). We used weakly informative
default prior distribution for all parameters (Bürkner, 2017). We
used the default Markov-chain Monte Carlo (MCMC) sampler with
four chains, each over 15,000 iterations, out of which the first 5,000
iterations were used to warm up the sampler and discarded after-
ward. We verified the convergence of the MCMC sampler from
4

qualitative, visual inspections of the chains and from the bR value
being close to one (Bürkner, 2017). We furthermore assessed the
fit of the model to the data by plotting posterior predictive checks
(Gabry et al., 2019) and calculating its (Bayesian) R2 value (Gelman
et al., 2019). Model comparisons were done via approximate leave-
one-out cross-validation (LOOCV) with the R package loo (Vehtari
et al., 2017). The LOOCV method by Vehtari et al. (2017) estimates
a model’s expected log predictive density (ELPD) along with the
standard error of the estimate.

To demonstrate the impact of driver behavior on cyclists’ per-
ceived safety, we used the Bayesian ordered logistic regression
model developed previously by Rasch et al. (2022) to predict
cyclists’ perceived safety. The model uses the inputs lateral clear-
ance, overtaking speed, and the oncoming vehicle’s presence and
TTC (time-to-collision). The output of the model is a probability
mass distribution of scores, ranging from 1 (very low risk percep-
tion) to 5 (very high risk perception), from which we selected the
most frequent score for each overtaking event (Rasch et al., 2022).

3. Results

3.1. Data overview

Table 2 summarizes the 81 overtaking maneuvers used for sta-
tistical analyses. Most of the overtaking maneuvers happened in
the westbound direction (Table 2, Fig. 4). Cyclist and ego-vehicle
speed were lower in the westbound direction of the road, possibly
due to the inclination of the road towards that direction. Fig. 4
shows the locations of the overtaking maneuvers on the road
stretch. Nineteen maneuvers were carried out in westbound direc-
tion during the solid-line segment, and in 14 of these maneuvers,
the ego vehicle exceeded the solid line during the overtaking.

https://youtu.be/uLjw1yHNjwQ


Cyclist

Oncoming vehicleEgo vehicle(a)

(b)

Visual obstruction (vegetation)

T-junction

Sensor range (150 m)

Fig. 3. Illustration of the independent and dependent variables used to model the overtaking maneuvers (panel a). Panel b shows how sight distance (measured as the range
of visibility, dvis) and on-road distance to the oncoming vehicle (donc) were defined. Dimensions do not represent reality.

Table 1
Overview of the independent variables used in the model.

Acronym Independent
variable

Type Definition

dvis Sight
distance

Continuous The sight distance available to
the driver of the ego vehicle

OP Presence of
oncoming
vehicle

Binary
(0 = absent,
1 = present)

An oncoming vehicle is visible
to the driver at the passing
moment

donc Distance of
oncoming
vehicle

Continuous The road distance between ego
vehicle and oncoming vehicle

Vcyc Speed of
cyclist

Continuous Speed of the cyclist

Wego Width of ego
vehicle

Continuous Width of the rectangular
bounding box around the ego
vehicle
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Qualitatively, drivers overtook with larger clearances when
traveling at higher speeds (Fig. 5). However, particularly in maneu-
vers performed at low clearance, cyclists were predicted to have
perceived high risk during the passing (Fig. 5).
3.2. Modeling results

Fig. 6 shows the posterior predictive distribution of the model,
overlayed by the data used for fitting the model. The model cap-
tures the trends in the data, including the correlation between lat-
eral clearance and speed. The model has a median R2 value of 0.39
[0.26, 0.51] 95% HDI for lateral clearance and 0.35 [0.21, 0.47] 95%
HDI for overtaking speed. Via LOOCV, the model reduced the ELPD
of the alternative model (including sight distance also in the pres-
ence of oncoming traffic) slightly (difference in ELPD of �1.3), but
within standard error (1.6).

Fig. 7 shows the coefficient distributions for lateral clearance
and overtaking speed. A decreasing sight distance had a decreasing
effect on lateral clearance. The presence and proximity of an
5

oncoming vehicle had the strongest decreasing effect on lateral
clearance (Fig. 7). Interestingly, a closer oncoming vehicle also
had a decreasing effect on overtaking speed. The parameters
related to the presence of an oncoming vehicle also had the widest
distributions, that is, had the greatest uncertainty. Furthermore, an
increasing car width had a decreasing effect on lateral clearance
and a faster cyclist speed resulted in faster overtaking speeds by
drivers. The model’s residual correlation (q) between lateral clear-
ance and overtaking speed was estimated to be 0.44 [0.25, 0.61]
95% HDI. We reported the full, non-standardized model in the
Appendix (Table A1).

