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to battery modeling
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Abstract—The concept of integrating physics-based and data-driven approaches has become popular for modeling sustainable
energy systems. However, the existing literature mainly focuses on the data-driven surrogates generated to replace physics-based
models. These models often trade accuracy for speed but lack the generalisability, adaptability, and interpretability inherent in
physics-based models, which are often indispensable in the modeling of real-world dynamic systems for optimization and control
purposes. In this work, we propose a novel architecture for generating model-integrated neural networks (MINN) to allow integration on
the level of learning physics-based dynamics of the system. The obtained hybrid model solves an unsettled research problem in
control-oriented modeling, i.e., how to obtain an optimally simplified model that is physically insightful, numerically accurate, and
computationally tractable simultaneously. We apply the proposed neural network architecture to model the electrochemical dynamics of
lithium-ion batteries and show that MINN is extremely data-efficient to train while being sufficiently generalizable to previously unseen
input data, owing to its underlying physical invariants. The MINN battery model has an accuracy comparable to the first principle-based
model in predicting both the system outputs and any locally distributed electrochemical behaviors but achieves two orders of
magnitude reduction in the solution time.

Index Terms—Lithium-ion batteries, battery management systems, battery modeling, model simplification, physics-informed machine
learning, model-integrated neural networks.
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1 INTRODUCTION

RAPID advances in electromobility have positioned bat-
tery as a key player in the transition towards a more

sustainable future, with its impact on carbon neutrality con-
tinuing to gain momentum. While most battery research has
been mainly focused on searching for novel materials [1, 2],
the established battery chain and its circular economy have
been dominated by lithium-ion batteries (LIBs) foreseen to
prevail due to their proven long-term stability, cost-effective
production and recycling. Consequently, the pressure of
electromobility has been put on the optimization of LIBs in
the foreseeable future, from cell-level chemistry, structure,
and manufacturing process to system-level solutions for
improved safety, reliability, performance, and lifetime. One
key limiting factor in unleashing the full potential of LIBs for
electromobility is the current battery management systems
(BMS), which limit the usage by putting more or less fixed
constraints on battery cell external measurements. The next-
generation BMS should enable accurate monitoring and
optimal control of dynamical local behaviors distributed
inside each cell for real-time optimized utilization of the
battery systems.

A battery is a compact, multiphysics system with multi-
ple state variables, domains, material phases and physical
parameters over disparate time- and length scales. The
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current strategies for probing battery internal states involve
battery modeling based on equivalent circuits, which at their
best, are able to mimic the battery electric behaviors under
specific conditions [3]. More sophisticated electrochemical
models for locally distributed internal states, proven accu-
rate in various usage conditions, are practically prohibitive
to implement in BMS. Although the electrochemical mod-
els have been driving a wealth of LIB research in system
identification [4, 5], state estimation [6, 7], fault and aging
predictions [8, 9], and optimal control [10, 11], their typi-
cal end-user applications, such as smartphones and laptop
computers, still require considerable computational power
due to the highly nonlinear and stiff partial differential-
algebraic equations (PDAEs), let alone the upscaling to
pack-level and vehicle fleet-level battery applications. De-
spite numerous offline implementations employing state-of-
the-art numerical techniques [12, 13, 14, 15, 16], it is still
infeasible to consider advanced electrochemical models for
on-board battery management with current hardware.

The fundamental challenges in solving PDAEs for
control-oriented applications have been commonly ad-
dressed by reduced-order modeling. These reduced-order
models (ROMs) attempt to lower the computational com-
plexity by either exploring the mathematical structure of the
governing equations or simplifying the physics of the orig-
inal model. For example, the single particle model [18] fea-
tures cell-interior variables derived from volume-averaged
active materials and uniform molar flux, which result in sys-
tems of partial differential equations (PDEs). Other ROMs,
such as the physics-based equivalent circuit model [19, 20],
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Fig. 1: Existing physics-based integration strategies for the blending of neural networks and physics-based models in
order to retain their individual merits. (a) A data-driven surrogate model using supervised learning requires relevant and
representative training data generated by snapshots of the physics-based model solutions. (b) A surrogate model
regularised physical constraints within the PINN framework, of which the PINN loss, LPINN, is composed of the loss due
to model-data inconsistency, Lsurrogate, and the loss owing to physical constraints, Lphysical. (c) The PINN workflow for
inverse problems used to identify physical parameters as part of parametric PDEs [17].

also result in a simplified system with fewer assumptions.
On a high level, these model reduction strategies can be seen
as an attempt to replace the original PDAE formulation with
a simplified system, resulting in less computational com-
plexity and fewer parameters but compromising accuracy
under performance-limiting conditions.

