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On the mechanics of pulp fibre networks 
 
PER BERGSTRÖM 
Department of Mechanics and Maritime Sciences 
Division of Fluid Dynamics 
Chalmers University of Technology 
 

Abstract 
 
This work explores mechanics of fibre networks, especially for pulp fibre networks 
commonly found in hygiene products, such as baby diapers, incontinence and feminine care 
products, bathroom tissue and kitchen towels. Given that the main functionalities of these 
products are directly dependent on network configuration, designing these complex network 
structures for better performance, better utilisation of materials and less resources used 
requires in-depth knowledge and understanding of the structure and properties on the fibre 
level. The current work combines experimental, theoretical, and numerical results using the 
Discrete Element Method (DEM) to further this in-depth understanding of network 
deformation. The investigation starts with focusing on the effect of compression on network 
deformation, showing how deformation of the constituent fibres are dominated by bending of 
fibres at low solid volume fraction while at higher solid volume fraction transitioning to being 
dominated by fibre-fibre contact deformation. This is followed by showing the relationship 
between network solid volume fraction and tensile strength and stiffness. We continue by 
shifting the focus to permanent network deformation. The effect of fibre-fibre adhesion and 
fibre plastic contact deformation on permanent network deformation due to compression is 
investigated. Results show a synergetic effect of combining the two phenomena resulting in a 
significant increase in permanent deformation. Finally, we explain the dominating physics 
behind deformation due to the network transitioning from a dry to a wet state showing how 
the network reverts to a state of maximum unforced packing. The novel findings in this work 
further elucidates the mechanisms behind deformation of fibre networks, in particular for pulp 
fibre networks, and in consequence the functionality of products consisting of such networks. 
This knowledge provides insights that can be translated into improved performance, more 
sustainable resource use as well as optimization of the manufacturing process for a wide range 
of hygiene products. 
 
Keywords: Fibre networks, mechanics, pulp fibres, Discrete element method. 
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1. Introduction 
 

This thesis concerns modelling of mechanics of fibre networks, especially for low density pulp fibre 
networks commonly found in hygiene products, such as baby diapers, incontinence and feminine 
care products, bathroom tissue and kitchen towels. These common household products are used on 
a regular basis by billions of people around the world to handle their everyday life. The performance 
of these products helps users with widely varying aspects of life, from cleaning up spilled milk and 
hand hygiene to the handling of menstruation and incontinence. For this range of products, some of 
the most important performance properties are directly related to the mechanics of the respective 
fibre networks. Softness, pliability and structural integrity are crucial product properties. 
Additionally, since the primary functionality of the products is the absorption of liquids, fluid 
transport properties of the network are also primary performance properties. Due to the nature of 
this type of materials, connected fibres in a matrix of void, an important characteristic of networks 
for both mechanical properties and fluid transport properties is the relationship between the fibre 
volume and the void volume. In this work this relationship is characterized by the solid volume 
fraction (SVF), defined as the ratio of fibre volume per total volume. Properties like permeability and 
capillary pressure, as well as network strength and stiffness are strongly dependent on the solid 
volume fraction of the network and hence dependent on network deformation. This influence is 
often used in industry in attempts to tailor materials with specific mechanical and fluid transport 
properties. The geometry of the selected fibres, inter-fibre bonding and the degree of deformation is 
used to manufacture materials with specific function. However, due to the presence of, in many 
cases, extreme softness or deformability of this type of networks, even the smallest stress on the 
networks during end-use can have a significant impact on the solid volume fraction of the material 
and, consequently, on both the mechanical behaviour and the fluid transport properties of the 
product. 

The importance of mechanical properties and deformation, both in production and in end-use, poses 
constant challenges for product designers in designing network structures for improved product 
performance, better use of materials, and lower costs. These challenges demand ever-increasing 
need for in-depth knowledge and understanding of the network and properties on the fibre level. 
From an application point of view, a key question is understanding the dependence of mechanical 
properties and deformation of the network on individual fibres and their properties. The reason for 
this is that a typical design question is not about constitutive parameters but rather about the effects 
on end-use performance of fibre properties, such as fibre-shape, -length and -stiffness, together with 
the effects of specific steps of the manufacturing process (for example compression). This leads to a 
great importance of understanding network deformation and its relation to the properties of the 
constituent fibres when designing networks for optimal product function. 

When using a modelling approach to create this in-depth knowledge and understanding, the choice 
of the models is crucial for the end result, both for attaining a representative network structure and 
understanding network deformation. In this study we choose to model our networks as a discrete 
system in three dimensions (3D) and pay special attention to fibre–fibre interactions in order to 
evaluate network deformations. We have used a particle-based method termed the Discrete Element 
Method (DEM), which is a robust and intuitive method well suited for handling important features of 
network deformation such as large deformation, relative translation/rotation of components and the 
important emergence/breakage of contacts between components which characterizes this type of 
structures. Using DEM, we have developed a numerical framework and used it for in-depth 
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understanding of the relationship between network deformation and properties of the constituent 
fibres in four cases important for end-use properties. The selected cases are: i) the effect of 
compression on network deformation, ii) the relationship between network solid volume fraction 
and tensile strength and stiffness, iii) the effect of fibre-fibre adhesion and plastic contact 
deformation on permanent network deformation due to compression and, iv) the effect of 
spontaneous network deformation due to the network transitioning from a dry to a wet state. In the 
following, we will look at how these subjects have been discussed in the literature. 
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2. Background 
 

A fibre network is a commonly seen structure in industrial materials, not only hygiene products and 
paper but also nonwovens, filters and isolation materials. It can also be related to networks formed 
in agricultural processes such as packed hay or industrial processes involving the stacking or packing 
of elongated particles. Fibre networks are also prominently occurring in biological materials such as 
collagen fibre networks and in the cytoskeleton of eucaryotic cells. These networks are often used 
industrially and encountered in the biological world for their combination of mechanical properties in 
relation to weight, as well as their fluid transport properties due to the inherent permeable nature of 
these materials. 

Fibre networks can be categorized into a number of subclasses, such as bonded or unbonded 
networks, rigid, flexible or semi-flexible, and isotropic or anisotropic.1 In this classification bonded 
networks are seen as networks where fibres are mechanically attached to each other at fibre-fibre 
contact points, which prohibits the relative sliding and detachment of fibres in these contacts. This 
leads to a relatively more mechanically stable structure and tending to a more elastic behaviour of 
the material. Materials often characterized in this class include several biological networks such as 
those of collagen or cytoskeleton of eucaryotic cells. It also includes industrial materials like paper 
and nonwoven. The counterpart to bonded networks are unbonded fibre networks where fibres are 
unrestricted from detaching and from relative sliding in contact points aside from the impact of fibre-
fibre friction, known as fibre rearrangement. The structural integrity in this case is very much related 
to the entanglement of the constituent fibres which has led to this class of network sometimes being 
referred to as entangled networks. Unbonded fibre networks, as opposed to bonded networks, tend 
to lead to networks with relatively less mechanical stability and often prone to non-elastic or non-
reversible deformation due to relative sliding of the constituent fibres. Materials often characterized 
in this class include pulp fibre networks in hygiene products and stacks of agricultural or industrial 
products. In between these two classes there exist networks expressing behaviour of both bonded 
and unbonded networks depending on circumstances. This includes weakly bonded networks 
(bonded networks where bonds easily break) or adhesive networks, where attractive forces between 
fibres form bonds at fibre-fibre contact points that can detach and re-attach during deformation. The 
pulp fibre networks that we are primarily interested in in this work can be classified as semi-flexible, 
anisotropic networks ranging from unbonded to weakly or adhesively bonded. 

Modelling compressibility of fibre networks has a long history, originating in the textile area. Here, 
compressibility is defined as the uniaxial compression response of fibre network in the thickness 
direction (z-direction) in relation to solid volume fraction or the closely related network density, with 
different terminology being used in different communities. The pioneering work of compression 
modelling is the semi-empirical model developed by van Wyk2 where he proposed the expression for 
pressure, 𝑃, as a function of solid volume fraction 𝜙: 

𝑃 ∝ ቀቀ
థ

థబ
ቁ

௡
− 1ቁ      (Eq. 1) 

where 𝜙଴ is the unloaded solid volume fraction. The exponent, n, is describing the development of 
pressure and was found by van Wyk to be equal to 3 for originally isotropic networks. The work was 
followed up by several researchers using statistical geometry modelling to address the issues such as 
the effect of anisotropy, the development of fibre-fibre contacts and the steric hindrance effect on 
fibre-fibre contacts.3-7 Notably it was shown by Toll and Månson that the exponent n equalled to 5 
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for networks with planar fibre orientation, in contrast to the value of 3 obtained by van Wyk for 
isotropic networks.6 For the development of fibre-fibre contacts Komori and Makishima developed 
what is commonly referred to as a random contact equation to describe the relationship between 
solid volume fraction and number of fibre-fibre contacts.3 It was shown that the change in the 
number of contacts is directly proportional to the change in the solid volume fraction. Further 
extension of the work includes Toll deriving an equation for the number of fibre-fibre contacts 
accounting for effects from fibre orientation.5 

𝑁௖ =
଼

గ
𝜙𝑟𝑓 + 4𝜙(𝑔 + 1)     (Eq. 2) 

where 𝑁௖ is the average number of fibre-fibre contacts per fibre, defined as the average number of 
contacts a fibre experiences (not to be confused with the total number of fibre-fibre contacts in a 
network divided by the total number of fibres). r is the fibre aspect ratio. f and g are scalars 
dependent on the fibre orientation. In the case of 3D random orientation, f and g take the values 
𝜋 4⁄  and 1/2, respectively. For 2D random orientation f = g =2 𝜋⁄  and for aligned fibers, f = 0, g = 1. 
For non-aligned slender fibres with r ≫ 1 this can be reduced to:5 

𝑁௖ =
଼

గ
𝜙𝑟𝑓      (Eq. 3) 

Other statistical geometry considerations regarding the nature of random fibre networks related to 
the maximum unforced packing of fibres. The latter is defined as the volume fraction at which a given 
network cannot be further compressed without deformation or interpenetration of rods. Evans and 
Gibson suggested that this occurs when the average fibre is restricted from any translational or 
rotational motion due to contacts from neighbouring fibres.8 By using the caging number, defined as 
the average minimum number of randomly placed fibre-fibre contacts on a single fibre that 
immobilize all its translations and rotations, this allows for estimating the maximum unforced 
packing of a network using a random contact equation with 𝑁௖ equal to the caging number. Using 
Toll’s formulation of the random contact equation this leads to the following equation: 

𝜙௠௔௫ =
గ

଼

ఊ

௥௙
      (Eq. 4) 

where 𝜙௠௔௫ is the solid volume fraction at maximum unforced packing and 𝛾 is the caging number. 

