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Abstract

Integrated photonics has witnessed remarkable progress in the last decades.
Measuring photonic devices in amplitude and phase provides insight into
their performance. Swept wavelength interferometry is a prominent tech-
nique for the broadband characterization of the complex response. It
leverages continuous advances in rapidly tunable laser sources but is
prone to systematic errors associated with frequency calibration. This
thesis focuses on the non-destructive measurement of ultralow-loss pho-
tonic devices using swept wavelength interferometric technique. We over-
come issues associated with nonlinear tuning by calibrating the frequency
of the laser on the fly with the aid of a frequency comb. We apply the
concept to diverse components of relevance including microresonators
and spiral waveguides. This technique enables diagnosing waveguides
for the loss and potential defects and is instrumental in optimizing de-
vice fabrication ecosystems. The measured phase response of microres-
onators allows for untangling the coupling condition and provides insight
into microresonator-waveguide systems. The later part of this thesis
covers the linear (stepped and multi-heterodyne) methods for spectral
and temporal characterization of frequency combs. The linear hetero-
dyne method provides unprecedented sensitivity and bandwidth range
of measurement. In addition, we provide an overview and comparative
assessment of the state-of-the-art in the field.

Keywords: frequency combs, microcombs, electro-optic combs, mi-
croresonators, waveguides, swept-wavelength interferometry, optical fre-
quency domain spectroscopy, stepped-heterodyne, multi-heterodyne
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Chapter 1

Introduction

Integrated photonics has been one of the fastest-growing fields in science
and technology. Its fundamental physics is analogous to matured fiber
optics, which was a key to such rapid progress. The motivation behind in-
tegrated photonics is the miniaturization of optical systems and bringing
them out from the bulky lab environment into real-world applications.
The idea of integrated optics is to achieve an equivalent if not a supe-
rior level of complex functionalities and volume production of distributed
optical systems on a chip scale. In addition, the integration of optical
systems offers improved stability and reliability. Integrated photonics
is undergoing a revolution much like microelectronics went through in
the 1950s. The trend toward increased functionality, performance, and
compactness brings complexity and challenges in the measurement of the
devices. The goal of this thesis is to develop advanced measurement tech-
niques to characterize active and passive devices linearly using frequency
comb technology.

1.1 Key milestones in Si photonics

Photonics is the science of light, with an emphasis on harnessing pho-
tons analogous to electrons in electronics for various applications. The
emergence of silicon photonics can be traced back to the 1987s after the
demonstration of the electro-optic effect in silicon at the indirect band
edge [1]. However, the research in integrated (silicon) photonics gained
momentum only from the early 21st century and was adopted in the in-
dustry in less than a decade. Integrated photonics is one of the few areas
in science ever to be encroached on the global market in the short term.
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Chapter 1. Introduction

As of now, the global silicon photonics market is valued at billions of
dollars.

The compatibility of silicon photonics with standard complementary
metal-oxide semiconductor (CMOS) foundry processes has enabled the
rapid progress of Si photonics technology over the past decades. This
acceleration was primarily driven by fundamental limitations: power dis-
sipation and bottleneck inherent to the integrated circuits (ICs) in data
transmission in data centers. Silicon photonics is slated to resolve the
ever-increasing data volume and keep pace with Moore’s law. Therefore,
this is a holy grail for giant cloud-based IT networks. The high index
contrast of silicon on silicon-on-insulator (SOI) platform is ideally suited
for the monolithic integration of a range of passive optical components.
A Photonics chip (microcomb) under a well-controlled laboratory envi-
ronment alone can transmit a record 1.84 petabits of data via an optical
fiber [2] surpassing the current average internet traffic in the world.

Figure 1.1 depicts some of the key milestones in the evolution of Si
photonics. The demonstration of the wafer bonding and Etch-Back tech-
nique in 1985 opened up the SOI platform [3]. This method perfectly
preserves the crystalline silicon layer unlike the SIMOX (separation by
implantation of oxygen) technique [4]. This is the backbone of inte-
grated electronics and photonics technology. The Smart-Cut process of
silicon-on-insulator wafers evolves as the de-facto standard of SOI tech-
nology [5, 6]. In the mid-1980s, the monolithic integration of Silicon
guided waves had been already demonstrated for optoelectronic applica-
tions [7]. In its early stage, the SOI waveguides were several micrometers
in thickness and width [8]. The SOI wafers technology in [5] allows for
the tight confinement of field in the vertical direction, which is key in
designing low-loss and sharp-bending waveguides [9]. This is a prereq-
uisite for photonic integration. Interfacing integrated photonics with
fiber was an initial hindrance in getting attention from the industries.
Due to the fundamental discrepancy in the size of the fiber and waveg-
uide, it was challenging to attain seamless light propagation in and out
of the integrated waveguide. This was addressed by delocalizing the
light by tapering the waveguide at coupling regions [10] or by highly
efficient grating couplers which enable wafer-scale testing of photonic in-
tegrated circuits (PICs) [11]. Another milestone in Si photonics is the
demonstration of the compatibility of photonics in foundry [12]. How-
ever, the lack of a direct bandgap precludes the monolithic integration
of active components. Heterogeneous integration is attracting attention
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1.1. Key milestones in Si photonics

in expanding the library of building blocks in silicon photonics [13]. In
this regard, active components such as lasers [14], amplifiers [15], and
modulators [16] are demonstrated either with chip bonding or direct epi-
taxial growth. In [17], laser bonded on silicon photonics is reported.
Although it lacks the Pockels effect, a silicon-based integrated modula-
tor was demonstrated by carrier injection in [18]. Integrated photonics
is not limited to research and state-of-the-art labs. In 2007, Luxtera
released a silicon photonics transceiver module with the world’s first 40-
gigabit optical interconnect to the market [19]. In the following years,
integrated photonics exploded in the global market. Photonic integra-
tion has made impressive strides in the last decade thanks to the open-
access foundry model [20]. This fabless model is facilitated through an
integrated ecosystem for the design, development, and manufacturing of
customized PICs.

1986 -- 2001 2002 2005

Bogaerts, Wim, et al.
JLT 23.1 (2005):
401-412.

Fang, Bowers, et al.
Opt. Express 14.20
(2006): 9203-9210.

2006 2010

Levy, Lipson, et al.
Nat. photonics 4.1
(2010): 37-40.

Almeida, Lipson,
et al, Opt.
Lett 28.15(2003):1
302-1304.

---2018

Atabaki, Amir H.,
et al.
Nature 556.7701
(2018): 349-354.

1985

Wafer bonding Coupling Integrated
photonic

Laser bonding Frequency
synthesizer

Photonic
chip

Lasky, J. B., et al.
International Electron
Devices Meeting.
IEEE, 1985.

Figure 1.1: Timeline of some of the key milestones in the Si photonics.

The library of building blocks in Si photonics is also expanded to the
promising SiN platform [21]. Thin-film Si3N4 waveguides with propaga-
tion losses comparable to today’s state-of-the-art silicon waveguides [22]
were demonstrated as early as mid-1980s [23,24]. The wide transparency
window from 0.25-8 µm makes it suitable for broadband applications.
In addition, the large bandgap (5 eV) and modest Kerr nonlinearity
(2×10−19 m2W-1) enable a wide range of nonlinear phenomena. An inte-
grated on-chip multiple-wavelength source in [25] puts forward frequency
synthesis and metrology in the silicon-nitride-on-insulator (SiNOI) plat-
form. Multilayer monolithic integration of silicon nitride on silicon plat-
forms unfolds a new avenue in 3D large-scale PICs with both active and
passive functionalities [26].
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Chapter 1. Introduction

1.2 Precision spectroscopy

Precise characterization of photonic devices is instrumental in the tech-
nological advancement and development of many applications. For ex-
ample, in [27], measurement of the wafer-level group and phase index
is reported. This is of great importance in optimizing recipe growth in
the subsequent deposition. In [28], the relationship between roughness-
induced backscattering with optical parameters, polarization rotation,
waveguide geometry, and higher-order mode coupled is illustrated. The
characterization of photonic devices uses a laser as a probe and re-
trieves sensing information that is transduced in changes in amplitude
and phase. This requires precise calibration of the laser. In general, the
laser frequency is calibrated using auxiliary interferometry. However, this
strategy is subject to environmental perturbations and systematic errors
attributed to the inherent dispersion. Laser frequency combs as optical
rulers are used for accurate frequency calibration of tunable lasers [29].

In order to make accurate measurements of quantities/metrics, a
common strategy is to transduce them into frequency. Frequency is the
quantity that can be measured with the greatest accuracy. The state-
of-the-art comb-referenced spectroscopy can measure a frequency with
an accuracy of 20 decimal digits [30]. No other physical quantity can
be measured with that level of precision. Arthur Schawlow, the 1981
Nobel Prize winner in physics, advised to “never measure anything but
frequency”. Earlier precision spectroscopies relied upon cascaded fre-
quency chains that connect the hyper-fine 133Cs microwave clocks to
the optical domain. The realization of the optical frequency comb with
a mode-locked laser (MLL) enables the direct link between microwave
and optical frequencies. In 1997, Theodore W. Hänsch had envisioned a
self-referenced frequency comb for a universal optical frequency synthe-
sis [31]. In the late 20th century, an octave-spanning of an fs pulse using
a photonic crystal fiber and f-2f heterodyning enabled absolute frequency
synthesis and metrology [32,33]. For this contribution, John L. Hall and
Theodore W. Hänsch were honored with half of the 2005 Nobel Prize in
physics. In the following years, a new research direction has immersed
in the quest of rendering frequency combs on a microscale called ’micro-
combs’. Microcombs are generated in microresonators by employing the
Kerr nonlinear effect from a CW pump laser. The nonlinear interactions
give rise to the stimulated parametric mixing that leads to equidistant
sidebands, which was first reported in [34]. Microcombs generated in the
Si3N4 planar platform unravel the prospect of realizing frequency combs

4



1.3. This thesis

in highly compact, robust, and CMOS integration [25].

1.3 This thesis

Measuring integrated photonic devices in amplitude and phase (i.e. com-
plex response) provides insight into their performance. This thesis fo-
cuses primarily on the advanced characterization of ultralow-loss mi-
croresonators and waveguides (Paper A). We set an external interfero-
metric configuration of the sample for its non-destructive measurement.
A self-referenced frequency comb was used as an optical ruler to calibrate
the laser used in swept-wavelength interferometry and optical frequency
domain reflectometry of the device under test (DUT). The interfero-
metric characterization (Paper B) of photonic devices is instrumental
in the use of these devices in various scientific applications. Frequency
combs generation (Paper D, E) and hyper-parametric oscillation (Paper
C) in microresonators are applications of interest in this thesis. In the
next part of the thesis, we reverse our gear and illustrate the use of a
(stepwise) tunable laser in differential phase measurement of microcombs
(Paper D). We cover the spectral and temporal characterization of micro-
combs, providing insight into the nonlinear dynamics of the waveforms
with unprecedented sensitivity. In addition, we also use a reference comb
instead of the tunable laser in paper E. The microcombs characterization
is assisted by the electro-optic downconversion technique. Throughout
the thesis, we used in-house fabricated Si3N4 samples to illustrate these
new tools and methods.

Chapter 2 serves as a brief introduction to different types of optical
frequency combs. Chapter 3 introduces the basics of swept-wavelength
interferometry and self-referenced frequency comb calibration in tunable
laser spectroscopy. It also highlights the specific applications in spec-
troscopy of the devices in detail. Chapter 4 presents the detail about
microresonators and their characterization. In chapter 5, the analytical
soliton of comb dynamics in the microcavity is briefly discussed, while
chapter 6 highlights the linear pulse characterization exemplified in the
context of EO-combs and microcombs. Finally, Chapter 7 provides the
future outlook.

5



Chapter 1. Introduction

6



Chapter 2

Laser frequency combs

Frequency combs are discrete frequency sources that have unleashed
enormous possibilities in science and technology. They provide a co-
herent and bidirectional link between optical and microwave frequen-
cies. Earlier efforts to measure the laser frequency were based on har-
monic frequency chains [35]. The rapid advance in mode-locked lasers
dramatically simplifies frequency spectroscopy. Their basic principle is
mode-locking by either an active element (optical modulator) or a non-
linear passive element (saturable absorber). In 1986, Ti-Sapphire as a
broadband gain medium was introduced [36] enabling the generation of
a self-mode-locked femtosecond laser [37]. The pulse train corresponds
to a series of evenly spaced coherent frequency lines, called a ’frequency
comb’. For optical frequency synthesis, the absolute position of the comb
lines needs to be traced. In the late 1990s, John L. Hall and Theodor W.
Hänsch came up with the revolutionary idea of using an octave-spanning
comb and f-2f interferometry, enabling absolute frequency synthesis from
radio-frequency atomic frequency references, which stand today as the
basis for the SI unit of time. The frequency comb facilitates the most
precise timekeeping of an optical atomic clock, which is poised to redefine
the time standard [38]. Mathematically, a frequency comb can be de-
scribed as a train of pulses with an envelope function A(t) modulating a
carrier wave. The periodicity of the pulses is ensured by A(t) = A(t−T )
with T = 1/fr denoting the pulse repetition time. The electric field, how-
ever, is not periodic given that the carrier wave travels with its phase
velocity. The electric field of the frequency comb can be represented

7



Chapter 2. Laser frequency combs

according to [39]

E(t) = Re(A(t)exp−jωct) = Re

( ∞∑
n=−∞

cnexp−j(ωc+nωr)t

)
, (2.1)

with ωc denoting the carrier frequency and cn the Fourier series expan-
sion coefficients of A(t). Here, ωc is not necessarily an integer multiple
of ωr. This causes a global offset (ωceo) of the modes. The offset is in-
dependent of the repetition rate. The frequency of the modes can then
be reformulated as ωn = nωr + ωceo considering ωceo < ωr. In metrol-
ogy, both the RF frequencies (ωr and ωceo) have to be stabilized and
referenced to create a frequency ruler. In the following, various types of
frequency combs used in this thesis will be discussed briefly.

2.1 Optical frequency combs

Optical frequency combs are a workhorse in modern spectroscopy and
metrology [40, 41]. The principle of frequency comb generation relies
on mode-locking developed in the mid-1960s after the invention of the
laser. Mode locking generates a train of ultra-short optical pulses as a
result of constructive interference between coherent lasing modes in the
cavity. In the frequency domain, this results in an equidistant spectrum
(comb lines) of repetition rate frep or fr (used interchangeably in this
thesis) as shown in Fig. 2.1. The frequency span of the comb is related
to the inverse of the pulse width. However, the pulse envelope and
optical carrier wave walk-off introduce an offset frequency referred to as
the carrier-envelope offset frequency (fceo or f0). As such, the absolute
frequency of the comb modes is represented as

fn = nfrep + fceo, n ∈ N. (2.2)

While frep is readily measured by beating the comb lines, the estima-
tion of fceo needs an octave-spanning frequency comb to realize self-
referencing via f-2f interferometry. The limited bandwidth of the medium
prohibited such measurements until the end of the 1990s. The measure-
ment of fceo was accomplished with the broadening of mode-locked laser
(MLL) via the Kerr effect in a highly non-linear fiber (HNLF) and f-2f
interferometry [32,33]. The idea is to frequency double the spectrum and
beat with its octave one as shown in the bottom of Fig. 2.1. The self-
referenced frequency comb is key for precise laser frequency calibration

8



2.2. Electro-optic frequency combs

and broadband spectroscopy of photonic devices which are discussed in
chapter 3.

time

frequency

Figure 2.1: Temporal and spectral profile of a femtosecond optical frequency
comb. The bottom is the f-2f interferometry for the self-referencing of the
comb.

2.2 Electro-optic frequency combs

Electro-optic(EO) modulation is a technique for generating frequency
combs. It is a combination of optical and microwave technology. To
generate an EO-comb, a CW laser is modulated with an electro-optic
modulator using an RF clock. Multiple sidebands are generated, cen-
tered around the CW laser and spaced by the RF clock frequency. It
is controllable and a CW laser of any wavelength (compatible with the
external modulator) is applicable as a light source [42,43]. However, EO-
combs had a long-standing problem of high phase noise and low stability
as phase noise increases with the comb line number. A self-reference
(octave-spanning) EO-comb via nonlinear broadening with sub-optical
cycle timing precision demonstrated in [44] could unfold its application
in optical atomic clocks and quantum systems.

Electro-optic (EO) central frequency is defined by the seed laser C(t)
and spacing by an RF clock. The key element in electro-optic modulation
is a phase modulator (PM). The phase-modulated electric field driven
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Chapter 2. Laser frequency combs

by an RF clock (modulating signal) can be modeled as

EEO(t) = C(t)expjβcos(2πfrt), (2.3)

with β denoting the modulation index and fr the clock frequency. For
simplicity, β can be expressed as normalized driving voltage Vr/Vπ. Here,
Vr denotes the RF driving voltage and Vπ half-wave driving voltage for
achieving a phase shift of π. The argument of equation 2.3 defines the
frequency swing scaled by a carrier frequency with the maximum band-
width 2πfrVr/Vπ. The available RF power and practical Vπ voltage limit
the bandwidth range. The use of multiple PMs is in practice to extend
the number of comb lines [45]. It increases linearly with the number of
cascaded modulators. The phase between the modulators can be aligned
using RF phase shifters to change the shape of the comb spectrum.