The PDAE models, with their minimal assumptions and
greater flexibility, offer a distinct advantage over other bat-
tery models by providing higher accuracy under a broader
range of usage conditions. This makes them an ideal choice
for all-purpose and comprehensive battery modeling. In
practice, however, they are computationally too demand-
ing for control-oriented applications, which hinders their
adoption in BMS. Therefore, large efforts have been made
to accelerate the solution process. Data-driven approaches
have emerged as powerful tools to circumvent the stiffness
issues associated with the first-principle electrochemical
models by identifying high-dimensional patterns in battery
data. For example, the cycle life of batteries can be accurately
predicted using machine learning methods given enough
relevant data [21, 22, 23] and fast estimations of the terminal
voltage and state of charge (SOC) can be achieved by using
recurrent neural networks (RNN) [24]. Nevertheless, train-
ing a purely data-driven model to predict the undetectable
states of battery cells, such as the electrolyte concentration,
local temperature and lithium plating potential, is obscured
under such approaches due to the lack of measurements.
However, these internal states are highly important for
battery safety, health and optimal control purposes. With-
out tracking those, lithium dendrites may ultimately cause
internal short-circuits to grow rapidly under conditions of
electrolyte depletion [25], high temperature gradient [26]
and negative plating potential [27]. Therefore, it is essential
to include a set of the internal states in a battery model
instead of the unphysical hidden states considered in an
RNN-based battery model. As illustrated in Fig. 1(a), this
class of models relies on generic neural networks that are
agnostic to the underlying dynamics of the battery. In the
presence of many trainable parameters in these neural net-

work models, large and representable datasets are necessary
for training to minimize out-of-sample errors, and those are,
in turn, generated by physics-based models.

Physics-constrained learning offers a potential third way
to blend neural networks with physics-based models. For
example, physics-informed neural networks (PINNs) have
successfully approximated the solutions to PDEs by adding
physical constraints into the loss function [28]. As shown
in Fig. 1(b), the PINN framework, enabled by automatic
differentiation (AD), computes the residual of the PDE sys-
tem in an unsupervised manner, leading to a loss term due
to physical constraints, Lphysical, added to the supervised
loss, Lsurrogate. For a small experimental dataset, the PINN
framework allows for the approximation of intrinsic model
parameters, which is illustrated in Fig. 1(c). This has been
demonstrated to be effective even for stiff systems [29], and
a suite of software tools targeting the automation of PINNs
has made it accessible to different physical systems that
can be formulated as an initial value problem [30, 31, 32].
However, the training of PINN can be costly due to the large
degrees of freedom in approximating the spatiotemporal
solution trajectory. It also has poor applicability to battery
systems because of the time-varying inputs (e.g., applied
current, voltage or temperature for battery systems), which
alter the system dynamics in real time. Therefore, approx-
imating the battery behaviors for an unpredictable battery
cycle using PINN is impracticable.

To bridge the research gap, this work proposes a
model-integrated deep learning framework, termed model-
integrated neural networks (MINN), designed to leverage
the approximation power of neural networks, and the
physical insight and numerical machinery, from those of a
physics-based model. MINN is shown to be extremely data-
efficient to train and can extrapolate beyond the operating
conditions considered in the training data. Furthermore, it
retains the physical significance of hidden states and model
parameters that can be used directly for system identifica-
tion, model adaptation, state estimation, and model-based
control of LIB. The generality of the proposed framework
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allows for the easy adoption of other dynamic systems.

2 MODEL-INTEGRATED NEURAL NETWORKS

The paradigm of integrating prior knowledge into a black
box was introduced by the PINN framework and has two
integration schemes, as depicted in Fig. 1(b) and 1(c). The
possible failure modes of PINN and the inefficiency of
training for long-time horizons have suggested sequence-
to-sequence learning as opposed to learning the entire
space-time solution [33]. Most importantly, the sequence-
to-sequence learning approach has to allow for the incorpo-
ration of control inputs which overcomes the shortcomings
of PINN when applied to the management and control of
dynamical systems. Based on this idea, MINN is designed to
integrate the physics-based equations into a neural network
architecture directly, as shown in Fig. 2. The physics-based
equations encode and capture the underlying physical in-
variants and domain-specific knowledge.

General multi-timescale dynamic systems can be formu-
lated as coupled differential-algebraic equations (DAEs), re-
sulting from the spatial discretization of the original PDAEs:

ḣd(t) = f
(
t, hd, hz, u

)
, (1)

y(t) = Y
(
t, hd, hz, u

)
, (2)

0 = g
(
t, hd, hz, u

)
. (3)

The above DAE system features differential states hd,
algebraic variables hz , and a time-varying control input u.
y is the output of interest, and Y is the function to compute
the output from the states and the input. The origin of
the algebraic equation (3) is threefold, i.e., they can stem
from the boundary conditions, the singular perturbation of
the original PDAEs, or conservation laws naturally arising
from the physical problem. In some special cases, explicit
solutions for Eqn. (3) exist for hz , which makes it replaceable
by a function G(t, hd, u) in Eqns. (1)- (2). However, in most
cases, hz does not have a fixed-form solution in terms of hd
and u. In such cases, more computationally involved DAE
solvers must be used.

Due to the high computational cost of solving DAE
systems, the solution process, or the model itself, must be
simplified. If the end result of training PINNs is a fast
solution and of numerical methods, a slow, coarse-grained
solution, training MINN generates a simplified dynamic
model, as shown in the schematics of MINN Fig. 2(a).
To this end, we parameterize within the hidden unit an
explicit function GNN for the algebraic variables in terms
of the differential states hd, the control input u, and neural
network parameters θ. For sequence-to-sequence learning,
the MINN hidden states at time step k + 1 can be updated
by

hk+1
d = f (tk, hkd, h

∗,k
z , uk) · δtk+1, (4)

h∗,kz = GNN (tk, hkd, u
k; θ), (5)

where Eqn. (4), is the discretized form of the continuous-
time dynamics (1) and the algebraic variables h∗z in Eqn. (5)
are approximations to the roots of Eqn. (3). The function
GNN offers a shortcut to solving the implicit algebraic equa-
tions of the DAE system. Furthermore, the time step δt is

adaptively adjusted by the ODE solver. The system output
y and the conserved quantities of the battery system ḡ are
computed by

yk = Y (tk, hkd, h
∗,k
z , uk), (6)

ḡk = g(tk, hkd, h
∗,k
z , uk), (7)

where ḡ is an approximation of g, computed at each time
step. ḡ does not strictly vanish due to the approximation
error, determined by trainable parameters θ. In addition,
the proposed MINN framework integrates the differential
equations of the PDAE system into the network architecture
through the physics-based hidden recurrent units, as shown
in Fig. 2(b).