4. Discussion

4.1. Driver behavior on rural roads with varying visibility

Our results showed that under decreased sight distance, when
no oncoming vehicle was present, drivers decreased lateral clear-
ance to the cyclist. This decrease may be explained by the risk of
a possible head-on collision with an oncoming vehicle that might
appear to the driver from behind the curve. Overtaking speed
decreased as well, which is in line with the results found by
Bassani et al. (2019); however, not as clearly as lateral clearance.
The presence and proximity of oncoming traffic had a similar but
stronger effect than sight distance. When oncoming traffic was
present and closer to the driver while passing the cyclist, drivers
kept a lower lateral clearance and a lower speed. The lowered
clearance in the presence of a close oncoming vehicle confirms pre-
vious research from simulator (Bianchi Piccinini et al., 2018), test-
track (Rasch, Boda, et al., 2020), field-test (Dozza et al., 2016), and
naturalistic-driving studies (Kovaceva et al., 2019). Our results
indicate that the magnitude of the parameter for the oncoming
vehicle’s presence varies more than for any other variable; this
could be related to the effect of different types and sizes of oncom-
ing vehicles on driver behavior (Levulis et al., 2015). However, the
greater variance may also be related to the error due to the extrap-



Table 2
Summary of the data used for statistical analyses, including the dependent and independent variables used for modeling. All data are measured at the return onset. All continuous
variables are summarized as mean (standard deviation); all categorical variables as the number of samples per level (percentage). Square brackets indicate the range of values
([min, max]).

Direction of travel

Characteristic eastbound N = 18 westbound N = 63

Presence of oncoming vehicle (–)
Absent 9 (50%) 42 (67%)
Present 9 (50%) 21 (33%)

Lateral clearance (m) 2.26 (0.68) [1.04, 3.34] 1.70 (0.62) [0.49, 3.35]
Ego-vehicle speed (km/h) 75.5 (9.9) [60.7, 98.2] 65.1 (11.4) [37.2, 102.9]
Sight distance (m) 446.7 (41.4) [382.1, 520.1] 197.9 (20.4) [180.9, 255.0]
Distance to oncoming vehicle (m) 247.4 (115.0) [28.7, 405.1] 118.4 (60.4) [17.5, 209.5]
Not applicable 9 42

Speed of cyclist (km/h) 10.5 (2.3) [6.0, 14.3] 5.9 (2.5) [2.3, 12.1]
Width of ego vehicle (m) 1.8 (0.1) [1.6, 2.2] 1.8 (0.1) [1.5, 2.2]
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olation of the distance of the oncoming vehicle, which was used to
determine its presence or absence. Furthermore, our models con-
firmed previous work that showed that wider cars keep lower
clearances while they did not necessarily reduce speed accordingly
(Dozza et al., 2016). Overtaking speed was also clearly dependent
on cyclist speed, which might have been either because of the road
inclination causing higher speeds in the eastbound direction com-
pared to the westbound for both road users, or because drivers
overtake keeping similar relative speeds with the cyclist.

Our results highlight that driver behavior might be better
explained when accounting for sight distance only in situations with-
out oncoming traffic. This fact suggests that driver behavior is guided
by the closest, more imminent threat, which in case of oncoming
traffic being present is the oncoming vehicle itself, and otherwise
the approaching curve from which an oncoming vehicle may sud-
denly appear. As suggested in previous literature, drivers react to
these threats by compensating for the risk of a head-on collision with
a possible side-swipe collision with the cyclist (Rasch, Boda, et al.,
2020). However, threats may be ordered by their importance to the
driver, that is, a close oncoming vehicle still has a stronger impact
on driver behavior than an approaching curve with no oncoming
vehicle visible because of its impendence. This might be explained
by the looming effect, that is, the optical expansion of an obstacle
on the driver’s eye’s retina, which may be more evident for an
oncoming vehicle traveling at higher speed (Lee, 1976).

We showed that lateral clearance and speed might be correlated
in cyclist-overtaking maneuvers. This fact is encouraging, given that
an increased speed is physically correlated with a higher side-swipe
risk through the aerodynamic drag (Gromke & Ruck, 2021); however,
this relation may not have been strong enough to make the overtak-
ing maneuvers safe. In fact, clearances were partly so low (37% of the
maneuvers had lateral clearances below 1.5 m, a common minimum
clearance in many European countries) that cyclists’ perceived safety
might have been critically low. Due to the wide range of credible cor-
relation values (from 0.25 to 0.61 in the 95% HDI), future work may
model the residual correlation in further detail, to understand
whether it is influenced by certain variables and whether there are
differences between individual drivers.
Solid line for westbound direction

Direction eastboun

Fig. 4. Overview of the ego-vehicle positions at the moment of passing the cyclist, plotte
area marks where vehicles may not cross the (solid) center line for the westbound direct
exceeded the solid line during the overtake.
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4.2. Roadside-based traffic sensors for capturing cyclist-overtaking
maneuvers

