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Abstract

In recent years, topological superconductivity and Majorana zero-energy modes
have attracted vast interest due to their potential for topologically protected
quantum information processing. Hybrid devices involving a conventional s-
wave superconductor (S) in proximity to a 3D Topological Insulator (TI) are
expected to provide a platform for emulating and studying these phenomena.
In superconductor-topological insulator-superconductor (S-TI-S) Josephson junc-
tions, Majorana physics manifests as peculiar current-carrying bound states, i.e.,
Majorana bound states (MBS) localized on the topological surface of the 3D TI.
In this thesis, we investigate the electrical transport properties of superconductor-
topological insulator-superconductor (S-TI-S) Josephson junctions fabricated us-
ing Bi2Se3 nanoribbons and Al electrodes.

We explore in-depth the size quantization effects and ballistic transport in S-
TI-S junctions by studying the width dependence of critical current density in
our junctions and Fabry-Pérot (FP) resonance arising from ballistic topological
surface states (TSSs). We show that FP resonance survives in devices with width
scales over a micrometre. Further characterization involves the measurement of
the current phase relation (CPR) of our Al-Bi2Se3-Al junctions using the asym-
metric SQUID measurements technique. The experimentally extracted CPR of
our junctions is heavily skewed and supports transport by ballistic TSSs.

The third part of the thesis developed around the microwave probing of Andreev
bound state dynamics in Al-Bi2Se3-Al junctions. We use a circuit-QED-inspired
layout where an RF-SQUID based on our S-TI-S junction is inductively coupled
to a coplanar waveguide resonator. By studying the AC susceptibility of our
junctions, we reveal bounds states with small energy gaps (or high transparency).

In the final section of the thesis, we address the problem of the unavoidable bulk
contributions to transport in our TINR-based devices and discuss some of our
attempts to tackle the problem by employing electrostatic gates. We also explore
the possibility of using ultrathin TI-nanoribbons, which are easy to control by a
gate as compared to thick nanoribbons. The gate response of the conductivity
indeed shows hints of size-induced subband quantization.
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Overall, the work presented in the thesis demonstrates the presence of highly
transparent ballistic transport modes arising from TSSs in Al-Bi2Se3-Al junctions
using a variety of DC and AC measurements. Our devices give hints that size
control of the nanoribbons and geometry of the junctions can be instrumental in
isolating the contributions of TSSs to the transport properties in the normal and
superconducting state.

Keywords: Topological insulator, Bismuth selenide, superconductivity, Joseph-
son junctions, SQUID, surface states, ac susceptibility, andreev bound states . . .
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1 Introduction
In physics, discoveries involve a combination of experiments and theories that
explain the observations. The path leading to new physics can be complicated,
often going back and forth between a theory and an experiment. If we consider
the simplest case leading to a discovery, we either go from theoretical prediction
to experimental verification or from experiments to a theory that comprehends
the observations. However, not every theory gets to be experimentally tested, and
sometimes, it takes years or decades of work for a theory to be experimentally
verified or a phenomenon to be theoretically understood. We all know this.

One of the important examples of a theory that resulted in celebrated discoveries
came from Paul A. M. Dirac in 1928 [1]. Apart from its crucial role in understand-
ing the quantum nature of spin, his equation that describes relativistic electrons
also had another significant implication: it accepts solutions with negative energy.
Though initially seemed unrealistic, the negative energy solutions were later in-
terpreted as antiparticles and led to the discovery of positron, the anti-electron
by Carl D. Anderson in 1933 [2] and other antimatter particles. In 1937, Ettore
Majorana devised an elegant modification to the Dirac equation that predicted a
particle that could be its own antiparticle [3]. He speculated that one of the poten-
tial candidates that might follow his equation could be neutrinos, which were still
hypothetical particles then. With the discovery of neutrinos, it was shown that
there is a clear distinction between a neutrino and an anti-neutrino; they can not
be Majorna fermions. So, just like the physicist Majorana, who went missing, his
particle remained elusive for many years. In 1998, with the observation of flavour
oscillation in neutrinos, the idea that neutrinos might be Majorna fermion was
back on the table. The particle physics community is experimentally exploring it,
and till now, the case of neutrino remains unsettled [4]

Condensed matter physics (CMP) is a field of physics known for its ability
to host collective excitation or quasiparticles. Some examples of these include
phonons, magnons, excitons, polarons, skyrmions etc. With recent advancements
in CMP, mainly in the form of topological band theory, Majorana fermions gath-
ered attention as they could be emulated as a quasiparticle in unconventional
material systems, namely Majorana bound states(MBSs). The search for MBSs
in solid-state devices is primarily driven by one of their potential technological
applications: topologically protected quantum information processing [5–7]. Here,
with MBSs, one hopes to have better-performing qubits that are immune to local
noise.
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2 Chapter 1. Introduction

The key ingredients required for emulating the elusive Majorana fermion are
superconductivity and an unconventional metal, for example, topological sur-
face states(TSSs) of topological insulators(TI) [8–11] or semiconducting nanowires
with high spin-orbit coupling [12, 13]. One of the potential systems for emulating
MBSs are 3D-topological insulator-superconductor hybrid Josephson junctions (S-
TI-S). 3D-TIs are characterized by an insulating bulk and a metallic topological
surface states characterized by a Dirac-dispersion with spin-momentum locking.
In recent years, they have been studied extensively [14–35]. Though the MBSs in
this kind of junctions are not localized (can not be used for topological qubits),
they provide a way to explore the unconventional physics of these exotic states.
In a multimode S-TI-S junction, Majorana physics might manifest as a peculiar
property of a part of the Andreev-bound states carrying the Josephson current.
The MBSs give rise to an unconventional 4π periodic current phase relation (CPR)
coexisting with a 2π periodic CPR resulting from the conventional Andreev bound
states. By probing an S-TI-S junction one could get access to the unconventional
physics of MBSs [14–30, 32–35].

A major obstacle in revealing MBSs using Josephson junctions based on read-
ily available 3D-TI, like Bi2Se3, Bi2Te3, and Sb2Te3, is the coexistence of bulk
states in addition to the topological surface states, making the electrical trans-
port analysis cumbersome [8, 36]. Compensation doping has been used to reduce
the bulk contribution, however, at the expense of electron mobility [15, 25–27, 29,
30, 32–34]. Instead, in this thesis we make use of Al-Bi2Se3-Al junctions imple-
mented using Bi2Se3 nanoribbon to increase the surface to volume ratio of TI and
thereby reducing bulk contributions to transport. Previous studies have shown
high-quality interfaces between 3D-TI Bi2Se3 nanoribbons and Al electrodes. This
thesis further explores the transport of our Al-Bi2Se3-Al junctions.

• In the first part of the thesis (Chapter 4), we will look at size quantiza-
tion effects in S-TI-S junctions. For this, we will discuss two different kinds
of measurements done on single junction devices. In the first set of mea-
surements, we look at the dependence of the current density of our S-TI-S
junctions on the width of the junctions. Here, we will show that to explain
the peculiar response we observed in these devices, one must consider su-
percurrent transport by TSSs. In the second set of experiments, we look
at Fabry-Pérot(FP) conductance oscillation in S-TI-S junctions originating
from ballistic TSSs. Here, we will show that the obtained gate periodicity of
the resonance matches well in both normal and superconducting states.

• The second part of the thesis (Chapter 5) deals with the extraction of the
CPR of our Al-Bi2Se3-Al junctions. Here, we use the asymmetric SQUID
measurements technique to extract the CPR. We will show that the obtained
CPR is skewed, and the observed skewness values require transport by bal-
listic TSSs with high transparencies. Moreover, we show that one needs to
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consider both ballistic and diffusive contributions to the transport to fit the
extracted CPR of our S-TI-S junctions.

• The third part of the thesis (Chapter 6) is dedicated to microwave probing
of ABSs in Al-Bi2Se3-Al junctions. For this, we will use an S-TI-S junction-
based RF-SQUID, which is inductively coupled to a coplanar waveguide res-
onator. Here, by studying the AC susceptibility of our junctions, we reveal
bounds states with small energy gaps or high transparency. We show that
the relaxation rate of the bounds states in our junctions exceeds 1GHz, which
is an indication of the existence of a quasiparticle continuum in the gap.

• In the final section (Chapter 7), we address the problem of the unavoidable
bulk contributions to transport in our TINR-based devices and discuss some
of our attempts at tackling the problem. Here, we show two different gating
approaches. An h-BN encapsulated device with a top and bottom h-BN
layer was more successful in reducing the carriers. Then, we discuss the
gate-dependent transport in ultrathin TI-nanoribbons, showing hints of size-
induced subband quantization.

Overall, the work presented in the thesis demonstrates the presence of highly
transparent ballistic transport modes arising from TSSs in Al-Bi2Se3-Al junctions
using multiple (DC and AC) measurements. The analysis of the results requires
the inclusion of both TSSs and bulk state contributions to conductive bulk chan-
nels, and this calls for the development of better TI materials with fully insulating
bulk with high mobilities.





2 Background
This chapter provides some of the fundamental concepts of superconductivity,
Josephson junctions, SNS junctions, Topological insulators and hybrid devices
involving topological insulators and superconductors. In the later section of the
chapter, we will also provide a summary of the previous works done at Chalmers
that are relevant to understanding this thesis.

2.1 Superconductivity
Over a century ago, after his historic achievement of liquifying helium gas, Dutch
physicist Heike Kamerlingh Onnes experimentally demonstrated an odd phe-
nomenon, which he initially referred to as "supraconductivity" [37, 38]. He no-
ticed that the electrical resistance of solid mercury wire suddenly vanished when
cooled below a temperature of 4.2K, marking the birth of the field of supercon-
ductivity [37–39]. This characteristic temperature below which a material turns
superconducting, allowing for non-dissipative current flow, is called the critical
temperature Tc. In 1933, Walther Meissner and Robert Oschenfeld showed that
below Tc superconductors expel magnetic fields from the bulk of the material and
behave as perfect diamagnets [40, 41]. Thus, the phenomenon of superconduc-
tivity manifests as perfect conductivity or zero DC resistance and perfect dia-
magnetism or the Meissner effect. With the ability to pass high currents without
dissipation, superconductors enabled the creation of powerful magnets, which find
their applications in many areas, from research to healthcare. Because of this, su-
perconductors are commonly thought of as just conductors with zero resistance.
However, it is essential to note that the true hallmark of this macroscopic quan-
tum phenomenon is the Meissner effect, which separates superconductors from a
"trivial" perfect conductor [40–42].

In 1957, J. Bardeen, L. Cooper and J. R. Schrieffer developed the microscopic
theory of low-temperature superconductivity called the BCS theory [43]. BCS
theory is based on an effective weak electron-electron attractive interaction me-
diated by phonons (lattice vibrations) resulting in the formation of electron pairs
called the Cooper pairs. The dissipationless electrical transport in a supercon-
ductor is carried out by these Cooper pairs. BCS theory showed that, below
Tc, Cooper pairs are more energetically favourable and electrons in the vicinity
of Fermi level with opposite spin and momentum get paired to bosons, which
condense into the same ground state. As a result, an energy gap ∆ opens up

5
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in the density of states of the superconductor, separating the ground state from
quasiparticle states. The density of states of quasiparticle excitations in a BCS
superconductor can be written as [42]

Ns(E) = N(EF ) |E|√
E2 − ∆2 Θ(|E| − ∆) (2.1)

where E is energy with respect to Fermi energy EF , N(EF ) is the density of states
at EF in the normal state and Θ is the Heaviside step function. The sketch of
the density of states is given in figure 2.1. At T = 0, the BCS superconducting
gap takes the form ∆ ≃ 2ℏωDe−1/N(EF )V ≃ 1.764kBTc, where ωD is the Debye
frequency, and V is the effective electron-phonon coupling constant [43]. For the
Al contacts used in our experiments with a typical Tc = 1.15K, we get ∆0 ≃ 175
µeV . Further details on the basics of BCS superconductivity can be found in
various standard textbooks [42].

Figure 2.1: (a) Sketch of quasiparticle density of states of superconductor as a
function of energy with various energy locations marked. (b) The sketch density of
states of superconductor depicting a Cooper pair and quasiparticle excitations both
as an electron (black dot) and a hole (open dot) as well.

2.2 Jospehson Junctions
Following various experiments looking at tunnelling effects in structures involving
superconductors, in 1962, Brian D. Josephson developed theoretical predictions for
tunnelling current in a system (SIS tunnel junction) where two superconducting
electrodes are separated by a thin insulating tunnel barrier [44–47]. He showed
that apart from quasiparticle tunnelling, it is possible to observe the transfer
of Cooper pairs through the barrier. The so-called Josephson junctions were
experimentally realized shortly after [48]. Now, after more than 60 years since the
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initial prediction from Josephson, Josephson junctions come in various forms other
than SIS junctions, junctions with normal metallic barriers like SNS and SINIS,
and point contact and constriction-based junctions, etc. They are utilized in
many applications, including Josephson voltage standard, superconducting qubits,
SQUID magnetometers, parametric amplifiers, bolometers, etc [49].

2.2.1 Josephson Effect
To understand the behaviour of Cooper pair tunnelling, consider two supercon-
ducting electrodes with wave functions Ψ1 = √

n1e
iφ1 and Ψ2 = √

n2e
iφ2, with

n1 and n2 being the Cooper pair density and φ1 and φ2 being the phase of the
order parameter at the respective electrodes [47, 49]. Now, if the barrier is small
enough, then the wavefunctions of the two electrodes can overlap, allowing for
Cooper pairs to tunnel. The Josephson effect can be summarized into two equa-
tions given below,

I = Ic sin φ (2.2a)

V = ℏ
2e

∂φ

∂t
(2.2b)

Here, φ corresponds to the phase difference between the electrodes, and Ic cor-
responds to the critical current of the junction. Equation 2.2a is called the DC
Josephson effect, and it shows that the junction can support supercurrent without
developing any voltage until the critical current is reached. Since this expression
relates the current and phase in a junction, it is also called the current-phase
relation (CPR) of the junction, and it plays a crucial role in understanding the
properties of a Josephson junction. Now, the second Josephson equation given
in 2.2b describes the time evolution of the phase difference φ across the junction
with respect to the voltage drop across the junction. By integrating, it is easy to
see that the time evolution of phase across the junction can be expressed as

φ(t) = 2eV

ℏ
t + φ0 ≡ ωJt + φ0 with fJ = ωJ

2π
= 2eV

h
(2.3)

being the Josephson frequency. So, when finite voltage develops across the junc-
tion, the phase across the junction evolves in time, generating an alternating
supercurrent. This is called the AC Josephson effect, and the junction radiates
photons at a frequency defined by the voltage bias and fundamental constants.
For instance, when V = 1µV , the Josephson radiation is emitted at a frequency
of fJ ≃ 483.6 MHz [46, 47].

2.2.2 Shapiro Steps
When a voltage with AC components is applied to a Josephson junction, it results
in the observation of Shapiro steps in the current-voltage characteristic (IVC) of
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the junction [49, 50]. To understand this, let us consider a voltage bias across the
junction of the form

V (t) = Vdc + Vrf cos ωrf t (2.4)
where Vdc is the DC voltage and Vrf and ωrf corresponds to the amplitude and
angular frequency of the applied RF signal. Now, plugging this into the AC
Josephson equation 2.2b, we get the phase across the junction as

φ(t) = 2e

ℏ

(
Vdct + Vrf

ωrf
sin ωrf t

)
+ φ0. (2.5)

The current across the junction can be written as,

I(t) = Ic sin
[2e

ℏ

(
Vdct + Vrf

ωrf
sin ωrf t

)
+ φ0

]

= Ic

∞∑
n=−∞

(−1)nJn

(2eVrf

ℏωrf

)
sin

[(2e

ℏ
Vdc − nωrf

)
t + φ0

]
.

(2.6)

Here, Jn is the nth order of the Bessel function of the first kind. As seen in
the equation 2.6, whenever 2eVdc

ℏ = nωrf , the supercurrent is time independent
and DC current steps emerge at voltages Vn = nh

2e frf . These are called Shapiro
steps, and this is one of the most fundamental properties of a Josephson junction
often used for characterizing them [49]. Since voltage spacing depends on drive
frequency frf and fundamental constant, this phenomenon is used in metrology
for defining voltage standards.

2.2.3 Josephson inductance and Josephson energy
From an electrical circuit point of view, a pure Josephson element is a nonlinear
inductor [49]. To see this, let us take the time derivative of Josephson current,

∂I

∂t
= Ic cos φ

∂φ

∂t
= Ic cos φ

2e

ℏ
V or V = ℏ

2eIc cos φ

∂I

∂t
. (2.7)

Now, by comparing this to the equation for the voltage across an inductor, V =
LdI

dt , we get the Josephson inductance to be

LJ = ℏ
2eIc

1
cos φ

= Φ0

2πIc

1
cos φ

, (2.8)

where Φ0 = h/2e is the magnetic flux quantum. Because of the presence of the
1/ cos φ term, the LJ is nonlinear and the value LJ diverges whenever φ is an odd
multiple of π/2. The energy stored in a Josephson junction is given by

EJ(φ) =
∫ t

0
IV dt = ℏIc

2e

∫ φ

0
sin φdφ = EJ0(1 − cos φ), (2.9)

with EJ0 = ℏIc

2e being the maximum Josephson energy.
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2.2.4 Josephson effect in magnetic field
Consider a Josephson junction with an applied perpendicular magnetic field (B)
as shown in figure 2.2(a). Here, we consider that case, in which the thickness of
the superconducting electrode t ≫ w, λ1,2, with w being the width of the junction
and λ1,2 corresponds to the London penetration depth. The spatial modulation
phase φ across the junction field along the y-axis follows the equation [49],

∂φ

∂y
= 2πBdeff

Φ0
with deff = λ1 + λ2 + d. (2.10)

Now, the critical current of the junction shows modulation patterns given by

Ic(Φ) = Ic,max

∣∣∣∣∣sin πΦ/Φ0

πΦ/Φ0

∣∣∣∣∣ (2.11)

Here, Φ is the total flux through the junction, which can be written in terms of
the applied magnetic field as Φ = BAeff . In case this Aeff = wdeff , and to get
this value, we have to consider a closed contour(dashed line) inside the junction
such that either the current density j = 0 or j is perpendicular to the contour
used for getting flux values as shown in 2.2(a)(here we make use of the equation
ℏ
e∗ ∇φ = m∗

ne∗2 Js + A from Gizburg Landau theory [42]). The total effective area
of the junction is marked in shades of blue. Now, as seen in equation 2.11, the
critical current of the junction modulates with external flux Φ, and whenever
Φ/Φ0 is a nonzero integer, the critical current of the junction goes to zero. This
is known as the Fraunhofer pattern of the junction due to its resemblance to a
single-slit diffraction pattern. Since it has to do with the spatial variation phase
across a junction in a magnetic field, it provides a powerful tool for studying the
quality of the junction.

Now, in the case of a planar thin film-based Josephson junction where t ≪ λ, w,
the effective area of the junction needs to be redefined to account for the flux-
focusing effect. In this case, the contour, which satisfies the requirement of j = 0
or is perpendicular to j is shown in figure 2.2(b) along with the lines representing
screening current sketched on the left electrode [51]. The effective area in this
case is Aeff ≈ w2/2 + wd, which is twice the area of the triangular region plus
the area of the insulating section. Rosenthal et al. showed that the effective area
for a planar thin film junction is given by Aeff = w2/1.84+wd [51]. This roughly
corresponds to the area marked in shades of blue figure 2.2(b).

2.2.5 SQUIDs
Superconducting QUanutum Interfence Devices(SQUIDs) work by combining the
Josephson effect and fluxiod quantization effect [52]. They can be used as a very
sensitive magnetic flux to voltage converter. In the following, we will discuss
briefly the working principles of both DC and RF SQUIDs.
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Figure 2.2: (a) Schematic of a Josephson junction of width w and superconducting
electrode separation of d in an external magnetic flux Φ (corresponding to a magnetic
feild B).The effective area of the junction is shown in shades of blue. (b) A planar
thinfilm junction in an external magnetic field. The black lines correspond to the
screening current in the electrodes, and the effective area of the junction is given by
the region marked in shades of blue.

Figure 2.3: Schematic of a (a) DC-SQUID formed out of two Josephson junctions
connected by a superconducting loop and (b) an RF SQUID consisting of a single
Josephson junction subject to an externally allpied magnetic flux Φext

DC SQUID

The DC SQUID consists of a superconducting loop of inductance L interrupted
by two Josephson junctions, with applied external flux (Φext)through the loop as
shown in figure 2.3(a). The total current through SQUID I can be written in
terms of current through the Josephson junction in the two loop arms as [52]

I = Ic1 sin φ1 + Ic2 sin φ2 (2.12)

Since our loop is superconducting, from fluxoid quantization, we can write

φ1 − φ2 − 2πΦ
Φ0

= 2πn (2.13)
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where the total flux enclosed by the loop is given as Φ = Φext − LIs with Is being
the screen current through the loop. Now, if we assume the two junctions are
identical with Ic1 = Ic2 and the loop inductance L to be very small and rewrite
φ1 as φ for simplicity, then by inserting equation 2.13 in equation 2.12 we get,

I = 2Ic1

∣∣∣∣∣cos πΦext

Φ0

∣∣∣∣∣ sin φ = Ic(Φext) sin φ (2.14)

with Ic being the critical current of the SQUID. From here, we can see that a
SQUID acts like a Josephson whose critical current modulates as a function of
flux through the loop. For the finite loop inductance case, there is no analytic
expression for the SQUID current, and in this case, we will have to use numerical
methods to calculate the critical current of the SQUID [53]. To quantify the
impact of L, we can define the screen parameter of βL of the DC SQUID as
βL = LIc/Φ0, where for βL ≪ 1 we can neglect the effect of the inductance such
that Φ ≈ Φext.

RF SQUID

Unlike DC SQUID, in RF SQUID, only a single Josephson junction is incorporated
into the superconducting loop, as shown in figure 2.3(b). As the name suggests,
the RF SQUID can only be probed using microwaves, and this is usually done
by coupling it inductively to a tank circuit [52]. The details of an RF SQUID
coupled to a resonator are discussed in Appendix A. Now, like in the case of DC
SQUID, we can apply fluxoid quantization to arrive at

φ − 2πΦ
Φ0

= 2πn or φ = 2π

Φ0
(Φext − LI) (2.15)

which is a self-consistent equation since I is a function of φ, and needs to be
solved numerically, just like for the finite inductance case of DC SQUID. Here,
we can also define a screening parameter as βRF

L = 2πIcL/Φ0. Now, assuming a
sinusoidal CPR, we can rewrite equation 2.15 as

Φext

Φ0
= 1

2π

(
φ − βRF

L sin φ
)

. (2.16)

The external flux is plotted in terms of the phase across the junction in figure2.4.
As seen here, if the βRF

L ≪ 1, the flux due to the screening current becomes
negligible, and the flux to phase conversion, in this case, is rather linear. For
finite βRF

L < 1, the flux to conversion is nonlinear, with a sinusoidal curve imposed
on top due to the sinusoidal CPR. In this case, if we invert the curve, the flux
to phase conversion is single-valued. Where for βRF

L ≥ 1, the flux to phase
conversion curves is multivalued in some regions, and the curve will be hysteretic
around φ values, which are an odd multiple of π. In this case, phase biasing the
SQUID around the odd multiple of the value of π is not possible. So, in all our
experiments, we want to work at βRF

L ≪ 1.
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Figure 2.4: Plot showing external magnetic flux in terms of phase φ across the
junction for an RF-SQUID for various values of βRF

L . As seen here, βRF
L ≪ 1, is

have linear phase-flux conversion, but for βRF
L < 1, it becomes nonlinear due to the

sinusoidal contribution from the CPR. If we invert this curve for βRF
L ≥ 1, then the

phase across the junction will be hysteretic and will skip over the regions around
which φ which an odd multiple of π.

2.3 Introduction to SNS Junctions
In this subsection, we will take a look at the transport in SNS junctions, as this
thesis deals with junctions of the form S-TI-S.

2.3.1 Andreev reflection, ABS and MAR
Let us start by looking at the scattering properties of an NS interface. When an
electron with energy E less than the superconducting gap is incident on an NS
interface, as shown in figure 2.5(a), we would expect it to reflect back as there are
no available quasiparticle states inside the superconducting gap. In such cases,
no current can be transferred from N to S. However, in 1964, A. F. Andreev
theoretically showed that at an NS interface, a different process can occur, which
will allow for charge transfer between the N and S sides [54]. The microscopic
scattering mechanism which converts quasiparticle current to Cooper pair current
is called Andreev reflection and is schematically shown in figure 2.5(b).

Here, an incident electron with E < ∆ forms a Cooper pair with an electron
at energy −E of opposite spin and momentum and is transferred into the su-
perconductor. Since it is an elastic scattering process, to preserve spin, charge
and momentum, a hole is retro-reflected in the metal side with energy −E and
opposite spin. The Andreev reflection process is also reversible, which means that
if instead of an electron, a hole is incident on the NS interface, a Cooper pair will
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Figure 2.5: Schematic of NS interface with an incident electron on E < ∆ showing
(a) normal reflection due to the unavailability of superconducting quasiparticle states
inside the superconducting gap and (b) showing the Andreev reflection process in
which the electron is converted into a Cooper pair along with a retro-reflected hole
at energy −E and thus allowing charge transport across the interface. Schematic
representation of (c) Andreev bound states and (d) MAR process in an SNS junction.
In panel (d), V corresponds to the voltage drop across the junction.

be annihilated, and an electron is backscattered into the normal side. The effect
of Andreev reflection on charge transport was studied by Blonder, Tinkham and
Klapwijk (BTK) in 1982, and they showed that the transparency or transmission
probability of the interface determines the probability of Andreev reflection [55].