The search for an optimally simplified model (4)-(6) is
cast as the following nonlinear optimization problem

arg min
θ
LMINN (θ ; λ) = Ly(θ) + λLg(θ), (8)

in which the physics-based hidden units are used to for-
mulate a physics-constrained loss function with Ly and Lg
given by

Ly(θ) =
K∑
k=0

(
Y
(
tk, hkd, h

∗,k
z , uk

)
− ŷk

)2

δtk, (9)

Lg(θ) =
K∑
k=0

∣∣∣∣∣ g (tk, hkd, GNN(tk, hkd, u
k), uk

)∣∣∣∣∣ δtk, (10)

where ŷk are measurements andK is the number of samples
in the time time-series. In the training of MINN, we seek
parameters θ by solving for hd for a given profile uk. The
loss function comprises a term Lg to quantify physical
inconsistency, which due to conservation laws, is a function
of the algebraic variables, plus a loss associated with the
(measurable) output of the dynamic system. During train-
ing, the parameterized loss function LMINN (θ) is minimized
via a gradient-based optimizer, and the Lagrange multiplier
λ is updated iteratively by the steepest ascent. Once the
MINN model is obtained, an array of ODE solvers can be
readily employed to reproduce the system’s state dynamics
controlled by an arbitrary profile uk.

The overarching architecture of MINN is a blend of the
recurrent neural network (RNN) and the residual neural
network (ResNet). The MINN is physically informed of the
dynamics of the hidden states h by adding skip (residual)
connections and input that model the dynamic system con-
trolled by uk. The skipping mechanism is controlled by an
ODE solver, i.e., the time stepping δt is determined by the
Jacobian ∂f

∂h . This allows established numerical solvers to
be integrated into not only the model evaluation but also
for efficient training via backpropagation through the ODE
solver. At the same time, it facilitates the optimization to
adaptively focus on steeper regions of the trajectory. Phys-
ically, the input uk and the hidden states hkd at time step k
are fed into the hidden unit, resulting in the approximation
of the (algebraic) hidden variables hkz as well as the time
derivative ḣkd computed by a deep neural network (DNN)
and physics-based functions respectively. This allows an
explicit and direct integration of the physics-based govern-
ing equations and the physically meaningful states into the
MINN architecture. This is similar to a continuous-depth
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Fig. 2: The proposed MINN architecture for dynamic systems. (a) An iterative update of the hidden states hkd , output yk

and conserved quantities ḡk, is controlled by input u(tk) at time tk through physics-based hidden units. The time
stepping δtk is adaptive to the dynamics thanks to a skipping mechanism via the numerical solver. (b) The design of a
physics-based hidden unit contains physics-based equations, a deep learning-enabled function GNN and an output
function Y .

model [34] but interleaved with model-integrated recurrent
units with control input, providing it with physical inter-
pretations and extrapolating abilities. The recurrent units
continuously transform the hidden states in a sequence-to-
sequence manner and output a time series of the conserved
quantities, ḡk.

3 APPLICATION TO BATTERY MODELING

As motivated before, lithium-ion batteries represent a preva-
lent technology in electromobility and sustainable energy
storage that are important forces in the fight against climate
change. In this respect, BMS plays a crucial role in battery
safety, reliability, sustainability, and dynamic performance.
The central thesis for enabling advanced BMS is to develop
a battery model that simultaneously preserves physical in-
sights, accuracy and computational efficiency. To this end,
the proposed MINN architecture is applied to the modeling
of lithium-ion batteries, where each hidden state of the
MINN is assigned to an electrochemical state of the first
principle battery model. Depending on the application, the
control u can be the current I for a battery system. The
output may include the terminal voltage, SOC and lithium
plating potential if a reference electrode is used. The training
data generation for MINN involves only the output that
can be measured using, e.g., a three-electrode cell setup.
Here, instead of learning blindly from the training data
as illustrated by the hybrid approach shown in Fig. 1(c),
we integrate prior knowledge, i.e., the equations from the
PDAE system into the neural network architecture. Fig. 3
shows the realization of the physics-based equations in the
hidden unit of MINN, for which the circuitry is based on
Newman’s P2D model.