The traffic sensors used in this study were roadside-based
and, therefore, able to capture traffic continuously, in contrast
to, for instance, airborne instrumentation like drones. This
allowed the capture of a notable amount of overtaking maneu-
vers in shorter time (seven days) than other data-collection
methods, such as naturalistic-driving studies that typically run
over much longer durations and may be more costly (Kovaceva
et al., 2019). Furthermore, in naturalistic driving studies, drivers
may be aware that they are driving an instrumented vehicle,
which is a possible confounder that does not exist for roadside-
based data collection. While not being able to capture driver-
input signals such as steering-wheel angle or pedal controls,
which naturalistic-driving studies usually do, roadside-based
data collection allows for capturing the kinematics of all road
users involved in the interaction and enable constraining specific
infrastructure, which may favor analyses. This is particularly
advantageous for overtaking interactions that are strongly influ-
enced by the oncoming vehicle, whose position may be hard to
estimate by on-vehicle sensors. Roadside-based sensors are lim-
ited to their specific location and field of view. Even though our
setup covered a stretch of about 150 m, we rarely captured all
phases of an overtaking maneuver. While capturing the passing
moment was enough for this study, future studies may need lar-
ger infrastructure sensor arrays.

The data collected in this study can be used to validate driver
models fitted on data with lower ecological validity, such as data
collected in simulator or test-track environments, given that the
data-collection environments were reasonably similar. One
approach could be to fit the samemodel structure on both data sets
and compare the estimated model coefficients, as done by Rasch,
Panero, et al. (2020). Similarly, models fitted on one data set could
be used for prediction on the naturalistic data and vice-versa, as
done by Kovaceva et al. (2020). Such validation may deliver cumu-
lative evidence on driver behavior that one data set alone may not
achieve.
d westbound

d over the stitched camera images obtained from the traffic sensors. The red shaded
ion, due to the approaching curve. Black cross symbols mark where the ego vehicle



Fig. 5. Lateral clearance and overtaking speed by drivers. The color indicates the perceived safety of the cyclist, predicted by the model developed by Rasch et al. (2022).

Fig. 6. Model predictions vs observed data. The predictions are represented by the
probability density predicted by the model.

Fig. 7. Model coefficients with full posterior distribution and median (black dot)
with 95% highest density interval (HDI, black horizontal bar) marked, for the
dependent variables lateral clearance and overtaking speed. All continuous
coefficients are on a standardized scale.
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4.3. Practical applications

Several countermeasures that address cyclists’ objective and
subjective, perceived, risk may benefit from our results. Infrastruc-
ture design, for instance, should aim at separating cyclists from
motorized traffic on rural roads, especially in locations where sight
distances are low and oncoming vehicles frequent. In addition,
where shoulders are not large enough for cyclists to be used, com-
promised by roadside barriers, or even unrideable due to gravel,
designated and separated cyclist paths are necessary. Extending
the findings from Bassani et al. (2019), who suggested that road
should be designed with sight distances slightly greater than
required to avoid excessive speed by drivers, our study suggests
that cyclist safety may be compromised on shared roads with
low sight distance.

Furthermore, policymaking should strive to prevent overtaking of
cyclists in areas with limited visibility where oncoming traffic may
appear at short distances, as marked, for instance, with a solid line.
7

However, when doing so, traffic regulations may need to be clearer,
specifying that cyclists may not be overtaken at such locations, just
as any other vehicle may not be overtaken either (Kircher et al.,
2022). Even though the Swedish traffic regulation prohibits overtaking
larger vehicles when a solid line is present, cyclists are frequently over-
taken during solid-line segments, as our data show, possibly because of
their reduced dimension that allows drivers to pass themwhile staying
in their lane. This behavior might have resulted in even closer passes.
Where cyclists need to be overtaken, a minimum clearance or full lane
change, as suggested by Kircher et al. (2022), should be in place and
evident to all drivers. Since overtaking speed contributes to the aerody-
namic force on the cyclist together with lateral clearance (Gromke &
Ruck, 2021), minimum lateral clearances may need to be stratified
by speed limits, or overtaking speeds may also need to be limited.