Now, let us consider an SNS junction in which two superconducting electrodes
are interrupted by a normal region. In an SNS junction, the Andreev reflection
process can occur in the two NS interfaces in a consecutive manner, as shown
in figure 2.5(c). Here, a Cooper pair from the left superconducting electrode is
Andreev reflected into the normal region as a counter-propagating electron-hole
pair, and at the right superconducting electrode, they are Andreev reflected to
form a Cooper pair. This results in the accumulation of phase and the total phase,
which can be expressed in terms of the phase acquired at the various sections of
the junction as φtot = φL + φN + φL, where φL, φR, φN are the phase acquired
at left interface, right interface and normal section of the junction respectively.
When ϕtot acquired by a charge transfer process across the junction is in an
integer multiple of 2π, discrete subgap states called Andreev bound states (ABSs)
are formed. ABSs facilitate the Josephson coupling across an SNS junction and
are fundamental to understanding the nature of transport across these junctions.
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For instance, in an SNS junction, when the linear part of IVC (for V > 2∆) is
extrapolated to zero voltage, it does not go to zero (ohmic response, V = IRN)
like in the case of a superconducting tunnel junction. This is due to the presence
of multiple Andreev reflections (MAR) in these junctions (see figure 2.5(d)), and
residual current at zero voltage is called excess current (Iex), and the value of
Iex depends on the strength of the interface barrier [56, 57]. Moreover, the MAR
features can be observed in the differential conductance of an SNS junction as
peaks or dips at voltage values, V = 2∆/n, where n = 1, 2, 3... and reflect the
number of Andreev reflections (n-1) [58].

2.3.2 Classification of SNS junctions
Based on various length and/or energy scales, SNS junctions of length l can be
classified into either short or long and ballistic or diffusive transport regimes. The
main two length scales used for classifying SNS junctions are electron mean free
path le and superconducting coherence length in the normal region ξN . Here,
le is the average length electrons travel in between collisions and is given by,
le = vF τe, with vF being the Fermi velocity and τe being the elastic scattering
time. ξN represents the characteristic length scale over which there is electron-hole
coherence inside the N region. For ballistic transport in the N region, ξN = ℏvF /∆
and for diffusive case ξN =

√
ℏD/∆, where D is the diffusion constant. Another

important parameter that can used for classifying SNS junctions is the Thouless
energy ET h = ℏ/τN , where τN is the charge crossing time across the N region. For
the ballistic case ET h = ℏvF /l and for diffusive case, ET h = ℏD/l2. If ET h ≫ ∆,
then the junction is in the short limit and if ET h ≪ ∆ then we have a long
junction. In table 2.1, we have summarized all the transport regimes based on
the parameters discussed above.

Transport regime Short Long ξN ET h

Ballistic l < le, ξN ξN < l < le ℏvF /∆ ℏvF /l

Diffusive le < l < ξN le, ξN < l
√
ℏD/∆ ℏD/l2

Table 2.1: Transport regime of an SNS junction

2.3.3 Short ballistic junctions
In this thesis, we are mostly interested in working in the short junction limit.
This is because, in this case, the energy dispersion relation of ABSs takes rather a
simple form as the phase φN acquired inside the normal channel can be ignored.
For short ballistic junctions, the dispersion relation connecting the energy En of
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the nth ABS pair, with a transmission probability τn, to phase difference φ =
φ2 − φ1 across the junction is given by [59, 60]

E±
n (φ) = ±∆

√
1 − τn sin2(φ/2). (2.17)

The dispersion relations of ABSs for various τn values are plotted in figure 2.6(a).
As seen here, the gap between the Andreev levels is smaller at φ = π, and is given
by Egap(π) = 2∆

√
1 − τn. When the transmission probability of the channel is

unity, the energy gap closes. The energy levels E−
n and E+

n can be thought of
as ground |g⟩, and excited state |e⟩ energies of ABSs that lie inside the super-
conducting gap, and they transport current in forward and backward directions,
respectively [61, 62]. The different states of Andreev levels are plotted in 2.6(b)
following the semiconducting picture. One can drive transition between |g⟩ and
|e⟩ with microwave radiation. However, it is rather difficult as one requires ABSs
with very high transmission probabilities to be accessible by the typical operating
range of microwave circuits (ω/2π ≃5-10 GHz). For instance, we work mostly in
the 4-8 GHz frequency range and if we assume a typical ∆Al of 180 µeV for Al
electrodes, we need ABSs with τ values close to 0.991, which is very high and hard
to obtain. Apart from the |g⟩ and |e⟩ states, it is also possible to have another
kind of state in an SNS junction, namely odd states |o⟩. Here, either both E−

n

and E+
n levels of the bound state pair are empty or filled. The odd state results in

no net current transport [61–63]. This is because, in one case, there is no Cooper
pair transfer across the junction and in the other, equal and opposite amounts of
Cooper pairs are exchanged between the electrodes.

We can instead make use of the CPR of the Andreev-bound states, which con-
nects supercurrent to the phase across the junction, to obtain information about
them. One can go from the ABS dispersion to the CPR using the relation [59,
60],

I(φ) = 2e

ℏ
∂E

∂φ
(2.18)

and at zero temperature, the CPR of the short ballistic junction with n mode of
transmission probabilities τn can be written as [60],

I(φ) = e∆(T )
2ℏ

N∑
n=1

τn sin(φ)√
1 − τn sin2(φ/2)

(2.19)

At finite temperature T , the population of the Andreev levels will change accord-
ing to Fermi-Dirac distribution, and the equilibrium CPR of the junction can be
written as

I(φ, T ) = 2e

ℏ

N∑
n=1

[
∂E+

n

∂φ
f+

n + ∂E−
n

∂φ
f−

n

]
or, (2.20a)



16 2 Background

I(φ, T ) = e∆(T )
2ℏ

N∑
n=1

τn sin(φ)√
1 − τn sin2(φ/2)

tanh
(∆(T )

2kBT

√
1 − τn sin2(φ/2)

)
.

(2.20b)
Here, f±

n = 1/(1 + eE±
n /kBT ) is the Fermi-Dirac distribution, kB is the Boltzmann

constant and ∆(T ) is temperature dependent superconducting gap.

Figure 2.6: (a) The energy dispersion relations of ABSs plotted as a function of
phase φ for various transmission probabilities (τn). (b) The semiconductor picture
of band structures corresponding to a pair of ABSs in |g⟩, |e⟩ and |o⟩ states. Here,
only the |g⟩ and |e⟩ results in net current transport. (c) Calculated CPRs (at T = 0)
of a short ballistic SNS junction for various τn values. The CPRs are highly forward
skewed in case of high τn values, and for low τn values, they evolve into a sinusoidal
CPR. (d) Normalized CPRs of a short ballistic SNS junction with τn = 0.9999 for
various temperatures showing the evolution of CPR into sinusoidal CPR at high
temperatures.

In figure 2.6(c), we have plotted the CPR of a single channel short SNS junction
with varying τ values. Here, we can see that for a small τ value, the CPR resemble
a sinusoidal curve, whereas as τ values go up, they get more and more slanted or
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skewed. So, a more skewed CPR should indicate a higher transmission probability
of the normal channel. The temperature dependence of the CPR of a junction
with τ = 0.9999 is plotted in figure 2.6(d), and here we have a skewed CPR at
lower temperatures, and as temperature goes up, the CPR starts evolving into a
sinusoidal curve. These behaviours can be seen mathematically by taking τn → 0
limit of equation 2.20b to first arrive at the Ambegaokar-Baratoff formula for
superconducting tunnel junction [64] and then at the DC Josephson equation[46]
by taking T → 0 limit as,

I(φ) = π∆(T )
2eRN

tanh
(∆(T )

2kBT

)
sin φ

T →0= π∆(T )
2eRN

sin φ (2.21)

where, RN and ∆(T ) are normal state resistance and temperature-dependent
superconducting gap, respectively. Here the normal state conductance is given by
the Landauer formula GN = R−1

N = 2e2/h
∑

n τn.

2.3.4 Short diffusive junctions
In the case of the short diffusive junction, instead of a discrete spectrum of ABSs,
we have a dense spectrum. From random matrix theory, we get the distribution
of various transmission probabilities in a diffusive wire as [65],

ρ(τ) = πℏGN

2e2
1

τ
√

1 − τ
(2.22)

This is known as the Dorokhov distribution, and it is plotted in figure 2.7(a). As
seen here for diffusive wire, most of the modes are distributed around the extreme
end of transmission probabilities, and there are modes in the whole range of [0,1].
So, to calculate the CPR of a short diffusive junction, we can replace the sum in
equation 2.20a with an integral in the interval τ = [0, 1] covering the full range of
transmission probabilities as [62]

I(φ, T ) = e∆(T )
2ℏ sin(φ)

∫ 1

0

τρ(τ)√
1 − τ sin2(φ/2)

tanh
∆(T )

√
1 − τ sin2(φ/2)
2kBT

 dτ.

(2.23)
The CPRs of a short diffusive junction at various temperatures are plotted in
figure 2.7(b) along with the zero temperature case of the ballistic junction with
τ = 1 for comparison. Unlike the short ballistic case (magenta line) with highly
skewed CPR with maximum occurring at phase φmax = π, the zero temperature
CPR of the short diffusive junction (green line) is not as skewed, and the maximum
of the CPR occurs at φmax ≃ 0.627π. This is due to the presence of modes with a
bimodal distribution of transmission probabilities in a diffusive wire. Like in the
case of short ballistic junctions, we see the CPR evolving into a sinusoidal CPR
at higher temperatures.
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Figure 2.7: (a) Dorokhov distribution of transmission probabilities used for mod-
elling diffusive wire. (b) Temperature evolution of CPRs of a short diffusive SNS
junction. Here, the magenta line corresponds to the zero temperature limit of CPR
of a short ballistic junction with τn = 1. As seen here, the value at phase φmax at
which CPR maximum occurs is smaller for short diffusive junction compared to the
ballistic case.

2.4 Topology in condensed matter system
In this section of the thesis, we will briefly go through topology and how it is
related to the band structure of materials in condensed matter physics(CMP).
We will introduce the Berry phase and how it is connected to the topological
properties of materials. Then, we will provide a brief description of topological
insulators and Bi2Se3, the material of choice for this thesis.

2.4.1 Topology and topological invariant
Let us start by looking at topology. Topology is a branch of mathematics which
deals with conserved properties of a geometric object under continuous deforma-
tion like stretching, contracting, bending, twisting, etc, without cutting or glueing.
The property of the object that does not change under continuous transforma-
tion is known as a topological invariant. For instance, consider a sphere, and it
can be smoothly transformed into a disk, and topologically, these two shapes are
equivalent. Whereas spheres and doughnuts are not. They are distinguished by
counting the number of holes, and there are no smooth deformations which will
take us from one to the other. The topological invariant, in this case, is an integer
known as the genus g of shape and using the Gauss-Bonnet theorem, we get [66,
67]

2 − 2g = 1
2π

∫
s
KdA (2.24)
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where K is the Gaussian curvature K of the shape. Now, for a sphere, g = 0 and
for a torus, g = 1, making them topologically distinct. This idea can be applied
to the band structure of materials. There are trivial insulators like vacuum with
normal band gaps, and there are insulators with non-trivial topology with inverted
band gaps. The existence of such topological distinct band structures can be
understood in terms of a geometric phase called the Berry phase [68, 69], and we
will discuss it first.

2.4.2 Berry Phase
One of the key ingredients for the topological description of material is the Berry
Phase [69]. It refers to a geometrical phase factor acquired by the state of a system
when subject to an adiabatic change following a closed path in the parameter space
of the Hamiltonian describing the system [68]. For a material system in CMP with
Bloch state |u(k)⟩ going in close contour C in k space, the Berry phase γC can be
defined as:

γC =
∮

C
A · dk with A = i ⟨u(k)| ∇k |u(k)⟩ . (2.25)

The Berry phase is similar to the Aharnov-Bohm phase but is defined in the
reciprocal space. A in the above equation is called the Berry connection, which
resembles a vector potential from electromagnetism. So, we can define a Berry
magnetic field or Berry curvature given by F = ∇⃗×A and using Stokes theorem,
we can write equation 2.25 as

γC =
∮

C
A · dk =

∫
S

Fd2k (2.26)

Here, S is the surface of k-space connected to the contour C. Because of time-
reversal(TR) symmetry, material systems can only take Berry phase values of
either 0 or π. For trivial insulators, the Berry phase is zero, and for a topological
insulator, it takes a value of π. In the following section, we look at the Integer
quantum Hall effect to connect the Berry phase to the topological invariant of
band structures [69].

2.4.3 Integer quantum Hall effect
The discovery of the integer quantum Hall effect(IQHE) by von Klitzing et al.
in 1980 marked a turning point in CMP. In 2D electron gas (2DEG) systems, at
strong magnetic fields, one observes precisely quantized Hall resistance plateaus
in terms of fundamental constants, h, Planck’s constant, and e, the charge of an
electron [70–72] This precise quantization applies to even disordered or irregular
samples. This is a result of the dissipationless 1D chiral edge states in these sys-
tems, which propagate in a single direction (based on the magnetic field direction)
without backscattering. Thouless, Kohomoto, Nightingale and den Nijs (TKNN)
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showed that the theoretical explanation of this phenomenon required the appli-
cation of ideas from topology [71, 73]. The topological invariant for IQHE is the
Chern number n, and it can be written in terms of Berry curvatures as[8, 71]

n = 1
2π

∫
BZ

Fd2k. (2.27)

Here, the Chern number n corresponds to the total Berry flux or phase in the
whole Brillouin zone [8, 66], taking integer values. Like in the case of the genus
g of the shapes from section 2.4.1, systems with different Chern numbers belong
to topologically distinct classes and their band structures can not be smoothly
transformed into each other. So, the interface between topologically distinct ma-
terials, the band gap needs to close, and this results in edge states. The IQHE
conductance can be written in terms of Chern number n as σxy = ne2

h . Since n
can only take integer values by construction, which does not change under smooth
variation of the Hamiltonian of the system, the IQHE effect is robust against local
perturbations like defects [8].

2.4.4 Topological insulators
The Chern number for a material where TR symmetry is not broken is zero. How-
ever, with the theoretical advancements in topological band theory, a new type
of invariant was introduced for case TR holds, namely the Z2 for systems with
spin-orbit coupling [8, 74–76]. With the help of Z2, which takes two values, either
ν = 0 or ν = 1, we classify materials into trivial and topological insulators. In
2D, we only need a single Z2 invariant to distinguish trivial (ν = 0) and topolog-
ical insulators (TIs) (ν = 1). 2D-TIs or quantum spin hall insulators were first
theorized by Kane and Mele in 2005 [77]. They later were theoretically proposed
and experimentally observed in mercury telluride quantum well devices[78, 79].
To understand the band structure of a 2D-TI, we can use a simple schematic
shown in figure 2.8(a). The sketch of the band structure of the semiconductor is
shown in the left-most part of the diagram, showing both s (purple) and p (or-
ange) orbitals [75]. In the case of materials with strong spin-orbit coupling, these
s(purple) and p (orange) bands invert, and they can form an inverted bandgap
with nontrivial topology, as shown in the second and third diagrams 2.8(a). Now,
if we consider the edges of a topological insulator and a trivial insulator like a
vacuum, and since here we have to go from ν = 1 to ν = 0, like in the case
of IQHE, we will have metallic edge states connecting the two insulators due to
bulk boundary correspondence [8, 75]. This is depicted in the rightmost diagram
in 2.8(a). Unlike IQHE, in the case of 2D-TI, due to TR symmetry, the edge
states are helical, meaning that, in a 2D-TI, opposite spins propagate in opposite
directions.
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Figure 2.8: (a) Simple schematic showing band structure evolution resulting in the
formation of a topological insulator. From left to right, the band structure of semi-
conductor, band structure showing band inversion, inverted band gap in the presence
of strong spin-orbit coupling and band structure of TI showing TSSs along with bulk
valence and conduction bands. (b) Dirac dispersion in a 3D-TI showing the special
spin texture. TSSs are protected against backscattering, as indicated by the arrow, as
the two sites have different spin orientations. (c) Crystal structure of Bi2Se3 showing
quintuple layer and stacking. (d) An ARPES image of the band structure of Bi2Se3
showing both bulk bands and Dirac bands, adapted from [80].

In three dimensions, if we consider a cube, we would expect each surface to
have an Z2 invariant associated with them. However, since these surfaces are not
fully independent, we have in total there are four topological invariants given as
(ν0; ν1, ν2, ν3) [74, 81]. For instance, vacuum, which is topologically trivial, has
variants (0;0,0,0). Out of these, the main invariant is ν0, which lets one classify
materials into strong (ν0 = 1) and weak (ν0 = 1) topological insulators [8].
In weak topological insulators, the Fermi circle encloses an even number of Dirac
cones, and they are not topologically protected. However, in the case of strong 3D-
TI with ν0 = 1, one has an odd number of Dirac cones enclosed by the Fermi circle,
and one of them will be uncoupled from others, allowing for protected topological
surface states(TSSs) with special spin texture, as shown in figure 2.8(b) [8]. As
seen here, the spin direction and propagation direction are locked together, and
because of this, TSSs are protected against backscattering, as this would require a
spin flip. The strong 3D-TI nature was first experimentally observed in Bi0.9Sb0.1
alloy, and later other materials like Bi2Se3, Bi2Te3, Sb2Te3, etc were identified [82].
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In this thesis, we use Bi2Se3 with invariants (1;0,0,0), which is one of the most
readily available 3D-TI materials. Bi2Se3 has a rhombohedral crystal structure
and a monolayer of Bi2Se3 is formed out of a quintuple layer of two Bi and three Se
layers as shown figure 2.8(c) [83]. Compared to other materials from the family
Bi2Se3, it has a large bulk band gap of 0.3 eV and a simple band structure where
the Dirac point is located at the Γ̄ point well separated from the bulk valence
band (BVB) and bulk conduction band (BVB). An angle-resolved photoemission
spectroscopy (ARPES) image with the band structure of Bi2Se3, adapted from
[80], is shown in figure 2.8(d). Though TIs are expected to have an insulting bulk,
materials like Bi2Se3, Bi2Te3, Sb2Te3, etc., suffer from unintentional bulk doping
due to defects. So, in these materials, the TSSs coexist along with bulk states,
making the electrical transport analysis cumbersome [8, 36]. Over the years,
compensation doping has been used to reduce the bulk contribution. However, this
comes at the expense of electron mobility [15, 25–27, 29, 30, 32–34]. In our case,
in order to reduce the bulk contribution to the electric transport by increasing
the surface-to-volume ratio of the 3D TI, we use Bi2Se3 nanoribbons [84–86].

2.5 Probing topological properties using
superconducting devices

The Dirac equation, which describes a relativistic spin half particle, is one of the
most celebrated equations in physics [1]. It predicted the existence of antiparticles
of fermions, which are distinct from the fermion itself. This led to the discovery
of positron, the anti-electron, by Carl D. Anderson in 1933 [2] and other anti-
matter particles. In 1937, Ettore Majorana devised an elegant modification to
the Dirac equation that predicted a particle that could be its own antiparticle [3],
namely Majorna fermion. In terms of second quantization, notation this means
that γ = γ†, where γ† (γ) corresponds to the creation operator (annihilation)
operator for Majorana fermions. As of now, there has not been any experimen-
tal evidence for any elementary particle being a Majorana Fermion. The field of
condensed matter physics(CMP) is known for the ability to host various collec-
tive excitations or quasiparticles, like phonons, excitons, polarons, magnons, and
skyrmions, which do not exist in free space. Recent theoretical advancements in
condensed matter physics identified some material systems where one could have
quasiparticles, which are its own holes [9–13, 87–89]. Such excitation is believed
to follow non-Abelian statistics or, in other words, exchanging (or braiding) two
such particles has a non-trivial outcome, unlike the fermions or bosons, which
get their wavefunctions multiplied by a factor of -1 or +1, respectively. There
has been growing interest in detecting Majorana Fermions in material systems,
as they might be able to pave a path towards topologically protected quantum
computing [5–7].
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As Majorna fermions are their antiparticle, the CMP version of them can be
thought of as an equal superposition of electrons and holes [8, 11, 88, 89] A natural
place to look for them is in superconductors, as the Boguliubov quasiparticle have
both electron and hole component. In an s-wave superconductor, the quasiparticle
can be written as b = uc†

↑ + vc↓, where c†(c) is the fermion creation (annihilation)
operator and u and v corresponds to the weight of electrons and holes respectively.
Now, b† = v∗c†

↓ +u∗c↑ and this is distinct from a b. To get the Majorana condition,
we need to have a spinless superconductor. In case of a spinless superconductor
with spin-triplet (or p-wave) pairing such that quasiparticlecan take the form
γ = uc†

↑ + u∗c†
↑, then we have γ = γ†, which is Majorana fermion [11, 88].

Although Sr2RuO4 is predicted to have p-wave pairing and Majorana fermions
are expected to occur at vortices, it has not been confirmed experimentally [11,
88–90].

With the advent of topological materials like topological insulators, there have
been predictions for observing various hybrid devices involving s-wave supercon-
ductors and unconventional metals like topological insulators to nanowires with
high spin-orbit coupling [8–11]. In particular, hybrid S-TI-S junctions with TSSs
are expected to provide a platform for hosting Majorana Bound States (MBSs) [8–
11, 89]. When a conventional BCS superconductor with s-wave symmetry of the
order parameter is placed in contact with an unconventional metal like TI with
Dirac surface states, the induced superconducting gap of the TI can be topologi-
cal at certain conditions [8–10]. Fu and Kane showed that the proximity-induced
superconductor could have an order parameter with an px + ipy symmetry, and
S-TI-S junction formed out of such unconventional superconductors can support
MBSs at zero energy at a phase bias of π, as part of ABSs that transport the
charge across them [9–11, 91, 92].

Moreover, as discussed at the beginning of this Chapter, even though TIs are
expected to be bulk insulating with conducting TSSs, most of the easily available
ones, i.e. the family of Bi2Se3, come with unavoidable bulk conductivity due to
vacancy defects [8, 36]. So, detecting the signatures of TSSs with transport mea-
surements is challenging. This is because the bulk states in TI materials usually
show diffusive transport, and if we implement them in an S-TI-S junction form,
the current contributions from the diffusive bulk states will be lower (assuming
short junction limit Idiff

c = 2.07∆/eRN), compared to ballistic states (assuming
short junction limit Iball

c = π∆/eRN) that might originate from TSSs. This way,
we can detect some signatures of TSSs using supercurrent transport.

In the following, we will look at some of the details of having MBSs in an S-TI-S
junction and will discuss briefly how to detect them.
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2.5.1 Majorna bound states in TI-superconductor hybrid
devices

Consider an S-TI-S junction as shown in figure 2.9(a). Assume that the Fermi
level is close to the Dirac point of the TI, and all transport contributions come
from TSSs with linear dispersion relation. Now, The ABS corresponding to an
electron with spin up travelling normal to the superconducting electrodes with a
wavevector having ky = 0( θ = tan−1(ky/kx) = 0 ) is shown 2.9(b) [32, 87, 92]. In
this case, due to the special spin texture of TSSs, due to forbidden backscattering,
this would require a spin flip. So, this zero-angle mode is always transmitted with
a probability of 1. Since we induced superconductivity in a topological material
to form the junction, the zero angle mode is MBS at the phase of φ = π, which is
a ground state excitation of topological superconductor, rather than conventional
ABSs [87, 92]. The dispersion relation of the MBS, in general, can be written
as [93]

E±
m = ±

√
τm∆ cos

(φ

2

)
(2.28)

Here, E±
m corresponds to energies of MBS with different parity and τm is the trans-

mission probability of the MBS and for an S-TI-S junction τm = 1 [87, 92]. The
τm in an S-TI-S junction could be controlled by adding magnetic materials on top
of the TI-weak link, allowing one to protect the MBS from continuum states [93].
The dispersion relation of the MBS is plotted in figure 2.9(c) with various τm

values for comparison. Here, the only difference in bound state spectrum between
various τm is in the reduction in amplitude. The most striking feature of MBS
dispersion is that, unlike the case of ordinary ABSs, they are 4π periodic. Though
two energy levels cross each other at a phase value of π, since they have opposite
parities, transitions between them are forbidden. But if there are parity-switching
events like quasiparticle poisoning, this will not hold. So, if there are no parity
switching events, we should observe a 4π periodic Josephson effect from MBS [9,
94].

The 4π periodicity of MBS can be seen by taking the derivative of the MBS
dispersion to obtain the CPR as

Im = 2e

ℏ
∂Em

∂φ
= 2e

ℏ
√

τm∆ sin
(φ

2

)
= Im0 sin

(φ

2

)
. (2.29)

The 4π periodic CPRs of MBS with various τm values are plotted in figure 2.9(d).
So, to detect MBSs, we have to look for signs of 4π periodic Josephson effect. Now,
any other bound state that propagates at an θ ̸= 0 is a conventional Andreev
Bound State [87, 92]. So, in an S-TI-S junction, the MBS are expected to coexist
alongside conventional ABSs with 2π periodic bound states spectrum.
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Figure 2.9: (a) Sketch of an S-TI-S junction showing the ky = 0 MBS. (b) MBS in
an S-TI-S junction shows protection against backscattering of the TI-weak link due
to spin momentum locking. This mode, which travels normal to the superconducting
electrodes, is thus always transmitted. (c) Energy dispersion of MBS with different τm

values. For S-TI-S junction τm = 1. (d) Plot showing the CPR of MBS for different
transmission probabilities.