The phase modulation in the sideband picture provides more insight
into the comb spectrum. The phase modulation in terms of the nth order
Bessel functions Jn(β) is

EEO(t) = |C(t)|
∞∑

n=−∞
inJn(β)exp(2π(fc + nfr)t), (2.4)

where J−n(β) = (−1)nJn(β) is the nth order Bessel function of the first
kind at modulation index β and fc is the frequency of the seed laser.
The phase modulation generates cascaded sidebands centered around
fc with the spacing fr. As the sideband power is dependent on the
Bessel functions of the first kind, the modulation does not generate a
flat spectrum. Therefore, an intensity modulator (IM) is often used
to flatten or equalize the amplitude of the comb-tones [46]. The IM
based on a Mach-Zehnder interferometer driven by the RF signal V (t) =
Vrsin(2πfrt) can be described according to the transfer function as

Pout
Pin

=
1

2

[
1 + cos

(
π

Vπ
V (t)− ϕ

)]
. (2.5)

The IM is biased at the center of the quasi-linear region. It carves out
pulses when the chirp induced by the PM is quasi-linear generating a flat
comb (Fig. 2.2(b)) [45]. The "rabbit ears" shape on each side of the flat
region is attributed to the strong chirp at the edges. Figure 2.2 shows a
schematic diagram, spectral, and temporal profiles of the EO-comb. The
field envelope of the EO-comb comprises a train of pulses in the time-
domain as shown in Fig. 2.2(c). The temporal phase profile takes the
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same profile as a modulating RF signal (Fig. 2.2(d)). A convex spectral

parabolic phase profile i.e.
d2ϕ

d2ω
< 0 (Fig. 2.2(e)) suggests a negative

chirp pulse EO-comb. This means the instantaneous frequency decreases
with time and the IM is biased at the negative slope of the temporal phase
profile (Fig. 2.2(d)). This phase relation between comb-tones indicates
that the pulse is chirped and not transform-limited. A transform-limited
(narrow train) pulse train can be restored by applying a reverse phase
profile (dispersion value) using an appropriate dispersive component such
as a waveshaper. Note that the phase profile can be opposite depending
on the phase set by the phase shifter. In section 6.1.1, an EO-comb as a
comb under test is used to illustrate the heterodyne techniques.
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Figure 2.2: (a) EO comb generation setup consisting of two phase modulators
and an intensity modulator. The cascaded PM increases the effective modula-
tion depth and the IM flattens the output spectrum. (b) EO comb spectrum
of fr = 25 GHz. (c) Pulse profile of the EO comb with a period of 1/fr = 40
ps. (d) Phase in time-domain for modulation depth 11.5. (e) Parabolic phase
distribution in the frequency domain.

2.3 Microcombs

Microresonator-based Kerr frequency combs ("microcombs") lie at the
focus of intense research as an optical source and witnessed significant
research progress in the last decade [47,48]. It is an active research area
within chip-scale ultrafast optics and ultrastable lasers, enabling applica-
tions in spectroscopy [49] coherent communication [50,51], optical clock
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Chapter 2. Laser frequency combs

Figure 2.3: Microresonator combs driven by a CW laser. The spectral and
temporal profile of (a) dissipative Kerr soliton and (b) dark pulse comb.

generation [52], and optical frequency synthesis [53]. In 2004, optical
parametric oscillation (OPO) in a Kerr microresonator was first demon-
strated in a silica micro-toroid [54]. The idea of generating frequency
combs in microresonators was proposed in [34] and stabilization relative
to a microwave signal in [55]. The first demonstration of a microres-
onator frequency comb in an integrated photonics platform was in silicon
nitride (Si3N4) [25] and high-index doped silica-glass resonator [56]. The
frequency comb generation in a microcomb is initiated by parametric
oscillation, followed by cascaded four-wave mixing processes [34]. This
process is highly sensitive to the phase of the comb lines. This can lead
to coherent waveforms such as dissipative solitons [57], which are self-
enforcing optical pulses (wave packets) that circulate in the microcavity
as shown in Fig. 2.3(a). In the spectral domain, the pulses coupled out
of the cavity form a microcomb with a fixed phase relationship between
spectral lines similar to traditional mode-locked lasers. In the cavity,
the pulse is formed due to a composite balance of parametric gain and
cavity loss together with dispersion and nonlinearity [58]. The paramet-
ric gain is maintained at the expense of the input signal power. The
intracavity soliton pulse consists of an offset low-power CW state. In
contrast, a dissipative pulse in the microcavity also evolves with a high-
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2.3. Microcombs

power CW state in the normal dispersion regime (Fig. 2.3(b)). There is
a transition between the low-power and the high-power CW states [59].
These two states are closely related to the CW steady state solution of
the bistability. Such an intracavity waveform is known as a platicon or
switching wave and the spectrum is called a dark or platicon comb [60].
From knowledge of the comb lines’ power and their relative phase, one
can fully determine the temporal pulse shape of the microcomb [61] and
synthesize the waveform by spatial modulation [62]. Comb dynamics
in the microresonators are elaborated in chapter 5. Also, spectral and
temporal features are illustrated with simulations and measurements.
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Chapter 3

Linear characterization
techniques in photonic
integration

3.1 Swept wavelength interferometry

Historically, the wave behaviour of light Young’s double slit experiment,
and interferometry devised by Albert Michelson in 1890 are milestones in
advancing the scientific understanding and development of optical tech-
nologies. In addition, the invention of the laser in the 1960s and tunable
lasers in the following decades drove various interferometry techniques.
TD (time domain)-interferometry, spectral domain interferometry, and
swept-wavelength interferometry are various interferometry techniques.
Optical reflectometry has been a long-standing nondestructive diagnostic
tool to probe optical devices or for use in sensing applications. Basically,
there are three reflectometric techniques: optical time domain reflectom-
etry (OTDR), optical coherence domain reflectometry (OCDR), and op-
tical frequency domain reflectometry (OFDR). All these techniques are
in widespread use. In paper B, we provide a broader context of interfer-
ometry by comparing it against state-of-the-art techniques. Depending
on the configurations and sources used, there are tradeoffs in terms of
sensitivity, resolution, accuracy, speed, and range. OTDR allows mea-
suring the time-resolved distributed reflection of short pulse and propa-
gation losses [63]. It is used for long-distance over kilometers or more and
low-resolution spectroscopy. OCDR also known as optical low-coherence
reflectometry (OLCR) is essentially a multi-path interferometer using a
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Chapter 3. Linear characterization techniques in photonic integration

low-coherence broadband source [64]. It uses a Michelson interferometer
operated with a broadband source when the time delay between the arms
is nearly equal. It replaces one of the mirrors in the Michelson interfer-
ometer with the device under test. A translating mirror is scanned to
locate fringes corresponding to reflection points within the DUT (device
under test). OCDR with a resolution of 10 µm and dynamic range of
greater than 100 dB is demonstrated in [65]. In 1991, optical coherence
tomography was first introduced to describe depth-resolved biological
imaging using the concept of OCDR [66]. This is time domain (TD-)
OCT as envelope fringe pattern is acquired as a function of reference
path delay to map reflectivity as a function of transverse plane position.

Swept-wavelength interferometry (SWI) has become a widespread
high-precision measurement technique that is applied in diverse appli-
cations. In the simplest case, it relies on an interferometric structure
based on a broadband sweeping laser where one of the arms contains a
device under test (DUT) (see Fig. 3.1). The laser source is swept across
the measurement range in the interferometer and the signal is then de-
tected by photodetectors. Interference fringe patterns are acquired as
a function of time as the instantaneous frequency of the optical source
is tuned. The Fourier transform of this pattern generates the complex
impulse of the device under test (DUT). This allows a high-resolution
depth-resolved measurement and precise complex transfer function for
metrology applications. The diverse array of utilities have been exploited
in fiber optics [67], integrated photonics [68], tomography [69], and sensor
systems [70].

DUT

Tunable
laser

Real time scope

Circulator Optical
switch

50%
PD

Figure 3.1: Typical Swept wavelength interferometry setup including a DUT.
The optical switch configures the transmission or reflection arrangement of the
SWI.

Originally, optical SWI was aimed at measuring the reflection in op-
tical fibers [71]. Being analogous to the widely adopted optical time
domain reflectometry (OTDR) [72, 73], it was termed optical frequency
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3.1. Swept wavelength interferometry

domain reflectometry (OFDR). In OTDR, distributed reflection is es-
timated by measuring the propagation delay of short pulses that are
back-reflected by weak Rayleigh scattering in fibers. In contrast, OFDR
is formed by coherent detection of the interference pattern between opti-
cal signals from the test and reference paths by sweeping the laser. The
measured beat frequencies can then be mapped into physical distances
by knowing the speed of light in the medium.

The general expression of the co-polarized electric field from the arms
having time delays τ1 and τ2 is expressed as

E1(t) = |E1|ejϕ(t−τ1), E2(t) = |E2|ejϕ(t−τ2), (3.1)

where Ei, i ∈ 1, 2 correspond to constant amplitudes. For a linear tuning
at a rate v, the instantaneous optical frequency at time t is v0+ vt. The
corresponding optical phase is ϕ(t) = 2π(v0t+vt

2/2). The interference of
these optical signals on a photodetector in turn generates a photocurrent
with constant phase ψ:

I(t) = I0(1 + cos(2πvτ0t+ ψ)), (3.2)

where, τ0 = τ1 − τ2, I0 ∝ |E1,2|2, and ψ as a constant phase offset.
This suggests that the delay can be inferred from the beating frequency
given the linear tuning rate of the laser. However, the laser sweep is
never linear in practice. Since the nonlinear tuning is ingrained in the
argument of equation 3.2, it is difficult to disentangle from the relative
phase difference of the DUT. Indeed, deviations from a purely linear
wavelength sweep cause significant measurement errors and broaden the
impulse response function [74]. This issue can be dealt with an active lin-
earization of the tunable laser sources using the self-heterodyne interfer-
ometer [75, 76]. However, this technique is inconvenient and compatible
only with some categories of tunable sources.

The interference pattern in equation 3.2 can be expressed as a func-
tion of instantaneous optical frequency as

I(ν) = I0(1 + cos(2πντ0 + ζ)), (3.3)

with a phase ζ = ψ−2πν0τ0. This expression assumes the instantaneous
laser frequency does not vary rapidly over τ0 [74]. The interference pat-
tern is independent of the tuning rate in the frequency domain. In addi-
tion, the fringe pattern is periodic with a period 1/τ0. This signal can be
used as an external clock to sample an interferogram with a DUT arm
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of delay time τDUT [67,77,78]. This enables acquiring the fringe pattern
free of non-linear laser tuning. However, it requires the Nyquist sampling
criteria to be satisfied to avoid aliasing effects i.e. τDUT ≥ 2τ0. Alterna-
tively, an auxiliary interferometer can be used to calibrate the tuning of
the laser frequency. The interference pattern is then mapped from the
time to frequency axis. However, these methods do not provide absolute
accuracy and also suffer from a systematic error. It requires the calibra-
tion of the auxiliary interferometer against the dispersion of the delayed
arm and operates in a stable condition [77, 79]. Thanks to the optical
frequency ruler i.e. frequency comb, the frequency of the tuning laser can
be calibrated against these precise and accurate frequency markers. In
the interferometric spectroscopes, frequency combs as frequency rulers
have been demonstrated for absolute distance measurement [80, 81] and
imaging [82]. The relevance of frequency comb in SWI for nondestruc-
tive characterization of ultra-low loss photonic devices is highlighted in
Paper [A, B] and more detail is discussed in the following sections.

3.2 Frequency combs in tuning laser spec-
troscopy

The frequency comb as an optical ruler is an invaluable innovation that
enables referencing an optical frequency with radio frequency accuracy.
In [29], a self-referenced frequency comb was implemented for the spec-
troscopy of a tunable laser. The broadband precise calibration of the
laser with sub-MegaHertz resolution enabled accurate dispersion mea-
surements of microresonators. It is basically an interference between the
laser with the comb pulse on a photodetector (Fig. 3.2). This in turn
generates RF beatnotes from all the comb lines. The detection of the
beat note associated with a particular comb line can be realized by using
filters. A narrow bandpass microwave filter of central frequency fBP gen-
erates a calibration marker when the scanning laser is ±fBP away from
the comb line. Therefore, the instantaneous laser frequency is calculated
as fl = nfrep + fceo ± fBP . The sign of the ±fBP term is related to the
direction of the laser scanning. The narrow bandpass RF filters of center
frequency fBP1 and fBP2 generate four beat markers per comb line as
shown in Fig. 3.2. This allows a relative frequency calibration of the
tuning laser. A reference laser with stable molecular absorption line can
be used to resolve the frequency comb mode number (n) knowing the
reference laser frequency with a relative accuracy better then half the
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3.3. OFDR in waveguides spectroscopy

fref . Furthermore, frequency combs allow calibrating cascaded lasers
to extend the bandwidth range of spectroscopy while retaining absolute
accuracy [83]. However, tuning of the laser in between the calibration
markers is approximated by linear or by spline interpolation. The tuning
of lasers can be traced more precisely with the aid of the Mach-Zehnder
interferometer (MZI). We implemented this technique in the context of
swept wavelength interferometer (SWI) and exemplified it with charac-
terizing low loss Si3N4 microresonators and spiral waveguides in papers
[A, B].

time

frequencyPD

Figure 3.2: Self-referenced comb-assisted calibration of tunable lasers. Fre-
quency comb and mode-hop free tuning laser (top), beat notes detected by two
bandpass filters (bottom). The beatnotes are not necessarily equally spaced in
time.

3.3 OFDR in waveguides spectroscopy

Attenuation of a field propagating through a waveguide is attributed to
inherent material absorption and Rayleigh scattering [28]. In addition,
fabrication defects and inevitable side-wall roughness on the waveguide
also contribute to the losses. There has been a rigorous effort to com-
pletely prevent backscattering using topological interfaces. However,
it needs the structure to be designed from materials that break time-
reversal symmetry (i.e. unidirectional propagation of photons) without
absorbing light [84]. Such a material does not exist as of now.

In integrated photonics, different techniques have been realized to
estimate the propagation losses of waveguides [85, 86]. The cut-back
method is the simplest way of evaluating the loss. It measures the in-
sertion loss of several waveguides and extracts the propagation loss by
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calculating the slope versus waveguide length [87]. However, it relies
upon uniformity (fabrication yield) of devices, facet consistency, and
coupling accuracy. The loss of the waveguide can also be estimated from
a ring resonator with an additional penalty of bending loss. In [88],
the loss is calculated from the finesse and extinction ratio at the reso-
nances. The intrinsic coupling rate also allows measuring the loss [89].
This method assumes lossless coupling between the waveguide and res-
onator [90]. Another technique to measure the loss is OFDR, based on
the distributed back-scattering of the light. This technique is indepen-
dent of the facet reflectivity and fiber-waveguide coupling loss. The loss
is assumed to be invariant in the propagation direction and constant over
the spectral range of the scan. The power difference of reflection peaks
can also estimate the loss of the waveguide knowing the facets reflection
coefficient [77].

OFDR is a spectral domain reflectometry technique based on a fast-
sweeping laser source [91]. It fills the gap in measurement range between
OCDR and OTDR. In addition, it provides higher SNR and spatial res-
olution. It is a spatially resolved highly-sensitive and non-destructive
homodyne swept-wavelength interferometry technique. OFDR was ini-
tially motivated by the need to characterize distributed reflection in fibers
for telecommunication applications [91]. With advances in technology, it
has been exploited in the characterization of fiber assemblies [67,92,93],
integrated photonic devices [94–97], ranging systems [98], and biomedical
imaging [69]. In OFDR, the DUT is modeled as a multi-layer medium
of group delays τm(m ∈ N) with respect to the reference arm. As such,
the generalized version of equation 3.3 is written as [77,99]

I(ν) ∼= I0

(
1 +

∑
m

|Hm(ω)|2 + 2
∑
m

|Hm(ω)|cos(2πντm + ψm(ν))

)
,

(3.4)
with the DUT transfer function H(ν) =

∑
m |Hm(ν)|ejψm(ν), which can

be retrieved with some Fourier operations. The method is elaborated
for an integrated waveguide in paper [A, B]. The Fourier evaluation of a
single reflection yields a sinc function [77]. The width of the sinc function
determines the fundamental spatial resolution c/2∆ν which is a function
of the tuning range ∆ν.

In OFDR, an auxiliary interferometer has been a long-established
method to calibrate the nonlinear tuning of the laser. However, it is sub-
ject to external perturbations and systematic error introduced by inher-
ent fiber dispersion. This results in the broadening of the reflection peak
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3.3. OFDR in waveguides spectroscopy

and measurement deviation in features of the DUT. Instead of an aux-
iliary interferometer, in [80, 81], OFDR absolute distance measurement
was implemented using a frequency comb as a precise optical frequency
ruler. The used frequency comb is a free-running mode-locked laser re-
quiring a sweeping laser to be tuned faster than the CEO drift. In papers
[A, B], we demonstrated the relevance of a self-referenced frequency comb
for broadband precision in the phase measurement and propagation loss
estimation of long spiral waveguides. This non-destructive analysis has
helped the group improve the design and fabrication of the waveguides.
Figure 3.3 illustrates the reflectivity profiles of the waveguide driven by
fundamental quasi-TE and quasi-TM modes. The measured propagation
loss is 4.23 dB/m for TE and 4.77 dB/m for TM mode. In both cases,
there is a tiny reflection peak (shown by an arrow) along the waveguide
segment, which indicates a fabrication defect. The defects were over-
come in subsequent fabrications, resulting in a world-record low loss of
1.4 dB/m [100,101]. Fabrication of such an ultra-low loss meter-long de-
vice calls for meticulous stitching error compensation as reported in [102].
The TE mode reflection peak in Fig. 3.3(b) is attributed to either the
power coupling from the TM mode along the propagation or residual TE
mode in fiber-to-waveguide power coupling.
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Figure 3.3: OFDR of the waveguide. (a) Spatial reflectivity of the fundamen-
tal quasi-TE mode. (b) Spatial reflectivity of fundamental quasi-TM mode.
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Chapter 4

High-Q microresonators

A microresonator is a fundamental optical device that has enabled un-
paralleled functionality in integrated photonics. The light is recirculated
and an optical intensity build-up occurs at resonance frequencies. The
resonance unfolds if the optical path length is an integer number multiple
of the wavelength. This is a fundamental aspect of resonator physics re-
gardless of its geometry and applies to Fabry-Perot etalons [103], micro-
spheres, microtoroids, rod resonators, etc. Microresonators are used in a
variety of applications, including modulators [104], optical filters [105],
and sensors [106]. The self-injection locking of semiconductor lasers to
the high-Q microresonator opens up direction towards integrated sub-
hertz linewidth laser [107, 108]. In addition, high-Q microresonators
emerge as a workhorse in implementing nonlinear optics at low thresh-
old power. This enables the generation of coherent light sources [54],
microwave sources [109], and quantum technologies [110]. The high-Q
silicon nitride microresonators are the key building blocks for a large part
of this work. This chapter, however, introduces the operating principle
of such microresonators (ring resonators) and describes their spectral
characterization only in the linear operating regime.