Following the achievements using statistical modelling further studies on mechanics of fibre 
networks focused on overcoming the shortcomings of the statistical approach. While proving very 
successful in characterizing networks, the models developed require some crucial assumptions, such 
as affine deformation of a fibre beam segment, leading to friction and sliding between fibres not 
being explicitly considered. The models also assume bending deformation of fibres as the only fibre 
deformation mode, ignoring fibre shear, twist, stretch and deformation of fibre in the transverse 
direction. This led to researchers turning to numerical studies of fibre networks mechanics primarily 
using discrete element (DEM) or bead-spring models to capture fibre deformation and also to 
account for fibre-fibre rearrangement.9-17 The latter is an important aspect, especially in non-bonded 
networks, as it significantly impacts both the overall response and the non-reversible deformation of 
these soft materials. A study by Rodney et al. confirmed that the simulated stresses using this class of 
models followed the dependence on the solid volume fraction (SVF) predicted by van Wyk, a power 
function with an exponent of 3, and that the number of fibre-fibre contacts increased linearly with 
SVF.9 The numerical models were shown to account for fibre rearrangement, in some cases leading 
to non-reversible deformation due to compression.10,11 The fibre deformation mechanism has also 
been further clarified, where Subramanian & Picu showed that for triaxial compression of isotropic 
networks in the initial stage of compression fibres deform mainly in the bending mode, whereas in 
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the high-density range the fibre axial deformation mode starts to dominate.10 This type of transition 
behaviour in terms of a dominating deformation mode had already been shown for tensile 
deformation of bonded networks, from the work of Head et al., where the deformation mode 
transitions between bending and axial deformation depending on the network solid volume fraction 
and deformation.18 

It is noteworthy that there are studies that specifically focused on using numerical methods for 
further capturing the effects of fibre deformation and contact mechanics. Notably, Guo et al. 
simulated uniaxial compression of fibre assemblies by studying compression force development and 
hysteresis in the loading-unloading cycle for different contact force models and plastic deformation 
of fibres.19 It was found that the elastic fibre bending model overpredicted the loads compared to an 
elasto-plastic model in the low solid volume fraction range and that the elastic fibre-fibre contact 
model overpredicted the loads compared to an elasto-plastic model in the high solid volume fraction 
range. Using adhesive contact models, Negi and Picu studied response of non-bonded planar fibre 
networks stabilised by fibre-fibre adhesion due tensile loading.15 The same authors studied 
mechanical behaviour of bonded fibre networks with inter-fibre adhesion in uniaxial compression 
using a 2D model. The results in compression for small strains showed an initial linear elastic regime 
followed by strain localization.16 

Numerical simulations were also used to investigate the networks in relation to stability onset and 
maximum unforced packing. For fibres with a high aspect ratio, Wouterse et al. found the caging 
number of fibres to be 9 by using Linear Complementarity Problem calculations.20 The same authors 
compared their findings to mechanical contraction simulations using Molecular Dynamics simulations 
for random packing of thin rods of constant length to determine the stability onset, defined as the 
limiting solid volume fraction upon which further contraction leads to a non-vanishing pressure. The 
authors found the average number of fibre-fibre contacts to be dependent on the aspect ratio for 
fibres with a low aspect ratio, while having a constant value around 7.5 for fibres with an aspect ratio 
above 40.20 

Overall, these findings paint the picture of non-bonded, semi-flexible fibre networks, the class to 
which pulp fibre networks is often attributed, as being a class of materials with a wide range of 
regimes and with very varying responses to stresses. Networks are characterized by the strong 
influence of the solid volume fraction on macroscopic properties like mechanical properties and fluid 
transport properties in combination with an extreme deformability of the material. This leads to that 
slight changes in stress, historic stress or changes in fibre-fibre interactions can lead to major 
changes in macroscopic material properties and changes in dominating factors for network 
deformation. This results in a material with ever-changing properties. It is, therefore, crucial to 
understand changes in the solid volume fraction and the dominating factors for network deformation 
under the present circumstances in order to understand the macroscopic behaviour of the material. 
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3. Objectives 
 

The overall goal of this thesis has been to develop fundamental understanding of the complex 
mechanics of non-bonded, anisotropic fibre networks such as the pulp fibre networks commonly 
found in hygiene products. The focus has been placed in a few selected areas not previously covered 
in literature, but with great relevance for the development of products consisting of pulp fibre 
networks. 

 First, we focus on uniaxial compression of anisotropic as opposed to isotropic fibre networks 
to further understand the relationship between network deformation and deformation of 
the constituent fibres for this type of networks by investigating the dominating fibre 
deformation mode for different degrees of compression. 

 Second, we focus on deformation due to tensile stress and study the scaling of elastic 
modulus with network solid volume fraction and the scaling of strength and strain-to-failure 
with solid volume fraction and fibre-fibre bond strength in anisotropic networks of low solid 
volume fraction.  

 Third, we focus on non-reversible deformation due to uniaxial compression and investigate 
the contribution of fibre rearrangement, fibre-fibre adhesion and elasto-plastic contact 
deformation of fibres on the subsequent change in unloaded solid volume fraction of 
networks. 

 Finally, we study the change in the solid volume fraction in pulp fibre networks due to 
transitioning from a dry to a wet state. In this work we aim to characterize the state to which 
the network transitions and identify the main mechanisms driving the change in the network 
solid volume fraction. 

  



10 
 

  



11 
 

4. Methodology 
In order to achieve the objectives of this work we combine experimental, numerical and theoretical 
approaches, with all three perspectives contributing to create a complete picture. 

 

Fig 1: Illustration of combining experimental, numerical and theoretical approache to create a complete picture. 

The focus of experimental procedures has been, given the importance of the network solid volume 
fraction on network response to deformation, to quantify and characterize changes of this 
parameter. For numerical results, a framework has been developed for seamlessly generating and 
testing fibre networks by using the Discrete Element Method (DEM). DEM is commonly used to 
model and analyse packing, mixing and dynamics of granular materials on a particle-level in a wide 
range of applications such as mining, agriculture and soil science.21-25 The main goal in this work has 
been to obtain information on a fibre-level unattainable by experimental methods, such as fibre 
deformation and quantification of fibre-fibre contacts, as well as the ability to fully control the 
physics involved in order to independently study the impact of different phenomena. In addition, we 
complement our experimental and numerical work with theoretical explanations and make use of 
the existing fibre network theory from literature. This includes utilizing theory for network 
configuration and the relationship between the solid volume fraction and the number of fibre-fibre 
contacts from statistical geometry modelling, as well as using the theory for fibre-level phenomena 
such as caging of fibres.5,20 

4.1 Experimental methodology 
Experimental procedures were performed in all the papers included in this thesis, with the exception 
of Paper II where experimental results from literature were used. The purpose of these 
measurements was to characterize network deformation and serve as a basis for understanding the 
underlying physics. 

Due to the objectives of this work, much of the experimental methods revolves around network solid 
volume fraction and changes to network solid volume fraction of pulp fibre networks under various 
conditions. Samples used for measurement consisted of networks of the type often found in personal 
hygiene products, consisting of air-laid Southern Pine pulp fibres. The process of creating the 
network involves separated fibres transported in air being deposited on a perforated plate resulting 
in a low-solid volume fraction anisotropic network. 

The solid volume fraction of the sample is calculated as 𝜙 = ൫𝑚 𝜌௙⁄ ൯ (𝐴 ∙ ℎ)⁄ , where 𝜙 is the 
network solid volume fraction, 𝑚 is the sample mass, 𝜌௙ is the fibre density, A is the area under load 
and h is the thickness (height) of the sample. Thickness was measured either continuously or under 
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constant static load. Continuous measurements under increasing or decreasing load were performed 
using an Instron tensile testing machine equipped for compression measurements. Measuring 
thickness under constant static load was performed using electronic thickness gauge (Fig 2). 

 

Fig 2: Example of thickness gauge equipment. Left) a submerged fibre network sample. Right) a saturated fibre network 
sample. 

The extremely deformable nature of this type of material led to the need for extra considerations 
and care when handling or measuring samples, especially for very low solid volume fraction samples 
and for measurements of unloaded solid volume fraction. Measurements or testing under even the 
slightest load inevitably led to some degree of non-reversible deformation. Therefore, repeated 
measurements of the same sample were avoided as this will not lead to the same result due to 
deformation of the network. Extreme care had to be taken when handling, transporting, storing and 
placing the sample flat in the measuring equipment in order not to introduce unwanted deformation 
of samples. Due to the moisture sensitivity of contact mechanics of fibre-fibre contacts within the 
sample, all testing was performed in a controlled environment of 23℃ and RH 50%. Measurements 
intended to characterize the unloaded network solid volume fraction required extra considerations 
and meticulousness. Care had to be taken to ensure that the sample was perfectly flat on the 
underlying surface without flattening the sample in such a way as to introduce deformation of the 
network. Another implication in this type of solid volume fraction measurements is (unlike in the 
simulated results) that one cannot measure only in the bulk of the material in order to eliminate 
edge effects. Such effects include increasing or decreasing the solid volume fraction close to the top 
and bottom edges of the sample. In the measurements performed this was countered by using 
samples of high areal density to reduce the impact of such edge effects on the overall measured solid 
volume fraction. With these considerations taken into account, it was possible to achieve relevant 
and accurate results. 