2.5.2 Fabry-Pérot resonace and transmission probability of an
S-TI-S device

In an S-TI-S junction, we can have a chemical potential mismatch between the
section of the TI covered by the superconductor (or normal electrodes) and the
bare TI part that forms the weak link. We can think of this situation as an
electrical equivalent of the well-known Fabry-Pérot(FP) cavity from optics. Here,
instead of photons, we have our electron wave, and instead of mirrors, we have a
barrier formed due to the chemical potential mismatch at the interface [21, 95].
A simple schematic showing FP cavity in an S-TI-S junction is figure2.10(a). For
the general case, we will assume that the junction is in a normal state as this
has nothing to do with superconductivity or TSSs and can be applied to other
devices with two semi-transparent interfaces [95–97]. Also, assume that the Fermi
wavelength (λF ) needs is smaller than the length l of the junction so that it can
fit electron waves. Now, electron waves shown in green and red going to the right
electrode can interfere if their phases are coherent. For constructive interference,
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we have the condition, 2lkF = 2πn, where kF is the Fermi wavevector, l is the
length of the junction and n is an integer [95–103]. Such interference of electron
waves can be seen as periodic oscillations of conductance as a function of the
gate voltage or bias voltage of the device [95–97]. FP conductance oscillation
has been experimentally observed in various quasi-1D systems, including carbon
nanotubes, quantum Hall edge states, semiconducting nanowires, and graphene
nanoribbons, etc [95–103].

Figure 2.10: (a) Schematic of an S-TI-S junction showing barrier at the S-TI interface
due to chemical potential mismatch. Red, yellow and green correspond to charge
carriers undergoing reflection at the barrier to create FP resonance in conductance.
(b) Sketch of an S-TI-S junction showing a mode travelling θ = tan−1(ky/kx), which
would result in a conventional ABS.

Now, in the case of Dirac materials, because of the presence of the linear disper-
sion that protects against backscattering, the transport across an S-TI-S junction
can have FP transmission resonance due to Klein tunnelling. [21, 104] The peri-
odicity of FP resonances in terms of chemical potential is given as ∆µ = hvF /2l,
where vF corresponds to the Fermi wave velocity. Whenever the kx component of
the wavevector(k) of transport modes, shown in figure 2.10(b), satisfies the FP res-
onance condition, we have higher transmission through the junction. This can be
seen in the angle (θ = tan−1(ky/kx)) dependence of the transmission probability
of the junction given by τµr = 1 − |r|2, with [21, 104]

r = 2eiϕ sin (kxl) sin (ϕ) − sin (θ)
e−ikxl cos (ϕ + θ) + eikxl cos (ϕ − θ) − 2i sin (kxl) (2.30)

Here, ϕ = sin−1 (µr sin θ) with µr = µwl/µel being the ratio of chemical potential
µwl at the weak link to the ratio of chemical potential at µel. Though this was
originally derived for graphene, it can applied to TI materials as well [104].

We calculated the transmission probability τµr of various modes in Al-Bi2Se3-Al
junction of length l = 100 nm, width w = 300 nm, and thickness t = 20 assuming
µr = 0.5 and a typical kF value of 0.55 nm−1. The resulting polar plot is shown in
2.11 (a) as orange curve. Here, one sees the oscillation of transmission resonance
with respect to θ. For lower angle modes, the oscillation has a lower amplitude,
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and τµr values are close to one. But at higher angles, it oscillates with higher
amplitudes and goes close to τµr = 0. To get an idea of how it affects the ABSs
in this junction, we have plotted 1 − Egap/∆, where Egap is the gap in the ABS
spectra at phase π [21]. Here, we see that the mode at θ = 0 is gapless, and
there are also some modes with very small gaps, and depending on the value of
temperature, we might perceive them as gapless in our measurements [21].

Even though equation 2.30 provide the transmission probability of various
modes in an S-TI-S junction, the in adds an extra parameter to the analysis,
namely µr. So, throughout this thesis, we assume an extreme chemical potential
mismatch between our weak link and electrodes and, in this case, the equation
for transmission probability simplifies to [105, 106],

τ = k2
x

k2
x cos2(kxl) + k2

F sin2(kxl) . (2.31)

To provide a comparison between τ (blue curve) and τµr from before, we have plot-
ted them in figure2.11(b) with the same junction parameters asin figure 2.11(a)
with various µr values (curves with shades of orange). As seen here for lower µr

value, both the expressions start to converge.
In the case of TI nanoribbon-based devices, one can have transversal quanti-

zation along the ky direction due to the size as ky = 2π(n + 1/2)/P , where n is
an integer and P = 2(w + t) is the perimeter of the TINR [91, 107, 108]. One
of the immediate effects of this is that, instead of the continuous spectrum of τ
value covering all angles, we will have a mode with discrete θ values or, in turn,
τ values. But even more importantly, we have an additional factor of 1/2 in the
equation, arising from the Berry phase picked up by the Dirac fermion while cir-
culating around the nanoribbon [107], and this has a huge impact as this means
we no longer have the ky = 0 mode. The Dirac dispersion will form into subbands
with energy spacing given by [91, 107, 108],

En = ±ℏvF

√√√√k2
x +

(2π(n + 1/2 − Φ/ΦN
0 )

P

)2

with ΦN
0 = h

e
. (2.32)

The energy dispersion of a TI nanoribbon with P = 100 nm, assuming vF =
5.5 × 105 m/s for Bi2Se3, is plotted in figure 2.11 (d) and (e) for Φ = 0 and
Φ = ΦN

0 /2 respectively. As seen here, to get back to the case of no energy gap that
supports MBS, one needs to apply flux of ΦN

0 /2 along the axis of the nanoribbon.
It is important to mention here that we did not apply any axial magnetic field in
any of our measurements. Now, in figure 2.11(c), we have plotted the transmission
probabilities of two devices with length l = 100 nm, thickness t = 20 and width
of 150 nm (magenta circles) and 300 nm (orange circles), respectively, assuming
transversal quantization. As seen here, depending on the width of the junction,
the number of modes and the transmission probabilities of the modes change.
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Figure 2.11: (a) Angle dependent (θ = tan−1(ky/kx)) transmission probability τµr

(ornage) and 1 − Egap/∆ (purple) calculated for device of with l = 100 nm,w = 150
nm and t = 20 nm assuming µr = 0.5. (b) Transmission probability calculated using
equation 2.44 with various µr values (shade of orange) along with the curve assuming
extreme Fermilevel mismatch (blue) calculated using equation 2.45. (c) Plot showing
discrete τ values for devices with two different widths, 150 nm (orange) and 300
nm(magenta), in the presence of transversal quantization. The blue line is the same
as the previous plot. Energy dispersion of Dirac surface state in the presence of
transversal quantization result in subbands with (d) gap in the spectrum for Φ = 0
and (e) gapless spectrum for an applied external flux of Φ = 0.5Φ0n. In the case
of transversal quantization, applying an axial magnetic field to compensate for the
contribution due to the Berry phase is essential to have MBS in S-TI-S junctions.

2.5.3 Detecting Majorana bound states

As seen in the previous section, S-TI-S junction has the potential to host MBS,
and they should have 4π periodic bound state spectrum and a corresponding 4π
periodic CPR. For observing MBS, we need to look for Josephson effects with 4π
periodic CPR signatures [106]. Ideally, pure MBS in a junction will result in a
Fraunhofer pattern with 2Φ0 periodicity, which will emit Josephson radiation at a
frequency fJ/2, which is half of the Josephson frequency and thus will also show
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twice the voltage spacing in Shapiro steps etc [106]. However, it is important to
note here that, in a measurement, if the temporal variation of the phase across the
junction is slower compared to the inelastic scattering time or the quasi-particle
poisoning time, one will not observe any 4π periodic Josephson effect, and in this
case, the 2π periodicity of the CPR will be restored [9, 94]. Because of this, DC
measurements, which are in general slow, will not be sufficient to detect MBS,
and it is essential to use microwave-based measurement to characterize topological
insulator-based junctions[9, 94].

2.5.4 Advancements in hybrid S-TI-S junctions
Over the past decade, Josephson junctions based on TI materials have been fabri-
cated and extensively studied experimentally to look for signatures of topological
superconductivity in these systems. Some of the studies based on TI systems can
be found in [17–21, 23, 27, 32, 35, 109–111]. Unfortunately it is impossible to
discuss them all here. The DC measurements that tried to observe the 4π periodic
Josephson effect in S-TI-S junctions included CPR extractions using biased asym-
metric DC-SQUIDs [17, 18, 27, 109, 110], and Fraunhofer pattern measurements
of single junctions [110, 112–114], phase-controlled junctions [24], etc. Since now
known that DC measurements are not sufficient for detecting MBS, the recent
studies based on TI-junctions primarily focus on Shapiro step measurements at
frequencies larger than any relaxation or poisoning rate [19–21, 23, 32, 35] or
microwave probing of phase-biased Josephson junctions [115] or measurements of
Josephson readiation[116]. In the case of Shapiro steps measurements, missing
odd integer steps were reported, and this pointing toward the possible presence
of 4π periodic modes in TI junctions [19–21, 23, 32, 35, 111, 117, 118]. Deacon et
al. observed emission of radiation at half the Josephson frequency in HgTe-based
gate-tunable junctions and this maybe points towards 4π periodic Josephson effect
in the junctions [116]. Also, Murani et al., performed AC susceptibility measure-
ments in an Bi based Josephson junction coupled to a multimode resonator, and
the observed losses attributed to the junction admittance at phase bias of π may
have been a signature of gapless topological bound states [115]. Now, it is essen-
tial to point out that the undisputed signature of Majorana-bound states is yet
to be reported.

2.6 Al-Bi2Se3-Al junctions at Chalmers
In this section, we quickly discuss the progress with Al-Bi2Se3-Al made at Chalmers
before the beginning of this PhD study to add more context. Since TI materials
like Bi2Se3 are known to have doped bulk carriers, we make use of nanoribbons
in our studies to have a higher surface-to-volume ratio and thereby reduce bulk
contributions. The Bi2Se3 nanoribbons used in our studies were grown at the
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Institute of Chemical Physics, the University of Latvia, by our collaborators us-
ing a physical vapour deposition technique. The details of the growth process
and magnetotransport characterization of these nanowires can be found in [84–
86]. From the magnetotransport characterization, we know that in our Bi2Se3
nanoribbons, we have TSSs coexisting along with bulk carriers and carriers due
to an interfacial 2DEG formed at the bottom interface of the TI-nanoribbon which
is in contact with the substrates. In these measurements, only surface states from
the top surface of the nanoribbon are visible, and the bottom ones are masked
by the accumulated 2DEG. The Fermi level of the top TSSs states are located
roughly 170-190 µeV above the Dirac point. The typical values of various pa-
rameters we get from these measurements are summarized in the table 2.2. Also,
from Shubnikov-de Haas (SdH) oscillations, we get the mobility values of roughly
7000 cm2V−1s−1 and 2000 cm2V−1s−1 for top surface states and trivial 2DEG
respectively.

nT S (cm−2) nInt (cm−2) nB (cm−2) ET S
F (meV) EB

F meV kF (nm−1)
2.1-2.6×1012 1.5-3.8×1013 1-4×1018 170-190 40-60 0.55

Table 2.2: Typical values of various parameters of Bi2Se3 nanoribbons used in this
study (adapted from [85]). Here nT S, nInt, nB correspond to the carrier densities
of the Dirac surface states at the top, the accumulated interlayer 2DEG and bulk
carriers, respectively. Also, ET S

F and EB
F correspond to the location of the Fermi level

for surface states and bulk, respectively, and kF corresponds to the typical value of
the Fermi-wave vector.

2.6.1 Highly transparent Al-Bi2Se3-Al
Following the works on various TI-based junctions [16, 119–121], Kunakova et al.
experimentally demonstrated highly transparent Al-Bi2Se3-Al devices fabricated
on TINRs. A summary of the main results from this work is provided in fig-
ure 2.12 [22]. An SEM image and schematic of the S-TI-S junction are shown in
the figure 2.12(a) and (b), respectively. As seen in the top part of the schematic,
these junctions can be described as SIS’I’-N-I’S’IS junctions, where S corresponds
to the Al electrode with superconducting gap ∆, S’ being the proximized super-
conductor inside the TI with an induced superconducting gap ∆′, N is the normal
part representing the bare TI section of the junction and I and I’ corresponding
to the barrier between the S and S’ and S’ and N respectively. A typical IVC
of the device measured on one of the junctions is shown in figure2.12(c), show-
ing the hysteric behaviour of our junctions. This is assumed to have its origin
in elevated electron temperature after the junction switches to the normal state.
The junction typically shows an induced gap 160-175 µeV and an IcRN product
ranging from 20-180 µV [22]. Since the value-induced gap ∆′ is very close to ∆Al
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of Al, we usually model these junctions as 2D planar junctions of the S’I’-N-I’S’
for simplicity as given in the bottom section of figure 2.12(b) [22].

In all our advice, we have an excess (Iexc) pointing towards the Andreev re-
flection process in these junctions. Using the Flesberg model to connect the Iexc

to the transparency of the I’ interface of these junctions, one finds typical values
ranging from 0.65-0.85. The conductance spectra of one of the junctions for var-
ious temperatures are shown in figure2.12(d), and here one can see dips in the
spectra at voltage value V = 2∆′/en, with n being an integer. This is due to
the MAR process in our junctions, and together with Iexc, they demonstrate the
high transparency of these junctions [22]. In figure 2.12(c), the extracted conduc-
tance dips corresponding to voltage values of 2∆′, ∆′ and 2∆′/3 are plotted as a
function of temperature, and solid lines correspond to fits of ∆′ made using the
formula [58, 122, 123]

∆′(T ) = ∆Al

1 + γ
√

∆2
Al(T ) − ∆′2(T )/KBTc

, (2.33)

with γ ∝ RB/ρNξN , ρN and ξN being the resistivity and coherence length of
Bi2Se3 nanoribbon respectively and RB the resistivity of the interface I between
Al electrode and Bi2Se3. For the fitted curve shown figure2.12(e), γ = 0.5 and
typical value of γ for Al-Bi2Se3-Al junctions ranges in between 0.2-0.9 [22].

2.6.2 Missing first Shapiro step Al-Bi2Se3-Al
Now, we will look at Shapiro step measurements performed on Al-Bi2Se3-Al.
Though it is common to see reports of S-TI-S junctions with attenuated odd
Shapiro steps in the literature, most of the junctions measured at Chalmers did
not show this feature. The data from one of the devices (B53-41) that showed
missing the first Shapiro step is provided in figure 2.13. The most important
distinction between device B53-41 and the devices that did not show the missing
odd step is in the width. Device B53-41, with a length of 80 nm and width of
5µm fabricated on an STO substrate (uses layout B, see Chapter 3 for more), is
one of the widest nanoribbon-based Al-Bi2Se3-Al single junctions measured in our
group. In general, we do not prefer very wide single junctions as they tend to have
high critical currents and a large number of transport modes. So, if we were to
employ them to study unconventional nature in our junctions, any unconventional
signatures would be masked by a large number of conventional bound states.

The IVC of the device is shown in figure2.13(a), and the junction has an Ic of
28.4 µA and RN = 5.5Ω. Figure2.13(b) and (c) show the maps of the conductance
plotted as a function of DC voltage and microwave power at two different RF
irradiation frequencies, 1.56 GHz and 1.91 GHz. At 1.56 GHz, we can see the
first odd Shapiro step is missing, and it reappears at a frequency of 1.91 GHz.
Now, by taking 1.91GHz as the threshold frequency (f4π), we can estimate the



32 2 Background

Figure 2.12: (a) Colored SEM image of fabricated Bi2Se3 nanoribbon Josephson
junction (b) Schematic representation of a planar 3D TI Josephson junction. The su-
perconducting electrodes (S) that induce superconductivity in the 3D TI underneath,
indicated as S’, are shown in grey. The green line indicates the barrier I between S
and S’, while the dark grey region shows the barrier I’ between S’ and N representing
the part of the 3D TI not covered by the electrodes. For large enough transparency
between the 3D TI and Al, one can model the system as a planar 2D junction (lower
panel). (c) IVC of the junction B45-C1 measured at 20 mK. The solid black line is a
linear extrapolation to zero voltage used to extract the excess current Iexc, while the
black dotted line indicates the value of twice the induced gap ∆′ .(d) (dI/dV) as a
function of bias voltage for junction B45-C1 measured at various temperatures. (e)
Temperature dependence of the first three dips in the conductance spectra n = 1; 2;
3 (corresponding to 2∆′ ; ∆′ ; 2/3∆′ ). The solid red, blue, and green curves are the
calculated temperature dependences of the induced gap ∆′(T ) in agreement with the
equation, considering the parameter γ =0.5 and that the Tc of the junction is 1.14
K. The calculated curves are scaled to the experimentally determined ∆′ for n = 2
(adapted from [22]).

maximum amount of 4π periodic current that might be carried by the junction
as [32], Imax

4π = hf4π/2eRN ≃ 70 nA which is roughly 400 times smaller than the
Ic of the junction. This might have to do with the junction being really wide and
thereby supporting more regular transport modes.
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Figure 2.13: (a) IVC of a wide Al-Bi2Se3-Al junction (B53-41) measured at 20
mK with length, L = 80 nm and width, W = 5µm. Conductance map showing
Shapiro steps as a function of normalized DC voltage and applied microwave powder
at a frequency of (b) 1.56 GHz with missing first Shapiro step and (c) 1.91 GHz
with reappearance of Shapiro step [This figure is based on measurements by Gunta
Kunakova and Thilo Bauch].

Motivations for this thesis
Compared to some of the state-of-the-art S-TI-S junctions based on MBE-grown
TINRs with in-situ desposited epitaxial superconductors, our junctions are rather
modest in terms of technology. As discussed above, we use nanoribbon grown
with a simple PVD technique along with an ex-situ deposited superconductor
with e-beam evaporation technique. Kunakova et al. showed Al-Bi2Se3-Al with
high transparencies [22]. But, from magnetotransport, we know that apart from
TSSs, there are substantial amounts of carriers in our nanoribbon originating
from the bulk carrier and trivial 2DEG [85]. How much of the supercurrent is
carried by TSSs? Which transport regime are our junctions in? Why do we not
observe missing odd Shapiro steps in our narrow junctions? A recent experiment
by Rosenbach et al. showed a similar width dependence of missing Shapiro steps
in BSTS-based junctions and pointed out it could have been due to transversal
quantization [32]. Could it be the case in our junctions? From the angle-dependent
transmission probabilities of TI surface states discussed in the previous section,
we saw that there could be transport modes with transmission probabilities very
close to 1. Do we have these modes in our junction? If so, can we detect them?

Through this thesis, we try to answer these questions. By doing so, we hope
to improve our understanding of S-TI-S junctions in general and the nature of
transport phenomenology in them.





3 Fabrication and experimental
techniques

In this chapter, we will discuss the device fabrication process and measurement
setups used as part of this thesis. In the first section, we will go through the DC
devices and their fabrication, and then we will discuss the design considerations
and fabrication procedures used for making devices for microwave measurements.
In the second section, we briefly describe the setups used for both DC and RF
measurements. We will also provide an example of fitting resonance data of CPW
resonators that are inductively coupled to TI-based RF-SQUIDs.

3.1 Device Fabrication
3.1.1 Fabrication of S-TI-S Junction devices for DC

measurements
Junction layout

Throughout the thesis, we use two different S-TI-S junction layouts. We will refer
to them as layout A and layout B. In the case of layout A, the two Al-electrodes
of the junction are placed parallel to the transverse direction of the topological
insulator nanoribbon(TINR), as shown in figure 3.1(a). Here, the separation
between the electrodes of the junction defines the junction length, and the width
of the TINR defines the width of the junction. As a result, we only have control
over the length of the junctions and the widths of junctions are fixed by the width
of TINRs. In this layout, the transport will be very well confined within the region
between the two electrodes, and we can have transport modes that go around the
perimeter of the TINR along the transversal direction. A sketch of a junction with
layout B is shown in figure 3.1(b). Here, the two Al-electrodes of the junction are
placed parallel to the axis of the TINR. In this case, the width and separation of
the Al electrodes define the width and length of the junction, respectively, which
can be controlled lithographically. Unlike layout A, here the ends of the junction
are open, and we do not expect any modes that go around the perimeter of the
TINR as the path around the TINR will be extremely long (about 20-40). Figure
3.1(c) and (d) show SEM images of fabricated S-TI-S junctions with layouts A
and B, respectively.

35
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Fabrication Process

Figure 3.1: (a) Schematic depicting a TI-junction with layout A. Here, the Bi2Se3
nanoribbon is shown in cyan, Al electrodes are shown in grey, and the substrate is
shown in purple. This device allows modes that go around the perimeter of the TINR.
(b) Schematic showing a TI-junction with layout B. Since the ends of the junction are
open in this layout, these device does not support transport modes that go around
the TINR.(c) and (d) SEM images of fabricated Al-Bi2Se3-Al junctions with layout
A and layout B, respectively.

For fabricating the Al-Bi2Se3-Al Junction devices, we use pre-patterned SiO2(300
nm)/Si or STO or sapphire substrates with alignment marks for e-beam lithog-
raphy (EBL). In the usual transfer process, the TINRs are transferred from the
growth glass plate to the substrates by bringing them in contact or by using
cleanroom tissue paper cut into triangles to pick TINRs and place them on the
substrate. After the transfer process, the TINRs for device fabrication are iden-
tified with the help of an optical microscope and (or) atomic force microscopy
(AFM). The patterns for EBL are made using AutoCAD software, and the EBL
exposures are done following the recipes given in Appendix B. In all EBL recipes
involving TINRs, the baking temperature and time per resist layer are limited to
130◦C and 2 minutes, respectively, to limit degradation of the TINR. After the
development of the sample, we use optical microscopy to assess the quality of the
process. Then we use a very mild oxygen plasma (25 W, 50 mbar, 5s) to clean any
remaining resist residue. Then, the chips are loaded into an Ar ion beam etching
(IBE) machine and etched at an angle of 5◦ for 30s to remove the native oxide
from the surface of the TINRs before deposition of contacts. We perform this for
every device we fabricate. Now, prior to venting the load lock of the IBE chamber,
the load lock of the e-beam evaporator used for metal evaporation is opened to
allow for quick sample loading. Thereafter, the samples are quickly taken out of
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the IBE machine and loaded into e-beam evaporator within a minute to reduce
re-oxidation of the etched surface. As a final step, contact layers consisting of Pt
(3nm)/ Al (80-120 nm) are deposited, and the samples are lifted off in hot acetone
at 50◦C.

3.1.2 Suspended S-TI-S Junctions with local gates

Figure 3.2: (a) SEM image of the gates structures along with support pillars. (b)
zoom-in on the area of the SEM image from panel (a) marked with a blue rectangle.
Here, one can see the gate structures with a width of ≃ 50 nm in between the gaps
(100 nm) of Al2O3 support structures. (c) Optical image after the deposition of
Bi2Se2 nanoribbons using PDMS-assisted transfer. (d) Optical image showing TINRs
clamped down after first EBL and metal(Ti(5nm)/Au(80-100nm)) deposition. (e)
SEM image after depositing Al electrodes. (f) Zoom-in on the area of the SEM image
from panel (e) marked with a magenta rectangle showing a single suspended S-TI-S
junction.

To make the suspended junctions, we use pre-patterned sapphire substrates with
alignment marks as well as local gate electrodes (Ti(5 nm)/Au(25 nm)/Pd(5 nm))
and Al2O3 support pillars. The pillars are raised by an amount of 18 nm compared
to the gate electrodes to allow airgap for gating. The nanoribbons are deposited
on the gate-pillar structures using either the substrate contract method or the
PDMS-assisted transfer technique. PDMS-assisted transfer is already established
for 2D materials, and we used commercially available PDMS films from Gel-
Pak [124]. Unlike the commonly used PDMS for mechanical exfoliation with a
higher retention level X4 (a way of Gel-Pak to quantify adhesion or amount of
dangling bonds), we use PDMS stamps with X0 grade with a lower retention level
to reduce polymer residue. The stamping process utilizes an aligning microscope
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with a homemade attachment. We found that sometimes the TINRs curl up
during the stamping process, and with the spinning of a layer of resist on top,
they relax back to normal conformation. So, after the transfer, we do a first
step of EBL, followed by metal evaporation (Ti(5nm)/Au(80-100nm)) to let the
TINRs relax and then hold them in place with clamps for improved alignment
accuracy in the junction defining step. This also allows us to clean the surface
of the nanoribbons before defining the junctions. For this, we use hot acetone at
50◦C followed by an IPA dip and nitrogen drying. Then, another step of EBL
followed by evaporation of Pt (3nm)/ Al (100-120 nm) is performed, as in the
case of normal junctions, to get the suspended junctions. The different stages of
this fabrication process are shown in figure 3.2.

3.1.3 Gated devices with h-BN dielectric

Figure 3.3: Images showing various fabrication steps involved in making h-BN gated
TI devices. Optical images taken after (a) defining the backgate electrode, (b) after
the first h-BN stamping step for the bottom gate, (c) after placing the TINR, (d)
after defined electrical contacts, (e) after the second h-BN stamping step and (f) after
defining the top gate electrodes.

We start with an SiO2/Si substrate with pre-patterned alignment marks and
local back gate electrodes (Ti(5 nm)/Au(25 nm)/Pd(5 nm)) as shown figure 3.3
(a). We then first stamp exfoliated h-BN flakes on top of the gate with the help
of PDMS, and then we use PDMS stamps to selectively place TINRs onto the
gate/h-BN stack as shown in figures 3.3 (b) and (c), respectively. Then, we define
contacts using EBL lithography followed by evaporation of Ti(5nm)/Au(50-80).
The h-BN for the top gate dielectric is placed with the help of another stamping
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process, which is followed by patterning of top gate electrodes as shown 3.3 (e)
and (f), respectively.