3.1 Physics-based Battery Model

The most widely used model for Li-ion battery electro-
chemistry is the celebrated pseudo-two-dimensional (P2D)
model, after the paradigm coined by Newman and co-
workers [35, 36, 37]. The P2D model consists of a set of

Fig. 3: For battery modeling, the realization of the
physics-based equations in the recurrent unit is marked by
the blue rectangular in Fig. 2(b), which takes into account
the domain knowledge of the physical system. It has the
applied current I , differential states hd = [Cs, Ce]

T and
algebraic variables hz = j as inputs. The g-component
evaluates the conservation laws at each time step k, while
the f -component evaluates the time derivative of the
differential states ḣd. The two components in the circuitry
feature P2D equations, e.g., the open circuit potential
(OCP) is a fitted function that takes in the solid
concentration at the active material surface and outputs the
equilibrium potential φeq , and they are coupled by the
electrochemical hidden states h = [hd, hz]

T .

coupled PDAEs describing the lithium ion dynamics in solid
and liquid phases based on porous electrode theory and
concentrated solution theory. Although it is a macroscopic
model, the model formulations span over multiple length
scales. Starting from the pore-scale dynamics within the
active particles, the lithium-ion concentration in the solid
phaseCs is conserved given a thermodynamic driving force,
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i.e., the chemical potential µ, according to

∂Cs
∂t

= ∇ ·
(
DsCs
kBT

∇µ
)
, (11)

whereDs, kB and T are the solid diffusion coefficient, Boltz-
mann constant and temperature, respectively. The driving
force, also termed the chemical potential of the system,
adopts the Nernst relation assuming a concentrated solu-
tion, i.e., with only entropic contribution µ = kBT lnCs.
Consequently, Eqn. (11) reduces to Fick’s diffusion equation,
which in spherical coordinates has the form

∂Cs
∂t

=
Ds

rs
∂

∂r

(
r2
∂Cs
∂r

)
, (12)

where r represents the radial (pseudo) dimension. At the
center of the particle (r = 0), there is a no-flux boundary
condition. Imposed by charge transfer, the derivative at the
particle surface (r = R) gives the interfacial flux j, i.e.,

j = Ds
∂Cs
∂r

∣∣∣∣∣
r=R

= −2 i0 sinh

(
F

2RT
η

)
. (13)

Assuming the symmetry factors to be 1/2, Eqn. (13) is the
Butler-Volmer kinetics describing the local reaction molar
flux j as a function of (symmetric) exchange current

i0 = k0

√
(Cmax

s − CRs ) · CRs · Ce, (14)

and the local overpotential η in the electrode thickness
dimension (x), i.e.

η (x) = φs(x)− φe(x)− φeq(x)−RSEI · j(x), (15)

where k0, Cmax
s and RSEI stand for reaction rate constant,

maximum solid concentration and resistance of the solid
electrolyte interface (SEI). φeq denotes the equilibrium po-
tential (relative to lithium metal Li0, determined by the
open circuit potential of the materials, which is a func-
tion of the concentration at the particle surface CRs . φs,
φe and Ce are the solid potentials, electrolyte potentials
and electrolyte concentration fields treated as superimposed
continua, along with the currents in the solid and electrolyte
(is and ie). They are determined by φs, φe and Ce according
to Ohm’s law and the modified Ohm’s law, known as
MacInnes’ equation

is
σeff

= −∂φs
∂x

, (16)

ie
κeff(Ce)

= −∂φe
∂x

+A
∂ lnCe
∂x

, (17)

where σeff and κeff are (effective) ionic conductivities in
the solid and electrolyte, respectively, and the A term in
the Eqn. (17) accounts for the diffusion overpotential in-
duced by an electrolyte concentration gradient. The parallel
currents is and ie are constrained by Kirchhoff’s law, i.e.,
is + ie = u(t) where u(t) is the applied current. Fig. 4
illustrates the various fields, domains and boundaries char-
acteristic of the electrochemistry of a Li-ion battery system
as per the P2D model.

To complete the P2D formulation, the electrolyte trans-
port is modeled by a diffusion-reaction equation with a

Fig. 4: P2D representation of a LIB cell with superimposed
continua spanning over two phases and three domains.
The nomenclature can be found in the Supplementary
Information.

source term that couples it to the lithium-ion diffusion given
by Eqn. (12) through the molar, interfacial flux j:

εe
∂Ce
∂t

=
∂

∂x

(
Deff
e

∂Ce
∂x

)
+ as (1− t0+) j, (18)

where εe, as,Deff
e and t0+ are the volume fraction and specific

interfacial surface area of the active materials, the effective
diffusion coefficient of the electrolyte and the transference
number, respectively. The interfacial flux j only exists in the
anode and cathode domains and is zero otherwise.

3.2 MINN Battery Model
Eqns. (12)–(18) form a system of PDAEs, characterized by
the circular, nested loops of algebraic variables hz(t), which
couple the dynamical equations of the differential (dynamic)
states hd(t) through the molar flux terms. The origin of
these algebraic variables lies in the enormously different
characteristic time scales of ionic and electron transport [38].
The resulting system is highly nonlinear and stiff, which
poses challenges to numerical techniques. In order to em-
ploy specialized solvers optimized for accurate and stable
time integration, the system is normally discretized in space,
which results in a DAE system in its semi-explicit form,

ḣd = f
(
hd, hz

)
, (19)

0 = g
(
hd, hz, I(t)

)
, (20)

where Eqn. (19) is an ODE system for ionic transport and
Eqn. (20) are conservation laws resulting from (simplified)
electron transport. The so-called hidden states are composed
of differential states hd = [Cs, Ce]

T and algebraic variables
hz = j. It is also required for the DAE solver to have a
consistent initial condition h(0) = [h0d, h

0
z]
T that satisfies

Eqn. (20). In the solution process of a DAE system, it must
find roots of the algebraic system of equations g (hd, hz, I)
iteratively within solver tolerances because hz cannot be ex-
plicitly derived. In addition, the system is unstable at an oc-
currence when the system deviates from g (hd, hz, I) = 0.
In such an event, re-initialization is necessary through the
discontinuous callback of the DAE solver whenever there
is discontinuity detected in the input I(t). Consequently,
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solving the DAE system originating from the P2D model
becomes very expensive in the case of real-world driving
cycles, which usually render the DAE solver prohibitively
slow. To this end, the proposed MINN model circumvents
the need for root finding as well as re-initialization.