4.2 Formulation of the numerical framework 
In modelling mechanics of non-bonded, semiflexible, anisotropic fibre networks on a fibre-level, 
there are several challenging requirements on the numerical framework in order to capture the 
dominating mechanical processes in a satisfactory manner. First, it is essential for the framework to 
represent the geometry and mechanical properties of fibres in a relevant way while accommodating 
a sufficient number of fibres to form a representative network. Second, the framework needs to 
properly represent the mechanics of fibre-fibre contacts, the relative translation and rotation of 
fibres as well as the emergence and breakage of fibre-fibre contacts. The latter phenomenon poses a 
critical computational challenge for any choice of numerical framework. Due to the nature of semi-
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flexible non-bonded fibre networks, changes in fibre-fibre contacts are driving the mechanical 
response and deformation of networks under both tensile and compressive stresses. During 
compression of networks, the number of fibre-fibre contacts per fibre can often increase more than 
tenfold and result in fibres having the average distance between contacts with other fibres shrink as 
low as close to a single fibre diameter apart. This places great requirements on the model to 
accurately detecting the emergence and breakage of fibre-fibre contacts in a computationally 
efficient way. The efficiency of the contact search algorithm is therefore crucial to consider when 
choosing a numerical framework, as this step of the calculations is oftentimes the most 
computationally costly. The closely spaced contacts also lead to a need for finely resolved fibres to 
accurately describe fibre deformation. Aside from fibre properties, another area of importance is a 
generation of a realistic network and capturing the impact of network properties such as 
heterogeneity, fibre orientation, among others, on the mechanics of the network. 

In this work we have used a numerical framework based on the Discrete Element Method (DEM) to 
model individual fibres. The fundamental element within DEM is an individual particle and the 
method goes into particle motion and particle-particle interactions. These interactions can take 
various forms, such as contact interactions in the normal direction (compressibility of particles) and 
tangential direction (friction between particles). Particles may also be bonded together to form 
structures, such as fibres, interacting with each other through linear or nonlinear forces or torques. 
The law governing this system of particles is the conservation of linear momentum and angular 
momentum: 

𝑚௜𝒓̈௜ = ෍ 𝑭௜௝ + 𝑭௜
஻

௝
 

𝑰௜𝜽ప
̈ = ෍ 𝑻௜௝

௝
 

where 𝑚௜ is the mass and 𝒓̈௜  is the acceleration of the i-th particle, 𝑭௜௝ is the interaction force 
between the i-th and j-th particle and 𝑭௜

஻ is the body force acting on the i-th particle. For the angular 
momentum, 𝑰௜  is the moment of inertia tensor, 𝜽ప

̈  is the angular acceleration and 𝑻௜௝  is the 
interaction torque between the i-th and j-th particle. In this work fibres are modelled as a string of 
connected spherical particles. Particles constituting a fibre are spaced one diameter apart and linked 
by bonds with stiffnesses in the normal, shear, twist and bend modes. While non-bonded particles 
can interact by normal and tangential contact forces, for bonded particles the contact interaction is 
disabled and the interaction forces, 𝑭௜௝, and moments, 𝑻௜௝, come from the bonded interaction. 

The equations for conservation of linear momentum and angular momentum are solved by time 
integration through the following process: 

1. Apply initial conditions for positions and velocities of particles. 
2. Run the contact search algorithm. 
3. Calculate all forces and torques according to particle–particle interaction rules. 
4. Calculate accelerations from the forces for each particle. 
5. Calculate velocities and positions at the next time step for each particle. 
6. Go back to step 2. 

To generate realistic initial networks for use in the simulations, fibres are spawned randomly in a 
dilute suspension and deposited by gravity onto a wall element using the DEM framework to form a 
mechanically stable anisotropic fibre network of low solid volume fraction with similar characteristics 
to what is commonly seen in papers, hygiene products and nonwovens. An illustration of typical fibre 
and fibre network used in this work can be seen in Fig 3. 
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Fig 3: Illustration of a fibre modelled as a string of 110 connected particles (above) and a fibre network consisting of such 
fibres (below). The network is viewed at an angle from above and consists of 3000 fibres with a length of 2 mm deposited in 
a 1x1cm area. 

Mechanical testing of the simulated networks under, for example, tensile or compressive 
deformation can then be performed using the generated network structure. In this work we have 
primarily focused on uniaxial compression and unloading of networks that is simulated by having an 
upper wall element compressing the network from above, while registering the pressure in the 
confining wall elements. 

Some benefits of using this numerical framework include that fibre features and properties can be 
represented in a flexible way. Fibre geometry, such as its diameter and length, can be controlled by 
the diameter and number of particles used to form a fibre, while fibre curl, kink and twist can be 
controlled by the relative position between particles in equilibrium. The mechanics of fibre-fibre 
contacts is modelled by the contact force model for particle-particle contact and can represent 
various forms of contact interactions, such as elastic and elasto-plastic transverse compression, 
friction and adhesion between fibres. Mechanical properties of the fibres can be modelled by 
defining appropriate material-specific interactions of the particle–particle bonds within a fibre in 
order to represent different fibre deformation modes, such as fibre stiffness in normal, shear bend 
and twist modes. Being a particle-based approach, DEM inherently handles the relative translation 
and rotation of particles, as well as the emergence and breakage of particle-particle contacts. Using 
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the approach of fibres consisting of spherical particles spaced one diameter apart leads to fibres 
being relatively finely resolved with position nodes spaced one fibre diameter apart. Spherical 
particles are also the most computationally efficient particle shape for contact search algorithms. 

However, some considerations related to the framework that required extra attention in the course 
of this work are worthy of notice. Due to the representation of fibres as a string of spherical particles 
some questions arise. The cross-sections of the fibres are inherently circular, not allowing for the 
modelling of alternative cross-sectional shape of fibres. This raises the question of how to choose a 
representative fibre diameter and how to calculate a representative volume when modelling fibres, 
like wood-based pulp fibres, that do not have a perfectly circular cross-section. For calculating the 
representative volume of a modelled fibre, it has in this work been seen as most fitting to assume a 
fibre volume equal to the cross-sectional area of the constituent particles times the fibre length, as 
opposed to the volume of the constituent particles. For choosing a representative fibre diameter it 
was deemed as most appropriate to represent fibres in such a way that the cross-sectional area of 
the fibre matches that of the physical fibre modelled. This approach allowed us to ensure that the 
volume occupied by the fibre in a simulated network matches that of the physical fibre and hence an 
accurate estimation of solid volume fraction of a modelled network. This is based on the long-known 
dependence of network mechanical response on the network solid volume fraction, such as the 
relationship between pressure and solid volume fraction shown in the work of van Wyk.2 Another 
implication of the representation of fibres as a string of particles was that the approach inevitably 
introduces a slight effective surface roughness of the fibres which will have to be taken into 
consideration. Alternative approaches exist, such as the one that connects particles at less than one 
diameter apart in order to reduce the effective surface roughness of the modelled fibre. Such an 
approach, however, introduces additional complications in representing fibre contact mechanics due 
to overlapping particles. In this work we have chosen to model fibres using particles spaced one 
diameter apart while acknowledging the existence of a certain surface roughness. Motivation for this 
is twofold. The effect has been studied by Picu and Subramanian showing no impact of artificial 
friction for a similar system.10,26 Additionally, the pulp fibres replicated in experiments are also not 
perfectly flat and inherently have a degree of surface roughness. 

Another point that we had to consider when modelling fibre networks using the chosen modelling 
approach was balancing the kinetic energy and the damping in the system. The excess kinetic energy 
can lead to unphysical behaviour and oscillations in the network while excess damping in the system 
can lead to artificial forces in the network and excessive computational cost for allowing the system 
to settle to a near-static equilibrium (the state we are predominantly interested in in this work). 
Approaches used in this work for handling the identified problems included stepwise deformation 
(for example during simulated network compression), compressing walls are moved in sequences of 
slow compression followed by enough relaxation time to allow the network to dissipate kinetic 
energy and settle to a near-static equilibrium. During the simulations it was essential to monitor the 
kinetic energy and fibre deformation energy in the system to ensure that the network had reached 
this near-static state and was not expressing unphysical behaviour. Measurables monitored included 
the total kinetic energy, which should be allowed to reach a near-constant value, and the ratio 
between the total kinetic energy and fibre strain energy in the system, suggested by Abd El-Rahman 
and Tucker to be less than 0.1 for a quasi-static system.27 Additional measures included monitoring 
the rate of change in individual fibres to ensure that all the fibres were stable or decreasing in kinetic 
energy. Another way of monitoring employed was looking at the average kinetic and fibre strain 
energies when sweeping over the network in the x, y or z-direction. In case of an external stress on 
the network, opposing stresses were monitored and should have settled at a near-constant value 
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and cancel each other, e.g., under uniaxial compression, the pressure on the top wall and bottom 
wall should have settled at near-constant values and cancel each other out.  

The final requirement for successfully carrying out a project would prove to be patience. The 
countermeasures applied to unphysical behaviour of the system, i.e., reduced rate of deformation 
and increased relaxation times, while effective in reducing the artificial kinetic energy led to large 
computational cost with each simulation typically requiring significant computational time. 