3.1.4 Al-Bi2Se3-Al based RF-SQUID coupled to CPW
resonator

Design of CPW resonators

Superconducting resonators are one of the key ingredients for circuit quantum
electrodynamics. In this thesis, we make use of Coplanar waveguide(CPW) res-
onators to characterize our RF-SQUIDs based on Al-Bi2Se3-Al junctions. In this
section, we will go through some of the main considerations in designing CPW
resonators used in the thesis. When designing a coplanar waveguide(CPW) res-
onator, one wants to match the characteristic impedance Z =

√
Ll/Cl of the

waveguide to the measurement setup with impedance Z0 = 50Ω. Here, Ll and
Cl correspond to the inductance and capacitance per unit length of the CPW.
Usually, these are obtained by doing full electromagnetic simulations using com-
mercially available software like Sonnect, Microwave Office, etc. But one can
get a reasonable estimate of the parameters of the CPW resonator by using the
conformal mapping method that involves solving the elliptic integral considering
the geometry of the device [125–127]. Here, we make use of this method. Our
resonators are fabricated on a sapphire substrate (thickness = 525 µm) with a
magneton-sputtered NbN film of thickness 100nm. For calculating the parame-
ters of our waveguide, we assume a London penetration depth of λL = 300 nm
for the NbN film. Our CPW resonators have a central conductor width of s = 10
µm, and the separation between the central conductor and ground plane is g = 5
µm (see figure 3.4(a)). The values of various parameters of the CPW calculated
using the conformal mapping method are given in table 3.1.

Substrate ϵeff Cl (F/m) Ll (µ H) Rs (µΩ/m) Z(Ω)
Sapphire (ϵr ≃ 11) 5.7 157 0.78 10 72

Table 3.1: CPW resonator parameters obtained using conformal mapping. Here,
we use NbN film with a thickness of 100 nm and λL = 300 nm. In the table ϵeff

corresponds to the effective dielectric constant, Cl, Ll, and Rs respectively correspond
to the capacitance, inductance and resistance per unit length of our CPW, and Z is
the characteristic impedance.

As seen in table 3.1, our CPW has a characteristic impedance of 72 Ω, which is
larger than the Z0 = 50Ω. However, we can still extract the resonance parameters
of our devices reasonably from the measurements. Our microwave measurement
setup can only take 5 mm×5 mm sized chips, and we put two quarter-wavelength
resonators (λ/4), namely RL on the left and RR on the right side of the chip,
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coupled to a feedline in the middle of the chip as shown in figure 3.4(b). The two
resonators are designed to have a low fundamental frequency such that at least
four higher harmonics of the individual resonators occur in our measurement range
of 4-8 GHz (see section 3.2.2). The values of coupling capacitances (Cc) between
the feedline and the resonators(see figure 3.4(c)) are estimated from the measured
resoance of parameters as given by 3.4(see section 3.2.2). From the parameters
of our CPW in table 3.1, we can get estimates of the effective parallel lumped
components close to the resonance frequency. For the capacitance CR, inductance
LR and resonance frequency fr of our λ/4 resonators of length l we get [127],

CR = Cl
l

2 , LR = Ll
8l

π2 , and fr =
√√√√ 1

2πLR(CR + Cc)
. (3.1)

Various design parameters of the two resonators RL and RR are given in table 3.2.

Resonator l (mm) CR (pF) LR (nH) lC (µm) Cc (fF) fdesign
r (MHz)

RL 36 2.80 22.76 200 3.5 627
RR 30 2.34 18.96 300 4 752

Table 3.2: Table indicating the values of various parameters obtained for the two
CPW resonators RL and RR.

Design considerations for RF-SQUID

Since we use λ/4 resonators, the RF-SQUIDs made of our Al-Bi2Se3-Al junctions
need to be placed at the grounded end of the resonator to couple it inductively
to the SQUIDs as shown in figure3.5(a). The coupling between the resonator
and the SQUID is given by the mutual inductance (M) between them. We get
a rough estimate of the mutual inductance between the centre line and the loop
(see 3.4(b)) using the analytic expression [61, 63]

M = µ0

2π
ls ln d + ws

d
(3.2)

where µ0 is the permeability of free space, ls and ws correspond to the length and
width of the SQUID loop, respectively, and d is the distance between the central
conductor of the CPW resonator and the SQUID loop. It is essential to note that
this is not the only parameter we need to optimize in our design. Apart from
M, we need to look at the area of SQUID loop Aloop, which determines the flux
sensitivity of the SQUID loop and the loop inductance Lloop of the SQUID which
determines the value of the screening parameter βRF

L as well. Ideally, we want
to have βRF

L ≪ 1, to guarantee a linear dependence between applied flux and
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Figure 3.4: (a) Sketch of the cross-section of a CPW resonator showing the width
of the central conductor (s) and the gap between the central conductor and ground
plane (g). (b) Design of 5 mm×5 mm sized chip containing two λ/4 resonators RL and
RR coupled to a common feedline. (c) Optical image of fabricated CPW resonator
chip showing the part where the resonators are coupled to the feedline (marked with a
magenta rectangle in panel (b)). Here, lc marks the coupling length, which determines
the values of coupling capacitance Cc.

phase drop across the junction (see section 2.2.5 of Chapter 2). Keeping all this
in mind, we designed our RF-SQUID loop to have an area around 100 µm2, with
an arms width of 3µm to reduce Lloop and the separation between the SQUID
and resonator, d = 500 nm. The fine details for the loop depend a bit on the
placement of the TINR forming the SQUID loop. For instance, the optical image
of the SQUID device coupled to resonator RL is given in figure 3.4(b). Here, we
have ls = 25 µm, ws = 13 µm and the total geometric loop area is ≃ 133 µm2.
Using equation 3.2, we get M ≃ 16 pH in this case, which serves as a good upper
limit. The actual value of M from the measurements will be smaller than this
value since the above equation does not take into account the effect of the return
currents in the ground plane.

Fabrication procedure

First, a 2-inch sapphire wafer is cleaned and deposited with 100 nm of NbN film
with the help of magnetron sputtering. After disposition, the wafers are diced
into 5 mm×5 mm sized chips. Then, using EBL, we define an etching mask
for the resonator with PMMA resist. The structures are then etched with the
help of Ar:Cl2 reactive ion plasma. After the etching, the chips are examined for
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Figure 3.5: (a) Sketch showing an RF-SQUID coupled inductively to the grounded
end of a λ/4 resonator with various dimensions marked. (b) Optical image showing
the final S-TI-S based RF SQUID coupled to resonator RL.

quality. Next, we cover the whole chip with PMMA resist for protection during
the following step and open a window near the grounded ends of the resonator. We
then transfer Bi2Se3 nanoribbon through the window opening near the grounded
end of the resonators using PDMS stamps as in the case of suspended junctions
(see 3.1.2). The ends of the TINRs are clamped to the surface of the substrate
with the help of EBL, followed by evaporation of Ti(5 nm)/Au(40 nm). We also
perform a cleaning step with hot acetone as described in section 3.1.2. This
is followed by an EBL step, which defines the RF-SQUID loop and the S-TI-S
junction. We use Pt(4 nm)/Al(100 nm) contacts and follow the same fabrication
procedure as described in 3.1.1. The devices are inspected with the help of Optical
and atomic force microscopes before measurement.

3.2 Measurement setups

3.2.1 DC measuremnts
All our DC measurements are carried out either in Oxoford Trition closed cycle
3He/4He dilution refrigerator with a base temperature of 20 mK or in a 3He Oxford
heliox dipstick with a base temperature of ≈ 300 mK. The DC lines of the dilution
refrigerator are equipped with RC filters at the 4K stage and copper powder filters
at the mixing chamber stage to minimize environmental noise/radiation reaching
the device. However, the 300 mK system does not have any high frequency filters.
All the IVCs of our devices are measured in current bias mode. The biasing
circuit consists of a voltage source and a bias resistor Rbias for current biasing
and a sampling resistor Rsam that is used for probing the current supplied to the
device (see figure 3.6). Both the voltage drop across the device and Rsam are
measured using a setup consisting of two low-noise SRS560 differential amplifiers
connected to a DAQ system from National Instruments to get, respectively, the
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voltage and current across the device. For small magnetic fields (< 100 mT), we
use homemade superconducting coils biased with the help of a low-noise current
source.

Figure 3.6: DC measurement setup showing the current bias circuit.

3.2.2 Microwave measurements
Measurement setup

All the microwave measurements discussed in the thesis were carried out in 3He/4He
dilution refrigerator. The detailed experimental setup used for the measurements
is depicted in figure 3.7. The cryostat uses a magnetic field shield (several layers
of µ-meatl) around the sample box to protect the device from a magnetic field
environment and is indicated with a blue rectangle in figure 3.7. We use a vector
network analyzer (VNA) to carry out the resonance measurements on our devices.
The RF lines going into the fridge are fitted with attenuators at every temperature
stage of the cryostat to minimize thermal and instrument output noise reaching
the device. In total, we have signal attenuation of ≃ −96 dB (line+attenuators)
between the VNA and the device. The return lines from the device pass through
a set of circulators, filters and amplifiers before being read back with the second
port of the VNA. At the 4K stage, we use a low noise HEMT amplifier in the
return line with a bandwidth of 4-8GHz and provides a gain of +30dB. Moreover,
we also use a room-temperature amplifier(labelled RA) to boost the signal from
the device. The flux biasing of the SQUID is done with the help of a homemade
superconducting coil, which is biased with a low-noise current source.
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Figure 3.7: Microwave measurement setup probing for reading out the Al-Bi2Se-Al
based RF SQUID devices.

Fitting resonance of the CPW resonators

To get to the various resonance parameters of our devices, we fit the complex
scattering coefficient S21 obtained from the measurements with the VNA using
the following equation [127–129]

S21(f) = aeiαe−2πfτ

[
1 − (Ql/|Qext|)eiϕ

1 + 2iQl(f/fr − 1)

]
. (3.3)

The second part of the equation enclosed in the square bracket represents the
response of an ideal resonator with resonance frequency fr, external quality factor
Qext = |Qext| exp{(−iϕ)} due to the coupling to the external circuitry (capacitive
coupling to the feedline shown in Fig. 3.4 (c)) where ϕ quantifies the impedance
mismatch of the resonator and measurement setup (feedline), and loaded quality
factor Ql = (|1/Qext| + 1/Qint)−1. Here, Qint describes the internal losses, such as
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dielectric, and conductor losses. |Qext| is determined by the coupling capacitance
Cc and can be approximate for small values of Cc as [130]:

|Qext(f)| = CR + Cc

4πfZ0C2
c

, (3.4)

with Z0 the impedance of the external circuitry (feedline).
The first part of the expression (outside the square brackets) accounts for other

losses or gains in amplitude or phase changes in the measurement setup. Together,
they are called the cable delay, and here, a accounts for additional amplitude
changes, α accounts for phase shifts, and τ accounts for any electronic delay
in the measurement setup. The fitting is done following the circle fit protocol
described by Probst et al.[129], with a Matlab script derived from the Python
library created by them. In figure 3.8, we show a typical resonance curve from
one of our resonators along with the fitted curves. In this case, from the fitting
procedure, we get resonance frequency fr = 8.1655 GHz, loaded quality Ql =
41363, external quality Qext = 69300 and internal quality Qint = 72991.

Figure 3.8: Example of resonance data (orange) and along with fits using the pro-
tocol by Probst et al. [129]. (a) Magnitude of S21 vs frequency, (b) phase of S21
vs frequency and (c) scattering coefficient plotted in the complex plane showing the
typical resonance circle.





4 Transversal quantization and
ballistic transport in Al-Bi2Se3-Al
junctions

A significant obstacle to studies aimed at emulating MBSs using S-TI-S junction
is the presence of unintentionally doped bulk states that coexist with TSSs, mak-
ing the electrical transport analysis cumbersome [8, 36]. As briefly discussed
in chapter 2 (see section 2.6), the approach we adopted for reducing the bulk
contribution to the electric transport is to increase the surface-to-volume ratio of
the 3D TI by growing the material in the shape of nanoribbons or nanobelts [84–
86]. However, due to the reduced dimensions of the Bi2Se3 NRs-based devices,
quantization effects become relevant. In the first section of this chapter, we will
demonstrate the width dependence of the current density of our junctions and
explain why this is an indication that most of the supercurrent is carried by the
top surface [28](Paper I). In the following section, we will provide proof of quasi-
ballistic transport over a micrometre scale in Al-Bi2Se3-Al by the observation of
Fabry-Pérot (FP) resonances in both normal and superconducting states [131]
(Paper III). We will also address the discrepancy in the observed FP resonance
frequencies in previous studies on Bi2Se3 based devices [132, 133] and show, both
numerically and experimentally, that transversal, besides coexisting longitudinal,
quantization effect provides a more plausible explanation for the observed discrep-
ancy than renormalization of Fermi velocity[132, 133].

4.1 Evidence for size effect from supercurrent
current density

Consider an S-TI-S junction with layout A (see Chapter 3 section 3.1) as shown
in figure 4.1(a). Here, in the normal region (bare TINR) of the junction, we
have TSSs extending over the entire perimeter of the nanoribbon, and supercur-
rent should be carried by both the top and bottom surfaces of the nanoribbon.
For reduced dimensions and assuming zero external magnetic flux, the transverse
momentum ky, perpendicular to the current, is quantized as:

ky = 2π(n + 1/2)/P (4.1)

47
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where P = 2w + 2t is the perimeter of the nanoribbon with w the width and t
the thickness of the nanoribbon,and n is an integer [28, 108]. Here, the factor
1/2 comes from the Berry phase in TIs, and because of this,ky = 0 mode will be
absent in these junctions. Now, the modes with ky ∼ 0 remain on the top surface
while the modes with ky ≫ 0 are winding around the perimeter of the TINR. From
magnetotransport studies performed on our Bi2Se3 nanoribbons [85], we know that
at the bottom surface of the TINR, which is in contact with the substrate, there is
an accumulation layer of trivial 2DEG and one does not observe the Shubnikov-de
Haas oscillations from the bottom TSSs. This is attributed to the lower mobility
of bottom surface states. Moreover, our Bi2Se3 nanoribbons show significant bulk
carrier density. Naturally, the question arises: What carries the supercurrent in
our junctions? In the following section, we will look at the Josephson current
density of our junctions as a function of the junction width, which, in our case,
corresponds to the width of the nanoribbons. Then, we will try and connect it to
TSSs [28].

4.1.1 Experimental details
We fabricated Al-Bi2Se3-Al junction (layout A) with varying widths from ∼50 nm
to about 1 µm. For this, we used substrates of Si/300 nm SiO2 and SrTiO3 (STO)
containing pre-patterned alignment marks and TINRs (see Chapter 3 section 3.1).
We used two different growth batches of TINRs, and all devices fabricated on spe-
cific substrate types utilized TINRs from the same growth batch. The SEM images
of the fabricated Al/Bi2Se3/Al junctions for two different nanoribbon widths are
shown in figure 4.1(b) and (c).

Figure 4.1: (a) Schematic of a Bi2Se3 nanoribbon Josephson junction. The arrows
indicate transport modes carrying supercurrent by TSSs at the top surface (cyan,
ky ∼ 0) and around the perimeter (yellow, ky ≫ 0) of the nanoribbon. (b) and (c)
Partly coloured SEM images of the junctions fabricated on Bi2Se3 nanoribbons with
different widths w. Here, l indicate the lengths of the junctions. Inset in panel (b) is
a schematic cross-section of a junction, dot-dashed green line highlights the location
of a trivial 2DEG [85].
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A typical IVC of one of the TINR-based Josephson junctions at 19 mK is
shown in figure 4.2(a). For the analysis, the critical current Ic is obtained using
the forward scan and then converted to critical current density Jc by dividing
Ic by the width of the junction w. The device’s normal state resistance RN is
determined by considering the linear section of the IVC above 2∆′, which is twice
the induced gap of the TI-junction.

Figure 4.2: Current-voltage characteristic of a Bi2Se3 nanoribbon junction
(Ic = 0.36 µA, l = 70 nm, t = 16 nm, w = 430 nm) measured at T = 20 mK,
the solid black lines are linear fits of the IVC at high bias voltages. The departure
from linearity observed below V = 340 µV corresponds to twice the induced gap, with
gap ∆′ = 170 µV (see the dashed line).

In figure 4.3(a)and (b), we plot the dependence of the Jc as a function of the
w for devices fabricated on Si/SiO2 and STO substrates, respectively. The blue
and orange dots in these plots correspond to junctions with lengths 50 − 80 nm
and 100 − 110 nm, respectively. Here, for devices of similar length scales, one
clearly sees a sharp decrease in Jc with the width w of the TINR at lower-width
scales. In figure 4.3(b), we have included a 10 µm wide junction fabricated in
layout B (see Chapter 3 section 3.1) for which no winding modes are expected to
contribute to the Josephson transport, and Jc seems saturated. We note that the
value of Jc changes by a factor of 5-6 when going from the narrowest nanoribbons
of 60 nm to the widest ones. In contrast, if we look at the specific resistance of
the device, given as RN × (w), we get a behaviour almost independent of w for
the devices on both the Si/SiO2 and STO substrates. This allows us to exclude
strong modifications/deterioration of the junction-specific resistance (arising from
the growth of TINR) as the potential cause for Jc dependence.

What is the origin of this peculiar Jc(w) phenomenology?
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Figure 4.3: (a) Critical current density as a function of TINR width for Josephson
junction devices realized from the same growth batch on a Si/SiO2 substrate. (b)
Critical current density as a function of TINR width for Josephson junctions realized
from a second growth batch (different from those shown in panel (a)) on a SrTiO3
substrate. All measurements were performed at T = 20 mK. The blue and red dots are
for junction lengths 50−80 nm and 100−110 nm, respectively. (c) Specific resistance
as a function of TINR width for Josephson junction devices realized from the same
growth batch on a Si/SiO2 substrate. (d) Specific resistance as a function of TINR
width for Josephson junctions realized from a second growth batch (different from
those shown in panel (c)) on a SrTiO3 substrate. All measurements were performed
at T = 20 mK. The blue and red dots are for junction lengths 50 − 80 nm and
100 − 110 nm, respectively.

4.1.2 Jc (w) and relatives number of modes on top surface
To explain this observed Jc behaviour, we will make use of the transversal quanti-
zation of TSSs. From equation 4.1, for a Fermi wave vector kF of the nanoribbon,
we can get the total number of modes ntot as

ntot = kF P/2π − 1/2. (4.2)

Also, from geometric considerations(see figure 4.4(a) for layout), one can obtain
number of modes that are travelling only on the top surface of the junction as [28]

ntop = kF PW/4πl((w/2l)2 + 1)−1/2 − 1/2. (4.3)

Now, for a given junction dimension, we can define the relative number of modes
travelling only on the top surface as nrel = ntop/ntot. Using a typical kF value
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kF = 0.55 nm−1 for our TINRs [85], we calculated the width dependence of nrel

for three different junction lengths, 50, 75 and 100 nm (see the dashed lines in
figure 4.4 (b). For l = 100 nm, we obtain a reduction of the relative number
of modes travelling only on the top surface by a factor of 5 when reducing the
junction width from 900 nm to 50 nm. We also calculated the supercurrent density
of junctions considering the angle dependence of the transmission coefficients (as
in ref. [21], see Chapter 2 section ??) of each transport mode travelling only on
the top surface. For this, we used equation 2.30, assuming a chemical potential
mismatch µr of 0.1 between the normal TI weak and superconducting electrodes.
As seen in figure 4.4 (b), both JC (solid lines) and nrel (dashed lines lines) follow
qualitatively the same behaviour and qualitatively reproduces the measured Jc

vs width dependence given in figure 4.3(a) and (b). Here, the solid lines in the
measured data represent the calculated relative number of transport modes for
l = 100 nm. This suggests that, in our devices, only the modes travelling on
the top surface contribute to the Josephson current. This is also in agreement
with the expected saturation value of Jc for the 10 µm wide device, where the
contribution of winding modes to the total Josephson current is negligible.

Figure 4.4: (a) Sketch of a planar TI junction with electrodes separation L and width
W . The dashed lines indicate quasi-particle trajectories. The maximum transversal
momentum for which the transport mode still propagates only on the top surface is
indicated by ky. For larger transversal momentum the quasiparticle trajectory has
to wind around the TINR and does not contribute to the critical current (red cross).
(b) Relative number of transport modes nrel = ntop/ntot propagating only on the top
surface (dashed lines) and corresponding normalized critical current density (solid
lines) as a function of junction width for three different junction lengths.

A potential reason for this observation might be the reduced mobility of TSSs
at the bottom surface of the TINR [85]. Here, the trivial 2D gas at the interface
with the substrate overlaps with the Dirac states, and they might fall under a
diffusive transport regime. Thus, they might be contributing less to the Josephson
transport in our devices. However, this observation does not entirely rule out



52 4 Transversal quantization and ballistic transport

contributions of the bulk states to the Jc as they might be present as constant
background in the data discussed here. Moreover, in Chapter 5, we will show
how to quantify the contribution of diffusive bulk modes to the total Josephson
current by analyzing the CPR.

4.2 Fabry-Pérot resonance and ballistic transport
In mesoscopic and nanoscale devices, quasi-ballistic transport of phase-coherent
electron waves between two semi-transparent interfaces manifests as Fabry-Pérot
(FP) resonance/interference of electronic conductivity. Here, the constructive in-
terference of reflected electron waves between the two interfaces results in resonant
transmission whenever kF l = πn, with kF the Fermi wave vector, l the distance be-
tween the interfaces, and n a non-zero integer [95]. One can observe FP resonances
in the form of periodic oscillations of the conductance of the device as a function
of chemical potential [95–97]. Such resonances have been experimentally observed
in quasi-1D systems like carbon nanotubes, quantum Hall edge states, semicon-
ducting nanowires, and graphene nanoribbons [95–103]. This phenomenology can
also be interpreted as transport through quasi-bound states localized between the
two interfaces resulting from finite-size quantization.

In conventional material systems in 2D device geometries, one does not expect
to observe interference effects as angle averaging over various electron propagation
directions would lead to a vanishing interference pattern [134]. However, the Klein
tunneling [104] process intrinsic to Dirac materials, such as in Graphene and TIs,
results in a subset of highly transmissive propagation trajectories (modes) at spe-
cific angles, allowing the observation of interference effects in two-dimensions [98,
135–137]. Moreover, additional FP resonances can appear due to quantization
along the transversal direction [136–139]. Though experimental studies of TI-
devices have demonstrated independently demonstrated FP resonances [132, 133,
140], and transversal quantization in TI-devices [141], the 2D aspect of FP reso-
nances in TI-materials is still lacking. Moreover, in studies performed by Finck
et al. on Bi2Se3 devices [132, 133], there was a discrepancy in the observed pe-
riodicity and expected periodicity of FP oscillations from the length scale of the
device. These results were interpreted in terms of Fermi velocity renormalization,
resulting in an order of magnitude reduction of Fermi velocity reduction. But in
the following section, numerically and experimentally, we look at FP resonance
in our junctions, and we will provide an alternate explanation for the observed
periodicity of FP resonances by considering transversal quantization [131].

4.2.1 Numerical model of FP resonance in TI-devices
Consider an S-TI-S junction of length l in layout A (see Chapter 3 section 3.1)
formed out of a nanoribbon width w and thickness t as shown in figure 4.5(a).
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We can decompose the momentum k of transport mode into transverse and longi-
tudinal components denoted as ky and kn, respectively and define the associated
mode trajectory angle θ = tan−1(kn

ky
). Now, as discussed in section 4.1, we assume

that the transverse momenta in the TI-junction are quantized, forming subbands
as ky = 2π(n+1/2)/P (see equation 4.1). For simplicity, we will consider the case
where w ≫ t such that ky ≃ (n + 1/2)π/w. Now, for a given chemical potential
µ and Fermi velocity vF , the transmission probabilities of the different transport
modes arising from the TSSs (in extreme Fermi-level mismatch limit) are given
by

τn(µ) = k2
n

k2
n cos2(knl) + (µ/ℏvF )2 sin2(knl) , (4.4)

with kn = [(µ/ℏvF )2 − k2
y]1/2 [105]. Using the Landauer formula, we can compute

the normal state (zero-bias) conductance of the device as G(µ) = G0
∑

n τn(µ),
where G0 = e2/h, h the Planck constant, and e the elementary charge.