The lateral clearance and overtaking speed model could be
included in active-safety system development as a reference model
for naturalistic driver behavior. In the same way, it may inform auto-
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mated driving on how to overtake a cyclist, to become more human-
like and thereby possibly more accepted, as suggested by Abe et al.
(2018). For instance, an automated vehicle that overtakes a cyclist
should keep a lower speed when a higher lateral clearance cannot
be achieved. The data may as well be useful for the evaluation of
active-safety systems. For instance, a forward-collision warning sys-
tem could be tested on the time-series data collected to understand
in what situations it might give false-positive warnings to the driver.
Similarly, in counterfactual simulations, the overtaking maneuvers
recorded could be used to create artificial crash scenarios to test
true-positive activations of active-safety systems, as demonstrated
by Kovaceva et al. (2022). Finally, our Bayesian model may allow dri-
ver adaptions through online learning to improve the acceptance of
active-safety systems (Hasenjager et al., 2020).
Table A1
Parameters of the model with non-standardized variables, summarized by median
and lower and upper 95% highest density interval (HDI). Prob. direction denotes the
probability of direction, defined as the proportion of the parameter posterior
distribution that has the same sign as the distribution median (Makowski et al.,
2019).

Parameter Unit Median Lower 95% Upper 95% Prob.
4.4. Limitations and future work

As with all naturalistic data, the ones collected in this study are
rife with confounders. For instance, the inclination of the road
might have influenced driver behavior. Furthermore, the presence
of the solid center line towards the western end of the road stretch,
as well as the dashed edge line and the cyclist’s positioning to it,
might have influenced driver behavior but were not accounted
for in this work. To address these possible issues, future studies
could conduct a simulator or test-track experiment to confirm
the findings of this study for visibility, or conduct more naturalistic
studies on other road stretches with limited sight distance. In such
more controlled environments, different sight distances could be
tested to understand their effect on lateral clearance and overtak-
ing speed, similar to the study carried out by Figueira and Larocca
(2020) for car-to-car overtaking.

Furthermore, we excluded piggybacking maneuvers from the
analyses in this study because we assumed these maneuvers to
be fundamentally different up to the point that we may not be able
to differentiate between the driver’s own behavior and that of the
lead vehicle’s driver. However, as such maneuvers are common in
real traffic, future work should investigate their importance from
crash databases and consequently investigate driver behavior. This
could also be done in a simulator or test-track experiment in which
drivers can be better understood through detailed analyses of their
control and gaze behavior.

Future work may further investigate whether a non-linear
model could fit better to the data than the linear model used in this
study. Similarly, the elements of the covariance matrix of the mul-
tivariate model could be modeled to depend on the independent
variables. Furthermore, while this work used only weakly informa-
tive priors, the parameter distributions from this work could serve
as prior information in future studies.
HDI HDI Direction
(%)

bLC0 NA 3.517 1.602 5.342 92.1

bLCvis 1/m 0.002 0.000 0.004 98.0

bLCOP NA �0.585 �1.118 0.050 99.3

bLConc 1/m 0.005 0.002 0.007 100.0

bLCV ;cyc s/m 0.033 �0.012 0.078 98.9

bLCW ;ego
1/m �1.286 �2.361 �0.272 100.0

bV0 NA 9.168 0.062 18.806 99.9

bVvis 1/m 0.007 �0.002 0.016 80.7

bVOP NA �1.046 �3.906 1.817 88.9

bVonc 1/m 0.012 0.001 0.023 98.8

bVV ;cyc s/m 0.370 0.143 0.596 92.0

bVW ;ego
1/m 3.201 �1.849 8.507 98.1

q NA 0.433 0.251 0.601 NA
rLC NA 0.555 0.474 0.650 NA
rV NA 2.791 2.395 3.316 NA
5. Conclusions

Our results suggest that reduced sight distance due to an
approaching curve has a similar effect on drivers as an oncoming
vehicle. Drivers reduce lateral clearance to the cyclist under
reduced visibility, however, if an oncoming vehicle is present it
has a similar yet stronger effect. We found a correlation between
lateral clearance and overtaking speed, however, drivers did not
reduce speed as clearly as clearance. These findings suggest that
cyclists may need to be better protected from motorized traffic,
especially at locations with low visibility for drivers, for instance,
by providing more shoulder space or separated bike lanes. At the
same time, overtaking maneuvers should be ensured to follow rec-
ommendations on both objective and subjective safety of the
cyclist, for instance, through traffic regulations, law enforcement,
or active-safety systems for motorized vehicles. Such systems
8

should aim at preventing drivers from overtaking in situations
with decreased visibility or during segments where regulations
forbid exiting the lane, for instance, due to solid lines. The recorded
data set can be helpful for fitting and validating driver-behavior
models to improve active-safety systems and enable counterfac-
tual simulations of such systems. The fitted driver model may help
improving active-safety systems by allowing more acceptable
decision-making, as well as make automated driving more accept-
able by providing a human reference. In fact, our study shows that
while overtaking a cyclist, vehicle automation cannot just rely on a
reference driver model because that would inevitably compromise
cyclist safety. On the contrary, automated driving will be safer than
human driving in this scenario when it factors cyclist (perceived)
safety in the decision of whether and how to overtake the cyclist.
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