4.1 Linear dynamics of microresonators

The microresonator is a fundamental building block of integrated pho-
tonics. Linear dynamics is described for high-Q microresonators oper-
ating at low power typically below the sub-milliwatt range. In its sim-
plest form, a microresonator features a waveguide loop (ring) and one
or two directional couplers [111]. The evanescent fields of the transverse
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modes in both waveguides interact and lead to the periodic exchange
of power [112]. The coupling strength can be engineered by changing
the gap between the waveguides. The coupling of the transverse mode
is defined in terms of energy decay rates (coupling rate) or coupling co-
efficients. There is a direct correspondence between circulating power
and energy in the cavity. In the following, we present the transfer ma-
trix method and couple mode theory to discuss various aspects of the
microresonators.

4.1.1 Transfer matrix method

The microresonators can be represented in terms of coupling coefficients
using the transfer (T) matrix method [113]. This method relates the
parameters of the system on one side of a coupler to those on the other.
Figure 4.1 illustrates the wave propagating in the forward direction of
the N cascaded microresonators. The complex fields normalized to a
power at input port Ein, output port Eout/drop, and cascaded resonators
(an, a

′
n, bn, b

′
n) at some notable positions are labeled. Here, we assume

the weak point interaction of the fields at the coupling regions.

Figure 4.1: Multi-stage traveling wave N resonators with input and output
waveguides.

At the coupling region of the cascaded rings, the field interaction is
described by a scattering matrix [114]:[

b
′
n

bn+1

]
=

[
tn+1 κn+1

−κ∗n+1 t∗n+1

] [
a
′
n

an+1

]
, (4.1)

where n = 1, 2,..., N-1 and |tn+1|2+|κn+1|2 = 1. tn+1 and κn+1 are the di-
mensionless transmission and outcoupling coefficients respectively. This
is also valid for the coupling region at the input and output waveguides.
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The transfer matrix P which relates the fields between the resonators
can be derived from these relations and is:[

an+1

bn+1

]
=

1

κn+1

[
−tn+1 1
−1 t∗n+1

] [
a
′
n

b
′
n

]
. (4.2)

The field accumulates a phase shift and suffers attenuation as it prop-
agates around the resonator. The propagation of the fields within the
ring from one coupling point to another may also be written in terms of
a transfer matrix, namely Q:[

a
′
n

b
′
n

]
=

[
0

√
ae−jβL/2√

a−1ejβL/2 0

] [
an
bn

]
. (4.3)

The amplitude transmission factor per round trip is a = e−
α
2
L where α is

the power attenuation coefficient per unit length and L is the circumfer-
ence of the ring. The fields between adjacent resonators at the coupling
region are obtained by combining equations 4.2 and 4.3.[

an+1

bn+1

]
= PQ

[
an
bn

]
, (4.4)

where PQ is the transfer matrix of the unit cell. The expression for the
fields at the output of the multi-stage resonator (Fig. 4.1) is obtained
by the multiplication of the successive transfer matrixes.

[
Ein2
Edrop

]
= PoutQ(PQ)N−1Pin

[
Ein1
Eout

]
≡
[
T11 T12
T21 T22

] [
Ein1
Eout

]
, (4.5)

where Pout and Pin describe the transfer matrixes between the ring and
input/output waveguides. The transfer functions at the output and drop
ports for a single input to the first ring resonator (Ein2 = 0) are:

Eout

Ein1
= −T11

T12

Edrop

Ein1
= T21 −

T11T22
T12

. (4.6)

The cascaded ring resonators are used to design various filters and
manipulate the resonances selectively [115]. However, in many applica-
tions a single-ring configuration (Fig. 4.2) is prevalent. The transfer
functions for the add-drop ring configuration derived from equations 4.5
and 4.6 are:
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Figure 4.2: A sketch of a single ring resonator. Note ’a’ is related to the
attenuation factor and with subscript ’an’ to the field in the ring. a) All-pass
ring resonator. b) Add-drop ring resonator.

Eout

Ein1
=
t1e

jβL − at2
ejβL − at∗1t2

,

∣∣∣∣Eout

Ein1

∣∣∣∣2 = |t1|2 + a2|t2|2 − 2a|t1||t2| cosϕ
1 + a2|t1|2|t2|2 − 2a|t1||t2| cosϕ

,

(4.7)

Edrop

Ein1
=

√
aκ1κ2e

jβL/2

ejβL − at∗1t2
,

∣∣∣∣Edrop

Ein1

∣∣∣∣2 = a|κ1|2|κ2|2

1 + a2|t1|2|t2|2 − 2a|t1||t2| cosϕ
,

(4.8)
where ϕ = βL + ϕt. The net argument of the possibly complex self-
coupling coefficients is incorporated in ϕt. For an all-pass resonator, the
coupling coefficient |t2| = 1− |κ2| = 1, and equation 4.8 vanishes.

4.1.2 Spectral characteristics

The spectral characteristics of add-drop ring resonators is indicated in
Fig. 4.3 according to equations 4.7 and 4.8. The relative positions of
the resonances are given by β(∆ω)L = 2πµ, where µ is the longitudinal
mode number. The frequency spacing between two adjacent modes is
known as the free spectral range (FSR). It is a function of frequency due
to the GVD and higher-order dispersion (to be discussed in more detail
in section 4.4).

The individual resonance profile depends on the losses and coupling
coefficients. The full width at half maximum (ωFWHM) and depth at the
resonance (Rmin) are the parameters that can be directly extracted from
the resonances. These parameters have direct correspondence with the
loss and coupling coefficient. To derive the relationship, we expand the
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following parameters: a = 0.93, t1 = 0.95, t2 = 0.95, ng = 2.1, L = 2π ×
225µm. The abscissa is offset frequency with regard to the center resonance
1550 nm.

cosine function in equation 4.7 with cosϕ ∼ 1 − ϕ2/2. This results in
the transmission spectrum as a Lorentzian function in terms of the full
width at half maximum (βFWHM) and depth Rmin of the resonances.∣∣∣∣EoutEin1

∣∣∣∣2 = ϕ2 +Rmin(βFWHM/2)
2

ϕ2 + (βFWHM/2)2
, (4.9)

Rmin =
(|t1| − a|t2|)2

(1− a|t1||t2|)2
βFWHM = 2

1− a|t1||t2|√
a|t1||t2|

= 2π
ωFWHM

ωFSR
.

(4.10)
The numerical solution of equation 4.10 for the all-pass resonator

(t2 = 0) allows extraction of the loss (a) and self-coupling (t1) coefficients
[116]. The equations can also be solved analytically. These coefficients
are tangled in the equations such that it is difficult to extract them from
the transmission spectrum. This is not a problem in the critically coupled
case as both coefficients are equal (a = t1). Indeed, prior knowledge of
the phase enables untangling these coefficients: a > t1 for overcoupled
and a < t1 for undercoupled resonances [117]. The distinct phase profile
for the different coupling conditions is depicted in Fig. 4.4.

A vital metric associated with the resonators is the quality factor. It
is related to the time constant (field energy decays by a factor of 1/e of
its initial value) of the resonance field due to the loss (absorption and
scattering) and outcoupling. The quality factor (Q) is simply written
as the ratio of the resonance frequency ω0 and the full width at half
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maximum.

Q =
ω0

∆ωFWHM
=
ω0ngL

√
a|t1|

2c0(1− a|t1|)
. (4.11)

Assuming the individual low-loss contribution, one can estimate intrinsic
(Qi) and extrinsic (Qex) quality factors. Also, the loaded quality factor
Q−1 = Q−1

i +Q−1
ex .

Qi =
ω0ngL

√
a

2c0(1− a)
, Qex =

ω0ngL
√

|t1|
2c0(1− |t1|)

. (4.12)

Figure 4.5 is the Q-factor plot of the high-Q resonator with 9 million
mean Qi. This is an experimental result for a 600 × 1850 nm2 silicon
nitride microresonator with 217 µm radius and 350 nm gap between the
ring and the bus waveguide.

(a) (b)

Figure 4.5: a) Quality factor plot of the high-Q resonator of average intrinsic
Qi = 9 million. b) Histogram plot of the intrinsic Q.

The intrinsic Q-factor can be directly calculated from the transmis-
sion spectrum using [118]:

Qi =
2Q

1±
√
Rmin

. (4.13)
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4.2. Coupled mode theory

The calculation of Qi from equation 4.12 is comparable to estimating
Qi using equation 4.13. In equation 4.13, the undercoupled resonance
takes the + sign and the overcoupled resonance takes the -sign. The
intrinsic and extrinsic coupling rates (discussed below) are estimated
by κi = ω0/(2πQi) and κex = ω0/(2πQex) respectively. The coupling
rates have units of 1/s in contrast to the dimensional coupling coefficient
κ used in equation 4.1. This allows bridging the metrics of the ring
resonator interpreted in different conceptions.

4.2 Coupled mode theory

Coupled mode theory (CMT) is an alternative formalism to describe
a weakly coupled system that is consistent with the transfer matrix
method [119]. CMT provides insight into the linear dynamics of cou-
pled resonance systems in terms of the photon decay rate, coupling rate,
resonance frequency, mode splitting, etc. An energy normalized mode
field profile of form E ∼ ejω0te−t/τ and its time evolution is described
by the differential equation:

dE

dt
=

(
jω0 −

1

τ

)
E. (4.14)

The mode field decays exponentially with a lifetime τ due to the diverse
loss mechanisms. This is related to the Q-factor of the resonator and is
equivalent to half of the photon (power) decay lifetime. In general, the
Q-factor is the ratio between the total energy stored in the cavity and
the rate of change of energy per optical cycle (not per cavity roundtrip)
[120,121].

Q =
|E|2(

d|E|2

d|t|

)/
ω0

=
ω0τ

2
. (4.15)

In the CMT of resonators, the coupling is defined by an energy cou-
pling rate (κex) in a similar way to power outcoupled (κ2) between the
resonator and the waveguide. These coefficients are linked to the field
decay time-constant (τex) or field decay rate 1/τex [122] as:

κex = κ2
c

2πR
=

2

τex
. (4.16)
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Chapter 4. High-Q microresonators

Figure 4.6: A sketch of a single ring resonator. a) All-pass ring resonator.
b) Add-drop ring resonator. The field inside the resonator has a unit of the
square root of joule and the square root of watt or joule per second for fields
outside.

Having this basic understanding of the CMT, we now can investigate
the single ring resonator for the transfer functions and spectral charac-
teristics. The CMT equation that describes the resonator mode in the
add-drop ring resonator for Ein2 = 0 is:

dE

dt
=

(
jω0 −

1

τi
− 1

τex1
− 1

τex2

)
E − j

√
κex1Ein1. (4.17)

The decay rate 1
τ = 1

τi
+ 1

τex1
+ 1

τex2
is related to the total power lost in

the ring. The intrinsic loss 1/τi is attributed to absorption, scattering,
and radiation. The loss accounting for the power coupling into the out-
put port is 1/τex1 and the drop-port is 1/τex2. The output waves from
the waveguides are related to the input field and the resonator mode
according to:

Eout = Ein1 − j
√
κex1E Edrop = −j

√
κex2E. (4.18)

Equation 4.17 can be solved for E at steady-state assuming an input
field Ein1(t) = Ein1e

jωt and E(t) = Eejωt. Then the transfer function
at the output and drop ports can be calculated from equation 4.18.

Eout

Ein1
= 1− κex1

j(∆ω) + ωFWHM/2

∣∣∣∣Eout

Ein1

∣∣∣∣2 = (∆ω)2 + [(κi − κex1 + κex2)/2]
2

(∆ω)2 + [ωFWHM/2]2
,

(4.19)

Edrop

Ein1
= −

√
κex1κex2

j(∆ω) + ωFWHM/2

∣∣∣∣Edrop

Ein1

∣∣∣∣2 = κex1κex2
(∆ω)2 + [ωFWHM/2]2

,

(4.20)
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4.2. Coupled mode theory

where ωFWHM = κi+κex1+κex2 and ∆ω = ω−ω0. κi is called intrinsic
coupling rate and κex external coupling rate. Equations 4.19 and 4.20
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Figure 4.7: Lorentzian shaped spectral response (blue for output and red for
drop ports) of the add-drop ring resonator for κi = 80/2π MHz, κex1 = 70/2π
MHz, and κex2 = 60/2π MHz.

are equivalent to the Lorentzian function of full width at half maximum
ωFWHM and

Rmin =
(κi − κex1 + κex2)

2

(ωFWHM)2
, Rmax =

4κex1κex2
(ωFWHM)2

. (4.21)

It is evident from equation 4.21 that the transmitted power vanishes at
ω0 for κex1 = κi + κex2. All the input power at ω0 either routes to the
drop-port and/or dissipate in the ring. This is a necessary condition for
critical coupling to occur. An inequality in the critical coupling condition
results in undercouple (κex1 < κi+κex2) or overcouple (κex1 > κi+κex2)
resonance.

4.2.1 Resonance doublet analysis

In microresonators, distributed backscattering is inevitable due to the
sidewall roughness along the circumference. In addition, the localized
discontinuities at the coupling region account for the lump backscatter-
ing [123]. The coherent build-up of backscattered/reflected light excites
the clockwise (cw) mode. The coupling between degenerate cw and coun-
terclockwise (ccw) modes distorts the ideal Lorentzian profile and even-
tually leads to resonance-splitting [123, 124]. The resonance splitting is
different for each resonance due to the stochastic nature of backscatter-
ing. Figure. 4.8 shows a ring resonator with the ccw (E+) and cw (E−)
modes. Here we exclude a drop-port to simplify the system of equations.
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Chapter 4. High-Q microresonators

Figure 4.8: A sketch of a single ring resonator with cw and ccw modes.

The coupled-mode equations describing such a system are written as:

dE+

dt
=

(
jω0 −

1

τi
− 1

τex

)
E+ − j

κc
2
E− − j

√
κexEin1,

dE−
dt

=

(
jω0 −

1

τi
− 1

τex

)
E− − j

κc
2
E+,

Eout = Ein1 − j
√
κexE+,

(4.22)

where E+ and E− are the complex fields of the counter-propagating
modes, and κc is the complex coupling rate between cw and ccw fields.
Equation 4.22 can be solved for the time-dependent input Ein1(t) =
Ein1e

jωt, ccw mode field E+(t) = E+e
jωt, and cw mode field E−(t) =

E−e
jωt. The transfer function of the resonance spectrum is obtained by

rewriting the equations considering the steady-state counter-propagating
mode fields.

Eout

Ein1
=

κ2i − κ2ex − 4(∆ω)2 + i4κi(∆ω) + κ2c
(κi + κex)2 + κ2c − 4(∆ω)2 + i4(κi + κex)(∆ω)

, (4.23)

The decay rate is substituted by the coupling rate from equation 4.16.
For κc = 0, this resonance profile is equivalent to the Lorentzian distri-
bution and the intensity transfer function is identical to equation 4.19.

The distributed coupling rate with κ2c > |κ2i −κ2ex| excites symmetric
resonance doublets with equal linewidths Fig. (4.9(a)). There exist two
loops in the complex plane and the origin is always out of the resonance
contour (4.9(b)).

In practice, the resonance doublet can have various asymmetric line-
shapes (observed in paper A). This is attributed to the lossless dissipa-
tive (indirect via radiation) coupling [125], typically, due to the coupler-
induced backscattering [123]. We incorporate this effect into CMT by
defining a complex coupling rate. The real κc,R and imaginary κc,I terms
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4.2. Coupled mode theory
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Figure 4.9: Symmetric resonance split for κi = 20/2π MHz, κex = 40/2π
MHz, κc = 100/2π MHz. a) Transmission response and phase profile. b)
Phasor diagram plot.

define the resonance splitting and asymmetry in the split resonances re-
spectively. The linewidth of one split resonance gets narrower, while
the other resonance gets broader due to the κc,I . This is analogous to
the via-the continuum coupling term described in paper C but the modes
share a common decay channel in counterpropagating directions. Figure.
4.10 shows an asymmetric split of the resonance.
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Figure 4.10: Asymmetric resonance split for κi = 20/2π MHz, κex = 40/2π
MHz, κc = (80 + j5)/2π MHz. a) Transmission response and phase profile. b)
Phasor diagram plot.

4.2.2 Coupled ring resonators

Introducing linear coupling between different rings enables several func-
tionalities in photonics (such as higher-order filters [105] and micro-
combs [126]). Analogous to the band splitting in atomic physics, the
linear coupling results in the avoided mode crossing in coupled ring res-
onators system also known as a photonic molecule [127]. The splitting
of longitudinal modes can also be generated by the interaction of the cw
and ccw modes in a single resonator as discussed in the previous section.
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Chapter 4. High-Q microresonators

It is hard to customize the splitting in practice due to the fact that the
ccw mode is excited by random perturbations on the ccw traveling wave.
Cavities in cascade, however, allow engineering the coupling strength
and tune resonances independently. Such photonic molecules in normal
and anomalous dispersion are used in papers [D, E].