The calculated zero bias conductance of a TI-junction as a function of µ for
a junction length l = 100 nm and typical Fermi velocity vF = 5 × 105 m/s [84]
for varying widths w ignoring the thickness given in figure4.5(b). Here, linear
backgrounds have been removed from every curve for clarity (denoted as Gbgr).
For wide devices, at low chemical potentials (near the Dirac point at µ = 0), there
are conductance oscillations with a period given by ∆µL = ℏvF ∆kF = hvF /2l,
with ∆kF = π/l due to finite size quantization along the length of the junction.
Away from the Dirac point, with high values of µ, faster oscillations characterized
by a period ∆µW ≃ hvF /2w, originating from the finite-size quantization along
the perimeter of the nanobelt (∼ 2w) become prominent. However, when junction
widths approach the length of the junction, the superposition of conductance
oscillations with similar periods (∆µW ≃ ∆µL) makes it challenging to identify
periodic oscillations. To resolve this, we use Fast Fourier transform(FFT). As seen
in figure4.5(c), the FFT shows a width-independent peak at low frequencies given
by fL

µ = 1/∆µL = 2l/hvF and at higher frequencies, we have a peak dispersing
linearly with the width, fW

µ = 1/∆µW = 2w/hvF . Moreover, we also observe
higher harmonics of the width scale appearing approximately at frequencies given
by m · fW

µ , with m an integer larger than 1.
At finite source-drain bias voltage Vb, the current through the device can be

calculated using the Landauer formula I = (2e/h) ∫ µ2
µ1 T (ϵ − ϵD)dϵ, where µ1 and

µ2 are the chemical potentials of the left and right contact, respectively, and
T (ϵ − ϵD) is the transmission probability as a function of energy (distance from
Dirac point ϵD) [139]. The numerically calculated differential conductance of
a device with l = 100 nm and w = 1.5 µm, assuming transmission probability
in equation 4.4 and symmetric contacts ( ∆ϵD = eVb/2 with Vb = (µl − µr)/e
), is given in figure 4.5(d). On a large energy range, we have the typical FP
diamonds with characteristic period ∆µL = hvF /2l ≃ 10.3 meV (see the upper
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panel) associated with the length of the device. The corresponding periodicity
along the source-drain voltage direction is given by ∆V L

b = 2∆µL/e.

Figure 4.5: (a) Sketch of the device geometry. (b) Numerically calculated conduc-
tance (Gbgr) as a function of chemical potentialµ for a device with length l = 100 nm
and widths ranging from 60 nm to 3 µm. (c) FFT of Gbgr vs. µ traces for vari-
ous device widths. (d) FP oscillations of the conductance as a function of chemical
potential and source-drain bias (upper panel) calculated for a device of dimension l
= 100 nm and w = 1.5 µm. The four purple lines indicate an FP diamond arising
from the resonance condition along the length of the junction. Here, the distance
between the parallel lines along the chemical potential direction is given by ∆µL,
whereas the distance along the bias voltage direction is given by e∆V L

b = 2∆µL.
The lower panel is a zoom-in of the region indicated by the black rectangle in the
upper panel. FP diamonds, due to transversal quantization, given by periodicities
∆µW and e∆V W

b = 2∆µW are indicated in three different chemical potential regions.
There are additional features inside these diamonds, and the visibility depends on the
region of µ under consideration. (e) The two-dimensional Fourier transform of the
FP oscillation shown in the upper panel in (d). The solid yellow and dashed green
lines indicate the locations of the characteristic frequencies fL

µ and fW
µ , respectively.

On smaller energy scales (see lower panel in figure 4.5(d)), we observe oscil-
lations related to ∆µW ≃ hvF /2w ≃ 0.69 meV and higher harmonics given by
∆µW /m. The corresponding period along the source-drain voltage direction is
given by ∆V W

b = 2∆µW /e. Like before, we make use of 2D-FFT of the full con-
ductance map given in figure 4.5(e) to identify the two main frequencies fL

µ and
fW

µ along the fµ axis [139]. Along the fVb
axis, these peaks appear at frequencies

fL
Vb

= efµ,L/2 and fW
Vb

= efW
µ /2.
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4.2.2 Experimental observations
FP resonance in the normal state of Al-Bi2Se3-Al Junctions

Figure 4.6(a) shows the experimental setup used for electrical characterization
along with the SEM image of two junctions, C1 and C2, fabricated on the same
Bi2Se3 nanoribbon of width w ≃ 430 nm and thickness t ≃ 16 nm. Here, we will
discuss the data from device C1 with l = 100 nm, and data from the adjacent
70 nm long device(C2) can be found in [131]. We use backgates defined on the
backside of the SiO/Si substrates for the gate-dependent measurement provided
here. First, we are interested in the normal state transport of the device, and
we apply an out-of-plane magnetic field of 30 mT to quench superconductivity
in the Al electrodes. To get the differential conductance matrix of the device as
a function of bias voltage, Vb, and gate voltage, Vg, we take the current-voltage
characteristic (IVC) at every gate voltage and numerically differentiate the curves
(G = dI/dVb). Moreover, we remove a smooth background along the source-drain
voltage and gate voltage directions to visualize the data better, and the resulting
differential conductance (Gbgr at 20 mK) map of device C1 in the normal state is
shown in figure 4.6(b).

We take the derivative of the conductance with respect to gate voltage dGbgr/dVg

of the conductance map (figure 4.6(c)) to identify the diagonal features (indicated
by lines) in the conductance map better [139]. We then apply a 2D-FFT to de-
termine the period of these oscillations. In the 2D-FFT provided in figure 4.6(d),
we observe two clear peaks at frequencies ≃ ± 216 V−1 along the fVb

direction
and ≃ ± 0.085 V−1 along the fVg direction, respectively, (see crossing point of
horizontal and vertical dashed magenta lines) resulting from lines with a negative
slope that form the diamond pattern of the FP oscillations shown in figure 4.6(c).
The peaks corresponding to the positive sloped lines of FP resonance are less
clear than their counterparts. The obtained frequency in source-drain bias is
close to the expected value fW

Vb
= 208 V −1, related to transversal quantization.

From the observed peak position of fW
Vb

= 216 V−1 we get a subband spacing of
∆µW = e/2fW

Vb
= 2.3 meV. To highlight the peak features in the 2D-FFT data

further, we integrate the 2D-FFT plot along the fVg axis and thus obtain reduced
FFT shown in figure 4.6(e). Here, close to the location of the expected frequency
fW

Vb
≃ 208 V−1, we observe a clear peak, whereas the higher harmonics (m × fW

Vb
)

are not visible. In figure 4.6(f), we plot the reduced FFT obtained by integrating
the 2D-FFT along the fVb

axis. We see clear peaks at fVg ≈ ±0.085 V −1.
We can now use the relation efW

µ = 2fW
Vb

to translate a gate voltage change δVg

into a chemical potential change δµ = αeδVg by assuming a linear change of µ with
Vg. From the observed peaks fW

Vg
and fW

Vb
we obtain α = fW

Vg
/2fW

Vb
≃ 2.0 × 10−4.

Note that for the full range of applied gate voltages (-20 to 20 V), µ changes
by roughly 8 meV and since the chemical potential of Bi2Se3 nanoribbons is at
least 160 meV above Dirac point [84, 85], it is reasonable to linearize the typical
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Figure 4.6: (a) SEM image of the devices (C1 and C2) along with the measurement
layout. The dimensions of device C1 are given in the table below. (b) Differential
conductance map of the device in terms of bias voltage Vb and back gate voltage Vg

after background subtraction showing FP resonances. (c) Colour map showing the
derivative of the conductance with respect to gate voltage dGbgr/dVg of the conduc-
tance map shown in panel (b). Here, it is a bit clearer to see the straight lines in
conductance that form the chessboard-like pattern. The dashed lines indicate the
expected location of the conductance lines of FP resonance originating from quanti-
zation along the width. (d) 2D-FFT of the colour map in panel (c) shows two clear
peaks (orange) that match the locations of expected frequencies, due to transversal
quantization along the perimeter of the nanoribbon, plotted as magenta dashed lines.
(e) Reduced FFT as a function of fVb

obtained by integrating the 2D-FFT in panel
(b) along the fVg direction. Clear peaks appear at fVb

= ±218V −1. (f) Reduced FFT
as a function of fVg obtained by integrating the 2D-FFT in panel (b) along the fVb

direction. Clear peaks appear at fVg = ±0.085V −1. The table below summarizes all
the expected frequencies and measured peak positions in the FFT plots.

µ ∝
√

Vg dependence for Dirac materials, that is, assume a linear change of
the chemical potential with gate voltage δµ = αeδVg. Moreover, since in our
measurement, the ranges in both bias and gate voltage axis are less than the
energy scale ∆µL = 10.3 meV, we do not observe the periodicity associated with
the length of our device in our measurements.
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FP resonance in the superconducting state

As seen in section 4.1 of this chapter, we have indications of supercurrents in our
junction being carried by bound states arising from TSSs. Here, we provide further
proof of this by looking at the effect of FP interference on the superconducting
transport properties of our device. The IVC of device C1 measured at temperature
T = 20 mK and zero applied magnetic field and the gate voltage is shown in
figure 4.7(a). We can extract the critical current Ic, the normal state resistance Rn,
and the excess current Iex,a feature in our junctions due to the Andreev reflection
feature (see 2.3.1), from the IVC. In figure 4.7(b-d), we plot the variations of Iex,
Ic, and Rn over a gate voltage of -25 to 25V (∆µ ≃10 meV), respectively. Here,
we see clear oscillations of all three parameters with respect to Vg.

Figure 4.7: (a) IVC of device C1 measured at T = 20 mK. The critical current Ic and
excess current Iex are indicated by the horizontal lines. Excess current (b), critical
current (c), and normal resistance (d) as a function of applied gate voltage. (e-g) FFT
of traces from panels (b-d). The expected frequencies fL

Vg
from quantization along

the length of the device and fW
Vg

and two higher harmonics from the quantization
around the perimeter of the nanobelt are shown by dashed blue and magenta lines,
respectively. For all three quantities, we see clear peaks in the FFT at locations fW

Vg
.

In the case of Ic and Iex, when the junction is in the superconducting state, we can
identify clear peaks at 2fW

Vg
and 3fW

Vg
.

To obtain the periodicity of these quantities, we take the FFT of these curves
shown in figure 4.7(e-g). In all three FFTs, we observe multiple peaks. The
expected locations of fL

Vg
= eαfL

µ (blue dashed line) and fW
Vg

= eαfW
µ (with α

extracted from the analysis in the normal states) and the two higher harmonics of
it (magenta dashed lines) are plotted in the same panels. One can see that for all
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three cases, we observe clear peaks at frequencies fW
Vg

. For Ic and Iex, there are also
clear higher harmonic peaks around 2fW

Vg
and 3fW

V g. Whereas for Rn, the higher
harmonic peaks are not well visible. This might be related to the fact that for the
extraction of Rn we average over a finite source drain voltage range. From this, we
can say that the superconducting transport properties of an S-TI-S junction also
inherit the periodicity of FP resonance in the normal state. The observation of
harmonics of the transversal quantization frequency in the superconducting state
of the junction indicates that the ballistic TSSs carry a substantial part of the
Josephson supercurrent [28, 142]. Furthermore, we observe a tiny kink around
fL

Vg
in all three FFT curves. However, since the gate voltage range ∆Vg = 50V ,

corresponding to a chemical potential change of ∆µ = eα∆µ ≃ 10 meV, barely
covers one period of ∆µL ≃ 10.3 meV, we refrain from taking it as a confirmation
of FP oscillations related to quantization along the length of the device. Similar
behaviour was observed for device C2 with l = 70 nm in both the normal and
superconducting states [131].

FP resonance in a micrometre scale TI-junction

We studied quantum interference effects in an even wider device C4(see layout
given figure 4.8(a)) with width w =1.5 µm and length l=160 nm to provide further
proof of the ballistic nature of the TSSs. Since device C4 has layout B (see Chapter
3 section 3.1), we do not expect any transport modes that go around the perimeter
of the nanoribbon, and the width of the device should define quantization along the
transversal direction. The conductance map measured at 20 mK (zero magnetic
fields), after removing the linear background, as a function of the source-drain
voltage and the gate voltage is shown in figure 4.8(b). Here, one can immediately
see that the measured data are slightly more complex to analyze than in the
previous case due to subgap features emerging from multiple Andreev reflections
in the junction. Nevertheless, by taking the derivative along the gate voltage
direction of the measured differential conductance matrix, we observe the typical
diamond pattern of FP resonances (see figure 4.8(c)). On close examination, one
can see that the FP diamonds are not symmetric compared to the previous device
(see slanted diamond features indicated by dashed lines). This can be attributed
to the asymmetry in contact resistance [139] and might originate from asymmetry
in contact areas due to slight miss-alignment in the lithographic step for defining
contacts. We picked one of the dominant diagonal features and added dashed
lines with the expected periodicity of FP resonance attributed to the width scale
of the device, including the effect of asymmetric contact resistance (see below for
more details). One can see that even faster modulating features occur between
those lines coming from higher harmonics of the width scale.

The 2D FFT of the conductance map given figure 4.8(c) is shown in fig-
ure 4.8(d). The asymmetry in the contacts of the device manifests as an asymme-
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Figure 4.8: (a) Sketch of the device C4 along with the dimensions given in the table
below. (b) Differential conductance map of the device as a function of Vb and Vg after
background subtraction showing FP resonances. (c) Colour map of dGbgr/dVg of the
conductance map shown in panel (b) along with dashed lines to indicate the expected
diamond pattern of FP resonance resulting from finite size quantization along the
transversal direction of the device. (d) 2D-FFT of the colour map shown in panel
(c), along with the expected frequencies and their third harmonics plotted as dashed
magenta and green lines. Here we see peaks corresponding to 3fW

Vb
around 2000V −1 (f)

Reduced FFT as a function of fVg showing peaks around fW
Vg

≃ ±0.11V −1 (magenta
vertical dashed line) and 3fW

Vg
≃ ±0.32V −1 (violet vertical dashed line).

try in the location of the peaks along the source-drain voltage bias direction (see
the slanted dotted lines). We consider the distance between the peaks along fVb

for
positive and negative frequencies to eliminate the effect of asymmetric contacts.
From the four distinguishable dominant peaks in the 2D FFT plot, we extract a
frequency of ≃ 2230 V −1 along the fVb

direction, which is close to the expected fre-
quency value 3fW

Vb
= 2176V −1, corresponding to the third harmonic of fW

Vb
. Along

the fVg axis, this peak is located at ≃ 0.31V −1. Like before, we can transform
the gate voltage change from those two peak positions into a chemical potential
change δµ = αeδVg, with α ≃ 1.4 × 10−4. Since the peaks are rather broad along
the fVb

axis, we take the reduced FFT of the 2D-FFT by integrating over the
fVb

axis, shown in figure 4.7(e). Here we observe six peaks located close to the
expected values fW

Vg
≃ ±0.10V −1, 2fW

Vg
≃ ±0.21V −1, and 3fW

Vg
≃ ±0.31V −1. This

observation of FP resonance due to transversal (width) quantization in device C4
points towards quasi-ballistic transport over a few micrometres via the TSSs in
our Bi2Se3 nanoribbons. This length scale is an order of magnitude larger than
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the typical phase coherence length reported for Bi2Se3 from quantum interference
effects, such as weak anti-localization, in magneto-transport measurements [86].
A possible reason for this observation could be that weak anti-localization cor-
rections in the conductance are mainly determined by diffusive trajectories and,
therefore, less sensitive to ballistic transport modes.



5 Current-phase relation of
Al-Bi2Se3-Al junctions

The CPR of a Josephson junction is one of the most crucial characteristics re-
lated to the symmetry of the order parameter and nature of transport across
the junction [143]. One can gain insights into various aspects of a junction by
studying the CPR. Conventional superconducting tunnel junctions, proposed by
Brian Josephson in 1962 [46], have a sinusoidal CPR. Deviations from the con-
ventional Josephson effect result in a non-sinusoidal CPR [47, 143]. As discussed
in Chapter 4, most of the current in an S-TI-S junction must be carried by highly
transparent ABSs arising from TSSs, and this should manifest as a slanted CPR.
Here, we utilize a simple asymmetric SQUID measurement technique to extract
the CPR of our Al-Bi2Se3-Al junctions and provide estimates of the current car-
ried by ABS fromTSSs by fitting the obtained CPR to a model taking into account
the contribution of ballistic TSSs and diffusive bulk states. We also discuss the
evolution of the CPR with temperature and the effect of inductance in the CPR
extraction process.

5.1 CPR extraction with asymmetric SQUID
technique

The CPR of a superconducting junction can be probed using various DC and RF
measurement techniques. Out of these, one of the simplest and most commonly
used techniques for extracting the CPR of a junction is the current biased asym-
metric DC-SQUIDs measurement [26, 27, 144–146]. For this, the test junction
with unknown CPR of the form It = It,c · f(φt) connected in parallel to a refer-
ence junction having known CPR Ir = Ir,c ·g(φr) forming a dc-SQUID loop. Here,
It,c (Ir,c) and φt (φr) correspond to the critical current and phases across the test
(reference) junction, respectively. Typical critical current asymmetries required
for the extraction of the CPR are in the range of 15-20[142, 144]. Figure 5.1(a)
shows the sketch of an asymmetric SQUID device. For a total SQUID loop in-
ductance L and applied magnetic flux Φext, the phase across the test junction is
given by

φt = φr + 2πΦ
Φ0

, (5.1)

61
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with Φ = Φext − L [Ir(φr) − It(φt)] /2 the total magnetic flux through the SQUID
loop (assuming the L is distributed equally among the two arms of the SQUID)
and Φ0 the superconductive flux quantum [147]. Equation 5.1 is a transcendental
equation and requires numerical methods to solve. But, if L is small enough such
that the screening parameter βL = (Ir,c + It,c) L/Φ0 ≪ 1, we can drop the terms
including inductance from equation 5.1 and it reduces to φt ≃ φr + 2πΦext/Φ0.
Due to the large asymmetry of the critical currents, upon application of Φext, the
maximum critical current of the SQUID is obtained for Ir = Ir,c at φr,max, where
the current through the reference junction is maximized, while the phase across
the test junction, φt, varies approximately linearly with Φext as [144]

φt ≃ φr,max + 2πΦext

Φ0
. (5.2)

Thus, the CPR of the test junction can be determined by subtracting the constant
contribution of the reference junction, Ir,c, assuming a point-like junction, from
the total critical current of the SQUID and converting Φext to φt using the above
equation.

5.1.1 Experimental consideration
Due to the well-studied sinusoidal CPR of tunnel junctions, the original technique
of asymmetric SQUID measurement was developed based on them as a reference
junction [144]. This is the most preferred form of reference junctions, and in this
case, one gets φr,max = π/2. Over the years, other forms of reference junctions
have been implemented in asymmetric SQUID setups. One of the common options
are superconducting nanowire weak links or bridges as reference junctions [26, 27,
109, 148, 149]. However, it was shown recently that in some cases, using such
junctions as a reference may result in false CPR [149] as the CPR of the nanowire
weak link can be multivalued [150, 151]. Moreover, with the experimental re-
quirements and considering the tools we had, fabricating an asymmetric SQUID
device with any of these kinds of reference junctions, nanowire weak links or tunnel
junctions, calls for multiple lithography steps. However, nano-processing steps,
especially the ones involving heating or etching, tend to alter the properties of TI
materials. Therefore, we used larger TI junctions as the reference junctions in our
measurements [142]. This only required a single lithography step, thus reducing
damages to the TI-junctions during device fabrication. In this case, even though
the CPR of the reference junction is not known a priori, as long as Ir,c ≫ It,c, one
can still extract the CPR of the test junction. However, in this case φr,max is not
π/2. Earlier experiments have shown that this approach is reliable for extracting
the CPR of the test junction [145, 146, 152].

To fabricate asymmetric SQUIDs, we used Bi2Se3 nanobelts, which are at least
7-8 µm long, to be able to fabricate both the test and reference junction on the
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same nanobelt [22, 31]. We consider both junctions of layout A and layout B as
test junctions (see Chapter 3 section 3.1 for more on layouts). However, the main
device discussed in this chapter has a test junction with layout A, as this layout
is geometrically well-defined compared to layout B. However, we have included
extracted CPR from the junction with layout B in the addition data section of
this chapter (see 5.4). Since the critical current of the reference junction needs to
be 15-20 times larger than the test junction, we only used layout B junctions with
typical lengths of 80-100 nm and widths of 5-6 µm for this. At these dimensions,
our reference junctions are not point-like, and we expect to see the Fraunhofer
patterns with the primary lobe spanning a magnetic field range of roughly 200 µT .
This was estimated using the expression for the effective area of a planar junction
in the thin film limit given by Aeff = wl + w2/1.8 (even though this expression
is only valid for w < λ2/t, it still provides a reasonable estimate for Aeff) [51,
106]. So, we will have to consider a SQUID loop size such that the modulation
period of the SQUID will be much lower than the width of the central lobe of
the Fraunhofer pattern from the reference junction. Moreover, for all devices, the
width of the SQUID loop is kept at 3 µm in most sections of the loop to minimize
kinetic inductance contributions and thus have βL < 1.

Figure 5.1: (a) Sketch of the SQUID containing both the test (purple) and reference
(orange) junction. (b) SEM image of the TI-SQUID device S1 (left panel). The right
panel is a false-coloured SEM image showing the test (purple) and reference(orange)
junctions formed out of a Bi2Se3 nanobelt(cyan).

The SEM images of the asymmetric SQUID device (S1) discussed here are
shown in figure 5.1.(b). From a close-up in-lens SEM image (not shown) of the
test junction, we found that the width of the nanobelt, and thus the width of the
test junction, w ≃188 nm, and the length of the test junction l ≃83 nm. The
corresponding length and width of the reference junction are ≃ 80 nm and ≃ 5 µm,
respectively. Using AFM imaging, we got the thickness of the nanobelt that forms
the junctions to be t ≃ 48nm. From the layout of the SQUID loop, by numerically
solving the London-Maxwell equations, we determined the effective area Aeff ≃
200 µm2. This should result in a modulation period of approximately 10 µT.
From the same numerical calculations, we also extract a SQUID loop inductance
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value L ≃ 29 pH, of which ∼ 27 pH correspond to the geometric inductance,
and the remaining ∼ 2 pH are the kinetic contribution to loop inductance [153].
Here, we used a London penetration depth of λ = 70 nm, typical for 100 nm
thick Al films [154]. From chapter 4, which discussed the Fabry-Pérot quantum
interference effects, we know that supercurrent in TI-junctions is mostly carried
by quasi-ballistic surface states [142]. So, if we assume the ballistic junction case
( junction length l < mean free path le ≃ 200 nm [84]), the coherence length can
be estimated using ξ = ℏvF /∆′, with vF ≃ 5 × 105 m/s the Fermi velocity of the
surface states in Bi2Se3 [84, 85], and ∆′ the induced superconducting gap in the
surface state. For a typical ∆′ ≃ 120 − 180 µeV extracted from single junction
devices [22], we obtain ξ ≃ 1.8 − 2.7 µm, which is much longer than the length
of our junctions, placing them in the short junction limit [59]. Therefore, we can
expect the CPR to be determined by equation 2.20b in section 2.3.3 with τn values
given by equation 2.31.

5.2 Characterization of asymmetric TI-SQUID
The measurement layout used for characterizing the asymmetric SQUID device
is given in figure 5.2(a). We first measured IVCs at 20 mK for different exter-
nal magnetic fields (B⊥). The IVC of TI-SQUID corresponding to zero applied
magnetic field is plotted in figure 5.2(b). As seen here, like in the case of sin-
gle junctions (see Chapter 4), the IVC show hysteretic behaviour possibly due
to heating effects [22, 155]. Since we are interested in the critical current of the
device, for the rest of the analysis, we will only consider the bias sections of the
IVC when the junction switches from the superconducting state to the resistive
state (purple lines)and ignore the section with retrapping current (orange lines).
The response of the TI-SQUID with respect to the applied bias current I and
external magnetic field B⊥ is plotted in the form of a differential resistance dV/dI
map in figure 5.2(c). Here, one can see the modulations of the critical current
from the asymmetric SQUID (bright lines).

We used a threshold voltage of 3 µV as the criteria for determining the criti-
cal current, Is,c, of the SQUID. The obtained critical current modulations of the
device are plotted as closed symbols in figure 5.2(d). As expected, we see a back-
ground envelope (solid lines) arising from the magnetic field modulation of the
critical current Ir,c of the reference junction (Fraunhofer pattern). Note that the
magnetic field axis in 5.2(d) is offset from B⊥ by Boff = 5µT to B0⊥ = B⊥ +Boff .
This is to account for the constant offset in the measurement setup. From the
maxima of the Fraunhofer pattern of reference junction, we get Ir,c to be 19.4
µA. Now, to get the current modulations of the test junction (It), we remove
the background Fraunhofer pattern from Is,c. The current-flux relation (CΦR)
of our test junction can be obtained by converting the magnetic field to flux,
Φext = B0⊥Aeff using the observed modulation period of ≃ 11.6µT (Aeff ≃ 180
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µm2) corresponding to one flux quantum Φ0. See figure 5.3(a) showing the ex-
tracted CΦR for positive and negative bias currents. From here, we get It,c ≃
880 nA, and the critical current asymmetry in our SQUID device is Ir,c/It,c ≈
22. Using the simulated value of loop inductance, L = 29 pH, we get βL ≃ 0.28,
which is not ≪ 1. So, we must keep the inductance contributions to equation 5.1
to interpret the measurements better.

Figure 5.2: (a) Layout of the SQUID with both the test and reference junction made
from the same Bi2Se3 nanobelt. The current-voltage characteristic is measured using
a 4-point setup. (b) IVC at T = 20 mK with zero applied magnetic field. The arrows
indicate the direction of the sweep (starting from zero), and the IVC shows hysteretic
behaviour. Here, Ic and Ire correspond to the critical current and retrapping current
of the device, respectively. (c) Differential resistance of the SQUID as a function
of bias current and externally applied magnetic field measured at T = 20 mK. (c)
The critical current of the SQUID for positive (upper panel) and negative (lower
panel) bias current. The light-coloured lines indicate the background envelope from
the magnetic field pattern of the reference junction (Fraunhofer pattern). Here, we
adjusted the magnetic field data for a constant offset, Boff .