4.3 Theoretical considerations 
Models developed from studies of statistical geometry of fibre networks are frequently used in 
research and industry alike. This type of models, while often subject to some limiting assumptions 
like a constant fibre length, fibres assumed rigid or no fibre rearrangement, has turned extremely 
useful for understanding fibre network behaviour. In this work we make use of some such models in 
order to support our experimental and numerical findings with theoretical explanations. This includes 
using the well-established relationship between pressure and solid volume fraction by van Wyk 
where the relationship is used to characterize network deformation and interpolate data between 
known datapoints.2 Extrapolation of data based on the van Wyk expression can also be viable as long 
as the network is within the bending dominated regime. Another such model of great importance is 
the random contact equation to describe the relationship between the solid volume fraction and the 
number of fibre-fibre contacts.3,5 This equation is useful in combination with experiments where the 
relationship can be used to estimate the number of fibre-fibre contacts in a network which is 
otherwise difficult to determine experimentally. Another application of the equation used in this 
work is the formulation of equations for estimation of the theoretical maximum unforced packing of 
networks.5,20 This was done by combining the random contact equation with the theory related to 
the concept of caging number, the latter defined as the average minimum number of randomly 
placed fibre-fibre contacts on a single fibre that immobilize all its translations and rotations. The 
concept of maximum unforced packing was used in this work in relation to numerical results to 
further understand network structure in relation to this theoretical network configuration. 
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5. Selected results 
The selected results mirror not only the achievements during the course of this work, but also the 
emergence of new research questions and the development of ideas on how to solve them. We were 
initially focused on obtaining important information in relation to network deformation and fibre 
deformation mechanisms of pulp fibre networks in tensile and uniaxial loading. The obtained results 
further highlighted the relevance of unloaded network solid volume fraction on network deformation 
and provided important indications related to the origin of changes of this parameter. It was then 
straightforward that the work advanced into explaining the mechanisms behind changes to the 
unloaded solid volume fraction in two of the most relevant cases of change, due to uniaxial 
compression and transitioning from a dry to wet state. 

5.1 Paper I 
In hygiene products such as diapers and tissue, mechanical responses under uniaxial compression are 
an integral part of both product properties and production, whether in the form of a baby sitting on a 
diaper or a compression unit in the production process. Understanding the deformation mechanism 
and the impact of fibre and network properties, therefore, has a direct impact on product and 
process development for this class of products. In Paper I, we investigated uniaxial compression of 
non-bonded anisotropic fibre networks with fibres oriented mainly in the in-plane direction, with a 
relatively soft transverse compressibility, based on measurements of pulp fibres. In this paper we 
used density to characterize the packing of the network instead of the closely related solid volume 
fraction, however, the results from both measurements on pulp fibre networks and the simulations 
using the numerical framework (Fig 4) followed the expected development of pressure in relation to 
the solid volume fraction from van Wyk, showing a power law type constitutive relation.2 

(a) (b)  

Fig 4: Stress-density relationship with power-law fitting (in log-log scale) (a) simulation results, (b) experimental results. 
Fitting is represented by the dashed line. 

Next, we investigate the components of fibre strain energy stored in the normal, bending, shearing, 
twisting and fibre-fibre contact deformation modes during compression, shown in Fig 5. 
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Fig 5: Partition of normalized strain energy, where 𝜖௜  represents the strain energy in each deformation mode. In these 
figures 𝜌 is the network density and 𝜌௙ is the fibre density, hence 𝜌  𝜌௙⁄  is an alternative way of writing solid volume 
fraction. Here the x-axis is also compensated for the unloaded threshold density of the network 𝜌௙. 

While the anisotropic fibre network still shows the general power-law-type constitutive relation in 
uniaxial compression, we note an interesting difference in the fibre deformation mechanism for this 
network. Fig 5 shows the different components of the fibre strain energy stored in the normal, 
bending, shearing, twisting, and fibre-fibre contact deformation modes. In the low compression 
range, bending and shear deformations make the major contribution similar to earlier studies on 
isotropic networks.10 In the high compression range, however, the fibre-fibre contact energy makes 
the most significant contribution. This is in contrast to the literature results for the isostatic tri-axial 
compression of the initially isotropic fibre networks, where the contact energy is negligible as 
compared with bending and normal deformation modes.10 The rationale for this, at least in the 
system studied here, is that the fibres are more oriented in the plane direction so that fibre-fibre 
contacts naturally take the uniaxial compression load, whereas fibre normal-directions are very much 
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oriented in the plane perpendicular to the compression. In addition, unlike previous studies, fibre-
fibre contacts are much softer and can therefore compete with the bending deformation mode.  

These findings brought new insights into the fibre deformation mechanisms dominating for uniaxial 
compression of this type of anisotropic networks at high degrees of compression, insights valuable 
for development of products consisting of such networks. Additionally, these findings would later 
provide valuable insights regarding the origin of permanent deformation due to uniaxial compression 
of this type of networks. 

5.2 Paper II 
Structural integrity of the network when subjected to tensile load is closely related to both product 
and production performance in the development of hygiene products such as diapers and tissue, and 
issues such as web breakage during production or core crumbling of diapers during use are serious 
concerns in product and process development. In Paper II, again using density to characterize packing 
of the material, we investigated network stiffness, strength and strain-to-failure of low-density 
networks under tensile stress. We used a deposited fibre network, compacted to a range of volume 
fractions relevant for the types of hygiene products studied in this work, in effect varying the number 
of fibre-fibre bonds holding the network together. 

Studying results for network elastic modulus 𝐸, assuming 𝐸 ∝ (𝜌 − 𝜌௧௛)௡, we find that the exponent 
𝑛 was not constant but changed slightly from 2.16 to 1.69 (Fig 6a). 

(a) (b)  

Fig 6: Elastic modulus of network as a function of network density. (a) Shown in ln-ln scale. (b) Comparison to experimental 
data.28 

The results may correspond with the transition behaviour seen in the work by Licup with changing 
values of the exponent from 2 in the lowest density range to 1 in the highest density range.29 A 
comparison to experimental data from Rigdahl and Hollmark (Fig 6b) shows that the simulated 
results cover a lower density range of the elastic modulus vs. density curve of typical paper sheets 
very well.28 

The distribution of total fibre strain energy in the network as a function of density (Fig 7) also shows 
that in the lower density range, most of the strain energy is indeed stored in the fibre bending mode, 
whereas in the higher density range, it is in the fibre stretching mode. 
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Fig 7: Distribution of total fibre strain energy during deformation for networks with varying density. 

We proceeded to look at the results for network strength as a function of density and bond strength 
using the same seven virtual networks. In simulations we varied bond strength by multiplying the 
same factor to all four modes of the bond strength values. The results suggested that the density, 
𝜌 − 𝜌௧௛, and shear bond strength, 𝜏௕, are separable as variables, and the dependence of network 
strength, 𝜎௖, is generally expressed as: 

𝜎௖ ∝ (𝜌 − 𝜌௧௛)௠ ∙ 𝜏௕
௟   

All data collapse very nicely as seen in Fig 8a, with the exponents 𝑚 = 1.88 and 𝑙 = 1.08. 

(a) (b)  

Fig 8: Network strength as a function of network density. (a) Simulated results normalized by bond strength. (b) Experimental data from 
Eriksson.30 
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To compare the simulated results to experimental data from literature we used data from Eriksson.30 
When we fitted the data with a power-law dependence 𝜎௖ ∝ (𝜌 − 𝜌௧௛)௠ with the same threshold 
density value as the simulation (𝜌௧௛ = 63.3 𝑘𝑔/𝑚ଷ), we found the exponent 𝑚 = 1.82. The value 
showed an excellent agreement with the value of the exponent from the simulation 𝑚 = 1.88. 

Finally, we plotted strength vs. strain-to-failure, the so-called “failure envelope”, in Fig 9. 

 

Fig 9: The failure envelope, network strength vs strain at failure, for simulated networks with varying density. 

The results show a C-shaped relationship which corresponds with experimental results from the 
literature finding that the failure envelope of wet web strength of hardwood kraft pulps forms a “C-
shape” for wet sheets with varying density.31 

In conclusion, the simulation results for elastic modulus, strength and strain-to-failure showed 
excellent agreements with the respective experimental data in the literature. The scaling result of 
elastic modulus with density showed the typical transition from bending to stretching with changing 
values of the exponent previously shown in literature. Strength, however, showed scaling with 
density with a constant exponent within the density range investigated. The results (while expressed 
in terms of density above) imply the extreme importance of network solid volume fraction in the 
unloaded state (by directly affecting the number of fibre-fibre bonds holding the network together) 
and the strength of these bonds on network response to tensile deformation. This highlights the 
importance of accurately describing these two parameters when modelling these systems. However, 
given an accurate description of number of fibre-fibre bonds and bond strength it is noteworthy that 
the 3D-effects on mechanical properties (shearing, twisting of fibre and emergence of new fibre-fibre 
contacts) were found to be marginal in tensile deformation while in the case of uniaxial compression, 
the 3D effects were very significant, as discussed earlier. This highlights a difference in terms of 
modelling response to deformation for these networks and should be taken into consideration when 
choosing numerical framework. 

5.3 Paper III 
The importance of network solid volume fraction on network behaviour for both mechanical 
properties and fluid transport properties is well known from literature. This importance, especially in 
the unloaded state, is also highlighted in Paper I and II. For uniaxial compression the crucial impact of 
the unloaded solid volume fraction is seen by the dependence of pressure development on the 
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threshold density, 𝜌௧௛. In tensile deformation the importance is seen by the number of bonded fibre-
fibre contacts, directly dependent on the solid volume fraction, being a prime source of network 
strength. In addition to this importance of accurately describing the unloaded solid volume fraction 
of networks in order to understand network behaviour, networks of this type are known to be 
extremely deformable and prone to non-reversible deformation. This leads to understanding of 
changes to the unloaded solid volume fraction of networks becoming paramount. 

In this paper we studied numerically and experimentally non-reversible deformation of anisotropic, 
semi-flexible fibre networks due to uniaxial compression. The focus was to further the understanding 
of the physics behind permanent changes to the unloaded solid volume fraction by using the 
numerical framework to describe and quantify the effect of fibre rearrangement, elasto-plastic fibre 
contacts and fibre-fibre adhesion on non-reversible deformation.  