Figure 4.11: . A sketch of linearly coupled ring resonators.

The time evolution of the mode fields in the cavities of the coupled
systems is written as:

dE1

dt
=

(
jω1 −

1

τi
− 1

τex1

)
E1 − j

κex2
2
E2 − j

√
κex1Ein1,

dE2

dt
=

(
jω2 −

1

τi

)
E2 − j

κex2
2
E1,

Eout = Ein1 − j
√
κex1E1,

(4.24)

with the mode fields E1 and E2 and the uncoupled resonance frequencies
ω1 and ω2. The steady-state solution of these equations for the time-
dependent input Ein1(t) = Ein1e

jωt and resonators mode fields Ei(t) =
Eie

jωt results in:

Eout

Ein1
= 1−

κex1(
j∆ω1 +

κi

2
+
κex1

2

)
+

κ2ex2
4

j∆ω2 +
κi

2

. (4.25)
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The resonance locations of the coupled system are given by [112]:

ω± =
ω1 + ω2

2
±

√(
ω1 − ω2

2

)2

+
(κex2

2

)2
. (4.26)

We use this equation in Fig. 4.12(a) to illustrate the mode crossing
using κex2/2π = 400 MHz. The superposition of the orthogonal modes
(ω1 and ω2) of the unperturbed system generates the supermodes ω±.
The supermodes spectra in Fig. 4.12(b) are rendered according to equa-
tion 4.25 using κex2/2π = 400 MHz, κex1/2π = 10 MHz, and κi/2π = 2
MHz. We set the resonance of the first cavity (ω1) as a reference (ω0)
and the second cavity resonance (ω2) offset by an integer multiple of 1
GHz. In practice, the thermal optic effect readily allows the cavity res-
onance tuning. The avoided mode-crossing enables localized dispersion
engineering to realize the phase-matching for initializing a (dark-pulse)
comb in a normal dispersion regime [126,128]. We used such a configura-
tion in paper B to illustrate the differential phase measurement technique
of the comb.
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Figure 4.12: Interaction between resonances of the linearly-coupled cavities.
a) Illustration of the avoided mode-crossings. The uncoupled modes ω1 and ω2,
coupling rate κex2, and supermodes ω+ and ω− are labeled. The resonance of
the first cavity ω1 is considered as a reference mode. b) Supermodes distribution
of the resonances at the location marked in a) with arrows of identical colors.
The spacing between the coupled resonances complies with the supermodes
gap in a). At the mode crossing point, the distance between the supermodes
(ω+ − ω−)/2π = κex2.
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Chapter 4. High-Q microresonators

4.3 Microresonator spectroscopy

Self-referenced frequency combs for wavelength calibration of tunable
lasers is a prominent technique in a broadband high-precision spec-
troscopy of microresonators [29, 83]. It enables precisely resolving the
frequency axis of the longitudinal modes and retrieving accurate disper-
sion values of different transverse mode families [29,129]. The dispersion
of microresonators results in a relative offset of the resonances from the
equidistant frequency grid. Other properties of the resonances are em-
bedded in their profile [117]. As the resonance profile is invariant to the
commutation of the coupling rates, the coupling condition cannot be dis-
tinguished [130]. In [131], the resonance condition is identified assuming
weak wavelength dependent loss. It is possible to untangle the coupling
condition by measuring the phase responses of the resonances [117]. The
resonance phase profile can be measured with a network analyzer by
sweeping microwave modulation frequency [128]. However, the measure-
ment range is restricted within the microwave sweeping range per scan.
In [132], the phase profile of the resonances was extracted by fitting an
interference pattern of a resonator coupled to a balanced MZI. In papers
[A, B, C], we demonstrated the characterization in both amplitude and
phase of the microresonator configured in unbalanced MZI calibrated
with a self-reference comb. The idea is to detect the sensing information
transduced in the interference pattern by scanning the interferometer
using a mode-hope-free tuning laser. The acquired interference pattern
is mapped to the frequency axis with the help of a fiber laser frequency
comb. The Fourier transfer of frequency discretized interference pattern
generates an impulse response as shown in Fig. 4.13. The reference im-
pulse (inset) is attributed to the interference of the probe signal without
passing through the resonator cavity. The inverse Fourier transform from
those traces gives the reference (Href ), and the overall (Htot) transfer
function of the system. Therefore, the equivalent complex transfer func-
tion of the device under test is Hring = Htot/Href . The retrieval of other
important properties of the resonances is illustrated below.

The smoothness of the resonance spectrum is limited by the spectral
resolution and the overall noise in the system. As such, a parametric
fitting is prevalent in extracting the properties of the resonances. The
lineshape fitting model is applied to extract the properties of the reso-
nances. The Lorentzian model is commonly used for the transmission
spectrum fitting to retrieve the characteristic parameters of the reso-
nances [118]. This fitting model allows unambiguous identification of
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Figure 4.13: Impulse response of the SWI of the microresonator as a function
of time delay. The microresonator properties are embedded in the inclining
relative power trace. The zoom-in section is the reference impulse response of
the SWI without the ring.

the coupling parameter with the aid of the phase profile [116]. The in-
trinsic and extrinsic coupling rates are estimated as: κi = ω0/(2πQi)
and κex = ω0/(2πQex) respectively. The Lorentzian lineshape fitting
of some of the resonances is shown in the first row of Fig. 4.14. The
resonances feature no visible splitting, however, there is a noteworthy
remanent of the counter-propagating mode coupling. The Lorentzian
fitting discussed above disregards this effect. Therefore, coupled-mode
theory (CMT) in the time domain is widely adopted to retrieve the char-
acteristics parameters of the resonances [124,133].

A parametric fitting of equation 4.23 at κc = 0 allows direct retrieval
of the κi and κex. It is clear that these coupling rates are interchange-
able. However, from the prior knowledge of the coupling condition, the
coupling rates are untangled as κex > κi for the overcoupled and κex < κi
for the undercoupled regime. Figure 4.14 shows that the Lorentzian fit-
ting (first row) is in concurrence with the CMT fitting of the resonances
for κc=0 (second row). The above fittings neglect the contribution of
κc on the FWHM and attribute its implications on the κi and/or κex.
As such, it overestimates the net coupling rates and underestimates the
total Q-factor. Therefore, it is of utmost importance to consider κc in
the parametric fitting.

In general, the extended CMT fitting considers a complex counter
propagating mode coupling rate κc = κc,R+ iκc,I . An asymmetric (sym-
metric) resonance is observed for complex (real) κc. The split mode res-
onance fitting of the resonances is shown in the third row of Fig. 4.14.
The complex part of κc is not highlighted in the figure as the resonances
are quite symmetric without a visible doublet. All the resonances fit well.
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Figure 4.14: Normalized transmission spectra (blue) and parametric fitting
profiles (red) of undercoupled, critically coupled, and overcoupled resonances
in columns. Each column has identical raw data at different locations of the
resonance spectrum. The coupling rates have a unit of MHz. (a-c) Lorentzian
lineshape fitting model. (d-f) Parametric coupled mode resonance fitting ne-
glecting ccw mode coupling. (g-i) Parametric coupled mode resonance fitting
considering ccw mode coupling.

Remarkably, resonance fitting and coupling rates in the third column of
Fig. 4.14 are equivalent. This is due to the fact that the resonance has
weaker κc. However, there is a significant disparity in the coupling rates
when the κc is stronger (the first column in Fig. 4.14).

Paper [A], presents the first demonstration of empirical IQ plane
parametric fitting of the resonances. Having an extra fitting dimension
(phase), this fitting is more robust and returns an unambiguous and con-
sistent set of coupling rates. The IQ plane parametric fitting of the single
and split resonance traces are illustrated in Fig. 4.15 (a) and (d). The
normalized resonance power and phase profile obtained from the com-
plex plane fitting (red traces) are shown along with the corresponding
measured profiles (blue traces). This fitting generates the coupling rates,
in Fig. 4.15 (b) that absolutely satisfy the critical coupling condition i.e.

κc ∼
√
| κ2ex − κ2i |. This is commensurate with the resonance transmis-

sion and phase profile. In Fig. 4.15(d), the inner loop is attributed to
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Figure 4.15: IQ plane fitting of the resonances (blue measured and red fit-
ting). Critical coupled resonance (a) IQ plane plot, (b) resonance transmission
profile, (c) Phase profile. d-f) idem to a-c) but for asymmetric split resonance.

the resonance split. The resonance doublet with asymmetric resonance
lineshape and the corresponding phase profile are shown in Fig. 4.15(e)
and (f) respectively.

4.4 Dispersion in microresonators

The measurement of optical properties discussed above is highly depen-
dent on the resonance lineshape. A small relative frequency offset of the
resonances will not impact the extraction of the resonance properties.
Therefore, absolute accuracy is not that critical for extracting those pa-
rameters. For our high-Q microresonators, the resonance linewidth is
below 50 MHz. This brings to us the idea of using a traditional auxiliary
interferometry technique in laser frequency calibration. It is fairly rea-
sonable to assume a constant group delay of fiber used in the auxiliary
interferometry for such narrow linewidth resonances distributed across
the transmission spectrum. We verified that the extraction of the res-
onance properties using auxiliary interferometry matches well with the
frequency comb calibration technique. In contrast, the relative frequency
offset of the resonance frequency due to the systematic error (frequency-
dependent group delay) of the auxiliary interferometer causes a significa-
tion deviation in the dispersion measurement of microresonators. There-
fore, the precise frequency calibration of the tuning laser is of interest
in the dispersion measurement. The frequency comb-assisted laser fre-
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Chapter 4. High-Q microresonators

quency calibration is highly relevant in this context [29]. Dispersion
measurement also demands a high spectral resolution as the linewidths
and the mode spacing deviations are in the order of kHz and MHz. The
spectral resolution depends on the bandwidth scanning range and the
memory depth of the acquisition system.

In microresonators, resonance occurs if the phase shift of field after
one roundtrip is an integer multiple of 2π, i.e. β(ωµ)− β(ω0) = 2πµ/L;
µ ∈ Z. Here, ω0 is the reference resonance frequency and ωµ is the µth

resonance, counted from ω0. This resonance condition under the Taylor
expansion of the frequency dependent propagation vector β is

(ωµ − ω0)β1(ω0) +
(ωµ − ω0)

2

2
β2(ω0) +

(ωµ − ω0)
3

6
β3(ω0) + ... =

2πµ

L
,

(4.27)
where β0 is the phase velocity, β1 is the group velocity, and β2, β3,... are
dispersive orders. The dispersion parameters are extracted by a polyno-
mial fit for all the resonances with respect to the reference resonance ω0.
The evaluated βn, n = 1, 2, 3, ... at ω0 can be used to calculate nth-order
dispersion as a function of ω:

dnβ

dωn
=
∑
k≥0

1

k!
β(n+k)(ω0)(ω − ω0)

k. (4.28)

The dispersion can also be described as the variation of FSR over reso-
nance frequencies. This is a common metric for describing the spectral
extension and shape of microresonator frequency combs [134]. Due to
the higher order dispersion acts upon the GVD, dispersive waves induce
at Dint = 0. This is a key feature of generating an octave-spanning comb
in microresonators [135]. The µth order resonance frequency ωµ relative
to ω0 is

ωµ = ω0+
∑
j=1

Djµ
j

j!
= ω0+D1µ+

1

2!
D2µ

2+... = ω0+D1µ+Dint, (4.29)

where, D1/2π corresponds to a mean FSR and Dint is a deviation
of the resonance frequency from an equidistant resonance grid at-
tributed to all dispersive terms (D2/2π,D3/2π, .... in Hz). These co-
efficients are mutually related to the coefficients in equation 4.27 as
β(ω0 +

∑
j=1

Djµ
j

j! ) − β(ω0) = 2πµ/L. It can be established by Taylor
expansion about ω0 and equating the coefficients of µj , that we obtain

β1 =
2π

D1L
, β2 = −2π

L

D2

D3
1

, β3 = −2π

L

D3

D4
1

, .... (4.30)
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Figure 4.16: Zoom of dispersive ring resonator spectrum simulated from 1535
nm to 1565 nm. a) Transmission profile plot according to equation 4.7 using
parameters a = 0.99, t1 = 0.96, t2 = 0.96, L = 2π × 238µm, ng = 2.1,
β1 = 6 ps/km, β2 = 100 ps2/km with a reference mode µ0 at ∼ 1550 nm and
record length of five million. The normal GVD causes a reduction of the FSR
towards higher resonance frequencies. b) Taylor expansion of the propagation
constant without the effects of β0 and β1. c) Integrated dispersion plot. The
retrieved dispersion from the resonance frequencies is β2 = 99.6± 0.5 ps2/km.
d-f) idem to a-c) but for β2 = −100 ps2/km. The retrieved dispersion value is
β2 = −100.6± 0.5 ps2/km.

In the following, we discuss the dispersion and its implication on the
resonance spectrum of the microresonator. Figure 4.16 shows the simula-
tion of the add-drop ring resonator spectra incorporating the dispersion
effect. We use a Taylor series expansion of the propagation vector for
ϕ = βL in equation 4.7. The GVD causes the mode numbers to appear
at uneven spacing. The FSR decreases (increases) with frequency for
the normal (anomalous) dispersion. This is not evident from the trans-
mission plot because of the small GVD and few longitudinal modes.
However, the concave (convex) propagation vector and convex (concave)
integrated dispersion plot suggests the normal (anomalous) dispersion of
the ring resonator.

We evaluated the importance of spectral resolution in dispersion cal-
culation from the transmission spectra in Fig. 4.16. To do so, we define
a half million data points (memory depth). This results in a random
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Chapter 4. High-Q microresonators

offset of the resonance frequency dips. The evaluated dispersion turns
out to be more uncertain and off from the actual value, β2 = 98 ± 5
ps2/km for normal and β2 = −101±5 ps2/km for anomalous dispersion.
To reduce the effect of limited spectral resolution, we consider the res-
onance frequency for the dispersion calculation from the resonance line
shape model in all our papers.
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Figure 4.17: Illustration of the mode splitting and implication on the model
dispersion of the coupled cavity system using parameters a = 0.94, t1 =
0.99, t2 = 0.996, ng = 2.1, R1 (main cavity) = 400µm , R2 (auxiliary cavity) =
25.1µm, ω0 at 1550 nm, β1 = 6 ps/km at 1565 nm, and β2 = 1000 ps2/km at
1565 nm. a) Transmission spectrum of the detached main and auxiliary cav-
ity (offset by 0.5) according to equation 4.7. b) An avoided mode-crossing of
uncoupled resonances at ω1 and ω2 according to equation 4.25. c) Integrated
dispersion plot of the uncoupled main cavity (blue line) and coupled cavity (red
circles).

We now investigate the integrated dispersion of linearly coupled cav-
ities. First, we generate the resonance distribution of two cavities sep-
arately (Fig. 4.17(a)) using equation 4.7 according to the parameters
given in Fig. 4.17. The mode interaction between the auxiliary and
main cavities redistributes the resonance spectrum. Consequently, there
is a split in the resonance frequencies. We consider the mode inter-
action of each auxiliary resonance with two adjacent main cavity reso-
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4.4. Dispersion in microresonators

nances. Figure 4.17(b) shows the supermodes of the main resonance at
ω1 and auxiliary resonance at ω2. The coupling rate between the aux-
iliary and main cavities is linked to the coupling coefficient κ according
to κex = 2κ

√
FSR1FSR2 [122]. As the auxiliary cavity FSR1 is not an

integer multiple of the main cavity FSR2, the supermode spectra are not
identical. The resonances are shifted dramatically from the uncoupled
case at the coupling region. The integrated dispersion plot (red circle) in
Fig. 4.17(c) elucidated the resonance shift at crossing points compared
to the uncoupled main cavity (blue dashed line). The mode crossings
can also be observed in a microresonator enabled by the vernier effect of
the multimode resonances. We exploited this effect in paper [C] for the
Q-factor management to achieve hyper-parametric oscillations vs bound
states in the continuum.
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Figure 4.18: (a) Deviation of the resonance frequencies (Dint) from an
equidistant frequency grid ω0 + D1µ (gray line), where the reference mode
is at 1565 nm. (b) Second-order dispersion plot of the microresonator.

Figure 4.18 illustrates an empirical dispersion calculation of a high-Q
microresonator. The integrated dispersion (Dint) plot has the reference
mode at 1565 nm and FSR D1/2π = 105.2 GHz. There are weak mode
crossing effects clearly visible at some resonance frequencies. The con-
vex parabolic feature of the Dint plot suggests a normal dispersion of
the microresonator. With 10 ps2/km accuracy in the β2 calculation, one
need ∼ 2π× 90 kHz resolution in the D2/2π for D1/2π = 2π× 100 GHz
and radius 227 µm. In broadband spectroscopy, resolution accuracy in
sub-mega hertz is impractical because of limited data points per trace
of the oscilloscope and uncertainty in the laser calibration introduced by
the RF detection unit. However, β2 is measured with increased accuracy
averaging D2/2π over a larger set of the resonances. The average ex-
tracted D2/2π ∼ −730 kHz corresponds to β2 = 73 ps2/km at 1565 nm.
It requires a separate polynomial fitting to estimate β2 at a different res-
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Chapter 4. High-Q microresonators

onance frequency. However, the GVD for all the resonance frequencies
can be measured directly as in Fig. 4.18(b) from the equations 4.27 and
4.28.
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Chapter 5

Microcombs dynamics

Microcombs are discrete frequency sources (lasers) that have unleashed
enormous possibilities in frequency synthesis and metrology. The gen-
eration of microcomb is based on the Kerr nonlinear effect of four-wave
mixing (FWM) processes. In particular, degenerate FWM processes gen-
erate a signal photon (ωs) and an idler (ωi) photon from two pump pho-
tons (ωp). The conservation of energy (2ωp = ωs + ωr) ensures new
equidistant frequency pairs. However, the coherence properties of micro-
combs were not known until Ferdous et al. demonstrated the microcomb
phase measurement [136]. The phase measurement of the microcombs
is crucial but challenging to implement. It provides physicists to inves-
tigate the comb dynamics, coherence of the spectrum, and ultra-short
pulse in the cavity. In the following, we discuss the dynamics of field
propagation in nonlinear media and the formation of soliton combs.