5.2.1 Estimating inductance from CΦR
Using the CΦR of the test junction, we can also get estimates of the loop induc-
tance of the SQUID. From equation 5.2, for the negligible inductance case, when
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the external flux is an integer multiple of Φ0, we get φt ≃ φr,max. Now, if we as-
sume the CPRs of the test and reference junction have the same functional shape,
f(φ) ≃ g(φ), the CΦRs will have the maxima at external flux values, which are
an integer multiple of Φ0. However, from measured CΦR s given figure 5.3(a), the
maxima (indicated with magenta and blue arrows) are offset from the correspond-
ing integer values of Φext/Φ0. This shift arises due to the magnetic field produced
by the circulating current in the SQUID loop, and this can be quantified in terms
of a parameter ∆ΦL defined as the distance between the observed location of
the maxima pair (positive and negative current bias)corresponding to an integer
Φext/Φ0. From equation 5.1, it is straightforward to see that ∆ΦL = L(Ir,c − It,c),
with (Ir,c − It,c)/2 the circulating current in the loop when the SQUID criti-
cal current is maximized [147]. From the measured shifts in CΦR, we obtain
∆ΦL ≃ 0.28 Φ0 corresponding to a loop inductance value of approximately 29 pH,
which is close to the simulated value. The extracted SQUID loop inductances for
different temperatures up to 900 mK are given in figure 5.3(b). Here, within the
error bars of our data, we do not see a considerable change in the inductance of
the SQUID loop with temperature, suggesting that the majority contribution to
L comes from the geometric inductance.

Figure 5.3: (a) Extracted CΦR of the TI test junction at T = 20 mK for both
positive (magenta) and negative (blue) current bias directions of the asymmetric TI-
SQUID and corresponding arrows indicate the location of the maxima of the CΦR.
The shift in the location of positive and negative maxima from integer Φext/Φ0 posi-
tions due to finite inductance can be quantified in terms of ∆ΦL = L(Ir,c −It,c), with
(Ir,c − It,c)/2 being the circulating current in the SQUID loop. (b) Loop inductance
of the SQUID estimated using ∆ΦL as a function of bath temperature. The error
bars represent the standard deviations of L obtained from different pairs of the CΦR
maxima corresponding to various integer Φext/Φ0 locations that are used for estimat-
ing ∆ΦL. As one can see, L remains constant around the value of 29 pH, confirming
that it is dominated by the geometric inductance of the device.
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5.2.2 CPR and Skewness
Now, to obtain the CPR of the test junction, we need to convert magnetic flux to
the phase drop across the test junction. This can be achieved by subtracting the
magnetic flux value at which the current of the test junction goes to zero φt =
2π(Φext −ΦIt=0)/Φ0. The extracted CPRs of our junction at various temperatures
are shown in figure 5.4(a). Note that these are not the true CPRs of the test
junction, as we did not consider the nonlinearity of the flux-phase relation due to
the inductance term in equation 5.1. We will address this issue in the section where
we discuss the data fitting (see section 5.3). The extracted CPRs are forward
skewed at low temperatures and evolve into a more sinusoidal CPR at higher
temperatures. In figure 5.4(b), we show the obtained CPR of our S-TI-S junction
measured at 20 mK along with a sinusoidal CPR of the same amplitude. The
deviation of CPRs from conventional sinusoidal CPR can be quantified in terms
of skewness, commonly defined as S = (2φmax/π) − 1, where φmax corresponds
to the phase at which the current through the junction is at the maximum value,
namely the critical current of the junction [27, 145, 156]. For an ideal short
SNS with transmission probability τn = 1 (see Chapter 2), one gets a maximum
skewness S = 1 with φmax = π, whereas for τn ≪ 1, S = 0 (sinusoidal CPR).

We found that for our test junction, φmax = 0.67π (see the dotted line in fig-
ure 5.4(b)) at 20 mK, which corresponds to a skewness S = 0.34. Here, even if we
consider the inductance of the SQUID loop, the position of φmax does not change
since in the limit of a small screening parameter, the extracted CPRs are only
affected in a small phase region around odd multiples of π (see section 5.3). Figure
5.4(c) shows the monotonic decrease of the skewness S with increasing tempera-
ture, asymptotically approaching zero for higher temperatures. In Chapter 4, we
qualitatively showed that most of the current in our junctions is carried by bal-
listic TSSs. Here, we will compare the skewness parameter to the predictions for
different junction regimes to show the validity of our observation. For a short dif-
fusive junction (ξ > l with ξ =

√
ℏD/∆′), one expects a maximum skewness value

of SD = 0.255 at zero temperature (see dotted line in figure 5.4(c)) [156]. Below
200 mK, the CPR of our junction shows skewness values above this diffusive limit.
So, pure diffusive transport cannot describe the transport in our TI junction. In
the fully ballistic limit, using the expression for transmission probabilities τ [105]
(see equation 4.4 given in Chapter 4), we obtain S = 0.41 at 20 mK, which is
larger than the experimentally observed value for S. This would suggest that the
Josephson currents in our devices are not carried exclusively by the ballistic TSSs;
there might be bulk states contributing to the overall current as well.

This is also supported by the temperature dependence of the critical current
(Ic) of the test junction shown in figure 5.4(d). Here, the open symbols correspond
to the measured value of Ic extracted from the CPRs given in figure 5.4 (a). As
indicated by the dashed lines, around 600 mK, we observe a drastic change in the
slope of the Ic vs. T curve. As observed in similar junctions [25, 32], this might
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point towards the presence of two different types of Josephson transport channels
with different Tc values. The modes with higher TC (same as the Al electrode,
Tc= 1.15K) can be attributed to the ballistic TSSs. In contrast, the Josephson
current contribution that vanishes fast, around 600 mK, could be attributed to
the diffusive transport modes due to bulk states. Since magnetotransport data
from these devices show low bulk mobility values, this also supports the possibility
of bulk diffusive transport modes in our junctions [85].

Figure 5.4: (a) Evolution of the extracted CPR of the TI test junction with varying
temperature. (b) Extracted CPR at 20 mK (magenta) along with a sinusoidal curve
with the same amplitude (black) to emphasize the deviation of CPR from the conven-
tional case. The vertical dotted magenta line indicates the location of φmax for the
measured CPR. (c) Measured skewness of CPR vs. temperature. Below 200 mK, S
is greater than the zero temperature limit SD, and the transport of the junction can
not be explained fully by pure diffusive transport modes. (d) Critical current of the
test junction as a function of temperature. The open symbols are the measured data
extracted from the CPRs shown in panel (a). The vertical dotted line indicates the
temperature at which the slope of Ic vs T changes. This points towards the presence
of two different types of transport channels with a higher (around Tc of Al, 1.15 K)
and a lower (around 600 mK) critical temperature.



69

5.3 Fitting CPR of S-TI-S junctions

We have seen from previous sections of this chapter that supercurrent in our
junctions might be carried by TSSs and bulk states. To estimate their contri-
butions, we fit the CPR measured at 20 mK. For the Josephson current carried
by the TSSs, we use the model of a short ballistic junction (see equation 2.20b
in section 2.3.3) along quantized transport modes with transmission probabilities
dictated by the geometry of the device (see equation 2.31) [105, 142]. We remove
an oxide thickness of 5nm from the nanobelt dimensions and find the perimeter,
P = 452 nm. Now, using a typical kF of 0.55 nm−1 based on magnetotransport
measurements performed by us on similar Bi2Se3 nanobelts [84–86], we calculated
τ value for various modes arising from TSSs [21, 32, 105, 142]. A polar plot
of the obtained τ values as a function of (continuous) angle θ (see solid line) is
given in figure 5.5(b). The transmission probabilities of the individual quantized
transport modes are shown as open symbols. We find that, in total, 39 modes
are arising from TSSs. As seen in Chapter 4, we have indications that most of
the current in our junction is carried by the modes on the top surface of the
nanobelt. So, out of the total 39, we only consider the 29 modes (orange open
symbols) travelling on the top surface(θ < 48◦) to be contributing to the ballistic
portion of the supercurrent. More than half of these modes have τ values close
to 1, resulting in an average τ value of 0.92 for the modes on the top surface.
We describe the Josephson current carried by TSSs modes with θ above 48◦ (pur-
ple open symbols) that go around the perimeter of the nanobelt along with the
bulk states using a diffusive multi-mode model based on Dorokhov distribution
of transmission probabilities [65] (see Chapter 2 section 2.3.4). Since the value
of normal state conductance GN of diffusive channel is unknown, we take it as a
fitting parameter in our analysis.

The fitted contributions to the CPR of our junction at 20 mK are shown in
figure 5.5(c). Note that to fit the CPR, we had to assume a temperature (Tfit ≃
195 mK) higher than the bath temperature of 20mK. This discrepancy might
originate from elevated quasi-particle temperatures or additional current noise
typically observed in SNS junctions [144, 157]. Moreover, we also assume a
reduced value of Tc for diffusive channel [25, 32] (Tc2), and for simplicity, the initial
fits are carried out without including inductance the finite inductance effect. The
values of the various parameters used in the fitting process are provided in table
5.1.

The best fit is obtained when out of the total critical current of ≈ 880 nA (see
magenta circles corresponding to measured data and blue line corresponding to the
sum of ballistic and diffusive parts) of the test junctions, ≈ 657 nA are carried by
ballistic TSSs on the top of the junction (orange line), and ≈ 223 nA are carried by
the diffusive transport modes (purple line). In agreement with our experiment, the
presence of these diffusive transport modes with lower skewness will result in an
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Fitted parameters Other parameters
Tfit γ Tc2 GN Tc1 kF

195 mK 0.8 650 mK 1.5 × 10−3 S 1.15 K 5.5 nm−1

Table 5.1: Table showing various parameters used for fitting the measured CPR

overall reduction of the observed skewness of our junction compared to transport
carried entirely by the TSS.

As seen in figure 5.5(c), the fitted curves deviate from the measured CPR
around φt = π and the measured CPR does not cross zero at φt = π. This can
be accounted for by including the finite inductance back into the analysis of the
CPR. For this, we use the fitted CPR for L = 0, and numerically calculate the
values of phases φt and φr across the test and reference junction for each value of
external flux Φext when the loop inductance L = 29 pH [53, 142]. In figure 5.5(d),
we have plotted the variation of φr and φt with respect to φ. Here, one can see
deviations from linear behaviour of φt (dashed blue lines) around π in the region
shaded in grey. Now, by including inductance, we can reproduce the measured
CPR relation more accurately, as shown in figure 5.5(e). This is reflected in
the residual from the fit (∆I = IJ − Ifit) given in figure 5.5(f). Here, we see a
peak around π for the residual corresponding to the fit without inductance(blue
curve), and after including inductance, this peak around π in residuals vanishes
(green curve). From figure 5.5(e), it can be seen that the loop inductance does
not significantly affect the phase position of the maximum of the CPR. This is
because the position of the maximum and the minimum of the CPR are outside the
phase region where φt deviates from the linear dependence on φ (in between the
dashed grey lines). Therefore, as mentioned earlier, the various skewness values
we extracted for the CPRs are valid, and this is in agreement with the quasi-
ballistic nature of our devices. Also, the true CPR of our junctions corresponds
to the L = 0 fit (blue line) plotted in figure 5.5(e).
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Figure 5.5: (a) Sketch of an S-TI-S junction showing quasi-particle trajectories in
terms of the angle θ made with longitudinal momentum axis with θ = tan−1 (kx

ky
).

(b) Angle-dependent transmission probabilities of various transport modes in the
junction, assuming extreme chemical potential mismatch at the interface (see equa-
tion 2.31). The orange circles correspond to the modes which are fully contained on
the top surface of the junction, and the purple dots correspond to the modes that
propagate around the nanobelt’s perimeter. (c) Measured CPR of the junction at 20
mK (magenta circles) along with fitted curves assuming zero inductance, L = 0. The
orange curve is the current contribution from the ballistic TSSs on the top surface of
the junction, and the purple line shows the diffusive contributions to the CPR. The
sum of both ballistic and diffusive modes is given as the blue curve. (d) Variation
of φt and φr with respect to φ, the extracted phase across the junction assuming
a linear variation of phase with Φext. Most of the deviation occurs around φ ≃ π
(see the shaded region, 0.8π − 1.2π). (e) Measured CPR of the junction (magenta
circles) along with the fitted curve considering a finite loop inductance of L = 29 pH
(green line) . The zero inductance fit is given for comparison (blue). The region in
between the dashed grey lines corresponds to regions mostly affected by inductance
as in panel (d), whereas φmax of the CPR lies outside this region. (f) Difference or
residual between the measured data and fit (∆I = IJ − Ifit). The data are offset
for clarity. For the zero inductance case, there is a peak in ∆I around π, indicating
the deviation of the fitted curve around π from the measurement data. The green
curve corresponds to the fit, including the loop inductance, resulting in a pronounced
reduction of the peak around π. The shaded region is the same as in panel (d).
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5.4 Additional asymmetric SQUID data
Over the course of this PhD study, we measured multiple asymmetric SQUIDs
apart from the one discussed in the previous section. Here, we provide some of
the data corresponding to those measurements. All the measurements discussed
in this section were carried out in our 300 mK 3He dipstick.

5.4.1 CPR from other devices

Figure 5.6: (a) AFM of the SQUID with both the test and reference junction made
from the same Bi2Se3 nanobelt with layout B. Note that the regular triangular pat-
terns visible on the TINR are AFM tip-induced artefacts. The dimensions of the
junctions used are provided in the table below. (b) Evolution of the extracted CPR
of the TI test junction with varying temperatures. (c) Extracted CPR at 265 mK
(orange) along with a sinusoidal curve with the same amplitude (black).(c) Measured
skewness of CPR vs. temperature.

Figure 5.6 shows extracted CPR data corresponding to the asymmetric SQUID
device S2 shown in figure 5.6(a). The test and reference junctions of the SQUID
use layout B (see Chapter 3 section 3.1 for more). This SQUID device has a
critical current asymmetry of 1:28 between the test and reference junction at 295
mK, and the SQUID loop has the same dimension as device S1 (see section 5.1).
As seen in figure 5.6(b) and (c), as in the previous case for device S1, we observe a
skewed CPR at lower temperatures. The skewness of the extracted CPR is plotted
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Figure 5.7: (a) Optical image of a SQUID formed out of junctions realized on two
different TINRs. Here, the test junction uses layout A, and the reference junction
uses layout B. The dimensions of the junctions are provided in the table below. (b)
Evolution of the extracted CPR of the TI test junction with varying temperatures.
(c) Extracted CPR at 295 mK (orange) along with a sinusoidal curve with the same
amplitude (black).(c) Measured skewness of CPR vs. temperature.

in figure 5.6(d). This device also shows a similar skewness value of ≈0.2 around
300mK, and the skewness of the CPR decreases with temperature. Though this is
smaller than the maximum skewness value expected for short diffusive junctions,
it is consistent with the skewness value from device S1 at 300 mK. So, we expect
a similar kind of behaviour in this junction where both diffusive and ballistic
transport modes carry supercurrent.

In figure 5.7, we have plotted the CPR data extracted from the asymmetric
SQUID device S3 fabricated using two adjacent Bi2Se3 NRs. The dimensions
and layout of this device are shown in figure 5.7(a). Unlike previous devices, this
device has a reduced critical current asymmetry of 1:11. But this should not
affect the extracted CPR much. Looking at the skewness of the device, we have a
similar behaviour as devices S1 and S2. Since two different representative devices
showed similar behaviour at 300 mK as the primary SQUID device discussed in
this chapter, we can conclude that in our Al-Bi2Se3-Al junctions, the transport is
carried by both ballistic and diffusive transport modes. Though the contributions
from each kind of transport mode might depend on the details of the junctions,
we expect the majority of the supercurrent to be carried by ballistic TSSs.
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5.4.2 Asymmetric TI-SQUID and Josephson diode effect
The pn-junction diode is one of the widely used components in electronics. They
show selective current flow based on biased direction. In recent years, there has
been a growing interest in developing a superconducting diode, which supercon-
ducts more in one direction than another [158–170]. In various physical systems,
the superconducting diode effect (SDE) can arise due to different mechanisms.
But one of the key ingredients for observing SDE seems to be the breaking of
time-reversal symmetry and inversion symmetry [158, 160–167, 170]. Devices
showing superconducting diode effects have been demonstrated experimentally
and some them are listed in [160–166, 168–170].

Flux-biased asymmetric SQUIDs with finite βL are known for having nonrecip-
rocal supercurrent transport at specific flux values [53]. Recently, it was pointed
out that asymmetric SQUIDs formed out of junctions with nonsinusoidal CPR
can show SDE even when the loop inductance is negligible due to the presence
of higher harmonics in the CPR[159, 167]. As we have seen in the previous sec-
tions of this chapter, our Al-Bi2Se3-Al junctions show slanted nonsinusoidal CPR.
So, our asymmetric SQUIDs, realized for the CPR extraction, should act like a
Josephson diode. This can be seen in the CΦR plot of device S1 given in figure
5.3. (a). Here, at each flux point, the supercurrent value corresponding to positive
and negative bias does not correspond to the same magnitude. To quantify this,
we make use of the definition of Josephson diode efficiency given by [168, 169]

η = I+
c − |Ic−|

I+
c + |Ic−|

(5.3)

where I+
c and I−

c correspond to the critical current positive and negative bias
direction, respectively. For device S1, we get a diode efficiency of < 5%, which
is very small compared to some of the already reported SQUID-based Josephson
diodes with efficiencies of roughly 25-40% [168, 169]. This is because the criti-
cal current asymmetry in our device is very large as they are designed for CPR
extraction, and the relative change in the amplitude of the critical current mod-
ulations of the SQUID with external flux is very small (see figure 5.2(d), here
I+

c − |Ic−| ≪ I+
c + |Ic−| for every value of external magnetic field). This results

in reduced diode efficiency.
In figure 5.8, we instead provide data from device S4 with a lower critical cur-

rent asymmetry of 1:4 between junction 1 and junction 2. This level of asymmetry
is not ideal for CPR extraction; however it can act as a better superconducting
diode. A false-coloured SEM image layout of the SQUID device is provided in
figure 5.8.(a). From the IVCs of the device at two different flux values shown in
figure 5.8.(b), we can see the supercurrent asymmetry in the device. The full cur-
rent flux relation of the SQUID device in both positive(red) and negative(green)
directions is plotted in figure 5.8.(c) and the diode efficiency η is plotted fig-
ure 5.8.(d). Here, we achieved a maximum diode efficiency of ≃ 12%. However,
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Figure 5.8: (a) False coloured SEM image showing the layout of the asymmetric
SQUID S4 with junctions made from the same Bi2Se3 nanobelt. The dimensions
of the junctions are given in the table below. (b) The IVC of the device measured
at two different flux values, Φe = 0 (blue) and Φe = −0.32Φ0 (magenta), showing
asymmetry in I+

c and I−
c . (c) The CΦR of the SQUID device for I+

c (red) and I−
c

(green) directions. The dotted line corresponds to the location of IVCs shown in panel
(b). (d) Superconducting diode efficiency of the device as a function of flux bias. We
get a maximum η ≃ 12% at a flux bias value of Φe = −0.32Φ0.

this is also smaller than the reported values of efficiencies (25-40%) for SQUID
based Josephson diode [168, 169]. From numerical calculations (data not shown),
we know that for a simple asymmetric TI-SQUID based on two Al-Bi2Se3-Al, the
maximum η value we can achieve is less than 25%. This is because, for better
diode efficiency, one needs to have SQUIDs formed out of the junctions with CPRs
of different functional shapes, and we can not change the shape of the CPRs of our
junctions drastically by changing the dimension of the junctions [159]. For higher
diode efficiencies, one will have to make use of an asymmetric SQUID made out
of a junction with sinusoidal current phase relation and TI-junction [159].





6 AC Susceptibility of a Bi2Se3
nanoribbon Josephson junction

In this chapter, we examine the microwave characteristics of a nanoribbon-based
Al-Bi2Se3-Al junction integrated into an rf-SQUID loop, coupled to a quarter
wavelength (λ/4) coplanar waveguide (CPW) microwave resonator through mu-
tual inductance. Despite the use of nanoribbons to mitigate bulk contributions
to transport properties, a significant number of transport modes persist within
the topological surface states (TSSs), attributed to the elevated chemical poten-
tial in Bi2Se3 nanoribbons [85]. Given the relatively large population of resulting
Andreev bound states (approximately 50 modes) within our TSSs, and assuming
that the relaxation rate of these bound states exceeds both the average level spac-
ing and the coupling strength between the Andreev bound state system and the
resonator, we do not expect to observe prominent circuit Quantum Electrodynam-
ics (QED) phenomena like avoided level crossing due to vacuum Rabi-oscillations
[61]. Nevertheless, valuable insights into the dynamics of Andreev bound states
can still be obtained through the analysis of the ac-susceptibility, as discussed in
the subsequent section.

6.1 Ac susceptibility (χ) of a Josephson junction
First, we introduce the concept of magnetic susceptibility following ref. [171] and
discuss how it relates to the reactive and dissipative parts of the admittance of
a Josephson junction. The magnetic susceptibility is a measure of the current
response, δIac, to a time-dependent ac flux, δΦac,

χ = δIac

δΦac
. (6.1)

Using the expression of the generalized flux in a Josephson junction Φ =
Φ0φ/2π, with Φ0 = h/2e the superconductive flux quantum and φ the phase
difference across the Josephson junction, we can rewrite:

χ = 2π

Φ0

δIac

δφac
, (6.2)
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which has a unit of one over inductance. The corresponding admittance is given
by Y = χ/iω. The finite frequency susceptibility of a Josephson junction is
determined by 3 contributions [172, 173]:

1. The adiabatic Josephson response (frequency-independent):

χj(φ) = 2π

Φ0

δIj

δφ
, (6.3)

with Ij(φ) the total Josephson current.

2. The finite frequency nonadiabatic, i.e. dynamical, response due to the relax-
ation of the Andreev bound state populations:

χD(ω, φ) = −
∑
n

|Inn|2 ∂fn

∂En

ω

ω − iΓin
. (6.4)

Here Inn are the diagonal matrix elements of the Andreev current opera-
tor (see Appendix B), and ∂fn/∂En are the derivatives of the Fermi-Dirac
population distributions with respect to the bound state energies En. The
quantity Γin describes the diagonal relaxation rate responsible for bringing
the ac-driven non-equilibrium population distribution back to a thermal dis-
tribution.

3. The dynamical response caused by transitions between the Andreev bound
state levels induced by microwave photon emission or absorption:

χND(ω, φ) = −
∑

n,m̸=n

|Inm|2 fn − fm

En − Em

× ℏω

ℏω − (En − Em) − iℏΓmw
.

(6.5)

Here Inm are the non-diagonal matrix elements of the Andreev current op-
erator (see Appendix A), and fn,m the Fermi-Dirac population distribu-
tions of the n-the and m-th Andreev bound state level, respectively. The
quantity Γmw describes the non-diagonal relaxation rate. The dominating
non-diagonal matrix elements are given for electron-hole symmetric Andreev
bound state pairs |In,−n| and |I−n,n| [173, 174].

The total complex-valued magnetic susceptibility is, therefore, given by
χ(ω, φ) = χJ + χD + χND

= χ′ + iχ′′.
(6.6)

It is important to note that χD and χND contribute both to the real and imag-
inary part of the magnetic susceptibility and, therefore, to the reactive and dis-
sipative (lossy) part of the junction admittance Y = χ/iω, respectively, whereas
χJ contributed only to the reactive part.
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6.1.1 Properties of χD

Figure 6.1: (a) Andreev bound state pair for a transmission coefficient τ = 0.99. (b)
Andreev bound state spectrum involving topological surface states of a TI nanoribbon.
(c) and (d) Population relaxation (diagonal) contribution to the losses χ′′

D at various
temperatures for the bound state spectrum shown in panels (a) and (b), respectively.

In the following, we will discuss how the properties of χD behave as a func-
tion of phase, temperature, and frequency. From equation 6.4 we can separate
χD = ∑

F1(φ)F2(ω) in a frequency-independent term F1(φ) = |Inn|2∂f/∂En and
a frequency-dependent term F2(ω) = ω/(ω−iγin). In F1(φ) the phase-dependence
is given by |Inn|2, i.e. the square of the current phase relation (CPR) with zeros
at phase 0, π, and 2π and two peaks located at the extrema of the CPR. The
temperature dependence in F1(φ) is given by the derivative of the Fermi-Dirac
distribution with respect to the energy ∂f/∂En. As a function of energy, it has the
shape of a peak (negative) with a half width at half maximum ∼ 2kBT centered
at the chemical potential. As a consequence only bound states in the proximity of
2kBT around the chemical potential contribute to χD. In figure 6.1 (b) we show
the evolution in temperature of the population relaxation losses χ′′

D as a function
of phase for a single pair of Andreev bound states (see panel (a)). For clarity,
here we consider the frequency dependence F2(ω) to be a constant equal to one.
Upon increasing temperature χ′′

D reaches a maximum for temperatures close to
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Figure 6.2: Frequency dependence of the real and imaginary part of the population
relaxation contribution to the susceptibility χD.

the gap in the bound state spectrum ∆En = En(π) − E−n(π). For even higher
temperatures the double-peaked feature becomes wider and smaller in amplitude.
In Fig 6.1(c) we show the bound state spectrum of an ideal topological surface
state using L = 100 nm, w = 89 nm and a Fermi wavevector kF = 5 · 108 m−1

(see Appendix A). The corresponding χ′′
D for various temperatures is shown in

panel (d). For temperatures larger than the minimum gap ∆En only a decay and
broadening of the double-peaked feature with increasing temperature is observed.

Next, we discuss the frequency dependence of the real and imaginary part of χD

shown in figure 6.2. For probing frequencies ω smaller than the inelastic relaxation
rate, Γin, both the real and imaginary part of χD start from zero at zero frequency
and increase with increasing frequency. For ω > Γin the real part of χD starts to
saturate approaching 1, whereas the imaginary part of χD decays with increasing
frequencies after reaching a maximum at ω = Γin.