Experimentally, measurements were performed to look at characteristic behaviour of fibre networks 
during uniaxial compression. The networks tested consisted of air laid Southern Pine pulp fibres, a 
type of fibre network often found in hygiene products such as diapers, incontinence pads and 
feminine pads. Two cases of measurements were performed where different samples were 
compressed up to 10kPa and 1000 kPa, respectively. Each test consisted of two sequences of 
compressive loading-unloading in the same spot to characterize the development of pressure vs. 
solid volume fraction for two repeated loadings. The difference in the (close to) unloaded solid 
volume fraction between the first and second compression is the measure we use to establish 
whether the non-reversible deformation i.e., change in the unloaded solid volume fraction of the 
network was obtained. Experimental results are shown in (Fig 10). 

 

Fig 10: Pressure vs. solid volume fraction measured for two samples of pulp fibre networks. Each measurement consists of a 
sequence of two repeated compression–unloading cycles with the second compression intended to characterize the network 
deformation sustained from the first compression. The two different measurements are labelled 1000 kPa and 10 kPa based 
on the maximum pressure applied during compression. 
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In the investigated samples the initial solid volume fraction was 0.06 at the first compression. After 
compressing up to 10kPa, the initial solid volume fraction before the second compression had 
increased to 0.07, while compression up to 1000 kPa increased the initial solid volume fraction more, 
to 0.10. 

In summary, the measurements show a significant impact on non-reversible deformation from the 
first compression through the entire pressure range tested, both for the tests with low and high 
maximum compressive forces. 

In the next stage of this work the numerical framework was used to replicate the experimental 
procedure using a virtual network with fibre and network parameters based on the physical sample 
from the experimental testing. By repeating the experimental procedure using varying contact 
mechanics of the simulated fibres, the impact on non-reversible deformation from the different 
forms of fibre-fibre interaction can be characterized. Four different cases were simulated (with the 
findings outlined below) and with gradually introducing the complexity of the involved phenomena: i) 
networks with elastic contacts only, ii) networks with elastic contacts with adhesion, iii) networks 
with elasto-plastic contacts and, finally, iv) networks with elasto-plastic contacts and adhesion. 

i) Network properties if only elastic contacts are assumed 

We began by using an elastic contact model to study compression and non-reversible deformation in 
a fibre network. The use of fully elastic fibres leads to that the only source of non-reversible 
deformation is coming from fibre rearrangement, i.e., fibres sliding in relation to each other due to 
the deformation and finding a lower resting place after unloading leading to an increase in the solid 
volume fraction. 

 

Fig 11: Simulation vs. measurements of the first and second compression. The simulated network involves only elastic 
contacts. The simulated results show that for the chosen network the pressure development for the second loading overlaps 
with that of the first loading. This indicates that there has been no non-reversible deformation caused by the first loading in 
the simulated results. 
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Fig 12: Number of fibre-fibre contacts per fibre for the simulated network with elastic contacts during loading (solid blue) 
and unloading (dashed blue). A statistical model by Toll (black) is presented as a reference. The results show the number of 
fibre-fibre contacts during unloading overlapping with the loading curve and returning to the original number of fibre-fibre 
contacts after unloading. 

The results of pressure vs density (Fig 11) show that for the second loading of the simulated network 
the pressure starts at the same SVF as for the first loading and that the pressure curves for the two 
loadings follow each other very closely. This behaviour differs from the measured characteristics, 
where the second loading starts having pressure at a significantly higher SVF than for the first loading 
(Fig 12). Also, the pressure for the second compression is reduced compared to the first loading for 
the entire range of solid volume fraction up to the point of maximum compression. Also looking at 
fibre-fibre contacts of the simulated network, (Fig 12), we see an extremely close correlation to the 
predicted values from the statistical model by Toll.5 Comparing the simulated curves for loading and 
unloading, we see that the number of contacts during unloading retraces the path from the loading 
curve very closely, returning to the same number of fibre-fibre contacts after unloading as before 
compression. 

These findings clearly indicate that in the simulated results there has been no non-reversible 
deformation due to fibre rearrangement caused by the first loading. 

ii) Network properties for networks affected by elastic contacts with adhesion 

The second step consisted of looking at compression of the same fibre network as in the previous 
section, but we now add inter-fibre adhesion to characterize the role that adhesion plays in non-
reversible deformation of a network from a first compression. For the simulations we choose the 
maximum adhesive force between fibres to be 25μN based on the measurements by Andersson.32 
We compare the obtained results to the case where no adhesive forces are present. In addition, 
we will look at the effect of using an exaggerated effect of adhesion by a factor of ten, using the 
maximum fibre adhesive force of 250μN. 
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Fig 13: The simulated second compression of networks with varying inter-fibre adhesion. In all the cases the fibres have 
elastic contacts. The increased magnitude of the adhesive force is seen to increase the degree of non-reversible deformation 
from the first compression in terms of initial solid volume fraction and decrease the pressures at low solid volume fractions. 

Looking at the second compression of the network (Fig 13), we see some effect of the inter-fibre 
adhesion on non-reversible deformation of the network from the first compression. The initial solid 
volume fraction, measured at 0.1 kPa, for the second compression has increased from 0.06 to 0.065 
and 0.08 for inter-fibre adhesion forces of 25μN and 250μN, respectively, compared to no increase in 
the network without fibre-fibre adhesion. The source of the non-reversible deformation is further 
clarified when looking at a number of fibre-fibre contacts per fibre during unloading of the network 
(Fig 14). 
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Fig 14: Number of fibre-fibre contacts per fibre vs. solid volume fraction during unloading for two networks with inter-fibre 
adhesion compared to the case with elastic contacts. The number of contacts closely follows the elastic case during 
unloading before settling at a plateau at a level dependent on the magnitude of the adhesive force. 

If we follow the development of the number of fibre-fibre contacts during unloading (curves starting 
in the top right of Fig 14 going left) we see that, for the simulations with inter-fibre adhesion, that 
number initially decreases and closely follows the curve of the simulated case without adhesion. As 
the compressing wall is moved further, the solid volume fraction decreases and the curves for the 
cases with adhesion start to deviate from the case without adhesion leaving an increased number of 
fibre-fibre contacts remaining during unloading compared to the case without adhesion. As the 
compressing wall is moved even further away, the number of fibre-fibre contacts for the cases with 
adhesion settles at a plateau and the network loses contact with the compressing wall. The results 
are a clear indication of non-reversible deformation of the network and that the degree of non-
reversible deformation is dependent on the magnitude of the inter-fibre adhesive force. 

However, results for the simulation using 25μN adhesive force (literature value) show that the 
degree of non-reversible deformation of the simulated network is on a different level than what is 
seen in the comparable measurements (1000 kPa in Fig 10). Additional simulations also show that 
after compression-unloading to a maximum solid volume fraction of 0.12 (comparable to the 10 kPa 
measurements in Fig 10) the number of remaining fibre-fibre contacts is on the same level as for the 
simulated case replicating the 1000 kPa measurement, indicating that after a certain degree of 
compression no further non-reversible deformation is produced in the simulated network. 

Based on these results, in combination with additional simulations with varying fibre stiffness, it is 
concluded that for the simulated networks with elastic fibres, inter-fibre adhesion has a certain 
impact on non-reversible deformation. The degree of non-reversible deformation is dependent on 
the relationship between the adhesive force and fibre stiffness, with the higher magnitude of the 
former and lower fibre stiffness leading to an increase in non-reversible deformation after 
compression. The impact of adhesion is, however, limited to a low solid volume fraction range where 
the adhesive force can overcome the fibre deformation forces and moments. For compression 
beyond this point, no further non-reversible deformation is sustained. This indicates that inter-fibre 
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adhesive forces help explain non-reversible deformation for compression in the low SVF range, such 
as seen in the measurements labelled “10 kPa” in Fig 10. The results also show that when using the 
adhesive force of 25𝜇𝑁, no further non-reversible deformation is achieved for compression beyond 
solid volume fraction of around 0.1. Such a finding is not corresponding well with the measurements 
(see measurement labelled 1000kPa in Fig 10), as it does not capture the deformation of the network 
due to compression to high solid volume fraction, suggesting the impact of physics not accounted for 
in the simulations happening at high solid volume fractions. 

iii) Network properties for networks affected by elasto-plastic contacts 

At this point it is concluded that the large non-reversible deformation seen in the measurements is 
not described well by the above modelling assumption for high degrees of compression. Based on 
the results from Paper I showing that fibre-fibre contact energy is the dominating fibre deformation 
energy for networks in this range we proceed to investigate the effect of plastic contact deformation 
on non-reversible deformation. 

 

Fig 15: Simulated compressions of networks with elasto-plastic contacts compared to a network with elastic contacts. The 
results for the first compression show that the pressure is unaffected in the low SVF-range. At higher compression, the 
pressure is reduced compared to the simulated network with elastic contacts. For the second compression, the pressure vs 
SVF curve is shown for a yield ratio of 0.1. The results show reduced pressure compared to the first compression in the entire 
SVF-range up to the point of the maximum pressure, where the curves for the first and second compression coincide. 

Results show that elasto-plastic contacts between fibres affect non-reversible deformation both in 
terms of pressure development and the initial solid volume fraction after compression of the 
network in the cases where the yield criterion in the contact points has been exceeded (Fig 15). The 
network pressure at high solid volume fraction is reduced compared to that in networks with elastic 
contacts. Also, for the second compression, the initial solid volume fraction is increased, and the 
network pressure is reduced compared to the first compression through the entire solid volume 
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fraction range up to the maximum pressure. All these findings are in good agreement with the 
characteristics of measurements of compression up to high solid volume fraction (see measurements 
labelled 1000 kPa in Fig 10). However, as fibre networks with elasto-plastic contacts do not generate 
non-reversible deformation of the network for the cases where the yield criterion in the contact 
points is not exceeded, the elasto-plastic effect itself cannot replicate non-reversible deformation in 
the low solid volume fraction range such as the one seen in, for example, measurements labelled 10 
kPa in Fig 10. 

iv) Network properties for networks affected by elasto-plastic contacts with adhesion 

After concluding that the impact of adhesion could explain non-reversible deformation for 
compression in the low solid volume fraction range and that the impact of elasto-plastic contacts 
could be behind non-reversible deformation for compression in the high solid volume fraction range 
the next step is to look at the impact of networks with fibres having a combined effect of elasto-
plastic contacts and inter-fibre adhesion. 