5.1 Optical field propagating in a nonlinear
medium

The wave optics model governed by Maxwell’s equations describes the
field distribution in the waveguide. According to wave optics, waveguides
support only finite eigenmodes with a specific wave vector [120]. In
the propagation of the field, it is prominent to consider the Kerr effect
(discovered by John Kerr in 1875) due to the nonlinear interaction of
light. It represents an effect of intensity dependent refractive index (n)
in the medium:

n = n0 + n2|E|2, (5.1)
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Chapter 5. Microcombs dynamics

where n0 is a constant refractive index. The nonlinear-index coefficient
n2 is a function of susceptibility χ(3). The typical value of n2 is 2.4×10−17

m2/W for Si3N4 [137]. The propagation of the field in a medium is
modeled by the field envelope rather than the field itself. The evolution
of the field envelope in a single-mode nonlinear medium is well described
by the nonlinear Schrödinger equation (NLSE) according to [138]

∂E

∂z
=

−1

2
α+ i

∑
n≥2

βn
n!

(
i
∂

∂t

)n
+ iγ|E|2

E, (5.2)

where E is the slowly varying field envelope guided along the waveguide
(z-axis). The propagation loss per unit length is α while βn denotes the
coefficients of the Taylor expansion of the propagation constant. The
nonlinear parameter γ is a function of n2 and the effective mode area.
Nonlinear effects such as self-phase modulation (SPM), cross-phase mod-
ulation (XPM), and four-wave mixing (FWM) are governed by the γ
parameter. This nonlinear differential equation is challenging to solve
analytically. Therefore numerical simulations using the split-step Fourier
method are widely adopted to emulate the nonlinear field propagation
dynamics [138].

In a cavity, the field propagation dynamics consider the evolution of
a slowly-varying field over consecutive round trips. It can be described in
two sequential steps: applying the coupling equation and the field propa-
gation for each round trip (known as the Ikeda map) [139]. In the cavity,
the field evolves under the influence of propagation loss, dispersion, and
Kerr nonlinearity according to equation 5.2. At a coupling region, there
is an interference of the optical field described as

Em(0, t) =
√
θEin +

√
1− θE(m−1)(L, t)ejδ0 , (5.3)

with θ (equivalent to κ2 in section 4.1.1) denoting the power coupling
coefficient, Ein driving field, Em mth (m ∈ N) roundtrip field, and L is
the cavity length. The parameter δ0 represents a relative phase shift of
the wave compared to the phase of closest resonance (δ0 = ∆ω/FSR).
This is often called the detuning parameter and is applied at the end
of each roundtrip. The Ikeda map model is widely used to simulate the
evolution of pulses in microresonators.
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5.2. The Lugiato-Lefever equation and bistability

5.2 The Lugiato-Lefever equation and bistability

The Ikeda map is a model to simulate how the field evolves in the cavity.
This model can be simplified into a single equation called the Lugiato-
Lefever equation (LLE) [140]. The LLE provides an analytical under-
standing of the initialization and dynamics of microcombs. The deriva-
tion of the LLE assumes negligible field changes over a single roundtrip
i.e. Em−1(L, t) = Em−1(0, t) + L∂E∂z . With an approximation of a weak
coupling and small detuning equation 5.3 turns out to be

Em(0, t) ≈
√
θEin + E(m−1)(0, t)(1− θ/2 + iδ0) + L

∂E

∂z
. (5.4)

Applying the equations 5.4 and 5.2 on a slow time evolution of the wave
Em(0,t)−Em−1(0,t)

tr
over a roundtrip time (tr) leads to the LLE equation

tr
∂E

∂τ
=

−σ − iδ0 + iL
∑
n≥2

βn
n!

(
i
∂

∂t

)n
+ iγL|E|2

E +
√
θEin, (5.5)

where σ = (αL+θ)/2 denotes the total cavity losses in a single roundtrip
and τ is the slow time. This equation describes the diverse non-linear
dynamics of the cavities including but not limited to bistability [141],
modulation instability [142], Kerr frequency combs [143]. The numerical
simulation of the LLE enables the evaluation of the stable regions in the
parameter space [144].

The LLE can describe the steady state behaviours of the microcombs
driven by the CW field. All the time-dependent functions are dropped
from the LLE to get the steady-state solution (below) of the field enve-
lope circulating in the cavity.

(−σ − iδ0 + iγL|E|2)E = −
√
θEin. (5.6)

This is a complex third-order polynomial equation in E. To simplify the
solution, we multiply both sides with their conjugate:

θ|Ein|2 = (σ2 + δ20)P − 2γLδ0P
2 + γ2L2P 3, (5.7)

where P = |E|2 is the intracavity power. Figure 5.1(a) shows the steady-
state solutions as a function of the detuning parameter. The intracavity
(resonance) power is symmetric in the linear regime as discussed in chap-
ter 4 with the FWHM of 2σ. In the presence of a nonlinear phase shift,
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Chapter 5. Microcombs dynamics

the resonance becomes tilted and has three possible solutions. Figure
5.1(b) also shows the intracavity power against the input power for var-
ious detuning values. It is worth noting that stable solutions are the
minimum and maximum power of the bistability region. The unstable
regions are indicated by the dashed lines [145].
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Figure 5.1: Bistability curves showing the intracavity power against a) detun-
ing for |Ein|2 = 75 mW and b) pump power for γ = 1W-1m-1 using parameters:
α = 3 dB/m, θ = 0.005, L = 226µm.

5.3 CW pump to microcomb generation

While the bistability analysis only considered the CW solution, the pres-
ence of perturbation (can be quantum fluctuation) excites modulation
instability (MI). This is a form of parametric amplification that initial-
izes the comb generation processes in the cavity from weak modulations
on the CW pump. This state is highly unstable and grows exponen-
tially [138]. From the LLE, a gain coefficient profile for MI can be derived
by applying a small perturbation in the field envelope. The potential gain
coefficient at a frequency offset ∆ω from the pump is [146]:

g(∆ω) = − σ

tr
+

1

tr

(γLP )2 −

δ0 − 2γLP − L
∑

n≥2,even

βn
n!

∆ωn

2
1
2

.

(5.8)
Figure 5.2 shows the MI gain along with the resonance spectrum ne-
glecting the higher-order dispersion. The gain has to overcome both the
propagation and coupling losses for the parametric amplification.

The gain spectra initialized by MI and pump experience cascaded
four-wave mixing (FWM) processes leading to equidistant comb lines.
The maximum MI gain at a certain ∆ω satisfies ∆ω2 = 2(δ0 −
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Figure 5.2: MI gain spectrum (blue) with the CW pump (red) plot using
parameters: γ = 2 W-1m-1, P = 100 mW, β2 = −100 ps2/km, δ0 = 0.005 rad,
L = 150 mm, ng = 2.

2γLP )/(β2L) neglecting higher-order dispersion. This is a phase-
matching condition for the MI gain. It suggests that the MI is accessible
in the anomalous GVD (β2 < 0) for δ0 < 2γLP . This is a regime where
the dissipative Kerr soliton (DKS) comb is generated. In paper D, we
used a microresonator of anomalous GVD to generate dissipative single
and multiple soliton combs. In the normal GVD regime(β2 > 0), MI re-
quires δ0 > 2γLP . However, the resonance detuning can be engineered
and induce a localized anomalous GVD. This is enabled by the idea
of mode coupling. In [128], the excitation of dark pulses (dark comb)
was demonstrated with the aid of mode interactions in normal disper-
sion microresonators. In addition, linear coupled cavities implemented
in [126,147] allow controlled mode interaction for DKSs generation in the
normal dispersion region. In paper D, we used this concept to generate
one of the DKSs to exemplify the characterization technique discussed
in section 6.1.3.

DKS is described in anomalous dispersion as a double balance of
losses with parametric gain and GVD with SPM [148]. This is generated
by scanning the CW laser from the blue to the red side of the resonance.
In general, the comb states pass through a chaotic region. The final comb
state depends on the initial noise condition [143]. However, the chaotic
states can be avoided by taking an advanced route in the parameter
space [144]. The soliton states can be controlled by tuning the laser [149]
or thermo-optic effect [150].

Figure 5.3(a) shows the evolution of the DKS dynamics in the mi-
croresonator using the Ikeda map model. The detuning of the laser
towards the cavity resonance builds up the intracavity power and leads
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Figure 5.3: Dissipative Kerr soliton dynamics in the microresonator with the
parameters: β2 = −150 ps2/km, γ = 1.09 W-1m-1, ng = 2.1, FSR=100 GHz,
θ = 0.00034, Pin = 60 mW, α = 9 dB/m. a) Evolution of the field power in the
microresonator. b-e) Spectral response and temporal profile at the different
instances of the comb evolution. f) Detuning of the pump from the nearest
cold cavity resonance location. g) Intracavity power versus time.

to MI and chaotic states. The CW steady-state resolves at a certain
detuning into bistability generating multiple DKSs in the cavity. The
spectral and temporal profiles at various regimes of the comb dynamics
are shown in Fig. 5.3(b)-(e). Figure 5.3(f) and (g) demonstrate the de-
tuning of the pump from the cold cavity resonance and the evolution of
intracavity power respectively.
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5.4 DKS characteristics

One analytical steady state solution of the LLE for a non-dissipative
medium turns out to be a soliton pulse As(t) [57].

As(t) =

√
2δ0
γL

sech

(
t

√
2δ0

| β2 | L

)
. (5.9)

Instead of a CW pump, this non-dissipative soliton can be used as a
source to simulate the DKS. In microresonators, the DKS pulse circulates
on top of a CW background. The background is defined by the lower
level of the CW bistability. We add this complex background to the non-
dissipative soliton pulse and use it as a driving pulse in the Ikeda map
simulation of the DKS in the microresonator. The temporal intensity
and phase profile of the driving pulse is shown in Fig 5.4.
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Figure 5.4: Temporal soliton pulse (a) and phase profile (b). The parameters
are as follows: β2 = −65 ps2/km, δ0 = 0.028 rad, γ = 1 W-1m-1, ng = 2.1,
FSR=100 GHz, θ = 0.0014, α = 3 dB/m, Pin = 20 dBm.

Figure 5.5 is the Ikeda map simulation of the single DKS and multi-
DKS (two solitons) for a 100 GHz repetition rate. The multi-DKS has a
spectral modulation of a 10-FSR period.

The DKS microcombs in both temporal and spectral intensity re-
sponses are hyperbolic secant. Figure 5.6 is the waveform of the sin-
gle DKS. The temporal intracavity intensity and phase profiles are in
Fig. 5.6(a) and (b). The phase response of the DKS spectrum is ap-
proximately constant except at the pump frequency (Fig. 5.6(c)). This
pump phase offset is attributed to the field interaction at the coupling
region [151] and self-organization in the comb formation process [152].
The differential phase of the spectrum is shown in Fig. 5.6(d). In paper
D (E), we illustrated the stepped (multi) heterodyne technique to recon-
struct the differential phase of the single (coupled) cavity DKS combs.
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Figure 5.5: Simulated 100 GHz single (a) and multisoliton (b) combs. The
comb parameters are as follows: α = 3 dB/m, β2 = −65 ps2/km, FSR = 100
GHz, ng = 2.1, γ = 1 W-1m-1, δ0 = 0.028 rad, Pin = 20 dBm, θ = 0.0014.

The spectral phase profile enables inferring a temporal pulse in the cav-
ity which otherwise is challenging to measure (detailed in chapter 6 and
paper D).

-3 -2 -1 0 1 2 3
Time (ps)

0

0.2

0.4

0.6

0.8

1

In
te
ns
ity
(a
.u
.)

(a)

(c)

(b)

(d)

Figure 5.6: Temporal and spectral waveform of the single DKS simulated by
the Ikeda map in Fig 5.5(a). (a) Temporal pulse profile. (b) Temporal phase
profile. (c) spectral phase of the 100 GHz repetition rate comb modes. (d)
Differential phase of the comb modes.

Figure 5.7 shows the waveform of the multi-DKS comb. It has two
intracavity soliton pulses circulating in the cavity at 1 ps apart. The
temporal intensity and phase profiles are shown in Fig 5.7(a) and (b).
The phase profile (Fig. 5.7(c) and (d)) shows a π phase transition at
the spectral intensity modulation dip. In paper D, we have elucidated
the heterodyne method of capturing such a phase distribution and re-
construction of the pulse profile.
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Figure 5.7: Temporal and spectral waveform of the multi-DKS simulated by
the Ikeda map in Fig 5.5(b). (a) Temporal pulse profile. (b) Temporal phase
profile. (c) Spectral phase of the 100 GHz repetition rate comb modes. (d)
Differential phase of the comb modes.
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Chapter 6

Linear pulse characterization
techniques

6.1 Characterization of frequency combs

The rapid development of ultrafast optics in the past decades has found
a myriad of applications. The manipulation of the amplitude and phase
of individual spectral lines using a pulse shaper enables the generation
of an optical arbitrary waveform (OAW) [62, 153]. To completely de-
scribe an optical pulse requires either spectral or temporal amplitude
and phase profile of the electric field. There has been a significant effort
expended toward the development of pulse characterization techniques.
Broadly, these techniques are categorized into linear and nonlinear char-
acterization methods. Methods based on optical nonlinearities have been
reported such as frequency-resolved optical grating (FROG) [154] and
spectral phase interferometry (SPIDER) [155]. In addition, the autocor-
relation technique is also widely adopted for estimating the pulse dura-
tion [156]. These nonlinear techniques typically apply to measure low-
duty-cycle pulses, which require high peak power to generate a second
harmonic signal.

However, the linear method can be applied to arbitrary waveforms for
complete amplitude and phase characterization of optical pulses. These
techniques focus on phase and amplitude spectral characterization and
recreate its temporal intensity and phase profile. The basic idea is to
measure the phase difference between modes. The direct optical spec-
tral phase measurement (DOSPM) [157] measures the phase difference
between modes selected by narrow slits (filters). It is based on the cross-
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Chapter 6. Linear pulse characterization techniques

correlation between a transfer-limited pulse and the interference of the
modes. In [153, 158], the phase difference is inferred from the measured
beat note between adjacent spectral modes. However, measuring such a
pulse requires a detector that can respond faster compared to the pulse
width. The state-of-the-art detection unit hardly reaches 100 GHz ana-
log bandwidth.

As a complex spectrum analyzer, an optical heterodyne technique
of beating a reference laser with the spectral modes is illustrated in
[159, 160]. This translates the phase difference between the adjacent
optical modes to the phase of an electrical signal at an arbitrarily low
frequency. In [161], a reference laser is phase-modulated to record a beat
note with a low bandwidth receiver. Given the requirement of a series of
measurements, these techniques are limited by the measurement speed.
An electric-field cross-correlation dual-comb technique is introduced for
optical arbitrary waveform characterization in [162]. It provides both
fast data acquisition and higher sensitivity but needs pre-calibration of
the reference comb.

In the realm of microcombs, an intensity autocorrelation is commonly
used to measure the phase of the comb lines [61,136]. In this technique,
the relative phase of comb lines is iterated via a spatial light modulator
(pulse shaper) to obtain a maximum amplitude modulation in the auto-
correlation response. This is the idea of optimizing the spectral phase of
a pulse until the shortest (transform-limited) pulse is realized. Then the
phase of the comb lines is inferred from the reverse of the phase applied
to the pulse shaper. In [57], a conventional pulse characterization tech-
nique frequency-resolved optical grating (FROG) was implemented to
demonstrate transform-limited optical pulses of a single-soliton 35 GHz
comb. For an integrated platform, it is challenging to implement FROG
due to the high repetition rate and the fact that the pulse waveforms
of the microcombs have very low energy. In addition, there are plenty
of microcombs that are not transform-limited, hence further reducing
the peak intensity, such as, e.g., dark combs [128], and coupled cavity
combs [126, 163], and soliton crystals [164]. However, the intensity au-
tocorrelation technique allows measuring phases of the low-power comb
lines and offers a high dynamic range. This technique was adopted to
fully characterize distinct microcombs states in [61,128]. The autocorre-
lation measurement is a nonlinear process requiring a high signal power
to induce sufficient second harmonic yield. Therefore, it needs an opti-
cal amplifier to boost the signal power. However, the gain bandwidth of
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6.1. Characterization of frequency combs

the amplifier or the bandwidth of the pulse shaper, therefore, limits the
measurement range. In addition, this method is time-consuming due to
the line-by-line phase iteration of the comb modes. In [165], a concept
of electric field cross-correlation in the microcomb phase measurement
is reported. In this method, a calibrated reference comb is heterodyned
with the comb under test. It shares the same technical principle as dual-
comb spectroscopy, allowing reconstruction of the phase in a single-shot
measurement. Nonetheless, the necessity of reference comb phase cali-
bration ultimately leads to the aforementioned limitations i.e. limited
bandwidth of the optical instrumentation. In what follows, we discuss
the linear heterodyne phase difference measurement techniques used in
papers [D, E] that overcome these limitations.

6.1.1 Stepped heterodyne characterization

Stepped heterodyne is a linear method of complex spectral and tempo-
ral measurement of periodic optical signals. The idea lies in beating the
signal waveform with a continuous-wave laser. The laser is tuned across
the comb tones in a stepped-wise manner with a step size equal to the
repetition rate of the comb as shown in Fig. 6.1(a). The phase of the
consecutive lines is embedded in the downconverted radio-frequency beat
notes. The stepped heterodyne technique described does not require ref-
erence laser calibration. It measures the differential phase comparing
the phase of photodetected beatnotes which is independent of the phase
noise of the seed laser and reference laser. The beatnotes power is pro-
portional to the product of the reference laser and comb line power.
This in turn provides high sensitivity. This technique has been imple-
mented to characterize various periodic signals. In [159], optical pulses
and passively mode-locked lasers were characterized for both amplitude
and phase in the spectral and temporal domains. An electronic down
conversion with the aid of a local oscillator of the detected beatnotes
allows characterizing a ∼ 40 GHz modelocked laser [166].