The DAE system Eqns. (12)–(18) is of index one [7],
which means that for hd at a given time t, Eqn. (18) defines
hz uniquely. We can therefore find a locally unique solution
h∗z for Eqn. (20). Accordingly, the DAE system can be written
as one system of ordinary differential equations (ODEs),

ḣd = f
(
hd, h

∗
z

)
. (21)

The time integration of the ODE system (21) requires
no re-initialization and computationally less workload. We
then proceed to parameterize the function G(hd, I) by a
neural network whose size is dependent on the number
of dynamic states (input) and algebraic variables (output).
Consider approximating G with a DNN of L layers, i.e.,

a[1] = [hd, I]T ∈ Rm

a[l] = σ
(
Wl a

[l−1] + bl
)
, for l = 2, 3, ..., L

h∗z = WLa
[L] + bL ∈ Rn

(22)

Incidentally, the number of trainable parameters θ of this
approximation GNN (hd, I; θ) gets large when the order of
the system N = m + n is large, especially if the weight
matrices Wl, biases bl and L are also large. An orthogonal
collocation method similar to [7] is used for spatial dis-
cretization of the PDAE system Eqns. (12)–(18) in this work
to relieve the difficulty of training. For the same number of
discretization points, this method is known to yield much
smaller truncation errors than finite volume [12, 15], finite
difference [39, 40] and finite element [15, 41] commonly used
in battery modeling community, thanks to spectral accuracy.

There are 16 boundary conditions in the P2D formula-
tion that are necessary to describe the current and potential
fields in three domains. This results in 16 additional terms
signifying the boundary loss in the loss function for a
standard PINN setup, which is expensive and difficult to
train. The convergence and regularisation of these terms
also require additional hyperparameters for tuning. Unlike
the physically constrained loss function in the PINN frame-
work [17, 28], MINN accounts for the boundary conditions
without specifying them explicitly in the loss function.
Instead, they are imposed on the integration constants by
considering, for example, the electrolyte potential φe as a
function of the electrolyte current ie integrated over elec-
trode dimension x, i.e.,

φe,i = −
∫
ie,i(x)

κeff(x)
dx+A lnCe,i (x) +Bi. (23)

By substituting Eqn. (23) into the boundary conditions, three
integration constants Bi are obtained for each domain i,
i.e., anode, separator and cathode. By the same token, the
interfacial flux ji = 1

as,iF
∂ie
∂x can be integrated as follows

ie,i = as,iF

∫
ji (x) dx+ Ei, (24)

where the constants Ei are fixed such that ie = 0 at the
electrode-current collector interfaces and ie = I(t) at the

electrode-separator interfaces. In this way, both ie,i and φe,i
can be exclusively calculated from ji, and so is is,i because
of Kirchhoff’s current law, is + ie = I(t). Eqn. (16) can also
be integrated to yield two integration constants φccs,i, which
stand for the anode and cathode potentials at the current
collector. This gives

φs,i =

∫
− is(x)

σeff
dx+ φccs,i (25)

φccs,i =
2RT

F
sinh−1

(
ji
2i0

)
+ φe,i

+ φeq,i − φs,i + ji ·RSEI (26)
YV =φccs,a − φccs,c. (27)

Eqns. (23)–(25) reduce the algebraic variables to only the
interfacial flux ji and φccs,i. In turn, the algebraic system of
equations amounts to

g =


as,aF

∫
ja(x)dx

as,cF
∫
jc(x)dx∫

2 i0,a sinh
(
F
RT ηa(x)

)
dx∫

2 i0,c sinh
(
F
RT ηc(x)

)
dx

+


−1
1
−1
1

 · I(t) (28)

The second term Ly in the loss function Eqn. (8) is the error
in model outputs, and for a battery system, the experimental
measurements can be the terminal voltage YV , SOC or
lithium plating potential. The SOC of the battery system is
defined by the average concentration of the anode particles
over the electrode thickness δ, normalized by the electrode
stoichiometry at 100% and 0% SOC, and the plating poten-
tial is the difference between the solid and liquid potentials
at the anode-separator interface (ASI), which give

YSOC (hd, h
∗
z, t) =

3

δ ·R3 (C100%
s − C0%

s )

·
(∫ δ

0

∫ R

0

r2

Cmax
s

Cs(x, r, t) dr dx − C0%
s

)
(29)

Yplp (hd, h
∗
z, t) = φASIs (t) − φASIe (t). (30)

4 BENCHMARKING AND TRAINING

This section introduces four state-of-the-art battery models
for evaluating the performance of MINN, using physics-
based, data-driven and hybrid approaches. First, we obtain
the ground truth solutions using the P2D model. Second,
we develop DNN and PINN battery models to learn the
solution trajectories of the P2D model under a pre-defined
control input. Lastly, to benchmark the learning of battery
dynamics under time-varying control profiles, which could
be unknown a priori, e.g., derived from real-time optimiza-
tion or control, we develop a data-driven reduced-order
model (DD-ROM).

4.1 P2D Battery Model

Newman’s P2D model serves as the ground truth for bench-
marking. The model’s accuracy is dependent on the spatial
discretization of the equations introduced in Section 3.1.
To this end, we obtained a high-fidelity P2D model using
the spectral Galerkin method consisting of 130 states and
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14 algebraic variables. The resulting 144-order model is
generated symbolically and the time integration is done
using a legacy IDA solver [42].