 

Fig 16: Pressure development vs. solid volume fraction for the second compression of a network with elasto-plastic contacts 
with adhesion, compared to the three networks from previous results: Elastic contacts, elastic contacts with adhesion and 
elasto-plastic contacts. The results show a significant impact on non-reversible deformation in the network with elasto-
plastic contacts with adhesion, both in terms of reduction in pressure and increase in the initial solid volume fraction. 
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Fig 17: Number of fibre-fibre contacts remaining during unloading of a network with elasto-plastic contacts with adhesion 
compared to the three networks from previous results: Elastic contacts, elastic contacts with adhesion and elasto-plastic 
contacts without adhesion. The contacts for the network having elasto-plastic contacts with adhesion settle at a plateau of 
70 contacts per fibre indicating a significant impact on non-reversible deformation of the network. 

The results for the second compression of a network with elasto-plastic contacts with adhesion 
shows a notable impact on the pressure vs solid volume fraction curve compared to the first 
compression (Fig 16). The initial solid volume fraction, measured at 0.1 kPa, is increased from the 
original value of 0.06 to 0.15 showing significant non-reversible deformation and in essence reducing 
the network thickness to less than half the original thickness. For the simulated cases we note that, 
while adding inter-fibre adhesion to a network with elastic contacts gives only a marginal 
contribution to non-reversible deformation, adding the same effect to a network with elasto-plastic 
contacts results in a significant increase in non-reversible deformation sustained by the network and 
reduction in the development of the pressure for the second compression. This is further 
corroborated when studying the development of fibre-fibre contacts during unloading. Results show 
a very significant difference in fibre-fibre contacts retained after unloading for the case having the 
combined effects of elasto-plastic contacts with adhesion compared to the cases with only adhesive 
contacts or only elasto-plastic contacts (Fig 17). 

Combining the effects of adhesion and elasto-plastic deformation of fibres clearly has an 
unambiguous synergetic effect. Plastic deformation of contact points during loading of the network 
reduces the fibre-fibre contact pressure and the effective fibre diameter in these points permanently 
in the simulation. The reduction in contact forces and the effective fibre radius leads to an increase in 
the retained adhesive contacts after unloading. In this way, the effect of inter-fibre adhesion is 
amplified by the plastic deformation in contact points. At the same time, adhesive contacts 
remaining intact lead to less rearrangement of fibres and contact points during unloading and during 
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a second loading of the network. This effect ensures that the fibre-fibre contacts during a second 
loading happen in the exact same spot where plastic deformation of fibres has occurred during the 
first loading. This works to transfer the full effect of plastic deformation from a first loading to the 
pressure development of the second loading. 

Comparing network deformation behaviour to what was seen experimentally, the simulations with 
the combined effect of inter-fibre adhesion and elasto-plastic contacts show the ability to replicate 
characteristics of measurements. This is seen for compression to high solid volume fractions, as well 
as lower degree of compression both in terms of pressure development vs solid volume fraction and 
non-reversible deformation for first and second compressions of the network. 

To conclude, the results and findings in Paper III highlight the everchanging nature of this type of 
material. Not only are the networks extremely deformable, but deformation also results in persistent 
change of the solid volume fraction even for the slightest of deformations leading to changes in 
macroscopic behaviour in terms of fluid transport properties and mechanical response. For networks 
with low solid volume fraction, non-reversible deformation is primarily sustained due to fibre-fibre 
adhesion. The effect of fibre-fibre adhesion, however, is limited to a solid fraction range where the 
adhesive forces can overcome the fibre deformation forces and moments. In a higher solid volume 
fraction range, plastic contact deformation can play a significant role. When plastic deformation of 
contact points occur, the plastic deformation reduces fibre deformation forces in contact points, 
acting to magnify the effect of fibre-fibre adhesion. 

5.4 Paper IV 
This paper concerns the spontaneous deformation of networks due to transitioning from a dry to a 
wet state. Given that the main functionality of many common products consisting of fluff pulp fibre 
networks require the absorption of liquids, network solid volume fraction in a wet state becomes a 
crucial component for controlling properties like permeability and capillary pressure, on which 
product function eventually depends. Therefore, in this fourth paper we focus on understanding the 
change in network solid volume fraction due to transitioning from a dry to a wet state. 

In this work we will in the first stage use experiments to characterize and quantify the change in the 
network solid volume fraction for networks of varying solid volume fractions in the dry state when 
transitioning to a wet state. In the second stage we will compare experimental results with those 
obtained by our DEM simulations and identify the main physics behind the observed changes to the 
network solid volume fraction due to the transition. Finally, in the third stage, we will utilize results 
from the simulations in combination with theoretical considerations by other research groups to 
provide a comprehensive theoretical explanation regarding the network state to which the wet 
network transitions. 

Experimental stage 

Experimentally we performed measurements to look at the behaviour of the solid volume fraction of 
fibre networks when going from a dry to a completely wet state. The networks tested consisted of 
air-laid Southern Pine pulp fibres compressed to a varying degree by dry uniaxial compression in 
order to create networks with a varying dry solid volume fraction. In this study we chose to primarily 
focus on characterizing the change in the solid volume fraction of a network in the unloaded state 
(Base Case). To complement the measurement procedure, we have decided to use two additional 
approaches (termed Case II and Case III). For Case II we use the more commonly used approach of 
measuring thickness of this type of materials, which is under a slight pressure. For Case III we 
measure the solid volume fraction in a fully saturated state but not submerged in water, which will 
lead to the network being subjected to a slight deformation stemming from the capillary forces. 
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Fig 18: Experimental results and mean values of the networks in our work transitioning from dry to wet state, measured with 
Base Case (Blue), Case II (Red) and Case III (Black). The top left region (light red) signifies an increase of the solid volume 
fraction (collapse of the network on a micro-level) when going from a dry to a wet state. The bottom right region (light 
green) indicates a decrease of the solid volume fraction (expansion of the network on a micro-level) when going from a dry 
to a wet state. A consistent trend of the resulting wet solid volume fraction being independent of the dry solid volume 
fraction is observed in all three cases. The resulting level of the wet solid volume fraction, however, is proven very sensitive 
to the different loading cases in the wet state. 

The experimental results (Fig 18) show the resulting wet solid volume fraction being independent of 
the initial dry solid volume fraction. The tending of the wet solid volume fraction to a close to the 
same value is seen in all three measurement procedures, Base Case (submerged and unloaded), Case 
II (submerged under 0.45 kPa load) and Case III (fully saturated and unloaded). The average values of 
the wet solid volume fraction, however, are shown to be very sensitive to the different loading cases 
in the wet state. Base Case exhibits an average wet solid volume fraction of 0.036, Case II yields an 
average of 0.086 and Case III has an average of 0.075. 

The experimental results allow us to draw three important conclusions: 

1. The state to which the network transitions when going from a dry to a wet state is 
independent of a prior dry solid volume fraction. 

2. The level of solid volume fraction of networks in the wet state is extremely sensitive to the 
degree of loading of the network. 

3. No fibre or network parameter that affects final packing of the wet sample has been affected 
by the compression of the network or the effect is annulled by the presence of water. 

The shown reversion of networks with widely varying dry solid volume fractions to a single one and 
with the same network configuration when transitioned to the wet state brings important 
information regarding the source of non-reversible deformation sustained from the compression 
used to create networks of a varying dry solid volume fraction. The fact that for all three cases, both 
networks that have been compressed to a high degree and the uncompressed networks end up at 
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the same wet solid volume fraction, either by expanding or collapsing, allows us to conclude that no 
fibre or network parameter that affects final packing of the wet samples has been affected by the 
compression of the network or the effect is annulled by the presence of water. These result and 
conclusions are important in relation to our previous work in Paper III where we suggested the 
source of non-reversible deformation from dry compression to be a synergetic effect of inter-fibre 
adhesion and plastic deformation in fibre-fibre contact points. The results from the measurements in 
Fig 18 seem to further corroborate this assumption, indicating that the fibre-fibre adhesion in the dry 
state is annulled in the wet state supporting the suggested source of the inter-fibre adhesion to be 
due to moisture. Further, if plastic deformation of fibres plays a role, the effect must be either very 
local, acting only to amplify the effect of adhesion, or small enough not to affect the final packing of 
the wet sample. 

Numerical stage 

In this section we explain by our simulations the changes in the network solid volume fraction seen in 
the measurements when changing from a dry to a wet state (Fig 18). The goal is to identify 
phenomena and material parameters that play a role in the change of the solid volume fraction. 
Based on the findings in Paper III we hypothesize that in the dry state the fibre-fibre adhesion 
prevents low solid volume fraction networks from compacting due to gravity to a higher solid volume 
fraction packing. For high solid volume fraction networks, the same adhesion in combination with 
local contact deformation of fibres is what prevents fibres from reverting back to a relaxed state and 
the network to expand to a lower solid volume fraction packing. In the wet state adhesion disappears 
and both high- and low- solid volume fraction networks are tending to the same value of the solid 
volume fraction. 

To investigate this, we model networks with fibre properties and a distribution of fibre lengths based 
on measurements from the same material as the measured sample but with varying degree of 
simulated compression, resulting in varying dry solid volume fraction. 



33 
 

 

Fig 19: Simulation and experimental results of the solid volume fraction of networks settling after transitioning from a dry to 
a wet state. The red curve shows a compressed network with a high solid volume fraction in the dry state reducing in the 
solid volume fraction as it settles (the expanding network). The blue curve shows an uncompressed network with a low solid 
volume fraction in the dry state increasing in the solid volume fraction as it settles (the collapsing network). The results show 
the solid volume fraction after settling in the wet state tending to the same value. The horizontal axis is the simulation 
timestep normalized by the number of timesteps to reach the designated stop criterion, based on first and second 
derivatives being below a selected threshold value. 