For an optical frequency ωs(ref), phase noise ϕs(ref), and power of
the optical carrier Pµ(ref) (reference signal), the complex electric field of
the periodic signal under test of period 2π/ωr can be written as:

ECUT(t) =

n∑
µ=−n

(
√
Pµexp(jµωrt+ jϕµ)exp(jωst+ jϕs(t)). (6.1)
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The complex electric field of the reference signal is:

Eref (t) =
√
Prefexp(jωref t+ jϕref (t)). (6.2)

The crucial parameter under investigation is the static spectral phase ϕµ
of the µth mode number. In the stepped heterodyne technique these two
signals are mixed on a square law balanced photodetector. Figure 6.1(c)
is the interference pattern acquired from the real-time scope for 200 ns
of interval. This in turn generates three nontrivial RF heterodyne beat
tones (Fig. 6.1(d)).
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Figure 6.1: Stepped heterodyne optical complex spectrum analyzer.(a)
Schematic diagram showing the beating between the EO-comb and reference
laser (ECDL). (b) Spectral lines with the corresponding phase. (c) Interference
pattern of beat signals and zoom in the inset. (d) RF beat note spectrum. (e)
Differential phase of the one pair of the EO-comb lines. ECDL: External cavity
diode laser, BPF: Balanced photodiode.

Consider the reference laser is in between comb modes µ and µ + 1
as shown in Fig. 6.1(b). The complex electric field of RF beat tones can
be expressed as [159]

Ebeat(t) =
√
PrefPµ+1exp(j(Ωt+ ϕref (t)− ϕs(t)− ϕµ+1))

+
√
PrefPµexp(j((ωr − Ω)t− ϕref (t) + ϕs(t) + ϕµ))

+
√
Pnetexp(j(ωrt+ ϕnet)),

(6.3)

with Ω ≤ ωr/2 denoting detuning of the reference laser from the nearest
mode. Pnet and ϕnet denote accumulate power and phase of beating
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between adjacent comb modes respectively. The bandwidth limit of the
detector is assumed to be equal to the repetition rate of the comb fr.
The first two terms correspond to the beating of the reference signal
with the two nearest comb lines. The beating of adjacent comb lines
corresponds to the last term. This beating signal is common for all
stepped measurements and independent of the location of the reference
laser. Therefore, this signal is used as a reference in the phase difference
calculation. These spectra are retrieved by applying Fourier transform
and digital filters centered at Ω, ωr−Ω, and ωr. The combination of the
first two terms results in Pref

√
PµPµ+1exp(j(ωrt+ ϕµ − ϕµ+1)) with no

phase noise contributions. The product of this signal with the conjugate
of the reference signal yields a signal with an argument ϕµ−1−ϕµ−ϕnet
as a function of time Fig. 6.1(e). The differential phase ∆ϕµ = ⟨ϕµ−1 −
ϕµ − ϕnet⟩ is then calculated by taking the average of this signal. The
constant phase offset term ϕnet introduces a linear phase in the spectral
phase reconstruction. While it shifts the pulse in time, it will not affect
in the reconstruction of the pulse shape. Figure 6.2 shows the stepped
heterodyne technique applied to an EO comb and validated with the
simulation. The EO-comb consists of cascaded modulators in a sequence
as PM-PM-IM.
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Figure 6.2: Stepped heterodyne complex spectrum analysis of the EO comb
(red: simulation and blue: measurement). (a) EO comb spectrum. The mod-
ulation depth was set to 14.25 in the simulation. (b) Differential phase profile.
(c) Reconstruction of the spectral phase response.

6.1.2 Multi-heterodyne characterization

Multi-heterodyne pulse characterization technique shares a similar prin-
ciple as dual-comb spectroscopy [162, 167]. This technique is imple-
mented to measure the complex spectrum and reconstruct the dynamic
pulse trains [168]. The multi-heterodyne enables the recording of the
complex spectrum of the comb under test (CUT) in a single trace. In-
stead of stepping CW laser between comb lines, this method uses another
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comb of different repetition rates as a reference signal. We reported this
technique in the context of microcomb in Paper [E]. The offset in the
repetition rate leads to the temporal scanning of the comb pulses. The
coherent detection results in the cross-correlation of the two combs field
envelope. This yields multiple discrete heterodyne beat notes or RF
combs containing information on the amplitude and phase of each line
in the CUT. The phase of CUT lines is retrieved by comparing the phase
of RF combs. In what follows, we describe the multi-heterodyne spec-
troscopy using two EO combs.
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Figure 6.3: Simulation of multiheterodyne spectroscopy. (a) EO combs with
a 50 MHz difference in the repetition rate (red: 25 GHz CUT and blue: 25.05
GHz reference comb).(b) Interferogram of period 20 ns. (c) Radio frequency
spectrum of two detuned combs. Features of the CUT (red: actual and blue:
recovered): (d) Differential phase spectrum, (e) spectral phase profile, (f) pulse
profile, and (g) temporal phase profile.

As the CUT field in equation 6.1, we define the reference comb field
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according to:

Eref.(t) =

n∑
µ=−n

(
√
Pref.µexp(jµ(ωr ±∆ω)t+ jψµ)exp(j(ωref.t+ jϕref.(t)).

(6.4)
The parameters have a similar meaning to the variables in the CUT
field equation. The reference comb pulse steps across the entire CUT
pulse periodically in every 2π/∆ω second or after ωr/∆ω CUT pulses.
In our simulations, we set the combs spacing difference ∆ω/2π = 50
MHz and ωr/2π = 25 GHz. The driving source frequency (ωref.) was
set to ωs + ωr/4 (Fig. 6.3(a)). This ensures the detection of the maxi-
mum number of RF comb lines without spectrum folding. The coherent
heterodyne detection generates an interferogram (Fig. 6.3(b)) of period
2π/∆ω. Fourier transform of the interferogram generates sets of RF
combs. The two adjacent sets of RF combs as shown in Fig. 6.3(c)) can
fully characterize the CUT. The idea is to pair up the RF comb lines one
from each set that corresponds to the adjacent CUT lines. Then the (dif-
ferential) phase profile of the CUT (Fig. 6.3(d)-(e)) is merely calculated
by applying the technique discussed in section 6.1.1. The temporal pro-
files in Fig 6.3(f) and (g) are inferred from the complex optical spectrum
using the envelope function of equation 6.1.

6.1.3 Microcomb characterization

Stable microcombs can be generated in numerous forms. The micro-
combs can have various coherent states and complex pulse profiles [47].
It is important to measure the phase of comb lines to understand the
comb dynamics and perform a full-field characterization. However, mea-
suring the phase for broadband range encounters several challenges in
the context of microcombs. In addition, repetition rates can go beyond
the state-of-the-art electronics detection range. In paper [D], we imple-
mented the stepped heterodyne technique in the realm of microcombs.
The large repetition rate was made accessible by the electro-optic down-
conversion of the comb lines. For this, we used a phase modulator (PM)
to bring the comb lines closer in the form of sidebands. The sideband
carries the phase information of the comb line with an irrelevant constant
offset. It is also possible to acquire the complex spectrum of a comb in a
single real-time trace by using a reference comb of slightly different rep-
etition rate [168–170]. Paper [E] illustrates the multi-heterodyne tech-
nique by using coupled cavity microcombs driven by two free-running
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lasers. These methods provide internal phase reference and excellent
dynamic range.
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Figure 6.4: Multi-heterodyne spectroscopy of the coupled cavity soliton comb.
(a) Multisoliton CUT with pump at 1562.65 nm. (b) Single soliton reference
comb with pump at 1563.2 nm. (c) Interferogram recorded for 25 µs of period
0.2 µs. (d) RF comb spectrum after Fourier transform of the interferogram.
(e) Differential phase showing π periodic phase discontinuities. (f) Phase of
the comb lines (Inset: reconstructed pulse profile.)

Here, we provide a further illustration of the technique characterizing
a multi-soliton comb in a coupled cavity resonator. In Fig. 6.4, we used
a reference single soliton microcomb (Fig. 6.4(b)) of a slightly different
repetition rate ∆ω/2π ∼ 5 MHz instead of a stepped tunable laser. The
intensity modulator of the CUT (Fig. 6.4(a)) gives access to the pair of
comb lines and generates an RF reference signal. Figure. 6.4(c) is an
interferogram recorded for 25 µs duration and corresponding RF combs
in Fig. 6.4(d). The interferogram has a period of ∼200 ns. The combs
are driven by separate free-running lasers. By locking the lasers to the
stable optical reference system (ORS), we can average the interferogram
over a longer duration and achieve a higher sensitivity. We calculated
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the differential phase of the multi-soliton comb in Fig. 6.4(e) and phase
profile in Fig. 6.4(f) as discussed in section 6.1.2. The 7-FSR modulation
in the comb envelope indicates two pulses in the cavity of ∼1.45 ps apart
as shown in the inset. This technique has the potential in tracing the
soliton dynamics [171] by dividing the measured interferogram into the
segments that belong to the particular comb states.
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Chapter 7

Future outlook

This thesis has focused on the interferometric modality of characterizing
photonic devices. The tuning laser that probes the sample was calibrated
with a self-referenced frequency comb. It enabled ultra-wide bandwidth
and a large dynamic measurement range of an SWI system. The soliton
dynamics in a microcavity with temporal and spectral distributions were
illustrated. There are numerous fascinating follow-up research questions
related to the work presented in this thesis. Here, I highlight some areas
that in my opinion are worth to be explored.

• Papers A-B illustrated the fiber laser self-referenced comb cal-
ibrated swept-wavelength interferometry. The equidistant fre-
quency lines from the comb provide thousands of precise references
in laser calibration. It would be interesting to replace the fiber
comb with the microcomb. Microcombs of < 20 GHz can be gen-
erated and the gap can be filled by generating subcombs with an
electro-optic modulation. The RF frequency can be set such that
spacing between the lines is even throughout the spectral range.

• Paper D demonstrated the stepped heterodyne technique to re-
construct the differential phase of the microcombs. This involves
stepping the laser with the repetition rate of the comb. In Paper
E, the tuning laser is replaced with another microcomb of a slightly
different repetition rate. This enables the spectroscopy of a CUT
from a single-shot interferogram trace. It would be interesting to
trace the interferogram while the CUT is in a transition phase from
the MI to comb states. This allows imaging of comb dynamics in
the cavity.
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• In the framework of the Innovative Training Network (ITN) called
MICROCOMB, I had a unique opportunity to actively collaborate
with world-leading partners in the field. During my secondment at
the Max Plank Institute for the Science of Light and Menlo Sys-
tems in Germany, I learned a dual-pumping technique and locking
to the self-reference frequency comb. It is worth exploring the in-
jection locking of the pumps to the comb lines at the onset of the
microcomb. This would enable not only the coherent broadening
of the microcomb but purity transfer of the self-reference frequency
comb to the microcomb lines.
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Chapter 8

Summary of papers

Paper A

Frequency-comb-calibrated swept-wavelength interferometry,
Optics Express, 29, 15, 24363-24372, 2021.

Here, we demonstrate the non-destructive broadband characteriza-
tion in amplitude and phase of ultra-low-loss microresonators and spiral
waveguides. The device under test is arranged in an interferometric
configuration. The swept laser is calibrated using a self-referenced fiber
laser comb to map the time axis of the acquired interference pattern into
the frequency axis. The measured phase distribution of the resonances
enables distinguishing intrinsic loss from coupling loss. The parametric
fitting of the resonances is done based on the coupled mode theory.

My contributions: I conducted the measurements and simulations,
and I wrote the paper with support from co-authors. I presented the work
at CLEO EU 2021.

Paper B

Spectral interferometry with frequency combs,
Micromachines, 13, 4, 614, 2022.

In this work, we review the state of the art in linear interfero-
metric techniques using a laser frequency comb source. We present
different techniques; Fourier-transform spectroscopy, linear spectral
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interferometry, and swept wavelength interferometry, and highlight
some applications.

My contributions: I wrote sections 4.3, 4.4, 5.3, and 5.4 in the
manuscript.

Paper C

Hyperparametric oscillation via bound states in the continuum,
Physical Review Letters, 130, 9, 09381, 2023.

In this work, we demonstrated the generation of high-power and
efficient continuous waves in a Kerr nonlinear medium. This was enabled
by bound states in the continuum in multi-mode microresonators via
the dissipative coupling between resonance modes.

My contributions: I carried out the microresonator characteriza-
tion using the SWI and helped in writing the manuscript.

Paper D

Differential phase reconstruction of microcombs,
Optics Letters, 47, 13, 3351-3354, 2022.

In this paper, we show a linear heterodyne technique to characterize
the single and coupled cavity microcombs. This technique enables
measuring broadband differential phase between consecutive comb
lines with unprecedented bandwidth and power sensitivity. The phase
difference measurement of a high repetition rate comb is assisted by
electro-optic downconversion.

My contributions: I conducted lab experiments and simulations
with co-authors. I wrote the manuscript with co-authors and I presented
the preliminary results at CLEO 2022.

Paper E

Multi-heterodyne differential phase measurement of micro-
combs,

68



submitted to Conference on Lasers and Electro-Optics Europe, 2023

In this paper, we show a multi-heterodyne technique to charac-
terize a coupled cavity microcomb. This technique enables measuring
broadband differential phase between consecutive comb lines from
a single-shot interferogram trace. The phase difference measurement
of a high repetition rate comb is assisted by electro-optic downconversion.

My contributions: I conceived the idea and conducted lab experi-
ments. I wrote the manuscript with co-authors.

69



Chapter 8. Summary of papers

70



References

[1] R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE
journal of quantum electronics, vol. 23, no. 1, pp. 123–129, 1987.

[2] A. A. Jørgensen, D. Kong, M. R. Henriksen, F. Klejs, Z. Ye, Ó. B.
Helgason, H. E. Hansen, H. Hu, M. Yankov, S. Forchhammer,
P. Andrekson, A. Larsson, M. Karlsson, J. Schröder, Y. Sasaki,
K. Aikawa, J. W. Thomsen, T. Morioka, M. Galili, V. Torres-
Company, and L. K. Oxenløwe, “Petabit-per-second data trans-
mission using a chip-scale microcomb ring resonator source,” Nat.
Photonics, no. 16, pp. 798–802, 2022.

[3] J. Lasky, S. Stiffler, F. White, and J. Abernathey, “Silicon-on-
insulator (SOI) by bonding and ETCH-back,” in 1985 Interna-
tional Electron Devices Meeting, 1985, pp. 684–687.

[4] B. Mozumder, “Development of bonding and etchback silicon on
insulator wafers,” in Journal of the Microelectronic Engineering
Conference, vol. 6, no. 1, 1996, p. 8.

[5] M. Bruel, “Process for the production of thin semiconductor ma-
terial films,” US Patent 5,374,564, 1994.

[6] M. Bruel and B. A. Auberton-Hervé, “Smart-cut: a new silicon
on insulator material technology based on hydrogen implantation
and wafer bonding,” Japanese journal of applied physics, vol. 36,
no. 3S, p. 1636, 1997.

[7] R. Soref and J. Larenzo, “All-silicon active and passive guided-wave
components for λ= 1.3 and 1.6 µm,” IEEE J. Quantum Electron.,
vol. 22, no. 6, pp. 873–879, 1986.

71



REFERENCES

[8] A. Rickman, G. Reed, and F. Namavar, “Silicon-on-insulator op-
tical rib waveguide loss and mode characteristics,” J. Lightwave
Technol., vol. 12, no. 10, pp. 1771–1776, 1994.

[9] P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx,
J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman,
D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires
and ring resonators fabricated with deep UV lithography,” IEEE
Photonics Technology Letters, vol. 16, no. 5, pp. 1328–1330, 2004.

[10] V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for
compact mode conversion,” Opt. Lett., vol. 28, no. 15, pp. 1302–
1304, 2003.

[11] D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broad-
band grating coupler for silicon-on-insulator waveguides,” Opt.
Lett., vol. 29, no. 23, pp. 2749–2751, 2004.

[12] W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Tail-
laert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and
D. Van Thourhout, “Nanophotonic waveguides in silicon-on-
insulator fabricated with CMOS technology,” J. Lightwave Tech-
nol., vol. 23, no. 1, p. 401, 2005.

[13] T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Daven-
port, and J. E. Bowers, “Photonic integrated circuits using hetero-
geneous integration on silicon,” Proceedings of the IEEE, vol. 106,
no. 12, pp. 2246–2257, 2018.

[14] D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik,
P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth
lasers fully integrated on silicon,” Optica, vol. 6, no. 6, pp. 745–752,
2019.

[15] H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E.
Bowers, “A hybrid AlGaInAs-silicon evanescent amplifier,” IEEE
Photon. Technol. Lett., vol. 19, no. 4, pp. 230–232, 2007.

[16] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari,
S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium
niobate electro-optic modulators operating at CMOS-compatible
voltages,” Nature, vol. 562, no. 7725, pp. 101–104, 2018.

72



REFERENCES

[17] A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and
J. E. Bowers, “Electrically pumped hybrid algainas-silicon evanes-
cent laser,” Opt. Express, vol. 14, no. 20, pp. 9203–9210, 2006.

[18] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale
silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp.
325–327, 2005.

[19] K. Greene, Silicon photonics comes to market. MIT Technol.
Rev., Cambridge, MA, USA, Tech. Rep. 408520, Aug. 2007,
https://www.technologyreview.com/2007/08/16/224040/silicon-
photonics-comes-to-market/.