4.2 Baseline DNN Battery Model

We generate a purely data-driven battery model using deep
learning. A three-layer DNN with an input size equal to the
number of states and output size equal to the dimension of
the solution are parameterized. The DNN is then trained
to map the initial condition of the discharge to the time
trajectories of internal states [hkd, h

k
z ]T for a predefined

current rate. The loss function is defined as

LDNN =
K∑
k=0

(
[NN k

d, NN
k
z ]T − [hkd, h

k
z ]T
)2

, (31)

where NN k
d and NN k

z are the outputs of the DNN relating
to the differential states and algebraic states at timestep k

4.3 PINN Battery Model

The PINN hybrid battery model is developed using the
schemes illustrated in Fig. 1(b). In addition to the data-
driven loss LDNN, the loss function for PINN includes a
physical loss due to physical inconsistency:

LPINN = LDNN + Lphysical, (32)

Lphysical =
K∑
k=0

(
f
([
NN k

d, NN
k
z

]T)− dhkd
dt

)2

, (33)

where dhk
d

dt is the time derivative of the differential states
in the training data generated by the P2D model, and the
function f is the RHS of Eqn. (19), which embeds the
dynamics of the P2D model.

4.4 DD-ROM Battery Model

Since baseline DNN and PINN only learn the solution
trajectories for predefined u(t), we develop an idealized
battery model for the dynamic current input, assuming
we have all the internal state data [hkd, h

k
z ]T . In practice,

the internal state measurements can be obtained by, e.g.,
using next-generation embedded sensors in laboratory set-
tings. The training dataset for the data-driven-reduced order
model (DD-ROM) consists of all internal state data with
the corresponding labels, i.e., a pair of input-label data
X = [hkd, I

k]T and Y = hkz . The loss function for DD-
ROM is defined by the mean square error (MSE) loss of
the training data, in a supervised learning fashion. For 49
pairs of input-label data taken from the high-order P2D
solution, a mapping function X 7→ Y is parameterized by
a DNN, and the loss is minimized down to machine zero
using an optimizer. The downside of this hybrid scheme is
that it depends on a vast amount of training data and has to
include all battery internal states, which in many cases are
not measurable but can only be obtained by physics-based
models. Nevertheless, we train and present such a model
with a never-before-seen current profile.

4.5 Training Details

The MINN model offers a new path to generating ap-
propriate battery models by seamlessly blending the fea-
tures of first-principle-based models with neural network
architecture, which retrains the individual advantages of
physics-based and data-driven approaches. Because cer-
tain neural network parameters θ may lead to unphysical
states in Eqns. (4)-(7), we rectify the dynamic, algebraic
and output functions f , g and Y by introducing rectified
exponentials during training, e.g. the rectified square root,√
x ReLU =

√
max(0, x).

The DNN in the MINN architecture consists of three
hidden layers with the same number of nodes as the other
models. Forward mode automatic differentiation imple-
mented in ForwardDiff.jl package in Julia [43] is adopted for
the backpropagation. GELU activation function is used to
mitigate training issues such as vanishing gradients usually
associated with RNN [44]. All models in the benchmarks
are trained with an ADAMW optimiser [45]. The learning
rate is set to 0.001, and the training ends when the loss
function flatlines. Generally, a wide-scale separation in the
internal states and model output leads to the imbalance of
loss function components. We scale the input-output data
by characteristic time and internal state scales in order to
approximate the widely separated scales in a single DNN.

5 RESULTS AND DISCUSSION

This section evaluates the proposed MINN and compares it
against the benchmarking models introduced in Section 4.
The results of the comparative study are characterized by
the model prediction accuracy, data efficiency, physical in-
terpretability, and computational cost. It is worth noting
that real-world battery applications could be complicated
and in a wide range of usage conditions that may never be
included in any training dataset. However, a reliable battery
model must be able to generalize to out-of-sample usage
profiles so that the levels of battery safety and degradation
governed by physical states are not under- or overestimated.
To test this critical ability of the referred models, we delib-
erately limit the range of conditions used to generate the
training dataset.

5.1 Performance in learning solution trajectories

For a pre-defined control input, e.g. a constant discharge
current, we design a scenario where the initial conditions
of the testing data differ from that of the training data.
Specifically, the developed DNN, PINN and MINN battery
models are trained using P2D results generated by the first
250 seconds of a 1C discharge starting from 50% SOC. The
testing data consists of the rest of the discharge together
with a 1C discharge starting from 30% SOC. As shown in
Fig. 5(e), for both the 50% and 30% SOC testing data, the
DNN predictions of the battery terminal voltage diverge
significantly from the P2D reference. For the internal states,
e.g., electrolyte concentration and anode potential fields in
Figs. 5(b) and (g), respectively, DNN gives completely unre-
liable results along both temporal and spatial coordinates. In
addition, the outputs become unphysical, i.e., not a number
(NaN), after 250 seconds due to the fractional exponents in
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the output function Y (t, hd, hz, I). This is because the base-
line DNN is model-agnostic and cannot accurately forecast
the internal state trajectories under operational conditions
that differ from the training data.