The simulation results in Fig 19, formulated to explain the findings from the experimental Base Case 
(submerged and unloaded network) show two simulations of the networks with the same 
composition but with different dry solid volume fractions (0.021 and 0.081, respectively). The results 
clearly show the solid volume fraction tending to the same value for the two networks in the wet 
state, showing a good agreement with the experimentally observed behaviour of the same wet-state 
solid volume fraction being independent of a dry-state one (Fig 18). The terminal (or the equilibrium) 
solid volume fraction for the simulated networks reaches the values of 0.030 and 0.027, respectively, 
which is within 30% of the corresponding measured wet solid volume fraction from Base Case with 
an average value of 0.036. 

To further find out how the numerical simulations can explain the underlying physics, we proceed by 
replicating the Case II measurements in simulations by compressing the simulated network to a 
pressure equal to that of Case II measurements of 0.45kPa. 
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Fig 20: Measured solid volume fraction under 0.45 kPa (red circle) load compared to the simulated pressure vs. solid volume 
fraction (blue markers). The resulting solid volume fraction at 0.45 kPa shows a good agreement between the measured 
(0.086) and simulated values (0.092). Inset: Pressure vs. solid volume fraction for the same results in a log-log scale. The 
fitted line based on the van Wyk equation is added to guide the eye.2 

The simulated results, (Fig 20), gives a solid volume fraction of 0.092 at 0.45kPa, agreeing well with 
the measured average solid volume fraction of 0.086 at 0.45kPa. 

The shown agreement between the simulations and measurements, both in terms of the networks 
with varying dry solid volume fractions transitioning to close to the same wet solid volume fraction 
(Fig 19), and in terms of a value of the solid volume fraction to which the wet solid volume fraction 
transitions (Fig 20), allows us to conclude: 

 The change in the network solid volume fraction from dry to wet state can be explained as 
driven mainly by the disappearance of fibre-fibre adhesion in combination with changes in 
fibre mechanical properties when wet. 

 A non-reversible deformation in the dry state, creating high solid volume fraction networks, 
is for the range of compressions tested in this work mainly caused by the synergetic effect of 
adhesion and plastic deformation at contact points, corroborating the findings from Paper III. 

 Low-solid volume fraction-networks in a dry state are prevented mainly by adhesion from 
compacting to a higher solid volume fraction packing. 

Theoretical stage 

The next step is to complement our experimental and numerical work with a theoretical explanation 
of the underlying phenomena when fibre networks transition from a dry to a wet state. Based on the 
conclusions above, we hypothesised that uncompressed networks with a low solid volume fraction in 
the dry state should in the wet state, due to disappearance of adhesion, collapse to the state of 
maximum unforced packing, defined as the limiting solid volume fraction above which application of 
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pressure resulting in deformation of fibres is required for random fibre networks in the absence of 
adhesion. Networks with prior compression, having a high solid volume fraction in the dry state, 
should on the other hand, upon disappearance of adhesion, have their constituent fibres revert to an 
unstrained state, while expanding the network up to the same state of maximum unforced packing. 

To prove this hypothesis, we continue the analysis by looking at numerically obtained information on 
fibre contacts. The goal is to determine whether the state to which wet networks settle following our 
simulated dry-to-wet transition is in fact in agreement with the theoretical results for maximum 
unforced packing and stability onset for random packing of thin rods. We note, however, that the 
results from literature showing that the range of stability onset and maximum unforced packing is 
characterized by the average number of fibre-fibre contacts for fibres being close to the caging 
number were obtained for networks consisting of fibres with a constant fibre length.5,20 When 
considering that the fibre aspect ratio impacts the average number of fibre-fibre contacts at a given 
solid volume fraction, (Eq. 1), we argue that we cannot automatically assume that the same results 
hold for networks consisting of fibres with varying aspect ratios. We have therefore chosen to carry 
out simulated dry-to-wet transitions similar to those outlined above, but this time with a constant 
fibre length. Our objective here is to be able to make a more direct comparison with theoretical 
findings obtained by other research groups and find out whether our numerical framework produces 
networks that indeed transition to the state of maximum unforced packing. To do so, we deposit two 
new networks with a constant fibre length of 0.8 mm (aspect ratio 37) and 2.0 mm (aspect ratio 93) 
based on the arithmetic average and length-weighted average fibre length from the measured 
sample in our experiments. We then repeat simulating the transition from a dry to a wet state in the 
same procedure as for the network with a varying fibre length and using the same fibre properties. 
For each fibre length we performed one simulation with an uncompressed network having a dry solid 
volume fraction lower than the maximum unforced packing and one simulation with a compressed 
network having a dry solid volume fraction higher than the maximum unforced packing (Eq. 4), in 
total four simulations (Fig 21).  
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 𝐋𝐟 Aspect ratio Compression Dry solid volume fraction 

A 0.8 mm 37 Compressed High 

B 0.8 mm 37 Uncompressed Low 
C 2.0 mm 93 Compressed High 
D 2.0 mm 93 Uncompressed Low 

 
Fig 21: Results for four networks, A, B, C and D, transitioning from a dry to a wet state. The left-hand graph shows the 
results of the solid volume fraction of an initially dry network and of the solid volume fraction of the networks after 
transitioning to the wet state. The results show how the wet solid volume fraction is tending to the same wet solid volume 
fraction for the networks consisting of fibres with the same aspect ratio, A-B and C-D. The value of the solid volume fraction 
to which the network is tending is dependent on the aspect ratio and agrees well with the theory for maximum unforced 
packing from Toll.5 
The right-hand graph shows the average number of fibre-fibre (f-f) contacts after transitioning to the wet state for the same 
four networks. The average number of contacts is in the range of 7.5 – 9.5, corresponding to what is given in the simulations 
of caging number and stability onset by Wouterse et al.20 

The obtained solid volume fraction of the initially dry networks and the ones after transitioning to 
the wet state for the four networks show how the wet-state solid volume fraction is tending to the 
same level for the networks consisting of fibres with the same aspect ratio, A-B and C-D (Fig 21). Such 
a behaviour is the same as seen before for the networks with fibres of a varying fibre length (Fig 19). 
The form of the dependence of the degree of packing on the fibre aspect ratio agrees with that from 
the theory for maximum unforced packing.5,20 When comparing the simulated results to theoretical 
considerations, we use the expression for the maximum unforced packing, (Eq. 4), with a caging 
number assumed to be 8 in Toll’s work. The simulated resulting wet solid volume fraction shows very 
good agreement with the calculated maximum unforced packing.  
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The simulated average number of fibre-fibre contacts (Fig 21) has a relatively constant value for all 
four networks in the range of 7.5 – 9.4, which is similar to the simulations of the caging number and 
stability onset by Wouterse et al.20  In that work, the authors obtain values of 9 and 7.5 for the 
average number of fibre-fibre contacts based on the Linear Complementarity Problem (LCP) and 
Molecular Dynamics (MD) simulations, respectively. 

Based on the demonstrated very good agreement between the simulated results and the 
measurements from the unloaded network in Base Case (Fig 19), together with the conclusion that 
the simulated networks transition to a mechanically stable state within the narrow range of stability 
onset and maximum unforced packing (Fig 21), we are able to conclude that: 

 The state to which pulp fibre networks are settling after the dry-to-wet transition in an 
unloaded case is a mechanically stable state within the narrow range of stability onset and 
maximum unforced packing. 

 The level of the solid volume fraction to which the networks are tending after the dry-to-wet 
transition is determined primarily by the aspect ratio of the constituent fibres. 

To conclude, these results again highlight the everchanging nature of this type of material. 
Transitioning from dry to wet state can drastically deform the material and the solid volume fraction 
no longer is dependent on fibre-fibre adhesion and historic pressure states but reverts to being 
predetermined by the fibre aspect ratio. 
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6. Summary and conclusions 
 

The work in this thesis is based on combining experimental, numerical and theoretical approaches to 
advance our fundamental understanding of mechanical response and deformation in non-bonded 
anisotropic pulp fibre networks due to uniaxial compression, tensile stress and the spontaneous 
deformation due to the network transitioning from a dry to a wet state. 

 In Paper I we show that for uniaxial compression the numerical framework replicates the 
established pressure vs solid volume fraction relationships as a power-law with a threshold 
solid volume fraction. We further explain the relationship between network deformation and 
deformation of the constituent fibres for this type of networks by showing that the response 
in a lower solid volume fraction range is dominated by the fibre bending deformation mode, 
while at relatively higher solid volume fraction, fibre-fibre contact deformation takes up a 
dominant role. This is in contrast to isotropic networks where the response in a lower solid 
volume fraction range is similarly dominated by the fibre bending deformation mode, while 
at relatively higher solid volume fraction, fibre axial deformation dominates. 

 From the results in Paper II we have been able to explain the scaling of network strength 
with solid volume fraction and bond strength for low density anisotropic networks. For the 
scaling of elastic modulus the results showed the typical transition from bending to 
stretching fibre deformation being accompanied by changing values of the exponent, 
reconfirming literature result. The simulation results for both elastic modulus and strength 
showed excellent agreements with the respective experimental data in the literature. 

 The results from Paper I and II highlight the important influence of unloaded network solid 
volume fraction on network response to both compressive and tensile deformation. For 
uniaxial compression the crucial impact of the unloaded solid volume fraction is seen by the 
dependence of pressure development on the threshold density, 𝜌௧௛. In tensile deformation 
the importance is seen by the number of bonded fibre-fibre contacts, directly dependent on 
the solid volume fraction, being a prime source of network strength. This leads to 
understanding of changes to the unloaded solid volume fraction of networks becoming 
paramount. 