[20] A. Rahim, T. Spuesens, R. Baets, and W. Bogaerts, “Open-access
silicon photonics: current status and emerging initiatives,” Pro-
ceedings of the IEEE, vol. 106, no. 12, pp. 2313–2330, 2018.

[21] D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and
C. Roeloffzen, “Silicon nitride in silicon photonics,” Proceedings of
the IEEE, vol. 106, no. 12, pp. 2209–2231, 2018.

[22] J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen,
and M. Lipson, “Low loss etchless silicon photonic waveguides,”
Opt. Express, vol. 17, no. 6, pp. 4752–4757, 2009.

[23] J. Boyd, R. Wu, D. Zelmon, A. Naumaan, H. Timlin, and H. Jack-
son, “Planar and channel optical waveguides utilizing silicon tech-
nology,” in Integrated Optical Circuit Engineering I, vol. 517. In-
ternational Society for Optics and Photonics, 1985, pp. 100–105.

[24] C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, and
L. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si,” Appl.
Optics, vol. 26, no. 13, pp. 2621–2624, 1987.

[25] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L.
Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength os-
cillator for on-chip optical interconnects,” Nat. Photonics, vol. 4,
no. 1, pp. 37–40, 2010.

[26] W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong,
X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, P. G.-Q. Lo, and

73



REFERENCES

J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-
on-silicon waveguide platforms for 3-D photonic circuits and de-
vices,” Proceedings of the IEEE, vol. 106, no. 12, pp. 2232–2245,
2018.

[27] D. Melati, A. Alippi, and A. Melloni, “Waveguide-based technique
for wafer-level measurement of phase and group effective refractive
indices,” J. Lightwave Technol., vol. 34, no. 4, pp. 1293–1299, 2015.

[28] F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Mel-
loni, and M. Martinelli, “Roughness induced backscattering in opti-
cal silicon waveguides,” Phys. Rev. Lett., vol. 104, no. 3, p. 033902,
2010.

[29] P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J.
Kippenberg, “Frequency comb assisted diode laser spectroscopy for
measurement of microcavity dispersion,” Nat. Photonics, vol. 3,
no. 9, pp. 529–533, 2009.

[30] M. Giunta, M. Fischer, W. Hänsel, T. Steinmetz, M. Lessing,
S. Holzberger, C. Cleff, T. W. Hänsch, M. Mei, and R. Holzwarth,
“20 years and 20 decimal digits: A journey with optical frequency
combs,” IEEE Photonics Technology Letters, vol. 31, no. 23, pp.
1898–1901, 2019.

[31] T. W. Hänsch, “Nobel lecture: passion for precision,” Rev. Mod.
Phys., vol. 78, no. 4, p. 1297, 2006.

[32] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler,
J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of
femtosecond mode-locked lasers and direct optical frequency syn-
thesis,” Science, vol. 288, no. 5466, pp. 635–639, 2000.

[33] R. Holzwarth, T. Udem, T. W. Hänsch, J. Knight, W. Wadsworth,
and P. S. J. Russell, “Optical frequency synthesizer for precision
spectroscopy,” Phys. Rev. Lett., vol. 85, no. 11, p. 2264, 2000.

[34] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth,
and T. J. Kippenberg, “Optical frequency comb generation from a
monolithic microresonator,” Nature, vol. 450, no. 7173, pp. 1214–
1217, 2007.

74



REFERENCES

[35] H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner,
“First phase-coherent frequency measurement of visible radiation,”
Phys. Rev. Lett., vol. 76, no. 1, p. 18, 1996.

[36] P. F. Moulton, “Spectroscopic and laser characteristics of Ti:
Al2O3,” JOSA B, vol. 3, no. 1, pp. 125–133, 1986.

[37] D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse genera-
tion from a self-mode-locked Ti:sapphire laser,” Opt. Lett., vol. 16,
no. 1, pp. 42–44, 1991.

[38] T. Nakamura, J. Davila-Rodriguez, H. Leopardi, J. A. Sher-
man, T. M. Fortier, X. Xie, J. C. Campbell, W. F. McGrew,
X. Zhang, Y. S. Hassan, Nicolodi, B. Daniele, L. Kyle, D. An-
drew D., Q. Scott A., and Franklyn, “Coherent optical clock down-
conversion for microwave frequencies with 10-18 instability,” Sci-
ence, vol. 368, no. 6493, pp. 889–892, 2020.

[39] T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency
metrology,” Nature, vol. 416, no. 6877, pp. 233–237, 2002.

[40] T. Fortier and E. Baumann, “20 years of developments in opti-
cal frequency comb technology and applications,” Commun. Phys.,
vol. 2, no. 1, pp. 1–16, 2019.

[41] S. A. Diddams, K. Vahala, and T. Udem, “Optical frequency
combs: Coherently uniting the electromagnetic spectrum,” Sci-
ence, vol. 369, no. 6501, p. eaay3676, 2020.

[42] R. Zhuang, K. Ni, G. Wu, T. Hao, L. Lu, Y. Li, and Q. Zhou,
“Electro-optic frequency combs: Theory, characteristics, and ap-
plications,” Laser & Photonics Reviews, p. 2200353.

[43] H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Op-
tical pulse generation by electrooptic-modulation method and its
application to integrated ultrashort pulse generators,” IEEE J. Sel.
Top. Quantum Electron., vol. 6, no. 6, pp. 1325–1331, 2000.

[44] D. R. Carlson, D. D. Hickstein, W. Zhang, A. J. Metcalf, F. Quin-
lan, S. A. Diddams, and S. B. Papp, “Ultrafast electro-optic light
with subcycle control,” Science, vol. 361, no. 6409, pp. 1358–1363,
2018.

75



REFERENCES

[45] V. Torres-Company and A. M. Weiner, “Optical frequency comb
technology for ultra-broadband radio-frequency photonics,” Laser
Photon. Rev., vol. 8, no. 3, pp. 368–393, 2014.

[46] A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner,
“High-power broadly tunable electrooptic frequency comb genera-
tor,” IEEE J Sel Top Quantum Electron., vol. 19, no. 6, pp. 231–
236, 2013.

[47] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erk-
intalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, Xue,
W. Xiaoxiao, M. Andrew M., and Roberto, “Micro-combs: A novel
generation of optical sources,” Phys. Rep., vol. 729, pp. 1–81, 2018.

[48] E. Cartlidge, “Combs of light on a chip,” Optics and Photonics
News, vol. 32, no. 1, pp. 26–33, 2021.

[49] Q.-F. Yang, M.-G. Suh, K. Y. Yang, X. Yi, and K. J. Vahala, “Mi-
croresonator soliton dual-comb spectroscopy,” in CLEO: Science
and Innovations. Optical Society of America, 2017, pp. SM4D–4.

[50] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle,
M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson,
R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and
C. Koos, “Microresonator-based solitons for massively parallel co-
herent optical communications,” Nature, vol. 546, no. 7657, pp.
274–279, 2017.

[51] A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H.
Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M.
Weiner, and V. Torres-Company, “High-order coherent communi-
cations using mode-locked dark-pulse Kerr combs from microres-
onators,” Nat. Commun., vol. 9, no. 1, p. 1598, 2018.

[52] S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala,
and S. A. Diddams, “Microresonator frequency comb optical clock,”
Optica, vol. 1, no. 1, pp. 10–14, 2014.

[53] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair,
C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet,
T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y.
Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theog-
arajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers,

76



REFERENCES

S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer
using integrated photonics,” Nature, vol. 557, no. 7703, pp. 81–85,
2018.

[54] T. Kippenberg, S. Spillane, and K. Vahala, “Kerr-nonlinearity op-
tical parametric oscillation in an ultrahigh-Q toroid microcavity,”
Phys. Rev. Lett., vol. 93, no. 8, p. 083904, 2004.

[55] P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J.
Kippenberg, “Full stabilization of a microresonator-based optical
frequency comb,” Phys. Rev. Lett., vol. 101, no. 5, p. 053903, 2008.

[56] L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E.
Little, and D. J. Moss, “Cmos-compatible integrated optical hyper-
parametric oscillator,” Nature Photonics, vol. 4, no. 1, pp. 41–45,
2010.

[57] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev,
M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in
optical microresonators,” Nat. Photonics, vol. 8, no. 2, pp. 145–
152, 2014.

[58] T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky,
“Dissipative Kerr solitons in optical microresonators,” Science, vol.
361, no. 6402, p. eaan8083, 2018.

[59] E. Nazemosadat, A. Fülöp, Ó. B. Helgason, P.-H. Wang, Y. Xuan,
D. E. Leaird, M. Qi, E. Silvestre, A. M. Weiner, and V. Torres-
Company, “Switching dynamics of dark-pulse Kerr frequency comb
states in optical microresonators,” Phys. Rev. A, vol. 103, no. 1, p.
013513, 2021.

[60] V. Lobanov, G. Lihachev, T. Kippenberg, and M. Gorodetsky,
“Frequency combs and platicons in optical microresonators with
normal GVD,” Opt. Express, vol. 23, no. 6, pp. 7713–7721, 2015.

[61] P. Del’Haye, A. Coillet, W. Loh, K. Beha, S. B. Papp, and S. A.
Diddams, “Phase steps and resonator detuning measurements in
microresonator frequency combs,” Nat. Commun., vol. 6, no. 1, p.
5668, 2015.

[62] S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform gen-
eration,” Nat. Photonics, vol. 4, no. 11, pp. 760–766, 2010.

77



REFERENCES

[63] B. L. Danielson, “Optical time-domain reflectometer specifications
and performance testing,” Appl. Opt., vol. 24, no. 15, pp. 2313–
2322, 1985.

[64] B. R. Masters, “Early development of optical low-coherence re-
flectometry and some recent biomedical applications,” J. Biomed.
Opt., vol. 4, no. 2, pp. 236–247, 1999.

[65] R. C. Youngquist, S. Carr, and D. E. Davies, “Optical coherence-
domain reflectometry: a new optical evaluation technique,” Opt.
Lett., vol. 12, no. 3, pp. 158–160, 1987.

[66] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson,
W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and
J. G. Fujimoto, “Optical coherence tomography,” Science, vol. 254,
no. 5035, pp. 1178–1181, 1991.

[67] B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High
resolution optical frequency domain reflectometry for characteriza-
tion of components and assemblies,” Opt. Express, vol. 13, no. 2,
pp. 666–674, 2005.

[68] P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S.
Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated
germanium optical interconnects on silicon substrates,” Nat. Pho-
tonics, vol. 8, no. 6, pp. 482–488, 2014.

[69] S.-H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E.
Bouma, “High-speed optical frequency-domain imaging,” Opt. Ex-
press, vol. 11, no. 22, pp. 2953–2963, 2003.

[70] M. Froggatt and J. Moore, “High-spatial-resolution distributed
strain measurement in optical fiber with Rayleigh scatter,” Appl.
Opt., vol. 37, no. 10, pp. 1735–1740, 1998.

[71] W. Eickhoff and R. Ulrich, “Optical frequency domain reflectom-
etry in single-mode fiber,” Appl. Phys. Lett., vol. 39, no. 9, pp.
693–695, 1981.

[72] S. Personick, “Photon probe—an optical-fiber time-domain reflec-
tometer,” Bell Syst. Tech. J., vol. 56, no. 3, pp. 355–366, 1977.

78



REFERENCES

[73] M. Barnoski, M. Rourke, S. Jensen, and R. Melville, “Optical time
domain reflectometer,” Appl. Opt., vol. 16, no. 9, pp. 2375–2379,
1977.

[74] E. D. Moore, “Advances in swept-wavelength interferometry for
precision measurements,” Ph.D. dissertation, University of Col-
orado at Boulder, 2011.

[75] P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and
W. R. Babbitt, “Ultrabroadband optical chirp linearization for pre-
cision metrology applications,” Opt. Lett., vol. 34, no. 23, pp. 3692–
3694, 2009.

[76] K. Iiyama, L.-T. Wang, and K.-I. Hayashi, “Linearizing optical
frequency-sweep of a laser diode for FMCW reflectometry,” J.
Lightwave Technol., vol. 14, no. 2, pp. 173–178, 1996.

[77] U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain re-
flectometry for characterization of single-mode integrated-optical
waveguides,” J. Lightwave Technol., vol. 11, no. 8, pp. 1377–1384,
1993.

[78] E. D. Moore and R. R. McLeod, “Correction of sampling errors due
to laser tuning rate fluctuations in swept-wavelength interferome-
try,” Opt. Express, vol. 16, no. 17, pp. 13 139–13 149, 2008.

[79] S. Fujii and T. Tanabe, “Dispersion engineering and measurement
of whispering gallery mode microresonator for Kerr frequency comb
generation,” Nanophotonics, vol. 9, no. 5, pp. 1087–1104, 2020.

[80] E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair,
K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated
frequency-modulated continuous-wave ladar for absolute distance
measurements,” Opt. Lett., vol. 38, no. 12, pp. 2026–2028, 2013.

[81] W. Yu, P. Pfeiffer, A. Morsali, J. Yang, and J. Fontaine, “Comb-
calibrated frequency sweeping interferometry for absolute distance
and vibration measurement,” Opt. Lett., vol. 44, no. 20, pp. 5069–
5072, 2019.

[82] E. Baumann, F. R. Giorgetta, J.-D. Deschênes, W. C. Swann,
I. Coddington, and N. R. Newbury, “Comb-calibrated laser ranging

79



REFERENCES

for three-dimensional surface profiling with micrometer-level preci-
sion at a distance,” Opt. Express, vol. 22, no. 21, pp. 24 914–24 928,
2014.

[83] J. Liu, V. Brasch, M. H. Pfeiffer, A. Kordts, A. N. Kamel, H. Guo,
M. Geiselmann, and T. J. Kippenberg, “Frequency-comb-assisted
broadband precision spectroscopy with cascaded diode lasers,” Opt.
Lett., vol. 41, no. 13, pp. 3134–3137, 2016.

[84] C. A. Rosiek, G. Arregui, A. Vladimirova, M. Albrechtsen,
B. Vosoughi Lahijani, R. E. Christiansen, and S. Stobbe, “Obser-
vation of strong backscattering in valley-hall photonic topological
interface modes,” Nat. Photonics, pp. 1–7, 2023.

[85] G. Tittelbach, B. Richter, and W. Karthe, “Comparison of three
transmission methods for integrated optical waveguide propagation
loss measurement,” J. Opt. Pure Appl. Opt., vol. 2, no. 6, p. 683,
1993.

[86] J. F. Bauters, M. J. Heck, D. John, D. Dai, M.-C. Tien, J. S.
Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E.
Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt.
Express, vol. 19, no. 4, pp. 3163–3174, 2011.

[87] M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker,
C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of
silicon nitride waveguides in the near-infrared range,” Appl. Phys.
Lett., vol. 86, no. 12, p. 121111, 2005.

[88] R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per me-
ter propagation loss of silica waveguides measured using a ring
resonator,” J. Lightwave Technol., vol. 12, no. 8, pp. 1369–1372,
1994.

[89] P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer
micro-ring filters and modulators,” J. Lightwave Technol., vol. 20,
no. 11, p. 1968, 2002.

[90] S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality
in a fiber-taper-coupled microresonator system for application to
cavity quantum electrodynamics,” Phys. Rev. Lett., vol. 91, no. 4,
p. 043902, 2003.

80



REFERENCES

[91] R. MacDonald, “Frequency domain optical reflectometer,” Appl.
Opt., vol. 20, no. 10, pp. 1840–1844, 1981.

[92] J. Von Der Weid, R. Passy, G. Mussi, and N. Gisin, “On the char-
acterization of optical fiber network components with optical fre-
quency domain reflectometry,” J. Lightwave Technol., vol. 15, no. 7,
pp. 1131–1141, 1997.

[93] M. Badar, P. Lu, M. Buric, and P. Ohodnicki Jr, “Integrated auxil-
iary interferometer for self-correction of nonlinear tuning in optical
frequency domain reflectometry,” J. Lightwave Technol., vol. 38,
no. 21, pp. 6097–6103, 2020.

[94] K. Twayana, Z. Ye, Ó. B. Helgason, K. Vijayan, M. Karlsson
et al., “Frequency-comb-calibrated swept-wavelength interferome-
try,” Opt. Express, vol. 29, no. 15, pp. 24 363–24 372, 2021.

[95] J. F. Bauters, M. J. Heck, D. D. John, J. S. Barton, C. M. Bru-
inink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E.
Bowers, “Planar waveguides with less than 0.1 dB/m propagation
loss fabricated with wafer bonding,” Opt. Express, vol. 19, no. 24,
pp. 24 090–24 101, 2011.

[96] L. A. Bru, D. Pastor, and P. Muñoz, “Integrated optical frequency
domain reflectometry device for characterization of complex inte-
grated devices,” Opt. Express, vol. 26, no. 23, pp. 30 000–30 008,
2018.

[97] X. Zhang, Y. Yin, X. Yin, Y. Wen, X. Zhang, X. Liu, and H. Lv,
“Characterizing microring resonators using optical frequency do-
main reflectometry,” Opt. Lett., vol. 46, no. 10, pp. 2400–2403,
2021.

[98] J.-P. von der Weid, R. Passy, and N. Gisin, “Mid-range coherent
optical frequency domain reflectometry with a DFB laser diode
coupled to an external cavity,” J. Lightwave Technol., vol. 13, no. 5,
pp. 954–960, 1995.

[99] A. Weiner, Ultrafast optics. John Wiley & Sons, 2011.

[100] Z. Ye, P. Zhao, K. Twayana, M. Karlsson, P. A. Andrekson,
and V. Torres-Company, “Ultralow-loss meter-long dispersion-
engineered silicon nitride waveguides,” in 2021 Conference on
Lasers and Electro-Optics (CLEO). IEEE, 2021, paper SF1C.5.