The PINN battery model can follow the discharge trajec-
tory of the terminal voltage for the 50% SOC case because
the training process of the model is informed of the P2D
equations (as seen in Fig. 5(e)). However, it fails when the
initial condition is altered to 30% SOC, as PINN does not
account for the change in initial conditions. The locally
distributed electrolyte concentration, solid-phase lithium
ion concentration and anode potential resulting from PINN
for the 30% SOC case also diverge from the P2D results.
Notably, the low levels of electrolyte concentration marked
by the orange isosurface in Fig. 5(c) appear to enlarge much
later (after 250 seconds) and are also less spread-out in the
anode. It is well known that electrolyte depletion may lead
to safety risks such as lithium dendrite formation and patho-
logical pathways in batteries’ aging trajectory [46]. Inaccu-
rate predictions of electrolyte concentration will severely
undermine the function of health-aware BMS. For example,
the PINN battery model in Fig. 5(h) underestimates the
anode potential in the 30% SOC case compared with the
more accurate P2D result in Fig. 5(f). Similar errors can be
found in other internal states, such as solid-phase concentra-
tions (Supplementary Information), and will inevitably lead to
underutilization of the battery capacity and energy. These
internal state trajectories have important implications for
battery health and safety diagnosis and must be accurately
captured by the deployed model for next-generation BMS.
The MINN battery model always faithfully captures all the
local state and output information regardless of the initial
SOC values, as illustrated by the spatiotemporal plots in
Fig. 5(d) and (i), and the output trajectories in Fig. 5(e).
This is attributed to the fact the MINN model learns the
dynamics of the physical system instead of learning the
solution trajectories of an autonomous system.

5.2 Performance in learning dynamics
To evaluate the effectiveness of hybrid models for learning
battery dynamics, e.g., excited by prior unknown input
profile, we use an arbitrary vehicle driving cycle to generate
testing data. A challenging training dataset is purposefully
chosen to evaluate MINN’s generalisability on unseen test-
ing data. As shown in Fig. 6, the training dataset consists of
49 snapshots generated by the P2D model with the initial
SOC fixed at 30% and a sinusoidal input signal lasting
only two seconds and bounded by 1C. By contrast, a highly
dynamic current is used in the testing where the initial SOC
is set to 90% and the maximum current reaches 5C.

For an ideal case where all internal battery states are
measurable, the DD-ROM is developed, whereby part of
the model states are obtained by a relationship learnt from
sampling the state trajectories of the P2D model. In com-
parison, the training of the MINN model involves only
the experimentally measurable output of the P2D model,
including the terminal voltage, lithium plating potential and
SOC. Thanks to the built-in, problem-specific recurrent unit,
it does not require the acquisition of the internal state data.

Accurate prediction of the system outputs, including the
terminal voltage, plating potential and SOC, is important

to advance BMS functionalities, such as power capability
prediction [49] and health-aware fast charging [10, 50]. Ta-
ble 1 shows the computational complexity, training dataset
and numerical accuracy of the above three battery models in
predicting these outputs, while Fig. 7(g) displays the trajec-
tory of the plating potential. Both the MINN and DD-ROM
models show high accuracy in the terminal voltage, achiev-
ing generalization errors of less than 12 mV. In Fig. 7(g),
the red dashed line at 0 V highlights the critical level
below which the lithium plating is triggered. To predict such
plating potential, the MINN model is as good as the DD-
ROM which is developed under the hypothetically available
information of all battery states. Regarding SOC prediction,
the MINN model has greater accuracy than the DD-ROM,
with a generalization error of only 0.06%. Other testing
data generated at various initial conditions other than 85%-
90% SOC have also been considered, which has yielded
similar results in predicting the model outputs and further
confirmed the superiority of MINN over DD-ROM. This
achievement by MINN with only the measurement data
for training is practical during real-world battery usage. In
fact, the upper limit of the accuracy of MINN is not the
first-principle model used in this benchmark but the battery
system itself.

To evaluate MINN’s capability of predicting the dynam-
ics of internal battery states, the locally distributed elec-
trolyte concentration and solid-phase surface concentration
are examined in spatiotemporal plots. As shown in Fig. 7(c),
MINN is capable of reproducing the electrolyte evolution
accurately along the challenging operating profile with a
mean absolute percentage error (MAPE) plotted in Fig. 7(e)
of less than 2%. Although DD-ROM battery model gives less
than 1% absolute percentage error (APE) for the terminal
voltage as shown in Fig. 7(d), it under- and overestimates
the degree of electrolyte depletion. For example, at around
100 seconds, marked by a blue isosurface, the DD-ROM
model underestimates the depletion in the anode and yet
overestimates it in the anode, separator and cathode starting
from 600 seconds (light orange). Fig. 7(h–j) depicts the
comparative results for the solid-phase concentration. Here,
the colour red represents the theoretical maximum surface
concentration of graphite particles, near which the move-
ment of lithium ions matches the intercalation threshold of
lattice sites in the anode and the dendritic growth of lithium
is inevitable [51]. The DD-ROM prediction in Fig. 7(i) yields
larger red areas adjacent to the anode-separator interface,
which means significantly more lithium plating if one de-
ploys it in the BMS. In addition, DD-ROM overestimates
the surface concentration in the anode at 500 seconds. When
imposing a constraint on the surface concentration for ve-
hicle battery control, such overestimation will curtail the
energy recovered from regenerative braking [52]. However,
the MINN predicts the critical surface concentration in
Fig. 7(j) as close as the P2D during the entire process, thereby
allowing accurate monitoring and control of the solid-phase
concentration.