6.1.2 Properties of χND

Since our junction is shorter than the superconducting coherence length in the
TI, L < ξ (see below), hereafter, we consider only microwave transitions between
electron-hole symmetric bound states, which is a reasonable approximation for
short ballistic junctions [61, 65]. For small probing frequencies ω ≪ ∆/h one
expects microwave transitions between Andreev bound states, ℏω = En(φ) −
E−n(φ) = 2En(φ), only in proximity of φ = π where the level spacing between
electron-hole symmetric bound states reaches a minimum.

In the case of long lifetimes where ΓND ≪ ω, this is expected to manifest as
a double-peaked pattern in χ′′

ND with its center at φ = π. Conversely, if the
lifetimes are short (ΓND ≥ ω), these two peaks will converge into a single peak.
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Additionally, as temperature increases beyond kBT > ℏω, the peak’s amplitude
begins to diminish. This phenomenon arises from the thermal population of the
bound states, nearing 1/2 for Andreev level spacings smaller than kBT (see eq.
6.5).

6.2 Observed parameters of resonator RL and
SQUID loop

Figure 6.3: (a) Optical image of the shorted end of the NbN λ/4 resonator (dark
grey) on a sapphire substrate (black). The Al rf-SQUID loop is seen in light grey. (b)
Atomic force microscopy image (topography) of the Al-Bi2Se3-Al junction embedded
in the Al rf-SQUID loop shown in panel (a). The white dashed line indicates the
outline of the TI nanoribbon.

Most of the design parameters of our resonators are described in Chapter 3 section
3.2.2. In this chapter, we will discuss measurements based on resonator RL and the
RF-SQUID attached to it. To quickly, the resonator RL had a design frequency
of 627 MHz. From the measured values of the higher harmonics of the resonator,
we get the fundamental frequency of the resonator to be 628 MHz. Here, we used
the fact that the frequencies of the higher modes of λ/4 resonator are given by
ωn = ω0(2n+1) with n > 0 a positive integer to get the fundamental frequency. In
table 6.1, we summarize the measured mode frequencies of resonator RL together
with the fitted internal and external quality factors (see Chapter 3 section 3.2.2
for details on the fitting procedure).

For the rf-SQUID loop inductance, we need to fulfil the condition χLloop < 1
such that we can neglect screening effects and, therefore, obtain a linear change of
phase across the junction with applied external magnetic flux (see Appendix A).
For typical critical currents of our TI junctions Ic ∼ 1 µA we get the condition
Lloop < I−1

c Φ0/2π ≃ 300 pH. For the Al SQUID loop shown in figure 6.3 (a) with
length lloop = 25 µm and width wloop = 13 µm we calculated the self-inductance
by solving the Maxwell London equations on the loop geometry [153], giving
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Mode number ωn/2π Qint Qext

3 4.4 GHz 93000 160000
4 5.65 GHz 32000 88000
5 6.91 GHz 33000 78000
6 8.16 GHz 79000 70000

Table 6.1: Frequency, internal and external quality factor of resonator RL with
fundamental mode frequency ω0 ≃ 628 MHz for mode numbers 3-6

Lloop ≃ 27pH. For the mutual inductance between the loop and the resonator, we
can obtain an upper bound got an upper bound of 16 pH (see chapter 3, section
3.1.4). However, the real value might be smaller by a factor of up to 4 due to
return currents causing a reduction of the mutual inductance. As shown below,
our measurements point towards a smaller value M ≃ 3 − 7 pH. In figure 6.3 (b),
we show the AFM image of the Al-Bi2Se3-Al junction from the SQUID loop, and
for this junction we get a width of 89 nm, length of 100 nm and thickness of
t = 13 nm.

6.3 Experimental details
In this section, we will discuss some of the experimental observations, and data
analysis is performed in a later section. The detailed experimental setup used
for the measurements of our RF-SQUIDs coupled to CPW resonators is given
in Chapter 3. Our measurements involve obtaining resonance characteristics of
RF-SQUID devices using a VNA while changing the flux bias with the help of a
superconducting coil.

From the circuit analysis presented in Appendix A, one can directly link the
measured frequency shift δω and the changes of the internal losses δ(1/Qint) as a
function of phase bias to the real and imaginary part of the junction’s magnetic
susceptibility [171]:

δω

ω0
= M2

2LR
χ′ (6.7)

δ

( 1
Q

)
= M2

LR
χ′′, (6.8)

with M the mutual inductance and LR ≃ Lll ≃ 23 nH the effective inductance
of the λ/4 resonator. Considering that the critical current of our junction lies in
the range 100 − 500 nA [28] for given nanoribbon dimensions, we obtain from our
δω/ω data fits shown below a mutual inductance value in the range M ≃ 3−7 pH.

The microwave power at the output of the VNA was chosen such that we obtain
maximum signal-to-noise while staying in the linear regime for the susceptibility
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Figure 6.4: (a), (b) Measured phase dependence of the coupled system resonance
and internal quality factor, respectively, for resonator mode n = 3 at various VNA
output powers at T = 20 mK. (c) Internal quality factor at zero phase bias for various
applied microwave powers together with the temperature dependence at P = −5 dBm
as a function of temperature.

measurements, i.e. δΦac ≪ Φ0. In figure 6.4 (a) and (b), we show the measured
phase dependence of the resonance frequency and internal quality factor, respec-
tively, of the coupled system for resonator mode n = 3 at various VNA output
powers at T = 20 mK. For output power P > −5 dBm, we observe distortions
(flattening out of dip features) of the signals around phase bias φ = π, whereas
for lower powers we do not observe any significant change in the signal except for
degradation of the signal-to-noise. Therefore, we used P = −5 dBm as the VNA
output power throughout all the following measurements.

6.4 Temperature dependence of χ

In figure 6.5 (a) and (c) we show the measured resonance frequency and inter-
nal quality factor as a function of applied phase bias φ = 2πΦext/Φ0 at various
temperatures for mode number 3 and 6, respectively. The corresponding quality
factors are shown in panels (b) and (d), respectively. In panels (e) and (f) we show
the resonance frequencies of the same two modes as a function of temperature for
a fixed applied magnetic flux Φext = 0, respectively. At low temperatures, we see
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Figure 6.5: (a),(c) Phase bias response of the resonance frequency at various tem-
peratures for modes number 3 and 6, respectively (curves are offset for clarity). (b),
(d) Phase bias response of the internal quality factor at various temperatures for
modes number 3 and 6, respectively (curves are offset for clarity). (e), (f) Resonance
frequency as a function of temperature at zero phase bias for mode numbers 3 and 6,
respectively. (g) Internal quality factor as a function of temperature at zero applied
phase bias for mode number 3 (magenta symbols) and mode number 6 (orange) sym-
bols.

the effect of two-level fluctuator noise on the resonator, which is characterized
by the upturn of the resonance frequency below a temperature Tn = ℏωn/2kBT
[175]. The effect of the noisy environment can also be directly seen in the rather
noisy frequency data shown in 6.5 (c) for temperatures below 200 mK. For larger
temperatures, TLFs at the resonator frequency 8.16 GHz become saturated (ap-
proaching equal thermal population), resulting in much smoother resonator fre-
quency vs phase measurements. From the frequency data vs phase shown in 6.5
(a) and (c), we can extract the relative resonance shift 2δf/f0, which is shown
in panel (a) of figure 6.6. Here, the data taken at 4.4 GHz are displayed as solid
lines, and the data measured at 8.16 GHz as dashed lines. Similarly, from the
Qint data vs phase shown in figure 6.5 (b) and (d), we can extract the loss changes
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δ(1/Qint) shown in panel (b) of figure 6.6.

First, we discuss the relative frequency shift data shown in figure 6.6 (a). No
obvious difference (within the TLF noise-induced fluctuations) between the data
measured at 4.4 GHz and 8.16 GHz can be observed at any temperature. From
figure 6.2, we see that the real part of χD saturates for frequencies larger than Γin.
Since χ′

D contributes to the relative frequency shift (see eq. 6.7) together with
the observation that the δf/f0 vs phase data are rather insensitive to the probing
frequencies, 4.4 GHz and 8.16 GHz, points towards the fact that the inelastic
scattering rate Γin is smaller than 4.4 GHz.

Figure 6.6: (a) Extracted frequency shift as a function of externally applied phase
bias for various temperatures. The solid lines are the data probed at ω/2π = 4.4 GHz.
The dotted lines represent the measured data probed at ω/2π = 8.16 GHz. (b)
Extracted added losses as a function of externally applied phase bias for various
temperatures. The solid lines are the data probed at ω/2π = 4.4 GHz. The dotted
lines represent the measured data probed at ω/2π = 8.16 GHz.
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Next, we discuss the added losses vs phase data shown in 6.6 (b). In con-
trast to the frequency shift vs phase data, the added losses vs phase data behave
quite differently at the two frequencies. At low temperatures, we observe a dis-
sipation peak centred at φ = π, which we can attribute to microwave-induced
transitions when the Andreev transition energy is in resonance with the resonator
mode frequency ℏωn = 2En(φ). The dissipation peak is strongly suppressed for
temperatures above 500 mK when probing at 4.4 GHz, whereas a clear dissipa-
tion peak is visible up to 600 mK for probing frequency 8.16 GHz. In fact, for
temperatures kBT > ℏω Andreev bound state pairs with separation 2En ≃ ℏω
around φ = π approach equal population fn ≃ f−n reducing the contribution of
χND to the magnetic susceptibility (see eq. 6.5).

6.5 Data Analysis
In this section, our goal is to determine the two relaxation rates, Γin and Γmw. To
achieve this, we perform a concurrent fitting of the frequency shift δf/f0 and the
supplementary loss data δ(1/Qint) at various temperatures using equations 6.6,
6.7, and 6.8. To facilitate this procedure, we adopt the following assumptions:

1. We treat the bulk and surface states independently, and only microwave
transitions between electron-hole symmetric bound states are considered.

2. The bulk has a lower induced superconducting gap and corresponding criti-
cal temperature as compared to the surface states. Indications of this phe-
nomenology are given by the typical critical current vs temperature data we
observe in our Bi2Se3 nanoribbon Josephson junctions [142]. For the surface
state, we assume a gap of ∆s = 0.75∆Al with T s

c = 1.15K [22] and for the
bulk states we assume a critical temperature T b

c = 0.7K [142] and induced
gap of ∆b = ∆sT

b
c /T s

c ≃ 0.5∆Al.

3. For the topological surface states contributing to the Josephson transport
we assume a Fermi wave vector kF = 5e8 m−1. From the AFM imaging,
shown in figure 6.3(b), we infer a junction width of 89 nm, length of 100 nm
and thickness of t = 13 nm. Moreover, for the TSS transport channels, we
assume transmission coefficients τn typical for Dirac materials (see equation
2.31 in Chapter 2).

4. The bulk only contributes via diffusive channels to the Josephson transport.
We, therefore, treat the bulk using the short diffusive junction model with
the characteristic Dorokhov distribution of transmission coefficients [65, 142].
We adjust the parameters of the bulk (mainly normal conductance) such
that the ratio between the Josephson current at zero temperature carried by
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surface states and diffusive (bulk) states is ∼ 2 : 1. This value is close to
the one we obtained from CPR measurements in similar Josephson junctions
using asymmetric dc SQUID measurements [142].

5. The relaxation times are phase-independent. Moreover, we do not discern
between the relaxation times in the bulk and surface states.

6. The only fitting parameters are the effective temperature Teff , and the re-
laxation rates Γin and Γmw.

Figure 6.7: (a) Measured added losses as a function of phase at various temperatures
probed at ω/2π = 4.4 GHz. (b) Fitted added losses. The inset shows the fitted
temperature Teff (c) Measured frequency shift as a function of phase at various
temperatures probed at ω/2π = 4.4 GHz. (d) Fitted frequency shift.

In figure 6.7, we show in the left column the experimental data of the phase
dependence of the added losses (panel (a)) and the relative frequency shift (panel
(c)) at various temperatures probed at ω/2π = 4.4 GHz. The right column (pan-
els (b) and (d)) shows the corresponding fits. The fitted effective temperatures
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are shown in the inset of panel (b). This offset at low temperatures could be
attributed to the non-ideal microwave filtering of our measurement setup, which
inevitably leads to an overheating of the electronic system at low temperatures
in our junction above the bath temperature. The extracted relaxation rates as a
function of the bath temperature are shown in figure 6.9 as blue open circles (Γin)
and blue discs (Γmw).

Similar to the data shown in figure 6.7 in figure 6.8, we show in the left column
the experimental data of the phase dependence of the added losses (panel (a))
and the relative frequency shift (panel (c)) at various temperatures probed at
ω/2π = 8.16 GHz. The right column shows the corresponding fits. Here, we used
the same effective temperatures obtained in the fits of the 4.4 GHz data shown in
figure 6.7. The extracted Γin and Γmw at various bath temperatures are shown in
figure 6.9 as red open circles and red discs, respectively.

Figure 6.8: (a) Measured added losses as a function of phase at various temperatures
probed at ω/2π = 8.16 GHz. (b) Fitted added losses. (c) Measured frequency shift as
a function of phase at various temperatures probed at ω/2π = 8.16 GHz. (d) Fitted
frequency shift.



89

6.5.1 Discussion
The inelastic relaxation rates Γin shown in figure 6.9 are rather constant at
temperatures up to Tbath = 400 mK and then decrease by a factor ∼ 1.5 at
Tbath = 600 mK. This is in stark contrast to the temperature dependence ob-
served in long diffusive SNS junctions [171], where the inelastic scattering rate
follows a linear in T behavior reminiscent of a phase coherence time in diffusive
metallic systems. From the typical phase coherence length in Bi2Se3 nanorib-
bons [86], lϕ ≃ 300 nm, we obtained from weak anti-localization measurements
at T = 1 K, we can calculate the dephasing rate Γϕ = l2ϕ/D with D = EF µe/2e
the diffusion constant. Here EF ≃ 180 meV is the typical chemical potential and
µe ≃ 3000 cm2/Vs the typical mobility in our TI nanoribbons. With these values,
we obtain Γϕ ≃ 300 GHz. This value is much larger than the Γin values shown
in figure 6.9 at T = 600 mK. A possible reason for this discrepancy could be
that weak anti-localization corrections in the conductance are mainly determined
by diffusive trajectories and, therefore, less sensitive to ballistic transport modes.
Because the Josephson current primarily flows through quasi-ballistic modes, the
relaxation rates of these modes may not be correlated with Γϕ.

Figure 6.9: Relaxation rates Γin and Γmw at probing frequencies 4.4 GHz and
8.16 GHz.

However, the rather unconventional temperature dependence at higher temper-
atures (decrease of relaxation rate) of Γin is not clear yet. One possible explanation
could be the simplified assumption in the data analysis of having the same relax-
ation rate in both the TSSs and bulk states (see item 5) in the previous section).
Assuming a smaller relaxation rate in the TSS might explain the discrepancy at
higher temperatures once the weight of the bulk states to χD starts to decrease
due to the proximity of the bath temperature to the critical temperature of the
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bulk-induced gap.
The relaxation rates Γmw at probing frequencies 4.4 GHz and 8.16 GHz in-

crease with temperature, possibly indicating a power law dependence at higher
temperatures, T p, with p ≃ 2 − 3. At lower temperatures, the rates approach
saturation values around Γ4.4GHz

mw ≃ 4 GHz and Γ8.16GHz
mw ≃ 2.5 GHz, respectively.

The main relaxation mechanisms for Andreev bound state qubits are related to
phonon or photon emission [61, 176]. For the phonon-mediated relaxation rate,
one can estimate an upper bound given by the electron-phonon scattering rate
[176] Γeph ≃ ϵ3/(ℏk2

BΘ2
D) with ϵ the energy spacing between a bound state pair

or the temperature and ΘD ≃ 180 K the Debeye temperature of Bi2Se3. Con-
sidering the largest energy scale in our system ∼ 1K we obtain an upper bound
for the relaxation rate Γeph ≃ 4 MHz which is more than 3 orders of magnitude
smaller than the values of Γmw we observe. The maximum relaxation rate caused
by photon emission (Purcell effect) is given by the coupling strength between the
Andreev system and the resonator mode. For mutual inductance values in the
range 3 − 10 pH we obtain coupling values g/2π < 6 MHz (see Appendix A for
details). Therefore, both the electron-phonon coupling and Purcell effect cannot
explain the large relaxation rates, Γmw, we observe.

Another possibility to take into account is the interaction between the Andreev
bound state system and a continuum of electronic states. This continuum may
arise from the fact that the induced gap in the bulk (possibly also in the TSSs)
is not a hard gap, but rather a soft gap with sub-gap states forming a continuum
where Andreev bound states can dissipate their energy.



7 Towards reducing bulk
contributions to transport in
Bi2Se3 devices

A major problem that one faces in devices fabricated using 3D-topological insu-
lators (TI) Bi2Se3 is the unavoidable presence of bulk conductivity. These bulk
states often mask the effects of unconventional topological surface states (TSSs) or
complicate the transport analysis on these devices. As seen in Chapters 5 and 6,
our S-TI-S junctions have significant contributions to transport arising from con-
ducting bulk states and in this chapter, we will discuss our attempts to tackle this
problem. In the first section, we will briefly discuss our attempts to reduce bulk
carriers with electrostatic gating and in the following section, we will discuss a
gated device made using thin Bi2Se3 nanoribbon from a slightly different growth
process than the nanoribbons discussed in most of this thesis. In the last sec-
tion, we will discuss the possibility of reducing bulk contributions to supercurrent
transport in S-TI-S junction by increasing the length of the junction.

7.1 Reducing bulk contributions to transport in
Bi2Se3 nanoribbons: electrostatic gating

In this section, we will discuss two different approaches we took for reducing bulk
contribution to transport in our Al-Bi2Se3-Al junctions. First, we will discuss
suspended S-TI-S junction with local gate electrodes, and then we will discuss a
device in which a Bi2Se3 nanoribbon is sandwiched in between a top and bottom
layer of h-BN dielectric-based gates.

7.1.1 Transport of suspended Al-Bi2Se3-Al junctions
Typically, we are only able to change the chemical potential of our junction by
roughly ≤ 10 meV ( see Chapter 4), and this is not enough to bring up the chem-
ical potential close to the Dirac point of the TINRs [85, 131]. Moreover, as seen
in 2.6 of Chapter 2, we have a trivial 2DEG formed at the interface between our
Bi2Se3 nanoribbon and the substrate due to band bending effects[84, 85]. By
implementing a suspended junction, one hopes to avoid this unintentional 2DEG
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by elevating the nanoribbon from the substrate and thereby not allowing the TI-
weaklink part of our junction to touch the substrate. Now, with the use of a local
gate (with a width of 50 nm) defined in between the Al electrodes (separation
between the electrodes is between 100-120 nm), we expect to have better electro-
static control over the transport in our junction than what is typically achieved
by a global back gate. The schematic of a suspended junction is shown in figure
7.1(a). This junction follows the same fabrication process as discussed in Chapter
3 section 3.1; the only difference is that when depositing the Al electrodes, we also
deposit Al on top of the gate with a gap of roughly 100 nm from the TINR on
both sides to form a split gate like structure on top of the local Au gate that sits
under the TINR. They form a gate controlled by a single voltage source, and this
is done to increase the effectiveness of the gating process by surrounding more
of the TINR with the gate. The corresponding SEM images of the device SS1
discussed here are shown in figure 7.1(b).

Figure 7.1: (a) Schematic of a suspended Al-Bi2Se3-Al junction with Al2O3 pillar
and local back(Ti/Au/Pd) plus side(Pt/Al) gates. (b) SEM images of suspended
nanowire junction with various parts labelled. On the right, we have given false
zoomed-in SEM image showing device SS1. Here, SG corresponds to split/side gate.
(c) and (d) Measured IVC and differential conductance of device SS1 at 300 mK,
respectively.

We characterized the fabricated suspended junctions in our 300mK system.
The IVC and differential conductance corresponding to device SS1 are plotted
in figure 7.1(c) and (d), respectively. As seen here, the IVC of the junction
is rather rounded and does not show any hysteresis behaviour like our typical
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junctions. This is mainly due to the elevated base temperature and lack of high-
frequency filtering in our 300 mK dipstick compared to our dilution fridge. For
better characterization of such junctions, one needs to use a measurement setup
where the DC lines are properly filtered for high-frequency noise. Now, in the
conductance spectra, we observe some features arising from multiple Andreev
reflections pointing towards the good quality of the junctions. Here, though we
tried to gate the device, the gate leads started to leak at a gate voltage Vg <
-2V, and we could not observe any significant gating effects in these devices.
Similar behaviour was observed in multiple suspended junctions fabricated in this
manner. Sapphire is a high-insulating substrate; this level of leaking in our devices
is unexpected. However, we suspected that the leakage might have resulted from
the highly porous nature of the Al2O3 pillars that are deposited using e-beam
evaporation. After a few failed attempts, we abandoned the idea. Later, we
found out that the positive AR-P 6200 series (CSAR 62) e-beam resist we utilize
for fabricating the junctions develops cracks under strain, which may result in the
shorting of nearby structures. Since our suspended junctions are fabricated in a
region with various high profiles, it resulted in straining the resist layer and, in
turn, might have also contributed to the leaking gates in our suspended junctions.

7.1.2 Gated devices with h-BN dielectric
In the case of 2D materials, h-BN flake or film has been used for both material
isolation as well as a gate dielectric [177]. A high-quality h-BN flake can withstand
electric fields with a strength of 1V/nm, and this makes it an ideal choice for gate
dielectric. By using h-BN-based gates on both the top and bottom of our devices,
we wanted to see if we could gate Bi2Se3 nanoribbon devices through the Dirac
point. In our experiments, we used h-BN flakes exfoliated from cosmetic-grade
h-BN powder, which could withstand an electric field of ≃ 0.7V/nm. Anyway,
we fabricated some nanoribbon-based devices with normal contacts (Ti/Au) to
check the feasibility of using such h-BN flakes for achieving electrostatic gating
in our devices to get closer to the Dirac point. An optical image, along with a
schematic showing the cross-section, of one of our fabricated dual-gated TINR
devices (BSH1) is shown in figure 7.2(a). Detailed information on the fabrication
of the device is given in section 3.1 of Chapter 3. The TINR ribbon used in
this experiment had a width of ≃ 480 nm and a thickness of 65 − 70 nm (the
nanoribbon came with a ridge parallel to the axis of the ribbon with a width of
roughly 150 nm and 5nm raised compared to the rest of the nanoribbon). The
TINR is measured in a four-probe configuration, where the voltage probes are
separated by 3µm. The gates are controlled by individual voltage sources. Also,
the top and bottom hBN flakes are roughly ≃ 25-30 nm and ≃ 15-20 nm thick,
respectively. All the measurements shown here are performed in our 300 mK
dipstick at base temperature.
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Figure 7.2: (a) Optical image of TINR device BSH1 with top and bottom gate
electrode using h-BN flakes as gate dielectric. Here, top and bottom h-BN flakes are
roughly 15-20 and 25-30 nm thick, respectively. The bottom section of the image
shows a schematic cross-section of the device (b) Change in resistance of the device
with respect to applied back gate voltage (Vbg) with zero top gate voltage (Vtg). Here,
we sweep Vbg from 0V to 12V (green curve), 12V to -12V (orange curve) and -12V
to 0V (blue curve), and the arrows indicate the direction of the sweep. With more
negative gate voltages, the resistance of the devices starts to go up, and at Vbg =-12V,
the resistance of the device gets almost doubled in value compared to the zero voltage
case showing the n-type nature of our devices. (c) Resistance curves showing a finer
gate sweep performed in the small Vbg range of -8V to -10V in both directions(Vtg = 0).
Here, we see some oscillation in the resistance of the device, which may originate from
the transversal quantization effect. (d) Response of the device to applied top gate
voltage Vtg with zero Vbg. Here, we see a hysteresis in the top gate response of the
device, and this might be related to accumulated charges in hBN or the interface
between the TINR and h-BN. (e) A resistance map of the device with both Vbg and
Vtg applied, we managed to increase the resistance of the device up to ≃ 72 kΩ, which
is almost 15 the initial resistance of the device with zero gate voltage.

We first measured the IVC of the device at zero back gate (Vbg)and top gate
voltages (Vtg). From here, we get a device resistance of ≃ 4.2 kΩ and a correspond-
ing sheet resistance of ≃ 0.67 kΩ/□. We measured the variation of resistance of
the device with applied Vbg while keeping the top gate voltage Vtg = 0V . The
resulting resistance curves are shown in figure 7.2(b), and here, different colours
of the curves indicate the sweep direction. We see that the resistance of device
BSH1 increases for negative gate voltages, which indicates the n-type nature of
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our TINRs [85, 86]. At Vbg =-12V, the resistance of the device gets almost dou-
bled in value compared to the zero voltage case. In figure 7.2(c), we plotted the
resistance curve of the device for a small Vbg sweep range of -8V to -10V. Here,
one can see some resistance oscillations, which are consistent in both forward and
backward sweeps. This might be due to transversal quantization in the device
seen in similar TI devices [131, 141]. The response of the device to Vtg with zero
Vbg is shown in figure 7.2(d). Here, similar behaviour as in the case applied back
gate alone. But since the top h-BN flake is thinner, with Vtg =-12V, the resistance
of the device has gone up by a factor of roughly ≃ 2.8. Also, we see that the sweep
curve corresponding to the top gate shows some hysteresis. This might indicate
shifts due to accumulated charges at the interfaces of the device.