 In Paper III we have used simulated results to independently explain the effects of fibre 
rearrangement, fibre-fibre adhesion and elasto-plastic fibre-fibre contact deformation on 
changes in unloaded solid volume fraction due to uniaxial compression. 
We show that: 

 fibre rearrangement does not contribute to changes in the solid volume fraction for 
this type of networks. 

 adding inter-fibre adhesion has an effect on non-reversible deformation in the 
simulated networks. The impact of adhesion is, however, limited to a low-solid 
volume fraction range where the adhesive forces can overcome the fibre 
deformation forces and moments. 

 elasto-plastic nature of contacts between fibres introduces an effect on non-
reversible deformation in the cases with large network strain where the yield 
criterion in the contact points is exceeded. 

 there is a clear synergetic effect of fibres having combined elasto-plastic contacts 
and adhesion where the included physical phenomena reinforce each other leading 
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to a degree of non-reversible deformation of the network far beyond that of 
networks with only elasto-plastic fibre contacts or inter-fibre adhesion. 

Using experimental and numerical results we are able to show that the changes in unloaded 
solid volume fraction due to uniaxial compression in pulp fibre networks can be explained as 
dominated by fibre-fibre adhesion for low degrees of compression while for large network 
strain the non-reversible deformation being due to a synergetic effect of inter-fibre adhesion 
and fibre plastic deformation in the contact points. 

 In the final paper we explain the change in pulp fibre networks due to transitioning from a 
dry to a wet state. From studying wetting of networks experimentally, numerically and 
theoretically we show that the state to which the network transitions when going from dry to 
wet is independent of its prior dry solid volume fraction. This infers that no fibre or network 
parameter that affects the wet solid volume fraction of the networks is affected by a prior 
dry compression or that the effect is annulled by the presence of water for the range of dry 
solid volume fractions studied. We further show that the change in the network solid volume 
fraction can be explained as driven by the disappearance of adhesion and that the 
mechanically stable state to which the network transitions is closely related to the 
theoretical maximum unforced packing and predetermined primarily by the fibre aspect 
ratios of the constituent fibres. 
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7. Reflections and outlook 
 

Overall, the findings in this work and existing literature paint the picture of fluff pulp fibre networks 
as an ever-changing material where network stress, historic network stress or changes in contact 
mechanics between fibres often lead to drastically changing material behaviour in terms of 
mechanical response and fluid transport properties. The material is also expressing a wide range of 
regimes, with very varying responses to stresses. The prevalent regime depends on the network 
properties such as solid volume fraction, individual fibre properties in the form of aspect ratio, 
stiffness and fibre-fibre contact mechanics, as well as on the form of network stress.  

The mechanical behaviour of the networks is very much a result of their nature, being a stack of 
elongated particles with weak or non-existent attractive forces between particles. The particle aspect 
of the network infers that the only way of force propagation through the network is through fibre-
fibre contacts. The fact that networks consist of elongated flexible particles leads to that the number 
density of contacts can change drastically with changes in the solid volume fraction, leading to drastic 
changes in force propagation. This places great emphasis on understanding the number density of 
fibre-fibre contacts and the contact mechanics between fibres, making these two parameters 
perhaps the most important ones in order to understand macroscopic mechanical behaviour of the 
material. 

The importance of fibre-fibre contact density and contact mechanics for macroscopic network 
behaviour introduces significant complexity when trying to understand and characterize networks 
experimentally. Fibre-fibre contact density is effectively impossible to measure accurately by any 
existing experimental procedure. A desirable approach would, for example, be some quick and 
convenient 3D visual method such as a CT-scan. However, the extreme resolution required to 
accurately identify a contact, in combination with the heterogeneity of the material requiring a large 
volume measured in order to have a representative measurement, renders this approach currently 
practically unviable. The sole comfort in this matter is the existence and practical usefulness of the 
relationship between the contact density and the network solid volume fraction derived from 
statistical geometry modelling. For fibre-fibre contact mechanics, single fibre measurements for 
compressive stiffness and attractive forces are possible and some results are indeed available in 
literature. However, measurements being on single fibres on a micro-level, in addition to the natural 
variation in fibres requiring large number of measurements in order to characterize fibres accurately, 
leads to a characterization of these parameters requiring a significant effort. Quick and simple 
methods for an accurate characterization of compressive and attractive fibre-fibre forces would thus 
be hugely beneficial for this field. 

In light of the abovementioned, modelling of networks at an individua fibre level (such as with the 
DEM framework employed in this work) is of great value when understanding and characterizing 
network deformation and mechanical response. This is especially true regarding detection of fibre-
fibre contacts, which is readily quantifiable from such modelling, thus providing in-depth information 
related to a parameter of crucial importance for network behaviour. Note that for contact 
mechanics, this type of modelling approach does not resolve the difficulties of accurately 
characterizing the complex contact mechanics of fibres, but rather enables us to control this 
parameter in ways unattainable by experimental means. The modelling allows for hypothesis testing 
of the physics involved and opens up ways for answering fundamental questions regarding 
deformation and network response as exemplified in e.g. Papers III and IV of this thesis. The main 
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strength of DEM, as opposed to other modelling approaches, is in handling the relative motion of 
particles and the emergence and disappearance of contact-points, which makes DEM the most 
effective for modelling conditions where these are dominating factors. This makes the numerical 
framework chosen in this thesis particularly useful for low solid volume fraction networks of non-
bonded fibres or fibres with adhesive contacts. Given the complexity of simulation procedure and the 
involved computational costs, the usefulness of DEM lies primarily in the answering of fundamental 
questions rather than it being a tool for prediction of individual material behaviour. 
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8. Contribution statement 
 

Paper I 

I developed the code for pre-processing and post-processing of simulations. In cooperation with the 
main author, Shakhawath Hossain, we together did all implementation into the DEM solver and 
performed all simulations. I participated in the analysis together with my co-authors and contributed 
to the writing of the manuscript. 

 

Paper II 

I was the main author and developed the code for pre-processing and post-processing of simulations. 
In cooperation with a co-author, Shakhawath Hossain, we together did all implementation into the 
DEM solver and performed all simulations. I performed all analysis with support of the co-authors.  

 

Paper III 

I was the main author and, given the switch in DEM solver compared to the earlier work, developed 
the code for pre-processing, post-processing of simulations and performed all implementation into 
the DEM solver from scratch. I performed all analysis with support of the co-authors.  

 

Paper IV 

I was the main author and developed the code for pre-processing, post-processing of simulations, 
performed all implementation into the DEM solver and performed all simulations. I performed all 
analysis with support of the co-authors.   
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Appendix I: Governing equations 
 

Translational and 
rotational motion of a 
particle 
 

 𝑚௜𝒓̈௜ = ෍ 𝑭௜௝ + 𝑭௜
஻

௝
 

𝑰௜𝜽ప
̈ = ෍ 𝑻௜௝

௝
 

 

Here 𝑚௜ is the mass and 𝒓̈௜ is the acceleration of 
the i-th particle, 𝑭௜௝ is the interaction force 
between the i-th and j-th particle and 𝑭௜

஻ is the 
body force acting on the i-th particle. For the 
angular momentum, 𝑰௜  is the moment of inertia 
tensor, 𝜽ప

̈  is the angular acceleration and 𝑻௜௝ is the 
interaction torque between the i-th and j-th 
particle. Interaction forces and moments are 
different for bonded and non-bonded particles. 
Non-bonded particles can interact by normal and 
tangential contact forces, 𝑭௜௝

௖ , and moments, 𝑻௜௝
௖  

arising from contact forces. For bonded particles 
the contact interaction is disabled and the 
interaction forces, 𝑭௜௝

௕ , and moments, 𝑻௜௝
௕ , come 

from the bonded interaction. 

    

Contact interaction  𝑭௜௝ = 𝑭௜௝
௖   

𝐹௡
௖ =

ସ

ଷ
𝐸௖√𝑅𝛿௡

ଷ ଶ⁄   

𝐹௧
௖ = 8𝐺௖√𝑅𝛿௡

ଷ ଶ⁄   
 

Here 𝐸௖ is the contact Young’s modulus, 𝐺௖ is the 
contact shear modulus, 𝑅 is the particle radius and 
𝛿௡ is the normal overlap. 𝛿௡ is the tangential 
displacement between the particles during the 
time they are in contact and truncated to fulfil 
𝐹௧

௖ ≤ 𝜇𝐹௡
௖. 

    

Bonded interaction  𝑭௜௝ = 𝑭௜௝
௕   

𝑻௜௝ = 𝑻௜௝
௕   

𝐹௡
௕ =

ா್஺

௟್
𝛿௡

௕  

𝐹௧
௕ =

ீ್஺

௟್
𝛿௧

௕  

𝑑𝑇௡
௕ =

ீ್ூ

௟್
𝑑𝜃௡

௕  

𝑑𝑇௧
௕ =

𝐸௕𝐼

𝑙௕
𝑑𝜃௧

௕ 

Here 𝐸௕ is the bond Young’s modulus, 𝐺௕ is the 
bond shear modulus, 𝛿௕ is the bond displacement 
from equilibrium distance and 𝜃௕ is the bond 
angle. 
 

Body forces  𝑭௜
஻ = 𝑚௜𝒈 − 𝛾𝒓̇௜   Here 𝒈 is the gravity vector, 𝒓̇௜ is the velocity 

vector and 𝛾 is a damping coefficient. 
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Typical input parameters for DEM simulations 

Fibre properties Value 

Particle diameter, D [μm] 18 

Length of a bond, 𝑙௕ [μm] 18 

Particle density, 𝜌௣ [𝑘𝑔 𝑚ଷ⁄ ] 1000 

Particle contact elastic modulus, 𝐸௖ [GPa] 1.0 

Bond bending modulus, 𝐸௕ [GPa] 4.0 

Particle Poisson’s ratio [-] 0.3 

Particle-particle friction coefficient [-] 0.3 

Particle-wall friction coefficient [-] 0.3 

Wall contact elastic modulus, 𝐸௪ [GPa] 10 

Time step size [s] 2∙10-9 
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