5.3 Computational costs

Next, the computational costs of DD-ROM and MINN are
examined alongside the P2D model. In practice, most P2D
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Fig. 5: Comparison of different data-driven and hybrid models with P2D under 1C discharge. An LG M50
parameterization [47] is adopted in P2D to reproduce the dynamics of a battery faithfully and to generate internal battery
state data for training. (a)-(d) Spatiotemporal plots of electrolyte concentration in the anode, separator and cathode for the
discharge from SOC = 30%. (e) The terminal voltage curves of 1C discharge start from initial SOC values of 30% and 50%.
(f)-(i) show the anode potential defined as φs − φe for the discharge from SOC = 30%.

Fig. 6: Dynamic current input profile and SOC range for generating training and testing dataset.

model implementations feature additional algebraic state
variables that are converged at each time step by using, e.g.
an iterative algorithm. While these implementations may
realize millisecond-scale simulations [14] for static charge

and discharge, the solution time can be prohibitively slow
for dynamic driving profiles due to increasing stiffness. As
shown in Table 1, the hybrid models achieve two orders of
magnitude speedup in the solution time for an 800-second
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Models
Metrics

Complexity Training generalization error

System Model
order Solver

Solution
time [s]
(mean)

Battery
dataset

ηplp
[mV]

Voltage
[mV]

SOC
[%]

P2D DAE 130 + 14
IDA

(SUNDIALS) 310.5

DD-ROM ODE 130 Rodas4 3.4
Internal
states h 9.88 9.87 0.635

MINN ODE 82 Rodas4 1.7
Measurement

Y
6.28 11.6 0.059

TABLE 1: Model complexity, data efficiency in training and the generalization error of DD-ROM and MINN battery
models are compared with results of a dynamic driving profile obtained by a high-fidelity P2D model with the LG M50
parameterization (see Supplementary Information: parameterization). The generalization error is measured in root mean
square error (RMSE) against the P2D benchmark. The solver used for the DAE system representing the 144-order P2D
model is a legacy SUNDIALS solver [42], and the solver for ODE systems uses a 4th-order A-stable stiffly stable
Rosenbrock method. All models are implemented using the DifferentialEquations.jl package in Julia [48].

Fig. 7: Performance of the DD-ROM and MINN battery models in learning system dynamics, compared with the results of
reference 144-order P2D model. (a)-(c) Liquid-phase ion concentration (electrolyte concentration). (d)-(e) generalization
errors of terminal voltage and electrolyte concentration. (f) Terminal voltage response to the testing current. (g) Anode
plating potential at the anode-separator interface. (h)-(j) Solid-phase concentration at the surface of particles.

vehicle driving test, of which the MINN battery model has a
slight edge over the DD-ROM model. The significant speed
improvement of the MINN framework compared to DD-
ROM is attributed to its high data efficiency, which allows
for learning the complex dynamics of batteries without the
need for a fixed number of internal states. This unique
feature enables low-order approximations, as demonstrated

by developing an 82-order model in Table 1, in contrast to
DD-ROM, which requires 130 states for similar accuracy.
The remarkable speedup in computational time will make it
possible onboard model-based applications, such as online
parameter identification, state estimation and closed-loop
control. Indeed, a vast majority of daily battery usage is
driven by time-varying current profiles, under which the



11

identifiability of battery models, including the P2D and
MINN, will often be improved significantly compared to
static excitations. Therefore, improving computational effi-
ciency under dynamic operating conditions will help lift the
computational burden of parameterization.

5.4 Discussion on adaptive battery modeling

During battery lifetime, conventional physics-based mod-
eling requires periodic re-parameterization because of the
ever-changing nature of multi-physical battery parameters
due to ageing [53, 54]. The need for computationally ex-
pensive re-parameterization undermines the applications of
physics-based models, which are supposed to have mini-
mal dependence on data acquisition and training. This is
evidenced by the fact that no mass-produced BMS on the
market today has claimed the usage of physics-based mod-
els. MINN allows for the simplification of DAE structure
and may potentially improve the identifiability of param-
eters. Accordingly, MINN can be used for aging adaptive
models for a wide range of intelligent battery management
applications, not only in the short term of several hours or
days but also over the battery’s entire lifespan. Numerous
examples of such applications include fast charging, lifetime
optimization, thermal fault detection, and safety prognosis,
which are the main challenges of BMS algorithm design.

6 CONCLUSION

The rapid upscaling of battery-powered electric vehicles
makes it possible to collect big data. Based on the data, a
wave of data-driven models under the hood of machine
learning has recently been developed in the battery commu-
nity. While data-driven surrogate models excel in learning
complex battery characteristics, they inherently lack the
ability to generalize beyond the training data and provide
a physical interpretation of the internal battery status. With
the potential to combine the merits of physics-based and
data-driven models, we propose a conceptually novel neural
network architecture, MINN, for hybrid modeling. It has
been shown to be accurate in output and internal state
predictions while achieving remarkable acceleration in the
solution time. The MINN battery model is data-efficient to
train compared with DD-ROM. Its built-in physical parame-
ters and interpretable hidden states are important in battery
system identification, fault diagnostics, safety prognostics,
and physics-based control. The substantial and practical
benefits offered by MINN make it an exceptional choice
for developing the next-generation BMS. By integrating
machine learning with physics-based modeling, the MINN
framework offers a powerful tool for analyzing general
dynamic systems commonly found in diverse fields, such
as mechatronics, thermal fluid dynamics, electrical power
systems, and energy storage systems.
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