In figure 7.2(e), we show the response in terms of the resistance map of device
BSH1 in terms of Vbg and Vtg. As seen here, the resistance of the device increases
sharply around high negative gate voltages and reaches a peak value of ≃ 72 kΩ
at Vbg = -17V and Vtg = -10V. This is approximately 15 times higher compared to
the initial resistance of the device and corresponds to a sheet resistance of ≃ 11.5
kΩ/□. We believe that, with such a sharp increase in the device resistance and
high sheet resistance, we might be really close to the Dirac point of the device.
Unfortunately, we could not apply even larger negative gate voltages to show a
decrease of resistance after the Dirac point when the carrier types switch from
electrons to holes. Nevertheless, a dual gate TINR device with h-BN dielectrics
might be a way to study transport around the Dirac point in our devices.

Figure 7.3: (a) AFM image of a TINR device fabricated on local gate/h-BN stack
showing shorted electrode due to crack developed in the resist layer indicated with
red circles. (b) SEM image of a test TINR device fabricated on local gate/h-BN stack
with a modified recipe.

Although we tried to fabricate gate devices with h-BN dielectric for magneto-
transport studies, due to the previously mentioned issue with AR-P e-beam resist
due to strain, the electrodes often got shorted (see figure 7.3 (a)). With h-BN
gated devices, the cracks in the resist become more prominent. This is because,
during the baking process, the h-BN flake strains the resist layer due to the neg-
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ative thermal expansion coefficient of h-BN [177], resulting in cracks in the resist
layer. We later developed an improved e-beam lithography recipe that allows the
fabrication of gated S-TI-S junctions using h-BN as dielectric. A test TINR de-
vice fabricated on an h-BN flake using this recipe is given in 7.3(b), not showing
any evident cracks or short. Due to time constraints, we could not fabricate or
measure any S-TI-S junction with h-BN as gate dielectric.

7.2 Reducing bulk contributions to transport in
Bi2Se3 nanoribbons: use of ultra thin
nanoribbons

In the previous section, we showed a large increase in sheet resistance of dual h-BN
gated TINR device of thickness 65(70)nm, possibly approaching the Dirac point in
the material. But in order to reduce carrier density in our nanoribbon and better
tune them near the Dirac point, it is essential to use ultrathin TINRs (thickness
below 15 nm). In fact, Kunakova et al. demonstrated ambipolar transport in
a gated 9 nm thick Bi2Se3 nanoribbon device fabricated on STO substrate with
high dielectric constant [86]. Ultrathin nanoribbons can be controlled easily with
gate voltages compared to the thicker nanoribbons that we typically use in our
devices. Our typical Bi2S3 growth process discussed in [84] has a lower yield for
nanoribbons with thicknesses below 15 nm. So, our collaborators optimized the
growth process to increase the yield of sub-15 nm TINRs, as discussed in [178].

Niherysh et al. carried out magnetotransport characterization of devices based
on ultrathin Bi2Se3 nanoribbons grown using the modified growth process by
Sondors et al. [178, 179]. The full description of this study is outside the scope
of this thesis. From the observed SdH oscillations in these devices, we have an
indication of TSSs being present in these devices, like our standard devices [85].
We looked at the gate dependence of the resistance of a device fabricated using
TINRs from the new growth process. The device discussed here is referred to
as Device 3 in [179], and the typical device layout used in the study is shown in
figure 7.4(a). Device 3 is fabricated using an ultrathin Bi2Se3 nanoribbon with
a width and thickness of 85 and 12 nm. The gate voltage is applied with Ti/Au
contacts deposited on the backside of SiO2(300nm)/Si substrates.

The resistance (Rxx) vs Gate voltage curve of Device 3 is given in figure 7.4(b).
Like in the case of device BSH1 discussed above, we observe resistance oscillations
with respect to gate voltage, which might originate from transversal momentum
quantization in the TINR. Using a COMSOL simulation, the capacitance of the
device was determined, and from this, one gets a change in carrier concentration
of ∆n ≃ 1.5 × 1012 cm−2. This roughly corresponds to a change in the chemical
potential of the bottom TSSs (interface with substrate) by ∆µ ≃ 45meV [179].
Now, in the case of transversal quantization in the device, the subband spacing is
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given by ∆µP = ℏvF /P where P = 2(w+t) is the perimeter along the rectangular
cross-section of the TINR (see Chapter 2 section 2.5.2 or Chapter 4 for more on
transversal quantization). Assuming a typical vF = 5×105 ms−1, one gets ∆µP ≃
9meV. So, in the applied gate voltage range, one expects roughly ∆µ/∆µP = 5
peaks in the resistance oscillations. As seen in figure 7.4(b), there are roughly 5-6
resistance peaks in the measured data in both directions, which agrees with the
expected periodicity of resistance oscillations due to transversal quantization.

Figure 7.4: (a) SEM image showing typical device geometry used for magneto-
transport measurements. The voltage and current probes used for the measurements
discussed are indicated as V + (V −) and I+ (I−), respectively (b) Rxx as a function of
back-gate voltage for Device three from [179]. The blue and orange curves represent
two different gate sweep directions. The inset shows the corresponding gate leakage
current of the device (image adapted from [179]).

We have not fabricated any S-TI-S junction using these ultrathin Bi2Se3 nanorib-
bons from the new growth process. However, because of the thin nature of these
nanoribbons, we expect to be able to tune the chemical potential close to the Dirac
point with the help of top and bottom gates, and we might succeed in observing
ambipolar transport in this case like Kunakova et al. [86].

7.3 Increased junction length for reducing diffusive
contributions in Al-Bi2Se3-Al junctions

Most of the Al-Bi2Se3-Al junctions in this thesis had a length of less than 120nm.
We used this design to ensure we are within the short junction limit to have
a simpler description of Andreev bounds states in our junctions (see sections
2.3.3). Now, if we increase the length of the junctions further, then we should
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see a reduction in the current contribution from the diffusive channel while the
ballistic contributions remain the same. This is because for a diffusive junction,
the critical current scales as roughly 1/l and 1/l3 in the short and long junction
limits, respectively [180].

Figure 7.5: (a) Calculated Jc vs. l of a typical TI-junction of width 200 nm in the
short junction limit. The blue line corresponds to the case in which surface states
completely carry the supercurrent, and the magenta line corresponds to a case in
which both ballistic TI-surface states and bulk diffusive states are involved in the
transport. As seen here, for a junction with only TI-surface states, the Jc fluctuates
around a constant value with increasing length. Whereas for a junction with both bulk
and TI surface states contributing to transport, initially, the Jc drops with increasing
length. This is because as L is increased, the resistance of the device increases,
and the diffusive contribution to Jc decreases by approximately 1/l. Above 200 nm,
the current is carried mainly by surface states, and Jc fluctuates around the same
value. (b) Measured Jc vs L curves for various TI-junctions. Each line corresponds
to junctions fabricated on the same nanoribbon.

Using the same model for CPR in junction as described in Chapter 5, we cal-
culated the critical current density Jc as a function of the junction length l for
an S-TI-S junction of width 200 nm and typical junction parameters(kF = 0.55
nm−1 and diffusive channel contributing 30% to the supercurrent) [142]. The
calculated Jc of the device as a function of l is given in figure 7.5. As seen here,
we see an initial drop in Jc as the length increases, and above 200 nm, the Jc

saturates and starts to fluctuate around a constant value. This indicates that the
current contribution, in this case, comes from the TSSs alone. From Chapter 4,
we know that in our junction, we have Fabry-Pérot oscillations at a length scale
over a micrometre. So, it might be possible to find a regime where the length
of the device is such that the diffusive contribution to the current carried by the
junction is minimal while the ballistic TSSs are still in the short junction regime.
This could be explored more in the future. As a preliminary result, in Fig. ??(b),
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we have plotted the measured Jc vs. L curves for various devices we measured.
Here, each line corresponds to the junctions fabricated on the same nanoribbon.
As in the simple model described above, we see an initial drop in Jc followed by
saturation of Jc above 150 nm. So, a junction with increased length (maybe even
close to µm scale) is a potential way to reduce bulk contributions to transport,
and this will be explored more in the future.





8 Summary and outlook
The growing interest in emulating Majorana fermions for topologically protected
quantum computing architectures led us to study the properties of topological
insulator-superconductor hybrid junctions.

In this thesis, we used Bi2Se3 in nanoribbon form to fabricate our junctions to
have a higher surface-to-volume ratio, thereby reducing the unavoidable bulk con-
tributions to transport. We explored in depth the size quantization effects and
ballistic transport in Al-Bi2Se3-Al junctions by studying the width dependence
of the critical current density and Fabry-Pérot resonances arising from ballistic
topological surface states(TSSs). We observed a pronounced reduction of the
Josephson critical current density Jc of our devices when the junction width is
reduced. We showed that this phenomenology could be associated with the trans-
port through the topological surface states. By geometric considerations, the
Josephson current is mainly carried by modes propagating on the top surface. To
provide further proof of transversal quantization effects in our devices, we looked
at Fabry-Pérot(FP) resonance in our junction in both normal and superconduct-
ing states. We demonstrated FP resonances in Al-Bi2Se3-Al junctions with lateral
dimensions up to 1.5 µm. Moreover, we observed FP oscillations in the Josephson
current and excess current, which correlate with the normal state conductance
oscillations as a function of applied gate voltage. These findings indicate quasi-
ballistic transport of TSSs over micrometre length scales.

To study the DC transport properties of our junctions and provide indications of
supercurrent being carried by TSSs we extract the current phase relation (CPR) of
our Al-Bi2Se3-Al junctions using an asymmetric SQUID measurement technique.
The CPRs are skewed, and the skewness values at very low temperatures were
higher than the typical skewness expected from a short diffusive junction. This
points towards the presence of high transmissive transport modes arising from
TSSs in our device. However, by fitting the experimentally obtained CPR at 20
mK, we found that our junctions have both diffusive and ballistic transport modes
contributing to Josephson transport. Yet, a major portion of the supercurrent is
carried by ballistic TSSs. This was one of the crucial pieces of information we
needed for analyzing our microwave measurements on Al-Bi2Se3-Al junctions.

We implemented Al-Bi2Se3-Al junctions in a circuit QED-inspired layout in the
form of an RF-SQUID coupled to a CPW resonator to check the possibility of
probing the Andreev bound states (ABSs) associated with these highly transmis-
sive modes. Though we did not observe any avoided level crossing due to vacuum
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Rabi-oscillations, we measured the ac susceptibility of our junctions. By scruti-
nizing the phase variation of the coupled system’s resonance mode, we obtained
critical insights into the dynamics of Andreev-bound states within the junction.
Our measurements highlight the existence of bound states characterized by small
energy gaps alongside relaxation rates surpassing 1 GHz. Through the examina-
tion of the temperature dependence of these rates, we attribute the microwave
excitation/relaxation process to the interaction with an electronic continuum re-
siding in the bulk (Possibly also TSSs) of the topological insulator. For future
studies, it will be of paramount importance to reduce the bulk conductivity in
order to probe bound states in the TSSs only.

The presence of both diffusive and ballistic transport modes in our junctions
complicates the transport analysis in the junctions. Therefore, reducing transport
modes, especially the diffusive contribution, is essential for experiments aimed at
detecting MBSs using 3D-TI junctions. So, in the last section of the thesis, we
discussed our attempts at reducing the bulk conductivity in our Bi2Se3 devices.
Although we could not achieve any gating effects in the suspended junctions, we
found that by using h-BN as dielectric and by gating the device from both the
top and bottom side, we can increase the resistance of the device drastically, and
we can get the chemical potential very close to the Dirac point. The effective-
ness of this approach in controlling supercurrent transport in our Al-Bi2Se3-Al
junction is yet to be tested. We also briefly discussed the possibility of using ul-
trathin nanoribbons for better gate control, thereby reducing bulk contributions
to transport. We believe sub-15 nm devices might be better suited for transport
studies close to the Dirac point. We also discussed the possibility of increasing
the length of our S-TI-S junction to reduce bulk contributions to supercurrent in
the junction.

Taking all the insight into account, for future studies, we are going to use ultra
thin Bi2Se3 with gating capabilities to control the transport in the junctions and
tune the Fermi level near the Dirac point to reduce bulk transport contributions.
Also, the dependence on the critical current and the junction length must be stud-
ied to identify a regime where the diffusive channel contributes less to transport
while the states from TSSs are still in short junction limit. Also, in situ deposited
epitaxial superconductors might be essential to realize "hard" induced gaps in TIs.
It might be good to study the nature of the induced superconducting gap in our
junction to check for the presence of subgap states. Indeed, we have indications
of a soft-induced gap causing excessive relaxation rates in the ABS dynamics.
Due to the presence of transversal quantization in our devices, it is essential to
apply a flux of 0.5 ΦN

0 (h/e) along the axis of the TINR in future experiments for
observing MBSs in these junctions.

Finally, the whole field of condensed matter and the detection of Majorana
fermions depends heavily on the quality of materials. For unambiguous detection
of this elusive particle, it is essential to identify and develop better materials.
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This is a major challenge that the community is presently facing and will require
innovative solutions to improve the quality of the materials.
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Appendix A

Microwave measurements: various
formulas

A.1 Resonator model

Figure A.1: (a) Parallel LCR circuit. (b) rf-SQUID coupled to an LC resonator
through mutual inductance M .

A.1.1 Parallel LCR resonator impedance close to resonance
frequency

The impedance of a parallel RLC resonator shown in Fig. A.1 (a) is given by:

ZLCR =
( 1

R
+ 1

iωL
+ iωC

)−1
. (A.1)

Expressing the impedance close to the resonance frequency using ω = ω0 + δω
with ω0 = 1/

√
LC and neglecting δω2/ω2

0 terms we get:
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ZLCR ≃
( 1

R
+ i2ω0δωLC

(ω0 + δω)L

)−1
,

≃
( 1

R
+ i2δωC

)−1

=
( 1

R
+ i2δω

ω0

1
Z0

)−1
,

(A.2)

with Z0 =
√

L/C the characteristic impedance of the LC circuit.

A.1.2 RF-SQUID coupled to a lumped element LC circuit
In the following we consider an admittance, Y , shorted by a superconducting
loop with inductance Ll, which is coupled via a mutual inductance, M , to the
inductance of a parallel LC circuit (see Fig. A.1 (b)). For a fixed ac-voltage
drive,V , we obtain the following two equations

V = iωLRILR
+ iωMIl,

0 = iωLlIl + Il

Y
+ iωMILR

,
(A.3)

with LR the resonator inductance, ILR
the ac current flowing through the resonator

inductance, and Il the ac current flowing through the loop inductance Ll. From
the second equation in A.3, we obtain the expression for the loop current

Il = −M

(
Ll + 1

iωY

)−1
ILR

. (A.4)

We can therefore rewrite:

V = iωILR

LR − M2
(

Ll + 1
iωY

)−1 . (A.5)

Here we can define the load impedance ZL in series with the resonator inductor
as:

ZL = −iωM2
(

Ll + 1
iωY

)−1

= ω2M2

iωLl + 1/Y
.

(A.6)

Using the expression of the Josephson admittance Y = χ/iω we obtain the load
impedance



109

ZL = −iωM2 χ

1 + Llχ
. (A.7)

For a small screening parameter, i.e. χLl ≪ 1 we get

ZL = −iωM2χ (A.8)

In the following, we will discuss the effect of the load impedance on both the
resonance frequency and quality factor of the coupled system. For this, we first
consider the loaded impedance of the LC circuit (neglecting any intrinsic losses,
i.e. the parallel resistor is set to infinity), which becomes:

Z̃LC =
( 1

iωLR + ZL
+ iωCR

)−1
. (A.9)

Rewriting this expression at frequencies close to the resonance frequency ω =
ω0 + δω, with ω0 = 1/

√
LRCR, and neglecting δω2/ω2

0 terms we get:

Z̃LC ≃
i(1 + δω

ω0
)ω0LR + ZL

−2δω
ω0

+ iZL

Z0

(
1 + δω

ω0

) ,

≃ iZ0 + ZL

−2δω
ω0

+ iZL

Z0

.

(A.10)

In the limit ZL ≪ Z0 =
√

LR/CR we get

Z̃LC ≃ 1
ZL

Z2
0

+ 2iδω
ω0

1
Z0

. (A.11)

Using the real and imaginary component of the load impedance ZL = Re(ZL)+
Im(ZL) we arrive at the final expression

Z̃LC ≃ 1
Re(ZL)

Z2
0

+ i
Z0

(
2δω
ω0

+ Im(ZL)
Z0

) . (A.12)

From this expression, we can derive the relative resonance frequency shift,
δω/ω0, and the added losses, δ(1/Q) caused by the load impedance. The res-
onance condition is fulfilled for Im(1/Z̃LC) = 0, giving us the relative frequency
change due to the load impedance

δω

ω0
= −Im(ZL)

2Z0
. (A.13)
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Comparing expression A.12 with equation A.2 we can identify Z2
0/ Re(ZL) as

an effective resistor, Reff , in parallel with the LC circuit (see Fig. A.1 (a)). Using
the expression for the quality factor of a parallel LCR circuit we obtain for the
losses added to the LC circuit:

δ

( 1
Q

)
≃ (ω0ReffC)−1

= Re(ZL)
Z0

.

(A.14)

Plugging the expression of the load impedance for small screening parameter,
eq. A.8, into eqs. A.13 and A.14 we get:

δω

ω0
= M2

2LR
χ′ (A.15)

δ

( 1
Q

)
= M2

LR
χ′′ (A.16)

The above two equations are also valid in the case of a distributed element
resonator such as a λ/4 resonator, with LR replaced by Lll [156]. Here Ll and l are
the inductance per unit length and the length of the λ/4 resonator, respectively.

In the limit where the screening parameter does not fulfill the condition χLl ≪ 1
we have to replace χ′ with Re

(
χ

1+χLl

)
and χ′′ with Im

(
χ

1+χLl

)
in eqs. A.15 and

A.16, respectively.

A.2 Matrix elements of the Andreev current
operator

The current operator of an Andreev system of a single mode with transmission
coefficient τn written in the Andreev states basis is given by [61, 176, 181]:

În = In(φ, τn)
(
σz +

√
1 − τn tan(φ/2)σx

)
, (A.17)

where the current In(φ, τn) is given by

In(φ, τn) = 2e

ℏ
∂E+

n

∂φ
= e∆′

2ℏ
τn sin(φ)√

1 − τn sin2(φ/2)
, (A.18)

with e the elementary charge, and ℏ = h/2π the reduced Planck constant. σz and
σx are the z- and x-Pauli matrices, respectively.
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A.3 Estimation of resonator Andreev bound state
coupling

The coupling Hamiltonian between the Andreev system and the resonator me-
diated by the mutual inductance M between the rf-SQUID and the resonator is
given by [61]:

Hg = MÎRÎn, (A.19)

with ÎR the current operator of the resonator given by [61, 182]:

ÎR =
√√√√ℏωn

2Lll
(a† + a). (A.20)

Here a and a† are the annihilation and creation operators of the harmonic oscillator
mode ωn, respectively.

Combining eqs. A.17 and A.20 into eq. A.19 one obtains [61]:

Hg = g(a† + a)
( 1√

1 − τ tan(φ/2)
σz + σx

)
(A.21)

The maximum coupling strength g at phase φ = π between the LC resonator
mode and the Andreev bound state pair mediated by the mutual inductance M
can be approximated as [61]:

ℏg ≃ M

√√√√ℏωn

2Lll

e∆′

ℏ
. (A.22)

For a mutual inductance of 3 − 10 pH we should obtain g/2π values between
1.3 MHz and 4.5 MHz for the 4.4 GHz resonator mode and 1.8 MHz and 6.1 MHz
for the 8.16 GHz mode.





Appendix B

Fabrication recipes
Substrate cleaning

• Hot acetone (50◦C) bath for 10 mins.

• If required, do an ultrasonic bath for 10 mins in acetone.

• IPA and blow dry with nitrogen gun.

• Check and repeat if necessary. If there are more residues or particles on the
surface, consider using oxygen plasma and then doing the cleaning process
from the beginning.

• For sapphire substrates, first using use a cotton swab to clean the surface
while keeping it in an acetone bath.

Chip marks
• Clean the substrate or wafer.

• Spin MMA EL6 at 6000 rpm, bake at 130◦C for 3 mins.

• Spin ARP 1:2 at 6000 rpm, bake at 130◦C for 3 mins.

• If the substrate is sapphire, evaporate 20 nm Cr using Leasker Nano Cr.

• EBL with base dose 220 µC/cm2.

• Development: 75 sec in Hexyl acetate and 75 sec in MIBK:IPA 1:3. After
each step stop the development in IPA and blow dry before proceeding.

• Soft plasma at 25W for 10 sec.

• Evaporate Ti (10 nm) / Au (70 nm) / Pd ( 10 nm) in Lesker 1.

• Liftoff in hot acetone with gentle pipetting. IPA dip and then blow dry.
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Al electrode for TI-junction or Au electrode other devices
• Spin MMA EL6 at 3000 rpm, bake at 130◦C for 2 mins.

• Spin ARP 2:1 at 6000 rpm, bake at 130◦C for 2 mins.

• If the substrate is sapphire, evaporate 20 nm Cr with Leasker Nano Cr.

• EBL with base dose 212 µC/cm2 for low current and 300 µC/cm2 for high
current exposure.

• Development: 75 sec in Hexyl acetate and 75 sec in MIBK:IPA 1:3.After
each step stop the development in IPA and blow dry before proceeding.

• Soft plasma at 25W for 10 sec.

• IBE etch for 35 sec, current 5mA, voltage 300 V, flow 4 sccm.

• Evaporate Pt (3 nm) / A1 (100 nm) in Lesker 1 (use recipes R1 Pt and R2
Al to keep the deposition rate 0.1 nm/s) for junction or desired metal for
other devices. In case Au contact choose the desired deposition recipe.

• Liftoff in hot acetone with gentle pipetting. IPA dip and then blow dry.

Gate electrodes for suspended devices
Do not deposit any metal more than 40 nm to be safe. The resist layer is very
thin.

• Spin MMA EL4 at 8000 rpm, bake at 170◦C for 3 mins.

• Spin PMMA A2 at 5000 rpm, bake at 170◦C for 3 mins.

• If the substrate is sapphire, evaporate 20 nm Cr with Leasker Nano Cr.

• EBL with base dose 1080 µC/cm2.

• Development for 90 sec in MIBK:IPA 1:3 and stop the development in IPA
and blow dry.

• Soft plasma at 25W for 5 sec.

• IBE etch for 35 sec, current 5mA, voltage 300 V, flow 4 sccm.

• Evaporate Ti (5 nm) / Au (25 nm) / Pd ( 5 nm) in Lesker 1.

• Liftoff in hot acetone with gentle pipetting. IPA dip and then blow dry.
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Al2O3 pillars for suspended devices
• Spin MMA EL6 at 6000 rpm, bake at 170◦C for 3 mins.

• Spin ARP 1:2 at 6000 rpm, bake at 170◦C for 3 mins.

• If the substrate is sapphire, evaporate 20 nm Cr with Leasker Nano Cr.

• EBL with base dose 205 µC/cm2.

• Development: 75 sec in n-amyl acetate and 75 sec in MIBK:IPA 1:3. After
each step stop the development in IPA and blow dry before proceeding.

• Soft plasma at 25W for 10 sec.

• Evaporate Al2O3 (50 nm) in Lesker 2.

• Liftoff in hot acetone with gentle pipetting. IPA dip and then blow dry.

Trilayer recipe for devices on h-BN
Used for avoiding cracking problems associated with ARP and still do closely
spaced patterns for junctions down to 50 nm.

• Spin MMA EL6 at 3000 rpm, acc 1000 for 60s, and bake at 130◦C for 2 mins

• Spin ARP 1:2 at 6000 rpm, acc 1000 for 60s and bake at 130◦C for 2 mins

• Spin PMMA A3 at 6000 rpm, acc 1000 for 60s and bake at 130◦C for 2 mins

• Spin Espacer at 2800 rpm, acc 1000 for 60s and blow dry or ambient dry if
needed.

• EBL with base dose 240 µC/cm2 for low current patterns and 350 µC/cm2

for high current patterns.

• Remove the top Espacer layer by dipping in H2O for 30 sec and blow dry.

• Develop for 60 sec in H2O:IPA 7:93 (premixed-bottle, shake the bottle to
mix before using). Stop development using IPA for 5 sec and blow dry.

• Develop for 60 sec in n-amylacetate for 60 sec. Stop development using IPA
for 5 sec and blow dry.

• Develop for 60 sec in MIBK:IPA 1:3 (premixed-bottle) for 60 sec. Stop
development using IPA for 5 sec and blow dry.

• Soft plasma at 25W for a maximum of 15 sec using batch top.
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• IBE etch for 35 sec, current 5mA, voltage 300 V, flow 4 sccm.

• Evaporate metal of choice

• Heat up acetone at 500◦C and lift off for 10 mins with gentle pipetting. Dip
in IPA for 30sec and blow dry.

NbN resonator
PMMA gets easily etched with Ar-Cl ecthing and one has to play close attention
during etching process.

• Deposit 100nm NbN film using DCA in a 2-inch substrate.

• Dice into required chip sizes.

• Clean the chips gently after dicing to remove any residues.

• Spin PMMA A6 at 4000 rpm, acc 1000 for 60s, and bake at 170◦C for 3 mins.

• EBL with base dose 700 µC/cm2.

• Develop for 90 sec in H2O:IPA7:93 (premixed-bottle, shake the bottle to mix
before using). Stop development using IPA for 5 sec and blow dry.

• Soft plasma at 25W for a maximum of 15 sec using batch top.

• RIE Ar 50 sccm Cl 4 sccm for around 20 seconds. You use the laser for end
detection.

• Rinse in H2O and examine the chips to check for quality.
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