81



REFERENCES

[101] Z. Ye, P. Zhao, K. Twayana, M. Karlsson, V. Torres-Company,
and P. A. Andrekson, “Overcoming the quantum limit of optical
amplification in monolithic waveguides,” Sci. Adv., vol. 7, no. 38,
p. eabi8150, 2021.

[102] Z. Ye, “Ultralow-loss silicon nitride waveguides for nonlinear op-
tics,” Ph.D. dissertation, Chalmers Tekniska Hogskola (Sweden),
2021.

[103] A. Perot and C. Fabry, “On the application of interference phe-
nomena to the solution of various problems of spectroscopy and
metrology,” Astrophysical Journal, vol. 9, p. 87, vol. 9, p. 87, 1899.

[104] G. Liang, H. Huang, A. Mohanty, M. C. Shin, X. Ji, M. J. Carter,
S. Shrestha, M. Lipson, and N. Yu, “Robust, efficient, micrometre-
scale phase modulators at visible wavelengths,” Nat. Photonics,
vol. 15, no. 12, pp. 908–913, 2021.

[105] C. K. Madsen and J. H. Zhao, Optical filter design and analysis.
Wiley New York, 1999.

[106] S. Yang, Y. Wang, and H. Sun, “Advances and prospects for whis-
pering gallery mode microcavities,” Advanced Optical Materials,
vol. 3, no. 9, pp. 1136–1162, 2015.

[107] W. Jin, Q.-F. Yang, L. Chang, B. Shen, H. Wang, M. A. Leal,
L. Wu, M. Gao, A. Feshali, M. Paniccia et al., “Hertz-linewidth
semiconductor lasers using CMOS-ready ultra-high-Q microres-
onators,” Nat. Photonics, vol. 15, no. 5, pp. 346–353, 2021.

[108] C. Xiang, W. Jin, O. Terra, B. Dong, H. Wang, L. Wu, J. Guo, T. J.
Morin, E. Hughes, J. Peters et al., “Three-dimensional integration
enables ultra-low-noise, isolator-free Si photonics,” arXiv preprint
arXiv:2301.09989, 2023.

[109] J. Liu, E. Lucas, A. S. Raja, J. He, J. Riemensberger, R. N. Wang,
M. Karpov, H. Guo, R. Bouchand, and T. J. Kippenberg, “Pho-
tonic microwave generation in the X-and K-band using integrated
soliton microcombs,” Nat. Photonics, vol. 14, no. 8, pp. 486–491,
2020.

[110] A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig,
and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl.,
vol. 3, no. 4, p. 044005, 2015.

82



REFERENCES

[111] E. Marcatili, “Bends in optical dielectric guides,” Bell System Tech-
nical Journal, vol. 48, no. 7, pp. 2103–2132, 1969.

[112] H. A. Haus and W. Huang, “Coupled-mode theory,” Proceedings of
the IEEE, vol. 79, no. 10, pp. 1505–1518, 1991.

[113] J. K. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang,
and A. Yariv, “Matrix analysis of microring coupled-resonator op-
tical waveguides,” Opt. Express, vol. 12, no. 1, pp. 90–103, 2004.

[114] A. Yariv, “Universal relations for coupling of optical power between
microresonators and dielectric waveguides,” Electron. Lett., vol. 36,
no. 4, pp. 321–322, 2000.

[115] Ó. B. Helgason, M. Girardi, Z. Ye, F. Lei, J. Schröder, and V. T.
Company, “Power-efficient soliton microcombs,” arXiv preprint
arXiv:2202.09410, 2022.

[116] K. Twayana, Z. Ye, Ó. B. Helgason, M. Karlsson et al., “Frequency-
comb-assisted swept-wavelength interferometry,” in The European
Conference on Lasers and Electro-Optics. Optica Publishing
Group, 2021, p. ch_10_6.

[117] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos,
S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman,
D. Van Thourhout, and R. Baets, “Silicon microring resonators,”
Laser Photonics Rev., vol. 6, no. 1, pp. 47–73, 2012.

[118] Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H.
Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang
et al., “High-Q silicon nitride microresonators exhibiting low-power
frequency comb initiation,” Optica, vol. 3, no. 11, pp. 1171–1180,
2016.

[119] J. K. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-
resonator optical waveguide delay lines,” JOSA B, vol. 21, no. 9,
pp. 1665–1673, 2004.

[120] C. R. Pollock and M. Lipson, Integrated photonics. Springer, 2003,
vol. 20, no. 25.

[121] M. Dahlem, “Studies of advanced integrated nano-photonic devices
in silicon,” Ph.D. dissertation, Massachusetts Institute of Technol-
ogy, 2011.

83



REFERENCES

[122] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Mi-
croring resonator channel dropping filters,” J. Lightwave Technol.,
vol. 15, no. 6, pp. 998–1005, 1997.

[123] A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bo-
gaerts, “Backscattering in silicon microring resonators: a quanti-
tative analysis,” Laser Photonics Rev., vol. 10, no. 3, pp. 420–431,
2016.

[124] M. H. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and
T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based
on the damascene reflow process: fabrication and loss origins,”
Optica, vol. 5, no. 7, pp. 884–892, 2018.

[125] Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Unified approach
to mode splitting and scattering loss in high-Q whispering-gallery-
mode microresonators,” Phys. Rev. A, vol. 88, no. 3, p. 033816,
2013.

[126] Ó. B. Helgason, F. R. Arteaga-Sierra, Z. Ye, K. Twayana, P. A. An-
drekson, M. Karlsson, J. Schröder, and V. Torres-Company, “Dis-
sipative solitons in photonic molecules,” Nat. Photonics, vol. 15,
no. 4, pp. 305–310, 2021.

[127] S. V. Boriskina, “Photonic molecules and spectral engineering,”
Photonic microresonator research and applications, pp. 393–421,
2010.

[128] X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang,
D. E. Leaird, M. Qi, and A. M. Weiner, “Mode-locked dark pulse
Kerr combs in normal-dispersion microresonators,” Nat. Photonics,
vol. 9, no. 9, pp. 594–600, 2015.

[129] T. Herr, V. Brasch, J. Jost, I. Mirgorodskiy, G. Lihachev,
M. Gorodetsky, and T. Kippenberg, “Mode spectrum and tempo-
ral soliton formation in optical microresonators,” Phys. Rev. Lett.,
vol. 113, no. 12, p. 123901, 2014.

[130] J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Hen-
schel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator
microring resonator,” Opt. Lett., vol. 29, no. 24, pp. 2861–2863,
2004.

84



REFERENCES

[131] W. McKinnon, D.-X. Xu, C. Storey, E. Post, A. Densmore,
A. Delâge, P. Waldron, J. Schmid, and S. Janz, “Extracting cou-
pling and loss coefficients from a ring resonator,” Opt. Express,
vol. 17, no. 21, pp. 18 971–18 982, 2009.

[132] J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J.
Jackson, “Optical transmission characteristics of fiber ring res-
onators,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 726–730,
2004.

[133] K. Wu and A. W. Poon, “Stress-released Si3N4 fabrication pro-
cess for dispersion-engineered integrated silicon photonics,” Opt.
Express, vol. 28, no. 12, pp. 17 708–17 722, 2020.

[134] V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. Pfeiffer,
M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based
optical frequency comb using soliton cherenkov radiation,” Science,
vol. 351, no. 6271, pp. 357–360, 2016.

[135] M. H. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lu-
cas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative
Kerr soliton frequency combs in Si3N4 microresonators,” Optica,
vol. 4, no. 7, pp. 684–691, 2017.

[136] F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang,
L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line
pulse shaping of on-chip microresonator frequency combs,” Nat.
Photonics, vol. 5, no. 12, pp. 770–776, 2011.

[137] K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Ther-
mal and Kerr nonlinear properties of plasma-deposited silicon ni-
tride/silicon dioxide waveguides,” Opt. Express, vol. 16, no. 17, pp.
12 987–12 994, 2008.

[138] G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at
the Dawn of the 21st Century. Springer, 2000, pp. 195–211.

[139] K. Ikeda, “Multiple-valued stationary state and its instability of
the transmitted light by a ring cavity system,” Opt. Commun.,
vol. 30, no. 2, pp. 257–261, 1979.

[140] L. A. Lugiato and R. Lefever, “Spatial dissipative structures in
passive optical systems,” Phys. Rev. Lett., vol. 58, no. 21, p. 2209,
1987.

85



REFERENCES

[141] M. Haelterman, S. Trillo, and S. Wabnitz, “Dissipative modulation
instability in a nonlinear dispersive ring cavity,” Opt. Commun.,
vol. 91, no. 5-6, pp. 401–407, 1992.

[142] T. Hansson, D. Modotto, and S. Wabnitz, “Dynamics of the modu-
lational instability in microresonator frequency combs,” Phys. Rev.
A, vol. 88, no. 2, p. 023819, 2013.

[143] S. Coen and M. Erkintalo, “Universal scaling laws of Kerr frequency
combs,” Opt. Lett., vol. 38, no. 11, pp. 1790–1792, 2013.

[144] J. A. Jaramillo-Villegas, X. Xue, P.-H. Wang, D. E. Leaird, and
A. M. Weiner, “Deterministic single soliton generation and com-
pression in microring resonators avoiding the chaotic region,” Opt.
Express, vol. 23, no. 8, pp. 9618–9626, 2015.

[145] A. Fülöp, Fiber-optic communications with microresonator fre-
quency combs. Chalmers Tekniska Hogskola (Sweden), 2018.

[146] V. Torres-Company, D. Castelló-Lurbe, and E. Silvestre, “Com-
parative analysis of spectral coherence in microresonator frequency
combs,” Opt. Express, vol. 22, no. 4, pp. 4678–4691, 2014.

[147] X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi, and
A. M. Weiner, “Normal-dispersion microcombs enabled by control-
lable mode interactions,” Laser Photonics Rev., vol. 9, no. 4, pp.
L23–L28, 2015.

[148] S. Wabnitz, “Suppression of interactions in a phase-locked soliton
optical memory,” Opt. Lett., vol. 18, no. 8, pp. 601–603, 1993.

[149] H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. Pfeiffer, V. Brasch,
G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, and T. J. Kippen-
berg, “Universal dynamics and deterministic switching of dissipa-
tive Kerr solitons in optical microresonators,” Nat. Physics, vol. 13,
no. 1, pp. 94–102, 2017.

[150] C. Joshi, J. K. Jang, K. Luke, X. Ji, S. A. Miller, A. Klenner,
Y. Okawachi, M. Lipson, and A. L. Gaeta, “Thermally controlled
comb generation and soliton modelocking in microresonators,” Opt.
Lett., vol. 41, no. 11, pp. 2565–2568, 2016.

86



REFERENCES

[151] P.-H. Wang, J. A. Jaramillo-Villegas, Y. Xuan, X. Xue, C. Bao,
D. E. Leaird, M. Qi, and A. M. Weiner, “Intracavity characteriza-
tion of micro-comb generation in the single-soliton regime,” Opt.
Express, vol. 24, no. 10, pp. 10 890–10 897, 2016.

[152] Y. H. Wen, M. R. Lamont, S. H. Strogatz, and A. L. Gaeta,
“Self-organization in Kerr-cavity-soliton formation in parametric
frequency combs,” Phys. Rev. A, vol. 94, no. 6, p. 063843, 2016.

[153] Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary wave-
form generation and characterization using spectral line-by-line
control,” J. Lightwave Technol., vol. 24, no. 7, pp. 2487–2494, 2006.

[154] D. J. Kane and R. Trebino, “Characterization of arbitrary fem-
tosecond pulses using frequency-resolved optical gating,” IEEE J.
Quantum Electron., vol. 29, no. 2, pp. 571–579, 1993.

[155] C. Iaconis and I. A. Walmsley, “Spectral phase interferometry
for direct electric-field reconstruction of ultrashort optical pulses,”
Opt. Lett., vol. 23, no. 10, pp. 792–794, 1998.

[156] J. Armstrong, “Measurement of picosecond laser pulse widths,”
Appl. Phys. Lett., vol. 10, no. 1, pp. 16–18, 1967.

[157] K. Chu, J. Heritage, R. Grant, K. Liu, A. Dienes, W. White, and
A. Sullivan, “Direct measurement of the spectral phase of femtosec-
ond pulses,” Opt. Lett., vol. 20, no. 8, pp. 904–906, 1995.

[158] P. Kockaert, M. Peeters, S. Coen, P. Emplit, M. Haelterman, and
O. Deparis, “Simple amplitude and phase measuring technique for
ultrahigh-repetition-rate lasers,” IEEE Photonics Technol. Lett.,
vol. 12, no. 2, pp. 187–189, 2000.

[159] D. Reid, S. Murdoch, and L. Barry, “Stepped-heterodyne optical
complex spectrum analyzer.” Opt. Express, vol. 18, no. 19, pp.
19 724–19 731, 2010.

[160] M. Korti, T. Habruseva, S. Slepneva, K. Merghem, G. Huyet,
Y. Gottesman, A. Ramdane, B.-E. Benkelfat, and O. Seddiki,
“Fast-recovery of the amplitude and phase of short optical pulses
using a frequency-swept source based heterodyne measurement,”
IEEE Photon. J., vol. 10, no. 3, pp. 1–7, 2018.

87



REFERENCES

[161] B. Szafraniec and D. M. Baney, “Swept coherent spectrum analysis
of the complex optical field,” in Proceedings of the Lightwave Tech-
nologies in Instrumentation and Measurement Conference. IEEE,
2004, pp. 68–72.

[162] F. Ferdous, D. E. Leaird, C.-B. Huang, and A. Weiner, “Dual-
comb electric-field cross-correlation technique for optical arbitrary
waveform characterization,” Opt. Lett., vol. 34, no. 24, pp. 3875–
3877, 2009.

[163] A. Tikan, J. Riemensberger, K. Komagata, S. Hönl, M. Churaev,
C. Skehan, H. Guo, R. N. Wang, J. Liu, P. Seidler, and T. J. Kip-
penberg, “Emergent nonlinear phenomena in a driven dissipative
photonic dimer,” Nat. Phys., vol. 17, no. 5, pp. 604–610, 2021.

[164] D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B.
Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics, vol. 11,
no. 10, pp. 671–676, 2017.

[165] Z. Kong, C. Bao, O. E. Sandoval, B. Liu, C. Wang, J. A. Jaramillo-
Villegas, M. Qi, and A. M. Weiner, “Characterizing pump line
phase offset of a single-soliton Kerr comb by dual comb interfer-
ometry,” Opt. Lett., vol. 44, no. 6, pp. 1460–1463, 2019.

[166] S. G. Murdoch, R. T. Watts, Y. Xu, R. Maldonado-Basilio,
J. Parra-Cetina, S. Latkowski, P. Landais, and L. P. Barry, “Spec-
tral amplitude and phase measurement of a 40 GHz free-running
quantum-dash modelocked laser diode,” Opt. Express, vol. 19,
no. 14, pp. 13 628–13 635, 2011.

[167] I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multi-
heterodyne spectroscopy using stabilized optical frequency combs,”
Phys. Rev. Lett., vol. 100, no. 1, p. 013902, 2008.

[168] T. Butler, B. Tykalewicz, D. Goulding, B. Kelleher, G. Huyet, and
S. Hegarty, “Reconstruction of dynamical pulse trains via time-
resolved multiheterodyne detection,” Opt. Express, vol. 21, no. 24,
pp. 29 109–29 119, 2013.

[169] J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett,
“Multiheterodyne detection for spectral compression and downcon-
version of arbitrary periodic optical signals,” J. Lightwave Technol.,
vol. 29, no. 20, pp. 3091–3098, 2011.

88



REFERENCES

[170] N. K. Fontaine, D. J. Geisler, R. P. Scott, and S. Yoo, “Simul-
taneous and self-referenced amplitude and phase measurement
of two frequency combs using multi-heterodyne spectroscopy,” in
OFC/NFOEC. IEEE, 2012, paper OW1C.1.

[171] X. Yi, Q.-F. Yang, K. Y. Yang, and K. Vahala, “Imaging soliton
dynamics in optical microcavities,” Nat. Commun., vol. 9, no. 1,
p. 3565, 2018.

89



REFERENCES

90



Included papers A-E

91





Paper A

Krishna Twayana, Zhichao Ye, Óskar B. Helgason, Vijayan Kovend-
han, Magnus Karlsson and Victor Torres-Company, “Frequency-comb-
calibrated swept-wavelength interferometry”, Optics Express, 29, 15,
24363-24372, 2021.





Paper B

Krishna Twayana, Israel Rebolledo-Salgado, Ekaterina Deriushkina,
Magnus Karlsson, Jochen Schröder and Victor Torres-Company, “Spec-
tral Interferometry with Frequency Combs”, Micromachines, 13, 4, 614,
2022.





Paper C

Fuchuan Lei, Zhichao Ye, Krishna Twayana, Yan Gao, Marcello Girardi,
Óskar B. Helgason, Ping Zhao, and Victor Torres-Company, “Hyperpara-
metric oscillation via bound states in the continuum”, Physical Review
Letters, 130, 9, 09381, 2023.





Paper D

Krishna Twayana, Fuchuan Lei, Zhichao Ye, Israel Rebolledo-Salgado,
Óskar B. Helgason, Magnus Karlsson, and Victor Torres-Company, “Dif-
ferential phase reconstruction of microcombs”, Optics Letters, 47, 13,
3351-3354, 2022.





Paper E

Krishna Twayana, Israel Rebolledo-Salgado, Marcello Girardi, Fuchuan
Lei, Óskar B. Helgason, Magnus Karlsson, and Victor Torres-Company,
“Multi-heterodyne differential phase measurement of microcombs”, sub-
mitted to Conference on Lasers and Electro-Optics Europe, 2023.




